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The superexchange interaction between Yb31 and Cr31 ions in the mixed YbCrBr9
32 bioctahedral face-

sharing dimer is quantitatively analyzed using a modified kinetic exchange theory, which is adapted to a
realistic description of the electronic structure of lanthanide ions in solids. The general procedure of the
calculation of the 4 f -3d anisotropic exchange spin Hamiltonian is presented and applied to the YbCrBr9

32

dimer. The spin-Hamiltonian of the Yb31-Cr31 exchange interaction is found to be extremely anisotropic,
H5JzSYb

z SCr
z

1J'(SYb
x SCr

x
1SYb

y SCr
y ), with the antiferromagnetic Jz and ferromagnetic J' parameters, where

SYb
m and SCr

m (m5x ,y ,z) are the components of the effective spin SYb5
1
2 of the Yb31 ion ~corresponding to the

ground G6 Kramers doublet! and the true spin SCr5
3
2 of the Cr31 ion, respectively. The calculated exchange

parameters are quite consistent with the experimental data (Jz525.16 cm21 and J'514.19 cm21) at rea-
sonable values of the Yb→Cr and Yb←Cr charge transfer energies. The contributions to the Jz and J'

exchange parameters from the individual states of the 4 f 12-3d4 and 4 f 14-3d2 charge transfer configurations
are analyzed in detail and general regularities are established. Our results indicate that a very strong 4 f -3d

exchange anisotropy can appear even in the absence of the crystal-field anisotropy on the lanthanide ion.
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I. INTRODUCTION

There has been an increasingly intensive research effort in
the last decades toward understanding the magnetic proper-
ties of lanthanide compounds. The interest to these com-
pounds, and especially to mixed 4 f -3d metal oxides, is re-
ceiving renewed attention in connection with the discovery
of high-Tc superconductivity and, more recently, of the co-
lossal magnetoresistance.1 At present, a large variety of in-
sulating lanthanide compounds with different element com-
positions and various crystal structures are known. Among
them the most studied are numerous rare-earth ~lanthanide!
cuprates ~of which LnBa2Cu3Ox and Nd2CuO4 have at-
tracted a special interest!,2,3 LnMO3 perovskites, such as
NdCrO3 ,4 TbMnO3 ,5 NdFeO3 ,6 etc., Ln3M 5O12 garnets,7

and many other mixed or pure lanthanide compounds.8,9

It is commonly recognized that a strong magnetic anisot-
ropy is a general property of the f-block element compounds
~except those containing 4 f 7 ions, such as Gd31, Eu21, or
Tb41). Both single-ion magnetic characteristics and ex-
change interactions between magnetic centers in lanthanide
or actinide compounds are known to be strongly
anisotropic.10–15 Despite extensive and interesting collection
of experimental data on magnetic properties of nonmetallic
lanthanide compounds, very little is known about specific
mechanisms of 4 f -3d or 4 f -4 f exchange interactions. In
many theoretical approaches, model anisotropic spin Hamil-
tonians, such as the Ising or XY Hamiltonian, are used to
describe magnetic properties of lanthanide compounds.
However, the microscopic origin of the exchange parameters
and their relation to the nature of the magnetic centers, the
electronic structure of lanthanide ions, and the specific crys-

tal structure was scarcely analyzed in the literature.16–19

In contrast to transition metal ions, exchange interactions
between two individual paramagnetic centers A and B, one or
both of which are lanthanide ions, cannot be described in
terms of the conventional isotropic Heisenberg Hamiltonian
2JSASB , even to a first approximation. The fundamental
reason is that the total spin S of the 4 f N shell of a lanthanide
ion is not a good quantum number. This is related to the fact
that in lanthanide ions the ratio between the spin-orbit cou-
pling energy z and the crystal-field splitting energy D is
much larger ~typically, z/D.1) as compared to that in tran-
sition metal ions (z/D50.01– 0.1 in 3d ions!. The total spin
S of a transition metal ion is normally a good quantum num-
ber, because in most cases the orbital momentum L is
quenched due to a strong crystal-field effect. Therefore, ex-
change interactions between transition metal ions, with well-
separated spin-only ground states, are basically described by
the isotropic Heisenberg model with small anisotropic ex-
change terms appearing due to the spin-orbit coupling

H52JSASB1SAD•SB1A@SA3SB# , ~1!

where the second term corresponds to the symmetric aniso-
tropic interaction ~D is a traceless second rank tensor! and
the last term is the Dzyaloshinskii-Moriya antisymmetric
exchange.20 The relative magnitude of these anisotropic
terms is estimated as uDu/J'(z/D)2 and uAu/J'z/D , re-
spectively. For transition metal ions with more than one un-
paired electrons (S.

1
2 ) some higher powers in spins can

also appear.
In lanthanide compounds the situation is quite different.

Due to a strong spin-orbit coupling ~z ranges from 600 to
3000 cm21! combined with a very small crystal-field ~CF!
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splitting D ~few hundreds wave numbers!, the total orbital
momentum L in lanthanide ions is not quenched since it is
coupled to the total spin S to form the total angular momen-
tum J. The latter is split into CF levels by the ligand sur-
rounding. As a result, neither L nor S are no longer good
quantum numbers, and the anisotropic terms in the exchange
Hamiltonian are no longer small as compared to the isotropic
term 2JSA•SB .

The magnetic behavior of transition metal and lanthanide
compounds with extended magnetic lattices is often very
complicated due to cooperative effects making difficult the
unambiguous determination of the exchange parameters of
the anisotropic spin Hamiltonian ~1! from experimental data.
Dimers of paramagnetic ions are free of these difficulties and
thus are much more favorable for both experimental and the-
oretical study of exchange interactions.21 There was a great
deal of work on magnetic and optical properties of dimers in
solids, mostly on transition metal dimers.22 Although lan-
thanide dimers are less studied, some lanthanide-containing
exchange pairs were magnetically characterized from optical
spectra, electron paramagnetic resonance, and neutron-
scattering experiments.11,23–29

Exchange interactions in insulating lanthanide com-
pounds, such as those in respective transition metal com-
pounds, can be described in terms of the superexchange
model.30 The underlying mechanism of the magnetic cou-
pling between paramagnetic centers in metal dimers and ex-
tended magnetic systems is the kinetic exchange mechanism
related to metal-to-metal electron-transfer processes medi-
ated by bridging diamagnetic ligands. Although general prin-
ciples of the kinetic exchange mechanism are the same for
both 3d and 4 f metal ions, specific details of exchange in-
teractions may be however quite different.

This paper deals with the microscopic origin of the ex-
change interaction between lanthanide and transition metal
ions in mixed 4 f -3d dimers. Specifically, we study the
mechanism of the kinetic exchange interaction between
Yb31 and Cr31 ions in the YbCrBr9

32 dimer. This choice
has the advantage that there are three structurally related
dimers Cr2Br9

32, YbCrBr9
32, and Yb2Br9

32, whose mag-
netic properties have been well characterized. The chromium
and ytterbium dimers are contained as individual isolated
building blocks in compounds Cs3Cr2Br9 ~Ref. 31! and
Cs3Yb2Br9 ,32 respectively, while the YbCrBr9

32 dimer is
obtained by doping Cr31 ions in Cs3Yb2Br9 crystals.26 These
dimers consist of two face-sharing CrBr6

32 or YbBr6
32 oc-

tahedra with an approximate D3h or C3v
symmetry. Ex-

change parameters for the Cr31-Cr31,33 Yb31-Yb31,25 and
Yb31-Cr31 ~Ref. 26! pairs were obtained from inelastic neu-
tron scattering experiments. A high local symmetry around
the metal ions and their simple electronic configurations
(4 f 13 for Yb31 ion and 3d3 for Cr31 ion! facilitates consid-
erably the theoretical analysis. The Yb31-Cr31 exchange in-
teraction in the YbCrBr9

32 dimer was found to be extremely
anisotropic, H52JzSYb

z SCr
z

2J'(SYb
x SCr

x
1SYb

y SCr
y ) ~where

SYb5
1
2 and SCr5

3
2 ) with Jz520.64 meV ~25.16 cm21! and

J'510.52 meV ~14.19 cm21! ~i.e., the exchange param-
eters Jz and J' have opposite signs!. It is also surprising that
the exchange interaction between Yb31 ions in the

Yb2Br9
32 dimer is isotropic and antiferromagnetic with J

522.87 cm21.25 The exchange interaction in the Cr2Br9
32

dimer is antiferromagnetic, J528 cm21; it was a subject of
extensive experimental and theoretical studies.22,33,34 Such a
different behavior of the magnetic anisotropy in structurally
similar YbCrBr9

32 and Yb2Br9
32 dimers is therefore very

intriguing.
In this paper, the mechanism of the exchange interaction

between Yb31 and Cr31 ions in the YbCrBr9
32 dimer is

analyzed using a modified kinetic exchange theory, which is
adapted to a realistic description of a complicated electronic
structure of lanthanide ions in solids; the formalism of this
approach allows for direct calculations of the parameters of
the anisotropic 4 f -3d exchange Hamiltonians.35 Our pri-
mary purpose is, however, to elucidate the origin of a strong
Yb31-Cr31 exchange anisotropy. Although it is commonly
believed that the exchange anisotropy is related to the anisot-
ropy of the g tensor of the metal ions, we will show that this
is generally not true and a strong exchange anisotropy can
appear even if the g tensor of the 4 f magnetic ions in the
exchange pair is isotropic, as is the case for the octahedral
ligand surrounding of the Yb31 and Cr31 ions in the
YbCrBr9

32 dimer.
The paper is arranged as follows. In Sec. II we outline the

general theory of the kinetic exchange interaction between
4 f and 3d metal ions. In Sec. III we describe the calculation
of the exchange parameters of the spin Hamiltonian ~1! for
the YbCrBr9

32 dimer. In Sec. IV the results of numerical
calculations of parameters of the exchange spin Hamiltonian
for the Yb31-Cr31 pair are discussed and the contributions
from individual charge-transfer states to the exchange pa-
rameters are analyzed in detail. Some general regularities of
the 4 f -3d superexchange mechanism are established, which
prove to be very helpful in understanding the microscopic
origin of a strong exchange anisotropy.

II. THEORY

We describe in this part the theoretical background used
for the quantitative description of the 4 f -3d exchange inter-
actions in magnetic insulators following the general concept
developed in previous papers.19,35 Our approach is based on
the Anderson’s superexchange theory, which is adapted for
an adequate description of the electronic structure of lan-
thanide ions. There are several features of the electronic
structure of lanthanide ions, which make the superexchange
theory for 4 f electrons essentially different from that for 3d

electrons.
~i! In contrast to transition metal ions, in which the mag-

netic momentum is determined by the total spin only, the
magnetic momentum of lanthanide ions is related to the de-
generate or quasidegenerate ground state originating from
the crystal field splitting of the lowest multiplet. Typically,
the ground state of a lanthanide ion is a Kramers doublet
corresponding to the effective spin S5

1
2 with very aniso-

tropic magnetic components. As a result, exchange-split lev-
els of a 4 f -3d dimer cannot be classified according to the
total spin as is the case in transition metal dimers.

~ii! The energy spectrum of charge-transfer ~CT! states of
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a 4 f N-3dM dimer is too complicated to be described in terms
of a conventional scheme, according to which the CT states
are regarded as degenerate and lying at a large energy U

above the ground state of the dimer.30

~iii! Because of strong electron correlation effects and
strong spin-orbit coupling, wave functions of the open 4 f N

shell are composed of many Slater determinants, both for the
ground state and excited CT states. Therefore, electron trans-
fers between metal ions cannot be regarded as transfers be-
tween individual 4 f and 3d orbitals of different ions, but
they should be regarded as transitions between many-
electron states of the system.

In this paper, we concentrate on the microscopic mecha-
nisms of exchange interactions for an isolated lanthanide-
transition metal pair (4 f -3d dimer! rather than for an ex-
tended magnetic crystal. We develop the exchange theory in
the spirit of the original Anderson approach, but with one
important difference. The kinetic exchange theory is devel-
oped here in terms of many-electron wave functions con-
structed from many-electron wave functions of isolated 4 f

and 3d metal centers. This approach incorporates a realistic
description of the electronic structure of lanthanide ions tak-
ing advantage of the well-elaborated parametric approach
widely used for the description of the energy level patterns of
lanthanide ions in solids.36–38

Consider a 4 f -3d exchange-coupled pair AB composed of
a lanthanide ion A with the 4 f N configuration, a transition
metal B with the 3dM configuration, and diamagnetic ligands
around each metal center. Some of these ligands bridge the A

and B metal centers and mediate exchange interactions be-
tween them.

We start from the total electronic Hamiltonian H of the
4 f -3d pair

H5HA1HB1V , ~2!

where HA and HB are electronic Hamiltonians of the lan-
thanide and transition metal centers having the 4 f N and 3dM

basic configurations, respectively, and V incorporates inter-
actions between these centers. Below we specify the struc-
ture of these terms in more detail.

A. The Hamiltonian of the 4fN center

The Hamiltonian HA has the structure

HA5H0~4 f !1HCF , ~3!

where H0(4 f ) is the free-ion Hamiltonian of the 4 f N con-
figuration and HCF is the crystal-field ~CF! Hamiltonian.
H0(4 f ) is often written in the well-elaborated parametric
form36–38

H0~4 f !5 (
k52,4,6

f kFk
1(

i
z4 f l is i1aL~L11 !

1bG~G2!1gG~R7!, ~4!

which includes the electron repulsion energy, spin-orbit cou-
pling, and the a, b, and g two-body correction parameters
associated to the angular momentum L and to the Casimir

operators G for the groups G2 and R7 , respectively. This
Hamiltonian describes the 2S11LJ multiplet structure of the
free lanthanide ion, which was analyzed in great details
elsewhere.36–38 Note that H0(4 f ) describes the multiplet
structure in the true intermediate coupling scheme, not in the
simplified Russell-Saunders approach. Under the influence of
the CF potential created by the ligand surrounding, 2S11LJ

multiplets are split into individual crystal field levels. In
many works on the theoretical and optical study of the en-
ergy spectra of lanthanide compounds, this splitting is de-
scribed in terms of the parametric CF Hamiltonian HCF

HCF5(
kq

Bq
kCq

k , ~5!

where Bq
k are crystal field parameters associated with spheri-

cal tensor operators Cq
k .36 The HCF Hamiltonian lifts the

2J11 degeneracy of the 2S11LJ multiplets with the half-
integer total momentum J into doubly degenerated CF states
~i.e., Kramers doublets!.

Because in the frame of the kinetic exchange theory the
4 f and 3d metal centers in the dimer can interchange one
electron, we assume in the following that HA describes the
electronic structure not only for the basic 4 f N configuration,
but for the charge-transfer configurations 4 f N21 and 4 f N11

as well

HACk~4 f N!5Ek~4 f N!Ck~4 f N!, ~6a!

HACr~4 f N11!5Er~4 f N11!Cr~4 f N11!, ~6b!

HACp~4 f N21!5Ep~4 f N21!Cp~4 f N21!, ~6c!

where Ck(4 f N), and Cr(4 f N11) and Cp(4 f N21) are wave
functions of the individual CF states of the respective con-
figurations and Ek(4 f N), Er(4 f N11), and Ep(4 f N21) are the
corresponding CF energies. Although the f-d superexchange
theory developed in this paper can be applied to various
types of the degenerate or pseudodegenerate ground CF state
of the f ion ~see Sec. V!, in this paper we treat with Kramers’
lanthanide ions only, i.e., we suppose the number N to be
odd, for which the 2S11LJ multiplets with a half-integer mo-
ment J are split by the crystal field into Kramers doublets. In
particular, the ground state of the lanthanide ion is the
C0(4 f N;6 1

2 ) Kramers doublet with two components 1
1
2

and 2
1
2 formally corresponding to an effective spin S5

1
2 .

There are two features of the spectrum of 4 f N configura-
tions, which should be taken into account for an adequate
treatment of the superexchange interactions involving lan-
thanide ions. First, the total number of states involved can be
very large, 91 (4 f 2,4f 12) 364 (4 f 3,4f 11), 1001 (4 f 4,4f 10),
2002 (4 f 5,4f 9), 3003 (4 f 6,4f 8), and 3432 (4 f 7). Second,
the total energy extension DE(4 f N) of the spectrum of 4 f N

configurations is usually large ranging from 6 eV (4 f 2) to
about 20 eV (4 f 7-4 f 10) ~see Table I!. Typically, the energy
distance between the 2S11LJ multiplets is of the order of few
thousands cm21, the CF splitting is of order of several hun-
dreds cm21, and the energy gap between the ground and first
excited CF state varies from few cm21 to several hundreds
cm21, depending on the nature of the lanthanide ion and the
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type of ligands surrounding.37 It is also important to stress
that the wave functions C0(4 f N;6 1

2 ) of the ground Kramers
doublet of the lanthanide ion are represented by a sum of
many determinants, and they cannot be reduced to a single
Slater determinant ~see below!. This makes inadequate the
widely used approach based on one-configuration approxi-
mation for the wave functions of the ground magnetic state.

B. The Hamiltonian of the 3dM center

Similar relations are valid for the transition metal center B

of the dimer. The Hamiltonian of an isolated 3d center is
represented by

HB5H0~3d !1HCF , ~7!

where H0(3d) describes Coulomb interactions between 3d

electrons and HCF corresponds to the CF potential. The wave
functions F i(3dM;SM s) and CF energies E i(3dM) of the
basic 3dN configuration are defined by

HBF i~3dM;SM s!5E i~3dM !F i~3dM;SM s!. ~8!

Since we do not take into account the spin-orbit interaction
on the transition metal ion, each CF state F i(3dM;S ,M s) is
characterized by the definite total spin S i and its projection
M s , which are good quantum numbers. Note that the index i

refers to the orbital part of the wave function and the total
spin S is therefore a function of i. We suppose that the
F0(3dM;SM s) ground state is orbitally nondegenerate and
has a nonzero spin S. Again, the Hamiltonian HB is also
defined for the 3dM11 and 3dM21 CT configurations

HBFq~3dM11;S8M 8!5Eq~3dM11!Fq~3dM11;S8M 8!,
~9a!

HBFs~3dM21;S8M 8!5Es~3dM21!Fs~3dM21;S8M 8!.
~9b!

For the crystal field of the cubic symmetry, the energy level
scheme of 3dM configurations is described by the Tanabe-
Sugano diagrams.39,40 In the general case, when the system
has a low symmetry or no symmetry at all, the energy spec-
trum should be obtained from the exact diagonalization of
HB . Note that in the following no symmetry in the 4 f -3d

dimer AB is supposed.

C. The unperturbed Hamiltonian and the charge-transfer

energy spectrum of a 4fN-3dM dimer

In the absence of interactions between 4 f and 3d ions, the
wave functions of the 4 f -3d dimer are described by the
one-center Hamiltonians HA1HB . Their eigenvectors
Jkl(AB;SM s) are written as direct antisymmetrized prod-
ucts of the corresponding wave functions of centers A and B.
For the basic 4 f N-3dM configuration of the dimer we have

Jkl~AB;SM s!5Ck~4 f N! ^ F l~3dM;SM s!, ~10!

where ^ stands for the antisymmetrized product. In particu-
lar, the ground level of the unperturbed dimer is
2S(S11)-fold degenerate and is represented by the set of
the u61/2,M s& wave functions

u61/2,M s&5C0~4 f N;61/2! ^ F0~3dM;SM s!. ~11!

The eigenenergies of HA1HB are sums of separate one-
center contributions Ek(4 f N)1E l(3dM). HA1HB describes
also the CT configurations. The eigenfunctions Jpq(A

→B;S8M 8) and Jrs(A←B;S8M 8) corresponding to the CT
states, 4 f N21-3dM11 and 4 f N11-3dM21, are defined by

Jpq~A→B;S8M 8!5Cp~4 f N21! ^ Fq~3dM11;S8M 8!,
~12a!

Jrs~A←B;S8M 8!5Cr~4 f N11! ^ Fs~3dM21;S8M 8!.
~12b!

The corresponding eigenenergies are sums of the single-ion
energies of the, respective 4 f N61 and 3dM61 configuration
plus the CT energy gap U0(A→B) or U0(A←B), which is
the difference between the energy of the ground states of the
basic 4 f N-3dM and the CT configuration 4 f N21-3dM11

(4 f N11-3dM21) CT configuration

Epq~A→B !5U0~A→B !1Ep~4 f N21!1Eq~3dM11!,
~13a!

Ers~A→B !5U0~A→B !1Er~4 f N11!1Es~3dM21!.
~13b!

For the 4 f -3d dimer with noninteracting centers A and B,
these energies are defined by intracenter interactions only;
they also incorporate the energy difference between 4 f and
3d orbitals and the electron repulsion energy between 4 f or
3d electrons on the respective metal centers. For a hetero-
metallic AB dimer, the U0(A→B) or U0(A←B) CT energy
gaps can be different. In many treatments of superexchange,
Epq(A→B) and Ers(A←B) quantities are often reduced to

TABLE I. The total energy range of 4 f N configurations of lan-
thanide ions @DE(4 f N)# and 3dM configurations of octahedrally
coordinated transition metal ions @DE(3dM)# .

4 f N configuration 3dM configuration

4 f N DE(4 f N), eVa 3dM DE(3dM), eVb

4 f 1 0.3 3d1 1.9
4 f 2 5.8 3d2 6.9
4 f 3 8.4 3d3 8.2
4 f 4 15.7 3d4 11.2
4 f 5 16.1 3d5 10.1
4 f 6 22.1 3d6 11.5
4 f 7 22.5 3d7 7.5
4 f 8 24.0 3d8 7.5
4 f 9 18.3 3d9 1.9
4 f 10 20.0
4 f 11 12.1
4 f 12 9.8
4 f 13 1.2

aCalculated for lanthanide ions with the free-ion parameters of
Ln31 ion ~Ref. 41!.

bCalculated with the B5700, C53000 cm21 Racah parameters and
10Dq515 000 cm21.
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the single Hubbard energy U. In fact, for 4 f -3d dimers this
simple superexchange model is far from being realistic. In-
deed, since the total energy range of the 4 f N61 and 3dM61

configurations @DE(4 f N61) and DE(3dM61)] is very large
@up to 24 eV for DE(4 f N61) and 11 eV for DE(3dM61), see
Table I#, the total width of the CT band of a 4 f -3d dimer is
normally well above 10 eV and can reach a value of 35 eV,
which is much larger than the typical metal-to-metal CT en-
ergy U ranging within 5–10 eV.30 This is illustrated by Fig.
1. Therefore, the energies of individual CT states of the
4 f -3d dimer should be taken into account explicitly. As
shown in Sec. IV, this is very important in order to obtain a
correct balance between contributions of these states to the
exchange parameters.

Now we take into account the interaction V between the
4 f and 3d centers and define the unperturbed Hamiltonian of
the dimer AB. The interaction V can be written as

V5VAB1HAB , ~14!

where VAB incorporates those interactions between 4 f and
3d metal centers, which do not mix the states of the
4 f N-3dM basic configuration with the states of
4 f N21-3dM11 or 4 f N11-3dM21 CT configurations. HAB de-
scribes electron transfers between A and B metal centers.
VAB is mainly contributed by the intercenter Coulomb inter-
actions between 4 f and 3d electrons, VCoul(AB). Indeed,
^Jkl(AB;SM s)uVCoul(AB)uJpq(A→B;S8M 8)& matrix ele-
ments are negligibly small because of a very small overlap of
4 f and 3d orbitals centered on different metal ions. In addi-
tion, VCoul(AB) acts diagonally in the space of wave func-
tions of the 4 f N-3dM basic configuration and causes some
splitting of spin levels due to the direct ~potential! 4 f -3d

exchange interaction J f d . As in transition metal exchange
dimers, the latter is assumed to be small ~actually, the direct
exchange interaction in 4 f -3d dimers seems to be even less
important than in 3d-3d dimers because of a strongly local-
ized character of 4 f states!. Hereafter we concentrate on the
kinetic exchange contributions only.

The unperturbed Hamiltonian of the 4 f -3d dimer is for-
mally defined as

H05HA1HB1VAB . ~15!

The Hamiltonian H0 is defined in the extended basis set,
which involves the wave functions ~10! of the 4 f N-3dM con-
figuration and the wave functions ~12! of the 4 f N21-3dM11

and 4 f N11-3dM21 configurations. It incorporates all intrac-
enter and intercenter interactions, which do not mix the AB

states with the A→B and A←B CT states ~12!. In our ap-
proach, H0 is not expressed explicitly via specific one-and
two-electron operators, but it is defined by the full set of its
eigenvectors and eigenenergies. Consider first the eigenvec-
tors of H0 . Generally, they should not differ much from the
eigenvectors ~10! and ~12! of the HA1HB Hamiltonian, de-
scribing the dimer with the noninteracting centers A and B.
Indeed, the wave functions of 4 f or 3d metal ions are
formed mainly by the intraionic interactions and by the in-
teractions with the nearest ligands; interactions with more
distant atoms, including the neighboring paramagnetic metal
atoms, have a considerably smaller influence on the single-
ion wave functions ~we do not consider here the formation of
metal-metal bonds!. In other words, the wave functions of
the localized 4 f N or 3dM shell of the given metal ion defined
by Eqs. ~6!, ~8!, and ~9! are essentially the same irrespective
of the presence or absence of other paramagnetic metal ions
outside the nearest coordination sphere. In particular, this is
reflected in the fact that the energy positions of lines in op-
tical spectra of lanthanide and transition metal ions diluted in
insulating solids do not vary much with increasing the con-
centration. This is also evidenced from numerous data on
magnetic and optical properties of individual binuclear metal
complexes, which show that the line energies ~but not optical
intensities! in their optical spectra are very close to those of
the corresponding isolated metal ions in the similar ligand
coordination.22,37,40 Therefore, it is a good approximation to
assume that the eigenvectors of the Hamiltonian H0 coincide
with those of the HA1HB , which are given by the direct
products of the one-center wave functions ~10! and ~12!.

FIG. 1. The energy band structure of the CT configurations of a
4 f N-3dM exchange dimer. The C0(4 f N;61/2) ^ F0(3dM;SM s)
ground state of the 4 f N-3dM basic configuration is separated from
the ground state of the 4 f N21-3dM11 and 4 f N11-3dM21 CT con-
figurations by the energy gap U0(A→B) and U0(A←B), respec-
tively. The total energy extension of the CT configurations is given
by the sum DE(4 f N21)1DE(3dM11) or DE(4 f N11)
1DE(3dM21) and may reach a value of 35 eV being far beyond
the typical CT energy gap of 5–10 eV.
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The eigenenergies of H0 differ from those of HA1HB due
to the intercenter interaction VAB . However, since the inter-
center interactions are considerably weaker than the intrac-
enter interactions, the energy spectrum of H0 should be close
to the spectrum of the HA1HB Hamiltonian ~13!. For the
basic configuration 4 f N-3dM the intercenter Coulomb inter-
action is manifested as electric multipolar interaction be-
tween 4 f and 3d electrons, which is considerably smaller
than the intraionic Coulomb and CF interactions and thus can
be omitted. For the 4 f N21-3dM11 configuration the inter-
center Coulomb interaction is more pronounced since now it
describes the direct interaction between the hole in the
4 f N21 shell and the extra electron in the 3dM11 shell ~or
vice versa for the 4 f N11-3dM21 CT configuration!. This en-
ergy is of the order of 1–2 eV, which is still small as com-
pared to the A→B CT energy U0(A→B)55 – 10 eV. It is
important that this interaction is mainly reduced to the point-
charge Coulomb interaction, which shifts the energy posi-
tions of CT states by the same value and thus does not influ-
ence much their order. This implies that the VAB interaction
for CT states can be absorbed by the CT energy gap U0(A

→B) or U0(A←B).
Thus, the unperturbed Hamiltonian H0 of the 4 f -3d

dimer is as an operator with eigenvectors ~10! and ~12! and
the corresponding energies ~13!, in which the U0(A→B) and
U0(A←B) CT energy gaps incorporate the energy of the
direct intercenter 4 f -3d interactions. This definition of the
unperturbed Hamiltonian is convenient for a model descrip-
tion of exchange dimers, since explicit expression of effec-
tive interactions via specific one-and two-electron operators
may be uncertain.

D. The perturbation Hamiltonian

The perturbation Hamiltonian HAB describes 4 f→3d and
4 f←3d electrons transfers mixing the ground and CT con-
figurations. It represents the sum of one-electron operators
h(i)

HAB5(
i

h~ i !. ~16!

Each operator h(i) is defined by a 735 matrix with the
elements t(4 f i-3d j)[^4 f iuhu3d j)& ~hereafter abbreviated as
t i j) connecting seven 4 f i orbitals centered on the lanthanide
ion A with five 3d j orbitals centered on the transition-metal
ion B; these quantities are called transfer ~hopping! integrals.
They describe the indirect coupling between the lanthanide
4 f and 3d metal atomic orbitals via the intermediate s and p

ligands orbitals ~see Sec. III!.
In the second-quantized technique HAB is written in the

usual form

HAB5(
i j

t i ja i
1b j1H.c., ~17!

where a i
1 and b j are second quantization operators corre-

sponding to the 4 f i and 3d j orbitals. In our approach, HAB is
represented by the full set of the matrix elements
^Jkl(AB;SM s)uHABuJpq(A→B;S8M 8)& and

^Jkl(AB;SM s)uHABuJrs(A←B;S8M 8)& connecting the AB

states with the A→B or A←B CT states. These matrix ele-
ments can be directly expressed via the t(4 f i-3d j) transfer
integrals. Details of these calculations are given in the Ap-
pendix A.

E. The effective exchange Hamiltonian Heff of the 4fN-3dM

metal dimer

Now we derive the effective exchange Hamiltonian Heff
of the 4 f N-3dM dimer. By definition, Heff acts in the space of
the 2(2S11)-fold degenerate ground level of the unper-
turbed Hamiltonian H0 , which is spanned by the set of
um ,M s&5C0(4 f N;m) ^ F0(3dN;SM s) wave functions,
where m51

1
2 ,2 1

2 stands for the components of the ground
Kramers doublet of the lanthanide ion and M s5S ,S21,...,
2S is the projection of the total spin S of the ground level of
the transition metal center B. Heff is defined by the set of
matrix elements

^m ,M suHeffum8,M s8& . ~18!

Since the degeneracy of the ground manifold is of a spin
nature, matrix elements of Heff can be directly associated
with the matrix elements of a conventional exchange spin
Hamiltonian written in terms of products of operators SA

x ,
SA

y , and SA
z of the effective spin 1

2 of the lanthanide ion A and
the SB

z , SB
1 , and SB

2 operators of the true spin SB of the
transition metal ion B. These operators obey the following
equations:

SA
z C0~4 f N;m !5mC0~4 f N;m !, ~19a!

SA
x C0~4 f N;m !5

1

2
C0~4 f N;2m !, ~19b!

SA
y C0~4 f N;m !5imC0~4 f N;2m !, ~19c!

SB
z F0~3dM;SM s!5M sF0~3dM;SM s!, ~19d!

SB
1F0~3dM;SM s!5AS~S11 !2M s~M s11 !F0

3~3dM;SM s11 !, ~19e!

SB
2F0~3dM;SM s!5AS~S11 !2M s~M s21 !F0

3~3dM;SM s21 !. ~19f!

The effective Hamiltonian Heff is obtained by the projec-
tion of the total Hamiltonian H5HA1HB1VAB1HAB into
the space of states um ,M s& from the ground manifold. To this
end we define the projection operators P0 and Pi for the
ground ~AB! and excited CT (A→B and A←B) manifolds

P05(
n0

un0&^n0u, Pi5un i&^n iu, ~20!

where n0 runs over the um ,M s&5C0(4 f N;m)
^ F0(3dN;SM s) states of the 2(2S11)-fold degenerate
ground level, and n i runs over spin-degenerate CT states
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Jpq(A→B;S8M 8)5Cp(4 f N21) ^ Fq(3dM11;S8M 8) and
Jrs(A←B;S8M 8)5Cr(4 f N11) ^ Fs(3dM21;S8M 8) with
the composite indices pq and rs, respectively. In the second
order after HAB we obtain for Heff

Heff5(
iÞ0

P0HABPiHABP0

E02E i

. ~21!

The matrix elements of Heff are given by

^m ,M suHeffum8,M s8&52 (
pq;M8

^m ,M suHABuJpq~A→B;S8M 8!&^Jpq~A→B;S8M 8uHABum8,M s8&

U0~A→B !1Ep~4 f N21!1Eq~3dM11!

2 (
rs;M8

^m ,M suHABuJrs~A←B;S8M 8!&^Jrs~A←B;S8M 8!uHABum8,M s8&

U0~A←B !1Er~4 f N11!1Es~3dM21!
. ~22!

Note that the SA
h (h5x ,y ,z) operators refer to the effective

spin SA of the lanthanide ion, not to the operators of the
magnetic momentum mA . They are related to each other via
the g-tensor of the ground Kramers doublet of the lanthanide
ions, which might be very anisotropic. In the general case,
the relationship between SA and mA is rather complicated,
and should be analyzed separately for a specific 4 f -3d

dimer. Below we deal with a model YbCrBr9
32 dimer in

which the YbBr6
32 coordination polyhedron is assumed to

be a regular octahedron. In this case the g tensor of the
ground Kramers’ doublet of the Yb31 ion is isotropic and
thus the effective spin operator SA is simply proportional to
the magnetic momentum operator mA . This will be analyzed
in more detail in Sec. III.

Because analytical calculations using Eq. ~22! are hardly
possible even for simple 4 f -3d dimers, a special computer
program for numerical calculations of the spin Hamiltonian
exchange parameters was designed. Here we give a brief
outline of this program.

There are three groups of input parameters in the pro-
gram. The first group involves parameters for the lanthanide
center A, the free-ion parameters of the lanthanide ion ~the
electron repulsion parameters F2, F4, and F6, spin-orbit
coupling constant z4 f for 4 f electrons, and the Trees two-
body correction parameters a, b, and g, Eq. ~4!, and the full
set of the Bq

k parameters ~a total of 27 CF parameters! in-
volved in the model CF Hamiltonian, Eq. ~5!. The second
group involves parameters for the transition metal center, the
B and C Racah parameters and the set of CF parameters for
3d electrons, which are defined as a 535 real matrix com-
posed of ^3d iuHCFu3d j& matrix elements for d orbitals of the
cubic basis set. The third group contains parameters describ-
ing the interaction between 4 f and 3d centers, the U0(A

→B), and U0(A←B) CT energy gaps and the full set of
t(4 f i-3d j) transfer integrals ~the latter are input as a 735
complex matrix!.

The program works as follows. First, the single-center
Hamiltonians HA and HB are diagonalized and the wave
functions and energies of the 4 f N, 4 f N61 and 3dM ,
3dM61 configurations are obtained. Then the two-center
wave functions are formed and the matrix
elements ^Jkl(AB;SM s)uHABuJpq(A→B;S8M 8)& and

^Jkl(AB;SM s)uHABuJrs(A←B;S8M 8)& between the
ground state and excited CT states are calculated. At the last
step, the matrix elements ^m ,M suHeffum8,Ms8& of the effective
exchange Hamiltonian are calculated using Eq. ~22!, which
can be then directly used to find the exchange parameters of
the anisotropic 4 f -3d spin Hamiltonian. The program is de-
signed for the general case: it can be used for dimers with
each combination of the Kramers lanthanide ion and the
paramagnetic transition metal ion; no symmetry is supposed.
Below this program is applied to the spin Hamiltonian cal-
culations for the YbCrBr9

32 dimer.

III. SUPEREXCHANGE INTERACTION IN THE

YbCrBr9
3À DIMER: THE PARAMETERS OF THE THEORY

The described computational approach to the 4 f -3d su-
perexchange is now applied to the analysis of the exchange
interaction between Yb31 and Cr31 ions in the YbCrBr9

32

dimer ~a 4 f 13-3d3 pair!. Our main goal is to elucidate the
origin of the strong exchange anisotropy and, particularly,
the origin of opposite sign of the Jz and J' exchange param-
eters for the YbCrBr9

32 dimer. To this end, we use an ide-
alized structural model of the YbCrBr9

32 dimer and we ap-
ply a number of approximations. In this section, the
necessary parameters of the kinetic exchange theory are de-
termined and the t(4 f i-3d j) transfer integrals between mag-
netic orbitals in the YbCrBr9

32 dimer are calculated.

A. The model structure of the YbCrBr9
3À dimer

and the parameters of the unperturbed Hamiltonian

of the Yb3¿-Cr3¿ pair

The YbCrBr9
32 dimers are formed in the

Cs3Yb1.8Cr0.2Br9 crystals, which is obtained by doping
Cs3Yb2Br9 host compound with 10% of Cr31 ions.26 The
crystal structure of the host compound contains Yb2Br9

32

dimers as building blocks consisting of two face-sharing
YbBr6

32 octahedra. Mixed YbCrBr9
32 dimers ~Fig. 2! are

formed due to the statistical substitution of Cr31 ions for
Yb31 ions. In the parent Yb2Br9

32 dimer the YbBr6
32 oc-

tahedra are somewhat distorted, the terminal Yb-Br bonds
being shorter by about 0.2 Å than the bridging bonds.32 The
approximate symmetry of Yb2Br9

32 is close to D3d point
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group, the true symmetry is C3 . The bioctahedral face-
sharing Cr2Br9

32 dimers in Cs3Cr2Br9 have a very similar
structure but with shorter metal-ligand distances.31

Below we use an idealized structural model for the
YbCrBr9

32 mixed dimer, in which both YbBr6
32 and

CrBr6
32 units are assumed to be regular octahedra with the

same Yb-Br and Cr-Br distances. The use of this approxima-
tion makes sense not only for simplicity, but allows to sepa-
rate the 4 f -3d exchange anisotropy itself from the single-ion
anisotropy, which vanishes in the octahedral symmetry of the
ligand surrounding. However, in calculating t(4 f i-3d j)
transfer integrals we will use the actual metal-bromine dis-
tances proper to the parent Cr2Br9

32 and Yb2Br9
32

dimers.31,32

Since the ground 4 f 13 configuration of Yb31 corresponds
to a single hole, only the spin-orbit coupling constant is in-
volved among the free-ion parameters (z4 f52900 cm21).
However, for the 4 f 12 CT configuration all free-ion param-
eters of the H0(4 f ) Hamiltonian, Eq. ~4!, should be in-
volved. We use here the parameters of the isoelectronic
Tm31 ion @F2

5103886, F4
577024, F6

557448, z4 f

52629, a514.677, b52631.79 cm21, and g50 ~Ref.
41!#. The set of Bq

k cubic CF parameters corresponds to a
trigonal quantization axis C3 and is chosen to match the CF
splitting energy of the ground 2F7/2 multiplet of Yb31 ion in
Cs3Yb2Br9 ~about 450 cm21!.42

The CF splitting of 3d levels in Cr31 ion in the octahedral
ligand field is described by the conventional 10Dq param-
eter, which is set to 13 000 cm21 ~this value is observed in
many compounds containing the CrBr6

32 complex anion40!.
The corresponding cubic CF potential is defined for the
trigonal quantization axis z. We use B5700 and C

53000 cm21 Racah parameters which are typical of many
six-coordinated pseudo-octahedral trivalent chromium
compounds.40

The situation with the CT energies is more uncertain. In
symmetric dimers with equivalent metal centers, the CT en-
ergy gap for the direct (A→B) and back (A←B) electrons
transfers are equal and can be set to the conventional metal-
to-metal energy U0(A→B)5U0(A←B)[U , which typi-
cally ranges from 5 to 10 eV.30 In heterometallic pairs, and
particularly in 4 f -3d , the U0(A→B) and U0(A←B) CT
energies are expected to be different due to the differences in
the orbital energies and electron repulsion parameters for 4 f

and 3d electrons. Due to these uncertainties, below U0(A

→B) and U0(A←B) are assumed to be variable parameters
each ranging independently from 5 to 12 eV. However, a
rough estimate of CT energies can be obtained from electro-
chemical arguments for Yb31 and Cr31 ions. Since CT en-
ergies are related to the loss or gain of an electron by metal
ions in a condensed medium, they can be correlated with the
difference of the corresponding standard redox potentials of
Yb31 and Cr31 ions in aqueous solutions U0(A→B)
}E0(Yb41/Yb31)2E0(Cr21/Cr31) and U0(A←B)
}E0(Cr41/Cr31)2E0(Yb21/Yb31). Except for
E0(Yb41/Yb31), these data are available from the literature,
E0(Yb21/Yb31)521.05 V, E0(Cr21/Cr31)520.424 V,
E0(Cr41/Cr31)512.10 V.43 Since E0(Nd41/Nd31)
514.9 and E0(Dy41/Dy31)515.7 V are known,43 the re-
dox potential E0(Yb41/Yb31) is expected to be very high;
approximately, it can set to that of the neighboring Dy31 ion
E0(Yb41/Yb31)515.7 V. Thus we obtain
@E0(Yb41/Yb31)2E0(Cr21/Cr31)# / @E0(Cr41/Cr31) 2E0

(Yb21/Yb31)#'2. Therefore, U0(A→B) is expected to be
nearly twice as larger as U0(A←B). Setting the larger CT
energy to 10 eV, the upper value of the Hubbard energy,30 we
estimate U0(A→B)510 and U0(A←B)55 eV; these val-
ues can be used as a reference in calculations for the
YbCrBr9

32 dimer. Below we will show that the exchange
parameters calculated at these CT energies do really corre-
spond to the best agreement with the experimental data.

B. t„4f i-3d j… transfer integrals

The transfer integrals t i j5t(4 f i-3d j) describing the ef-
fective one-electron transfers between ytterbium 4 f i and
chromium 3d j orbitals in the YbCrBr9

32 dimer, are key pa-
rameters of the theory. To calculate the full set of 35 transfer
integrals in the model YbCrBr9

32 dimer, we use the conven-
tional second-order perturbation expression corresponding to
the case of weak metal-ligand covalence on both the metal
sites of the dimer

t~4 f i-3d j!52(
Ln

(
xk~Ln!

^4 f iuhuxk~Ln!&^xk~Ln!uhu3d j&

E@xk~Ln!→ f d#
,

~23!

FIG. 2. The structure of the YbCrBr9
32 mixed dimer. Nine bro-

mine atoms are shown as light gray balls. The YbBr6 and CrBr6

polyhedra are assumed to be regular octahedra with the same metal-
ligands distances. The dimer has the C3v

symmetry with the C3

rotation axis passing through the Yb and Cr atoms.
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where the first sum runs over the tree bridging bromide
ligands Ln and the second sum runs over the 4s and 4p

orbitals xk(Ln) of these ligands. Matrix elements of the Fock
operator h are resonance integrals connecting 4 f i or 3d j or-
bitals of the metal ions and xk(Ln) orbitals of the bridging
ligand Ln . The energy denominator is a weighted ligand-
metal charge-transfer energy, which is given by

1

E@xk~Ln→ f d !#
5

1

2 S 1

E~4 f !2E@~xk~Ln!!#

1

1

E~3d !2E@xk~Ln!#
D , ~24!

where E(xk), E(4 f ), and E(3d) are the corresponding or-
bital energies. In our calculations, the t(4 f i-3d j) transfer
integrals are defined in the basis set of 4 f i and 3d j orbitals
with the definite projection of the orbital momentum on the
C3 quantization axis z ~Fig. 2!. The indices i and j stand for
the projection of the orbital momentum of 4 f and 3d elec-
trons, respectively.

In the idealized YbCrBr9
32 dimer, the resonance integrals

entering Eq. ~23! can be expressed analytically via four pa-
rameters s( f p), p( f p), s(dp), and p(dp), corresponding
to the resonance integrals defined with respect to the Yb-Br
or Cr-Br bond s( f p)5^4 f 0uhu4p0&, p( f p)
5^4 f 61uhu4p61&, s(dp)5^3d0uhu4p0&, and p(dp)
5^3d61uhu4p61&, where 4 f k , 3dk are metal and 4pk are
bromine orbitals with the projection of the orbital momen-
tum on the metal-ligand axis (k50,61). For each of three
Yb-Br-Cr bridges, the products ^4 f iuhu4pk&^4pkuhu3d j& in
the nominator of Eq. ~23! can be written as linear combina-
tions of binary products of the s( f p), p( f p), s(dp), and
p(dp) parameters. The coefficients in these combinations
correspond to the expansion of atomic orbitals defined in the
local coordinate frame of a given metal-ligand pair over or-
bitals defined with respect to a common coordination frame
and are written via the Wigner D functions ~see Fig. 6 in the
Appendix B!. Assuming in Eq. ~24! the same E(4p) orbital
energy for three 4pk(Br) orbitals, we can define quantities

A i j5 (
n51,2,3

(
k50,61

^4 f iuhu4pk~Ln!&^4pk~Ln!uhu3d j&,

~25!

which, being divided by the common energy denominator
E(4p→ f d) ~24!, determine the contribution to t i j from the
4pk(Ln) orbitals of the bridging bromine atoms. Here
4pk(Ln) is the 4p orbital of the nth bridging bromine atom
with a definite projection of the orbital momentum k on the
common C3 axis.

For the C3v
point symmetry of the idealized structure of

YbCrBr9
32 ~Fig. 2!, there are only six independent nonvan-

ishing A i j quantities ~and, therefore, six independent t i j

transfer integrals! connecting 4 f i and 3d j orbitals with i5 j

and i5 j63 only, which can be expressed via the s( f p),
p( f p), s(dp), and p(dp) parameters ~Table II!.

Similarly, contributions from the 4s(Br) orbitals can be
expressed via two resonance integrals s( f s)5^4 f 0uhu4s&

and s(ds)5^3d0uhu4s&, corresponding to the s overlap be-
tween metal orbitals and 4s(Br) orbitals for a given Yb-Br
or Cr-Br pair. Again, in Eq. ~23! we can define quantities

B i j5 (
n51,2,3

^4 f iuhu4s~Ln!&^4s~Ln!uhu3d j&, ~26!

determining contributions from 4s(Br) orbitals, B i j /E(4s

→ f d)→t i j . They are expressed via s( f s), and s(dp) reso-
nance integrals in Table II. Details of the calculations of A i j

and B i j are given in Appendix B.

TABLE II. The A i j and B i j quantities in the idealized model
YbCrBr9

32 dimer. Details of calculations of A i j and B i j are given in
the Appendix B.

A00 2

8

9
p~dp!s~fp!1

A6

9
p~dp !p~ f p !

A115A2121 A6

18
s~dp !s~ f p !2

&

9
p~dp !s~ f p !

2s~dp !p~ f p !

A225A2222 2

A15

18
s~dp !s~ f p !2

2A5

9
p~dp !s~ f p !

2

A30

6
p~dp !p~ f p !

A3052A230 2
A10

9
p~dp !s~ f p !2

A15

18
p~dp !p~ f p !

A22152A221 2

A30

18
s~dp !s~ f p !1

A10

9
p~dp !s~ f p !

1

A15

6
p~dp !p~ f p !

A12252A212 2

)

18
s~dp !s~ f p !2

2

9
p~dp !s~ f p !

1

&

2
s~dp !p~ f p !

B0 0

B115B2121
1

A6
s~ds !s~ f s !

B225B2222
A15

6
s~ds !s~ f s !

B305B230 0

B22152B221
A30

6
s~ds !s~ f s !

B12252B212
)

6
s~ds!s~fs!
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The s( f p), p( f p), s(dp), p(dp), s( f s), and s(dp)
resonance integrals can be calculated using the approximate
Wolfsberg-Helmholtz formula44

s~ f p !5^4 f 0uhu4p0&5K@E~4 f !1E~4p !#Ss~4 f ,4p !,
~27a!

p~ f p !5^4 f 61uhu4p6&5K@E~4 f !1E~4p !#Sp~4 f ,4p !,
~27b!

s~dp !5^3d0uhu4p0&5K@E~3d !1E~4p !#Ss~3d ,4p !,
~27c!

p~dp !5^4 f 61uhu4p61&5K@E~4 f !1E~4p !#Sp~3d ,4p !,
~27d!

s~ f s !5^4 f 0uhu4s&5K@E~4 f !1E~4s !#Ss~4 f ,4s !,
~27e!

s~ds !5^3d0uhu4s&5K@E~3d !1E~4s !#Ss~3d ,4s !,
~27f!

where K is a numerical coefficient ~which is normally taken
as K50.875 or 1! and Ss(4 f ,4p), Sp(4 f ,4p), Ss(3d ,4p),
Sp(3d ,4p), Ss(4 f ,4s), and Ss(3d ,4s) are s and p overlap
integrals between the respective metal and ligand orbitals. In
further calculations, a value K51 is used. Although in the
model YbCrBr9

32 dimer the YbBr6 and CrBr6 polyhedra are
assumed to be regular octahedra with the equal Cr-Br and
Yb-Br distances, in the calculations of overlap integrals we
use the actual distances between the metal ions and bridging
bromide ligands in the Yb2Br9

32 and Cr2Br9
32 dimers, 2.86

and 2.65 Å, respectively.31,32 The overlap integrals were cal-
culated with four-exponent radial functions for 4 f orbitals45

and double-zeta radial functions for 3d(Cr) orbitals;46 the
radial functions for the 4s(Br) and 4p(Br) orbitals were
taken from Ref. 47. We obtained Ss(4 f ,4p)520.0187,
Sp(4 f ,4p)50.0091, Ss(3d ,4p)50.122, Sp(3d ,4p)
520.054, Ss(4 f ,4s)50.0102, and Ss(3d ,4s)50.077. The
orbital energies E(3d)5211, E(4p)5214, and E(4s)
5222 eV were taken with a minor rounding-off from the
standard parametrization used in Extended Huckel
calculations,46,47 and the typical orbital energy E(4 f )
5210 eV was used for f electrons.48–50 Using these data,
the resonance integrals, A i j and B i j quantities, and the energy
denominators ~24! were calculated. Then the contributions
from the 4s(Br) and 4p(Br) orbitals to the transfer integrals
were determined and the t(4 f i-3d j) transfer integrals were
calculated, which are given in Table III. In accordance with
the C3v

symmetry of the YbCrBr9
32 dimer, there are eleven

nonvanishing transfer integrals, which connect 4 f i and 3d j

orbitals with i2 j50 or 63; of these, only six t i j are inde-
pendent due to the relations t3052t230 , t22152t221 ,
t12252t122 , and t ii5t2i2i ~Table III!.

IV. RESULTS AND DISCUSSION

In this section we analyze in detail the mechanism of the
Yb31-Cr31 superexchange interactions in the YbCrBr9

32

dimer and discuss the results of numerical calculations of the
4 f -3d exchange spin Hamiltonian. In particular, we focus on

the interplay between various contributions from numerous
individual states of the 4 f 12-3d4 and 4 f 14-3d2 CT configu-
rations to the parameters of the highly anisotropic 4 f -3d

exchange spin-Hamiltonian of the YbCrBr9
32 dimer and the

symmetry relationships between the matrix elements.

A. The ground electronic states of the Yb and Cr centers

in the YbCrBr9
3À dimer

The ground electronic state of the Yb31 ion in the regular
YbBr6

32 octahedron is the G6 Kramers doublet resulting
from the CF splitting of the lowest 2F7/2 multiplet ~Fig. 3!.
Since there are no G6 states among CF levels of the excited
2F5/2 multiplet, the G6 ground state is of pure 2F7/2 charac-
ter. This implies that the wave functions of the G6 ground
doublet in the regular YbBr6

32 octahedron are determined
by the symmetry only and are insensitive to the strength of
the CF splitting. As a result, the exchange parameters in the
YbCrBr9

32 dimer are also insensitive to this CF splitting.
With the quantization axis C3 ~Fig. 2!, the wave functions

of the G6 doublet can be written in terms of the uJM J& wave
functions of the ground 2F7/2 multiplet

uG6,2
1
2 &5

1

A54
@2A35u 5

2 &2A14u2 1
2 &1A5u2 7

2 &],

~28a!

uG6,1
1
2 &5

1

A54
@2A35u2 5

2 &1A14u 1
2 &1A5u 7

2 &].

~28b!

They can also be expressed via the 4 f l orbitals (l523,
22,...,3) and the spin wave functions a~1 1

2! and b~2 1
2!

uG6,2
1
2 &5

1

A54
$2A5@ f 23a#1A30@ f 22b#1A8@ f 0a#

2A6@ f 1b#1A5@ f 3a#%, ~29a!

uG6,1
1
2 &5

1

A54
$2A5@ f 3b#1A30@ f 2a#2A8@ f 0b#

1A6@ f 21a#1A5@ f 23b#%, ~29b!

where @ f ls# denotes the orbital and spin quantum numbers
of a hole in the 4 f 13 configuration; in the electron represen-
tation, @ f ls# is a Slater determinant with all 4 f orbitals dou-
bly occupied except for the 4 f l orbital with the spin projec-
tion s5a or b. The signs of the effective spin projection of
the uG6,2

1
2 & and uG6,1

1
2 & components of the G6 doublet are

chosen to match the transformational properties of the S

5
1
2 wave functions a and b with respect to rotations around

the C3 axis by angles w562p/3: uG6,2
1
2 &→e2iw/2uG6,

2
1
2 & and G6,1

1
2 &→e iw/2uG6,1

1
2 &. This brings into accor-

dance the transformation properties of wave functions of the
effective spin SYb5

1
2 and those of the true spin SCr5

3
2 . Note

that the sign of the projection of the magnetic momentum of
the Yb31 ion is opposite to the sign of the spin projection
mz(2

1
2 )514/3mB , mz(1

1
2 )524/3mB . This implies that
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in the regular YbBr6
32 octahedron assumed here, the g ten-

sor of the ground G6 doublet is negative and isotropic (gx

5gy5gz52
8
3 ). Since in the parent Yb2Br9

32 dimer YbBr6
octahedra are somewhat distorted, the g tensor of Yb31 is
expected to be anisotropic. Note that the phases of the wave
functions uG6,2

1
2 & and uG6,1

1
2 & in Eqs. ~28! and ~29! are

consistent with the time-reversal symmetry uG6,1
1
2 &→uG6,

2
1
2 & and uG6,2

1
2 &→2uG6,1

1
2 & . As can be seen from Eq.

~29!, 4 f states with different l and s are strongly mixed to
each other thus implying that the spin of Yb31 is not a good
quantum number. It is important, that the G6 ground state is
separated from the first excited state by an energy gap being
much larger @114 cm21 in the Cs3Yb2Br9 ~Ref. 42!# than the
Yb31-Cr31 exchange parameters @about 5 cm21 ~Ref. 26!#,
so that these states cannot admix.

The wave function of the 4A2g ground state of the octa-
hedrally coordinated Cr31 ion in the widely used tetragonal
quantization is represented by a single Slater determinant
Det(dxya ,dzxa ,dyza) incorporating three t2g electrons with
parallel spins ~for the maximum spin projection M s5

3
2 .) For

the trigonal quantization, the 4A2g state is represented by a
sum of several determinants

&

3
$Det~d2a ,d1a ,d0a !2Det~d0a ,d21a ,d22a !%

1

2

3
Det~d2a ,d0a ,d22a !1

1

3
Det~d1a ,d0a ,d21a !,

~30!

where 3d orbitals are given in the orbital momentum repre-
sentation. It is important to note that the wave function of the
4A2g ground state of Cr31 is insensitive even to rather strong
distortions of the octahedral ligand environment. This means
that deviations from the strict octahedral symmetry of the
chromium center in the real YbCrBr9

32 dimer would not
influence much the orbital composition of the wave function
~30!. Again, since the ground state of the Cr31 ion in the
CrBr6 octahedron is well isolated from the excited states ~by
about 14 000 cm21!, exchange interactions represent there-
fore only a small perturbation to the CF splitting energy and
thus the mixing with other CF states can be neglected.

TABLE III. t(4 f i23d j) transfer integrals in the YbCrBr9
32 dimer.

t(4 f i23d j) transfer integrals, cm21

Contributions from the 4p(Br) states

3d22 3d21 3d0 3d1 3d2

4 f 23 0 0 21154 0 0
4 f 22 620 0 0 21038 0
4 f 21 0 22236 0 0 21105
4 f 0 0 0 21459 0 0
4 f 1 1105 0 0 22236 0
4 f 2 0 1038 0 0 620
4 f 3 0 0 1154 0 0

Contributions from the 4s(Br) states

3d22 3d21 3d0 3d1 3d2

4 f 23 0 0 0 0 0
4 f 22 377 0 0 2534 0
4 f 21 0 239 0 0 2169
4 f 0 0 0 0 0 0
4 f 1 169 0 0 239 0
4 f 2 0 534 0 0 377
4 f 3 0 0 0 0 0

Total

3d22 3d21 3d0 3d1 3d2

4 f 23 0 0 21154 0 0
4 f 22 997 0 0 21572 0
4 f 21 0 21997 0 0 21274
4 f 0 0 0 21459 0 0
4 f 1 1274 0 0 21997 0
4 f 2 0 1572 0 0 997
4 f 3 0 0 1154 0 0
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B. Matrix elements of the effective exchange Hamiltonian

With the use of the parameters determined in the previous
section, the full set of ^m ,M suHeffum8,Ms8& matrix elements
of the effective exchange Hamiltonian was numerically cal-
culated using the program outlined above. In these calcula-
tions, all CT states resulting from the 4 f→3d and 4 f←3d

electron transfers were taken into account, which involve
19 110 and 45 individual CT states for the 4 f 12-3d4 and
4 f 14-3d2 CT configurations, respectively. These are drawn
in Fig. 4 in the actual energy scale. We can see that even for
a rather simple 4 f 13-3d3 pair the energy structure of the CT
band is very complicated. The spectrum of the 4 f 12 configu-
ration involves 91 states with the total energy extension of
about 9 eV. The energy spectrum of the 3d4 configuration of

the chromium center involves 210 states and spans over the
range of 11 eV. The total energy width of the 4 f→3d CT
band of the YbCrBr9

32 dimer is therefore about 20 eV,
which is considerably larger than the typical CT energy
~5–10 eV!. The electronic structure of the 4 f←3d CT band
is less complicated, since the ytterbium center has a closed
4 f 14 configuration. However, even in this case the total width
of the CT band ~which is equal to that of the 3d2 configura-
tion! is comparable with the U0(A←B) CT gap ~Fig. 4!. In
these calculations, the CF splittings of multiplets of the 4 f 12

CT configuration of ytterbium are not taken into account
since they are negligibly small as compared to the CT ener-
gies.

Calculations performed at various U0(A→B) and U0(A

←B) CT energies show that there are highly symmetric re-
lations between the matrix elements. This is exemplified by
Table IV, which presents the matrix elements
^m ,M suHeffum8,Ms8& and the separate contributions from the
4 f 12-3d4 and 4 f 14-3d2 CT states calculated at U0(A→B)
510 eV and U0(A←B)55 eV. Most of these matrix ele-
ments are zero except for diagonal ones with m5m8 and
M s5M s8 and the only nondiagonal matrix elements with
um2m8u51 and m1M s5m81M s8 . In addition, the diago-
nal matrix elements have the form

^m ,M suHeffum ,M s&5X1YmM s , ~31!

while the nondiagonal matrix elements obey the relations

^m ,M suHeffum21,M s11&5ZA3/42m~m21 !

3AS~S11 !2M s~M s11 !,

~32a!

^m ,M suHeffum11,M s21&5ZA3/42m~m11 !

3AS~S11 !2M s~M s21 !,

~32b!

where X, Y, Z are some constants, which do not depend on m

or M s , ~but different for 4 f→3d and 4 f←3d electron trans-
fer contributions!. The microscopic origin of these regulari-
ties is discussed below.

From these results we can determine the spin Hamiltonian
H4 f -3d of the Yb31-Cr31 exchange interaction in the
YbCrBr9

32 dimer. Indeed, matrix elements of the spin
Hamiltonian

H4 f -3d5A01JzSYb
z SCr

z
1J'~SYb

x SCr
x

1SYb
y SCr

y !, ~33!

coincide with the matrix elements of the effective exchange
Hamiltonian calculated above provided that A05X , Jz5Y ,
and J'52Z . For a Yb31-Cr31 pair, these exchange param-
eters can be directly expressed via the ^m ,M suHeffum8,Ms8&
matrix elements

Jz5

2

3
@^1

1
2 , 3

2 uHeffu1
1
2 , 3

2 &2^2
1
2 , 3

2 uHeffu2
1
2 , 3

2 &# .

~34a!

FIG. 3. The structure of crystal-field energy levels of Yb31 ion
in the octahedral ligand surrounding.
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J'5^2
1
2 , 1

2 uHeffu1
1
2 ,2 1

2 & , ~34b!

A05
1
2 @^1

1
2 , 3

2 uHeffu1
1
2 , 3

2 &1^2
1
2 , 3

2 uHeffu2
1
2 , 3

2 &# .
~34c!

Note that, according to the usual convention, the positive
sign of exchange parameters corresponds to a ferromagnetic

spin coupling, and the negative sign to an antiferromagnetic
coupling. In this convention, the sign at the exchange param-
eter in the spin Hamiltonian is therefore chosen to be nega-
tive, such as 2JSA•SB in the case for the isotropic Heisen-
berg Hamiltonian. However, in our case one should
remember that the g tensor of the G6 Kramers doublet is
negative (g52

8
3 ), i.e., the effective spin S of the Yb31 ion

FIG. 4. The energy structure of the 4 f 12-3d4 and 4 f 14-3d2 CT configurations of the YbCrBr9
32 dimer. The energies of CT states are

given in the real energy scale. The contributive 5Eg , 3Eg , and 3T1g levels of the 3d4 and 3d2 configurations of chromium are enumerated
and marked by star.
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is antiparallel to its magnetic momentum m. Therefore, since
actual ferromagnetic and antiferromagnetic interactions refer
to the parallel and antiparallel orientations of the magnetic
moments on Yb31 and Cr31 ions, the formal sign of the
exchange parameters Jz and J' corresponding to the orien-
tation of the effective spin of Yb31 and the true spin of Cr31

should be reversed. Alternatively, the negative sign at the
exchange parameters (Jz and J') in the spin Hamiltonian
should be changed to the positive sign; we have done so in
the spin Hamiltonian ~33! in order to follow the usual sing
convention. Thus, the positive exchange parameter corre-
sponds now to the antiparallel orientation of the spins of
Yb31 and Cr31 and to the parallel orientation of their mag-
netic moments ~and vice versa for the negative exchange
parameter!.

Note that, in accordance with the C3v
symmetry of the

YbCrBr9
32 model dimer, the spin Hamiltonian Heff ~33! has

the axial symmetry. In particular, the Dzyaloshinskii-Moriya
antisymmetric term A@SYb3SCr# is vanishing in the spin
Hamiltonian ~33!, being consistent with the symmetry con-
dition A50 for the C3v

group.20 The parameter A0 includes
spin-independent contributions to the total energy of the sys-
tem from 4 f→3d and 4 f←3d electron transfers, while Jz

and J' describe spin-dependent contributions. Using Eq.
~34! and the sets of the ^m ,M suHeffum8,Ms8& matrix elements
obtained at various CT energies U0(A→B) and U0(A

←B), we calculated the A0 , Jz , and J' exchange param-
eters and the separate contributions from the A→B and A

←B CT states. The dependence of the contributions to Jz and
J' from the 4 f 12-3d4 and 4 f 14-3d2 configurations on the CT
energies is shown in Fig. 5. The contributions to Jz and J'

from the 4 f 12-3d4 configuration are not proportional to
U0(A→B)21, especially for the Jz parameters, which
changes the sign from ferro- to antiferromagnetic around 8
eV @Fig. 5~a!#

These contributions show quite different behavior: the
contribution from the 4 f 12-3d4 configuration corresponds to
an almost purely ferromagnetic XY spin Hamiltonian @J'

.0 and J'@uJzu, Fig. 5~a!#, while the contribution from the
4 f 14-3d2 configuration gives rise to an almost pure antifer-
romagnetic Ising-like interaction @Jz,0 and uJzu@uJ'u, Fig.
5~b!#. In particular, at the CT energies U0(A→B)510 eV
and U0(A←B)55 eV estimated above for a Yb31-Cr31

pair, the exchange parameters are A052262.62, Jz

524.95, and J'514.06 cm21 ~with the separate contribu-
tions A052258.65, Jz520.30, J'514.38 cm21 from the
4 f 12-3d4 configuration and A0523.97, Jz524.65, J'

520.32 cm21 from the 4 f 14-3d2 configuration, Table IV!.
These are well consistent with the experimental exchange
parameters of YbCrBr9

32, Jz525.16 and J'

514.19 cm21, obtained from inelastic neutron scattering
experiments.26 Quantitatively, this coincidence should not be
overemphasized, since a very idealized structural model was
assumed for the YbCrBr9

32 dimer and a number of approxi-
mations were used in the spin-Hamiltonian calculations.

TABLE IV. ^m ,M suHeffum8,Ms8& matrix elements ~other ^m ,M suHeffum8,Ms8& matrix elements are zero! and exchange parameters of the
effective exchange Hamiltonian H4 f -3d5A01JzSYb

z SCr
z

1J'(SYb
x SCr

x
1SYb

y SCr
y ) in the YbCrBr9

32 dimmer calculated at U0(A→B)510 eV and
U0(A←B)55 eV. Contributions from the 4 f 12-3d4 and 4 f 14-3d2 CT states are indicated separately.

Diagonal ^m ,M suHeffum8,Ms8& matrix elements (m5m8,M s5M s8), cm21

m M s m8 M s8 4 f 12-3d4 4 f 14-3d2 Total

21/2 23/2 21/2 23/2 2258.8772 27.4549 2266.3321
21/2 21/2 21/2 21/2 2258.7276 25.1306 2263.8582
21/2 1/2 21/2 1/2 2258.5781 22.8063 2261.3844
21/2 3/2 21/2 3/2 2258.4285 20.4820 2258.9105
11/2 23/2 11/2 23/2 2258.4285 20.4820 2258.9105
11/2 21/2 11/2 21/2 2258.5781 22.8063 2261.3844
11/2 1/2 11/2 1/2 2258.7276 25.1306 2263.8582
11/2 3/2 11/2 3/2 2258.8772 27.4549 2266.3321

Nondiagonal ^m ,M suHeffum8,Ms8& matrix elements, cm21

21/2 3/2 11/2 1/2 13.7936 20.2783 13.5153
21/2 1/2 11/2 21/2 14.3805 20.3214 14.0591
21/2 21/2 11/2 23/2 13.7936 20.2783 13.5153
11/2 23/2 21/2 21/2 13.7936 20.2783 13.5153
11/2 21/2 21/2 1/2 14.3805 20.3214 14.0591
11/2 1/2 21/2 3/2 13.7936 20.2783 13.5153

Exchange parameters, cm21 a A052258.6528 A0523.9685 A052262.6203
Jz520.2991 Jz524.6486 Jz524.9477
J'514.3805 J'520.3214 J'514.0591

aThe sign of Jz and J' corresponds to the true sign of the exchange parameters Jz,0 ~antiferromagnetic! and J'.0 ~ferromagnetic!, see the
text for details.
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However, these results clearly indicate that the kinetic ex-
change mechanism is adequate to the description of the spin
coupling between lanthanide and transition metal ions in in-
sulators and the model developed above can provide a con-
sistent quantitative analysis of the 4 f -3d superexchange in-
teractions in really existing lanthanide compounds. Below
we analyze this mechanism in more detail.

C. Contributions to the exchange parameters

from individual CT states

In this section we will show that the regularities observed
from numerical calculations are not accidental and, more-
over, not specific to the matrix elements of the effective ex-
change Hamiltonian for the YbCrBr9

32 dimer. In particular,
the same regularities show up Ln31-M n1 (Ln31

5Ce31,
Yb31; M n1

5Cr31, Mn21, and Ni21) corner-sharing bioc-
tahedral dimers of the C4v

symmetry.35 Actually, the rela-
tions ~31! and ~32! originate from general dependence of the
^m ,M suHABuJpq(A→B;S8M 8)& matrix elements on the
spin projection M s at the 3d ion and from selection rules for
matrix elements related to the symmetry of the 4 f -3d dimer.
Here we outline the underlying reason for their origin.

Since the F0(3dM;SM s) ground state of the basic con-
figurations of the transition metal center B ( 4A2g state in the
case of the Cr31 ion! is connected to the Fq(3dM11;S8M 8)
CT states via the 4 f→3d transfer of one electron, non-zero
matrix elements ^m ,M suHABuJpq(A→B;S8M 8)& can only
appear if S85S6

1
2 and M 85M s6

1
2 . One more selection

rule is related to the transformational properties of the wave
functions um ,M s& and Jpq(A→B;S8M 8) with respect to ro-
tations by the angles w562p/3 around the C3 axis of the
YbCrBr9

32 dimer. Consider the transformation properties of
the spin and orbital components of these wave functions. As
noted above, the uG6,2

1
2 & and uG6,1

1
2 & wave functions of

Yb31 transform similar to the components of the true spin
S5

1
2 , uG6,2

1
2 &→e2iw/2uG6,2

1
2 & and uG6,1

1
2 &→e iw/2uG6,

1
1
2 &. The orbitally nondegenerate wave function

F0(3dM;SM s)& of Cr31 transforms similar to the
uSM s& spin wave function, F0(3dM;SM s)&
→e iM swF0(3dM;SM s)& . Therefore, um ,M s& is multiplied by
e i(m1M s)w upon the rotation. In the C3v

group, the orbital
part of the Jpq(A→B;S8M 8) CT wave function can trans-
form either as the angular momentum L50 @if Jpq(A

→B;S8M 8) belongs to the A1 or A2 irreducible representa-
tion# or L51 with the projections M L561 ~for the E rep-
resentation!; below these cases are denoted as Jpq(A

→B;S8M 8)PM L50 and 61, respectively. Since the spin
part of Jpq(A→B;S8M 8) transforms as Jpq(A→B;S8M 8)
→e iM8wJpq(A→B;S8M 8), the Jpq(A→B;S8M 8) wave
functions multiplies by e i(LM1M8)w upon the rotation. For the
matrix element ^m ,M suHABuJpq(A→B;S8M 8)& to be in-
variant, the phase factors of its two wave functions should
coincide, i.e., m1M s5M L1M 8. Therefore, the selection
rules for non-zero matrix elements are determined by the set
of conditions

S85S6
1
2 , ~35a!

M 85M s6
1
2 , ~35b!

m1M s5M L1M 8, ~35c!

FIG. 5. The variation of the contributions to the Jz and J' ex-
change parameters from the 4 f 12-3d4 and 4 f 14-3d2 configurations
with increasing the U0(A→B) and U0(A←B) CT energies.
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according to which different cases are possible. Consider
first the case of S85S2

1
2 .

At fixed orbital indexes p and q of the Jpq(A

→B;S8M 8) CT states, there are four situations, in which the
dependence of nonzero matrix elements on M s is given by

~a! S85S2
1
2 ,M 85M s1

1
2 , and Jpq~A→B;S8M 8!PM L

50;

^1
1
2 ,M suHABuJpq~A→B;S8M 8!&5A~p ,q !AS2M s,

~36!

~b! S85S2
1
2 ,M 85M s2

1
2 , and Jpq~A→B;S8M 8!PM L

50;

^2
1
2 ,M suHABuJpq~A→B;S8M 8!&5B~p ,q !AS1M s,

~37!

~c! S85S2
1
2 ,M 85M s1

1
2 , and Jpq~A→B;S8M 8!PM L

511;

^2
1
2 ,M suHABuJpq~A→B;S8M 8!&5C~p ,q !AS2M s,

~38!

~d! S85S2
1
2 ,M 85M s2

1
2 , and Jpq~A→B;S8M 8!PM L

521;

^1
1
2 ,M suM ABuJpq~A→B;S8M 8!&5D~p ,q !AS1M s.

~39!

Note that the factors A(p ,q), B(p ,q), C(p ,q), and D(p ,q)
are independent on M s or M 8. These regularities can be
obtained from direct calculations of the ^m ,M suHABuJpq(A

→B;S8M 8)& matrix elements taking into account the usual
relationships between the spin wave functions
F0(3dM;SM s) and Fq(3dM11;S8M 8) of the 3d center with
different spin projections M s and M 8. In addition, the factors
A(p ,q), B(p ,q), C(p ,q) and D(p ,q) are related to each
other by the time-reversal symmetry

^1
1
2 ,M suHABuJpq~A→B;S8M 8!&

56^2
1
2 ,2M suHABuJpq

T ~A→B;S82M 8!&, ~40!

where Jpq
T (A→B;S82M 8) is a wave function resulted from

the action of the time-reversal operator T, Jpq
T (A→B;S8

2M 8)5TJpq(A→B;S8M 8); the plus or minus sign in Eq.
~40! is chosen according to the orbital part of the wave func-
tion Jpq(A→B;S8M 8). Due to the time-reversal symmetry,
the Jpq

T (A→B;S82M 8) wave function is an eigenvector of
the Hamiltonian of the dimer, that corresponds to a CT state
with the same energy Epq(A→B) as that of the original
Jpq(A→B;S8M 8) state. In the case, when Jpq(A

→B;S8M 8)PM L50, the wave function Jpq
T (A→B;S8

2M 8) coincides with Jpq(A→B;S82M 8) within the phase
factor and thus describes the same CT state. Then we have

B~p ,q !56A~p ,q !. ~41!

The situation is different, when Jpq(A→B;S8M 8)PM L

561 ~i.e., when the orbital part belongs to the E represen-
tation!; again, the Jpq

T (A→B;S82M 8) wave function corre-
sponds to a CT state with the same energy but has the oppo-
site sign of the projection of the quasimomentum M L .
Therefore, the wave function Jp8q8

(A→B;S8M 8)5Jpq
T (A

→B;S8M 8) ~whose orbital indexes are denoted by p8 and
q8) and the original wave function Jpq(A→B;S8M 8) de-
scribes two individual states of the same doubly degenerate
CT level of the E representation. Thus we obtain

C~p ,q !56D~p8,q8!. ~42!

From Eqs. ~36!–~42! we can determine the contributions to
the A0 , Jz , and J' exchange parameters from individual CT
states. For instance, according to Eq. ~36!, in the case ~a! the
contribution from the Jpq(A→B;S8M 8) CT state to the
^1

1
2 ,M suHeffu11/2,M s& diagonal matrix element is given by

2

A~p ,q !2

Epq~A→B !
~S2M s!. ~43!

According to Eqs. ~37! and ~41!, the same CT state contrib-
utes also to the ^2

1
2 ,M suHeffu2

1
2,Ms& diagonal matrix ele-

ments

2

A~p ,q !2

Epq~A→B !
~S1M s!. ~44!

Therefore, the contribution from the Jpq(A→B;S8M 8) CT
state with M L50 (A1 or A2 representation of the C3v

group!
to the ^m ,M suHeffum,Ms& diagonal matrix elements can be
written as

x~p ,q !1y~p ,q !mM s , ~45!

where x(p ,q) and y(p ,q) are given by

x~p ,q !52

A~p ,q !2

Epq~A→B !
S , ~46a!

y~p ,q !51

2A~p ,q !2

Epq~A→B !
, ~46b!

where Epq(A→B) is the energy of the CT state. The term
x(p ,q) corresponds to the contribution to the spin-
independent part A0 ; it is always negative. The term
y(p ,q)mM s corresponds to the JzSYb

z SCr
z operator in the

H4 f -3d spin Hamiltonian of the 4 f -3d pair @Eq. ~33!# and
thus y(p ,q) represents the contribution to the Jz exchange
parameter; note that for the Jpq(A→B;S8M 8) CT states
with M L50; it is always positive ~i.e., antiferromagnetic
with respect to the spin orientation, and ferromagnetic with
respect to the magnetic momentum orientation, see above!. It
is important that these CT states contribute to the nondiago-
nal matrix elements ^1

1
2 ,M suHeffu2

1
2,Ms11& and

^2
1
2 ,M suHeffu1

1
2,Ms21& as well. Taking into account Eqs.

~36!, ~37!, and ~41!, we have
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6

A~p ,q !2

Epq~A→B !
A~S2M s!~S1M s11 !⇒^1

1
2 ,M suHeffu2

1
2 ,M s11& , ~47a!

6

A~p ,q !2

Epq~A→B !
A~S1M s!~S2M s11 !⇒^2

1
2 ,M suHeffu1

1
2 ,M s21&. ~47b!

These contributions can be rewritten as

z~p ,q !A@3/42m~m21 !#@S~S11 !2M s~M s11 !#⇒^m ,M suM effum21,M s11&, ~48a!

z~p ,q !A@3/42m~m11 !#@S~S11 !2M s~M s21 !#⇒^m ,M suHeffum11,M s21& , ~48b!

where

z~p ,q !56

A~p ,q !2

Epq~A→B !
. ~49!

As pointed out above, Eqs. ~32! and ~33!, these nondiagonal
matrix elements just correspond to the spin operator

J'

2
~SYb

1 SCr
2

1SYb
2 SCr

1 !5J'~SYb
x SCr

x
1SYb

y SCr
y !. ~50!

Therefore, the quantity 2z(p ,q) represents the contribution
from the Jpq(A→B;S8M 8) CT states with M L50 to the J'

exchange parameter.
Consider now the contributions from the Jpq(A

→B;S8M 8) CT states with M L561, the cases ~c! and ~d!.
Combining two contributions ~38! and ~39! from the M L

51 and M L521 CT states and taking into account Eq.
~42!, we obtain the contribution to the diagonal matrix ele-
ment

x1~p ,q !1y1~p ,q !mM s , ~51!

where

x1~p ,q !52

C~p ,q !2

Epq~A→B !
S , ~52a!

y1~p ,q !52

2C~p ,q !2

Epq~A→B !
. ~52b!

This means that, in contrast to CT states with M L50, the
contributions to Jz from Jpq(A→B;S8M 8) CT states with
M L561 are always negative ~antiferromagnetic!. It is also
important, that these CT states give no contribution to the
nondiagonal matrix elements and thus to the J' exchange
parameter.

Now we turn to the case of S85S1
1
2 . Again, there are

four types of contributions

~a8! S85S1
1
2 ,M 85M s1

1
2 , and Jpq~A→B;S8M 8!

PM L50;

^1
1
2 ,M suHABuJpq~A→B;S8M 8!&5A1~p ,q !AS1M s11,

~53!

~b8! S85S1
1
2 ,M 85M s2

1
2 , and Jpq~A→B;S8M 8!

PM L50;

^2
1
2 ,M suHABuJpq~A→B;S8M 8!&5B1~p ,q !AS2M s11,

~54!

~c8! S85S1
1
2 ,M 85M s1

1
2 , and Jpq~A→B;S8M 8!

PM L511;

^2
1
2 ,M suHABuJpq~A→B;S8M 8!&5C1~p ,q !AS1M s11,

~55!

~d8! S85S1
1
2 ,M 85M s2

1
2 , and Jpq~A→B;S8M 8!

PM L521;

^1
1
2 ,M suHABuJpq~A→B;S8M 8!&5D1~p ,q !AS2M s11.

~56!

As in cases ~a!–~d!, Eqs. ~36!–~39!, the factors A1(p ,q),
B1(p ,q), C1(p ,q), and D1(p ,q) are related by A1(p ,q)
56B1(p ,q) and C1(p8,q8)56D1(p ,q). The contributions
to Jz and J' are very similar to those in the previous case of
S85S2

1
2 except that the signs of the contributions to Jz

from CT states with M L50 and M L561 are now opposite.
In other words, in cases (a8) and (b8) the contribution to Jz

is antiferromagnetic

x2~p ,q !1y2~p ,q !mM s⇒^m ,M suHeffum ,M s&, ~57a!

x2~p ,q !52

A1~p ,q !2

Epq~A→B !
~S11 !, ~57b!

y2~p ,q !52

2A1~p ,q !2

Epq~A→B !
, ~57c!

while in the cases (c8) and (d8) it is ferromagnetic

x3~p ,q !1y3~p ,q !mM s⇒^m ,M suHeffum ,M s&, ~58a!

x3~p ,q !52

C1~p ,q !2

Epq~A→B !
~S11 !, ~58b!

y3~p ,q !51

2C1~p ,q !2

Epq~A→B !
. ~58c!
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The contribution to J' in the cases (a8) and (b8) is quite
similar to that in the cases ~a! and ~b! for the spin S85S

2
1
2 and is given by

6

2C1~p ,q !2

Epq~A→B !
⇒J' . ~59!

Depending on the angular part of Jpq(A→B;S8M 8) CT
wave functions with M L50, these contributions can be both
ferro- and antiferromagnetic.

Contributions from the CT states of the 4 f N11-3dM21

configuration are treated similarly. These results show why
the spin Hamiltonian describing the Yb31-Cr31 superex-
change in the YbCrBr9

32 dimer is strictly bilinear with re-
spect to SYb and SCr spin operators, and why no higher pow-
ers in SCr appear.

D. Analysis of contributions from CT states to the exchange

parameters of the YbCrBr9
3À dimer

It is of interest to analyze quantitatively the balance of
contributions from individual states of the 4 f 12-3d4 and
4 f 14-3d2 configurations to the exchange parameters A0 , Jz ,
and J' . This cannot be done analytically due to a very large
number of CT states and a complicated orbital composition
of their many-electron wave functions. Contributions from
the 4 f 12-3d4 configuration to the exchange parameters Jz

and J' obtained from numerical calculations at U0(A→B)
510 eV are given in Table V in the order of increasing en-
ergy of CT states. Since the total number of individual con-
tributions is too large ~several thousands!, the contributions
from the 4 f 12-3d4 CT configuration are summed over mul-
tiply degenerate levels of the Jpq(A→B;S8M 8)
5Cp(4 f 12) ^ Fq(3d4;S8M 8) states originating from various
combinations the 2J11-fold degenerate 2S11LJ multiplets
of the 4 f 12 configuration of ytterbium and those of the
2S11G i CF levels of the 3d4 configuration of chromium ~rep-
resented by 2S11A1g and 2S11A2g orbital singlets, 2S11Eg

doublets, and 2S11T1g and 2S11T2g triplets!.
A complicated interplay between numerous contributions

can be seen from Table V. These contributions differ consid-
erably in magnitude and have opposite signs. It is important
to note that the absolute value of some individual contribu-
tions is comparable to or even larger than the net exchange
parameters Jz and J' ; this is especially true for the small
parameter Jz . These data show that in the general case the
sign of exchange parameters cannot be rationalized in a
simple way, since it is a result of a complicated competition
between numerous ferromagnetic and antiferromagnetic con-
tributions coming from various CT states, whose energies
can differ considerably from each other. It is interesting that
the main contribution to Jz or J' does not originate from one
or few low-lying CT states, but many CT states contribute to
the net exchange parameters. Even high-lying CT states give
large contributions, such as the 1I6 ^

3T1g(1) state lying at
120 000 cm21 @i.e., about 5 eV above the CT energy gap of
U0(A→B)510 eV]. Table V show, that the sum of contri-
butions approaches to the net exchange parameter only for

energies larger than 123 000 cm21; a value about 1.5 times
larger than the CT energy gap U0(A→B)580 650 cm21 ~10
eV!. We can therefore conclude, that the total balance of
contributions to Jz and J' is very sensitive to the CT ener-
gies. This implies, in particular, that the widely used approxi-
mation, according to which all CT states are assumed to have
the constant energy U, can lead to considerable errors for
4 f -3d exchange systems. Indeed, calculations with constant
CT energies Epq(A→B)[10 eV and Ers(A←B)[5 eV
yield Jz522.36, J'520.16 cm21 for the 4 f 12-3d4 con-
figuration and Jz524.71, J'520.33 cm21 for the
4 f 14-3d2 configuration. The total result Jz527.07, J'

520.49 cm21 differs greatly from the above result obtained
with actual CT energies, Jz524.95, J'514.06 cm21

~Table IV!. Although the strong exchange anisotropy retains,
the ratio between Jz and J' parameters becomes quite dif-
ferent: the parameter J' reduces dramatically and reverses
the sign in going from the actual to constant CT energies.

Interestingly that, although the two contributions to Jz ,
and J' from the group of degenerate CT states with the same
energy correlate to each other, they are far from being simply
proportional, Table V. This is consistent with the conclusions
of the previous paragraph. A very large negative value of the
spin-independent parameter A0 ~Table IV! can also be ratio-
nalized in terms of Eqs. ~36!–~58!. Indeed, according to Eqs.
~46!, ~52!, and ~57!, each individual CF state contributing to
the Jz parameter gives a comparable contribution to A0 ; the
latter is always negative while the contributions to Jz have
different signs and thus they almost cancel each other, as can
be seen from Table V.

Of the 2S11G i states of the 4d4 configuration, only 5Eg ,
3Eg , and 3T1g states are contributive to the exchange pa-
rameters; in Fig. 4 they are enumerated and marked by star.
By contrast, all 2S11LJ states of the 4 f 12 configuration of
ytterbium are contributive. The distribution of the contribu-
tions to the Jz and J' exchange parameters over the energy
levels of the 4 f 12 and 3d4 configurations are presented in
Tables VI and VII. The general character of the distribution
is quite different for 4 f and 3d states: while even high-lying
multiplets of the 4 f 12 configuration ~such as the 3P2 multip-
let at 38 000 cm21! may give considerable contributions to Jz

and J' , the main fraction of the total contribution to the
exchange parameters originate from the low-lying 2S11G i

states of the 3d4 configuration. This observation can serve as
a good illustration of the well-known fact that the correlation
effects in the open 4 f shell are generally more pronounced
than those in the 3d shell due to a small radial extension of
the 4 f states and their large orbital momentum.

With the 4 f 14-3d2 CT configuration we are in a much
more comfortable situation because the ytterbium center has
the closed 4 f 14 shell. This means that the energy structure of
this CT configuration coincides with that of the 3d2 configu-
ration of the chromium center. This fact can be used to illus-
trate the microscopic origin of the exchange anisotropy in
more detail. Table VIII shows that the contributions to Jz and
J' come only from the two triplet states of the 3d2 configu-
ration 3T1g(1) and 3T1g(2).
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TABLE V. Contributions to the Jz and J' exchange parameters from the Jpq(A→B;S8M 8)5Cp(4 f 12) ^ Fq(3d4;S8M 8) individual
states of the 4 f 12-3d4 CT configuration in the YbCrBr9

32 dimer. All energies are given in cm21.

Cp(4 f 12) ^ Fq(3d4) CT statesa

Yb 4 f 12 Cr 4d4

Epq(A→B)b Contributions to the Jz and J' parametersc

2S11LJ Ep(2S11LJ) 2S11G i Eq(2S11G i) Jz
d ( Jz

e J'
d ( J'

e

3H6 0 5Eg 0 80650 20.491 20.491 22.451 22.451
3H6 0 3T1g(1) 4772 85422 111.021 110.530 124.233 121.782
3F4 5610 5Eg 0 86260 10.775 111.304 10.072 121.854
3H5 8188 5Eg 0 88838 10.091 111.395 10.705 122.559
3F4 5610 3T1g(1) 4772 91031 28.134 13.261 21.851 120.708
3H4 12518 5Eg 0 93168 20.598 12.663 20.645 120.063
3H5 8188 3T1g(1) 4772 93609 23.977 21.314 27.943 112.120
3F3 14308 5Eg 0 94958 10.975 20.338 10.229 112.350
3F2 14914 5Eg 0 95564 20.544 20.883 10.742 113.092
3H6 0 3Eg(1) 15476 96126 10.258 20.624 11.290 114.382
3H4 12518 3T1g(1) 4772 97940 14.416 13.829 14.263 118.730
3F3 14308 3T1g(1) 4772 99729 22.336 11.493 13.330 122.060
3F2 14914 3T1g(1) 4772 100336 11.044 12.538 28.908 113.152
3F4 5610 3Eg(1) 15476 101735 20.412 12.126 20.038 113.114
3H6 0 3Eg(2) 21118 101768 10.144 12.270 10.721 113.834
1G4 21172 5Eg 0 101822 10.072 12.342 20.038 113.796
3H5 8188 3Eg(1) 15476 104313 20.049 12.265 20.377 113.412
3H6 0 3T1g(3) 25907 106557 10.075 12.326 10.165 113.550
1G4 21172 3T1g(1) 4772 106594 20.501 11.825 10.258 113.809
3F4 5610 3Eg(2) 21118 107378 20.231 11.594 20.021 113.787
1D2 27830 5Eg 0 108480 20.899 10.696 10.298 114.085
3H4 12518 3Eg(1) 15476 108644 10.322 11.017 10.347 114.432
3H5 8188 3Eg(2) 21118 109956 20.027 11.006 20.211 114.236
3F3 14308 3Eg(1) 15476 110433 20.526 10.480 20.124 114.112
3F2 14914 3Eg(1) 15476 111040 10.294 10.774 20.401 113.711
1D2 27830 3T1g(1) 4772 113251 16.288 17.001 22.309 111.370
3H4 12518 3Eg(2) 21118 114286 10.181 17.182 10.195 111.568
1I6 34684 5Eg 0 115334 10.983 18.138 10.865 112.378
3F3 14308 3Eg(2) 21118 116076 20.296 17.842 20.069 112.309
3F2 14914 3Eg(2) 21118 116682 10.165 18.043 20.225 112.083
3P1 36096 5Eg 0 116746 10.170 18.213 10.104 112.187
3P2 37991 5Eg 0 118641 20.367 17.810 20.373 111.847
1I6 34684 3T1g(1) 4772 120106 29.006 21.166 28.132 13.745
3P0 35435 3T1g(1) 4772 120857 20.242 21.408 20.017 13.728
3P1 36096 3T1g(1) 4772 121517 21.258 22.675 20.748 12.941
3P2 37991 3T1g(1) 4772 123413 12.479 20.221 12.253 15.204
1D2 27830 3Eg(1) 15476 123955 10.493 10.272 20.164 15.040
3H6 0 3T1g(6) 46050 126700 10.151 10.443 10.331 15.361
1D2 27830 3Eg(2) 21118 129598 10.279 10.718 20.093 15.268
1I6 34684 3Eg(1) 15476 130810 20.544 10.177 20.478 14.792
3F4 5610 3T1g(6) 46050 132309 20.113 20.083 20.026 14.677
3H6 0 3T1g(7) 52264 132914 10.061 20.023 10.133 14.810
3P2 37991 3Eg(1) 15476 134117 10.204 10.175 10.207 15.014
3H5 8188 3T1g(6) 46050 134887 20.056 10.165 20.112 14.886
1I6 34684 3Eg(2) 21118 136452 20.308 20.134 20.271 14.623
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The main contribution originates from the ground
3T1g(1) state, and a considerably smaller contribution
comes from the excited 3T1g(2) state ~marked by star in Fig.
4! lying at 21 049 cm21 above the ground state. Note that the
contributions to Jz and J' originate from different individual
states of the ground triply degenerate 3T1g level, which are
also shown in Table VIII. It is interesting to compare the
wave function ~30! of the ground 4A2g state of Cr31(3d3)
ion

&

3
$Det~d2a ,d1a ,d0a !2Det~d0a ,d21a ,d22a !%

1

2

3
Det~d2a ,d0a ,d22a !1

1

3
Det~d1a ,d0a ,d21a !,

and the wave functions of the triply degenerate 3T1g(1,M L)
ground state of Cr41(3d2) ion ~where M L50,61 is the pro-

TABLE VI. The distribution of contributions to the Jz and J' exchange parameters over the 2S11LJ multiplets of the 4 f 12 configuration
of Yb ~the contributions for the given 2S11LJ multiplet of the 4 f 12 configuration of ytterbium are summed over 2S11G i states of the 3d4

configuration of chromium!. All energies are given in cm21.

2S11LJ E(2S11LJ) Jz
( Jz

a
J'

( J'
a

3H6 0 111.263 111.263 124.520 124.520
3F4 5610 28.251 13.012 21.895 122.625
3H5 8188 24.084 21.072 28.070 114.555
3H4 12518 14.458 13.386 14.293 118.848
3F3 14308 22.257 11.129 13.470 122.318
3F2 14914 10.993 12.122 29.071 113.247
1G4 21172 20.507 11.615 10.261 113.508
1D2 27830 16.365 17.980 22.341 111.167
1I6 34684 29.169 21.189 28.282 12.885
3P0 35435 20.245 21.434 20.017 12.868
3P1 36096 21.277 22.711 20.758 12.110
3P2 37991 12.513 20.198 12.278 14.388
1S0 79390 20.101 20.299 20.007 14.381

Total: Jz520.299 J'514.381

aThe sum of contributions to Jz and J' parameters from the 2S11LJ multiplets with the energy less than or equal to E(2S11LJ).

TABLE V. (Continued).

Cp(4 f 12) ^ Fq(3d4) CT statesa

Yb 4 f 12 Cr 4d4

Epq(A→B)b Contributions to the Jz and J' parametersc

2S11LJ Ep(2S11LJ) 2S11G i Eq(2S11G i) Jz
d ( Jz

e J'
d ( J'

e

3P2 37991 3Eg(2) 21118 139759 10.116 20.066 10.117 14.758
3F2 14914 3T1g(6) 46050 141614 10.015 20.171 20.128 14.573
1D2 27830 3T1g(6) 46050 154530 10.093 20.066 20.034 14.541
1I6 34684 3T1g(6) 46050 161384 20.136 20.148 20.122 14.406
1S0 79390 3T1g(1) 4772 164812 20.100 20.233 20.007 14.421

Total: Jz520.299 J'514.381

aContributions to the Jz and J' exchange parameters are summed over multiply degenerate Jpq(A→B;S8M 8)5Cp(4 f 12)
^ Fq(3d4;S8M 8) CT states originating from various combinations the 2J11-fold degenerate 2S11LJ multiplets of the 4 f 12 configuration
of Yb and 2S11G i crystal-field levels (5Eg , 3Eg , or 3T1g) of the 3d4 configuration of Cr.

bEpq(A→B)5U0(A→B)1Ep(2S11LJ)1Eq(2S11G i), where U0(A→B)580650 cm21 ~10 eV!.
cThe sign of Jz and J' corresponds to the true sign of the exchange parameters ~see the text for detail!.
dContributions, in which both Jz and J' are less than 0.1 cm21 are not shown.
eThe sum of contributions to Jz and J' parameters from the CT states with the energy less than or equal to Epq(A→B).

V. S. MIRONOV, L. F. CHIBOTARU, AND A. CEULEMANS PHYSICAL REVIEW B 67, 014424 ~2003!

014424-20



jection of the quasimomentum L51) in the octahedral
ligand surrounding

3T1g~1,M L50 !50.510$Det~d2a ,d1a !2Det~d21a ,d22a !%

10.517Det~d2a ,d22a !

10.462Det~d1a ,d21a !, ~60a!

3T1g~1,M L521 !50.144Det~d1a ,d22a !

10.448Det~d0a ,d21a !

10.882Det~d2a ,d0a !, ~60b!

3T1g~1,M L511 !520.144Det~d2a ,d21a !

20.448Det~d1a ,d0a !

10.882Det~d0a ,d22a !. ~60c!

The ground 3T1g(1) level of Cr41(3d2) is predominantly
~96%! represented by the (t2g)2 configuration, which differs
by one t2g electron from the pure (t2g)3 configuration of the
4A2g ground level of Cr31(3d3). Since the orbital part of the
3T1g(1,M L) state transforms as the momentum L51 with
the projection M L upon rotations around the C3 axis by the
angles 62p/3, in accordance to the rules established above,
Eqs. ~46!, ~50!, and ~52!, only the 3T1g(1,M L50) state con-
tribute to the J' exchange parameter, while contributions to
Jz come from both the 3T1g(1,M L50) state and
3T1g(1,M L561) states ~Table VIII!.

This comparison between the orbital composition of the
uG6,m& wave functions ~29! and that of the wave functions
~30! and ~60! is helpful in elucidating the origin of the Jz

exchange parameter and its sign. According to Table VIII,
the 3T1g(1,M L521) and 3T1g(1,M L511) states give the
largest contribution to Jz . In the C3v

group they refer to the

TABLE VII. The distribution of contributions to the Jz and J' exchange parameters over the 2S11G i states of the 3d4 configuration of
chromium ~the contributions for the given 2S11G i energy level of the 3d4 configuration of chromium are summed over the 2S11LJ multiplets
of the 4 f 12 configuration of ytterbium!. All energies are given in cm21.

2S11G i E(2S11G i) Jz
( Jz

b
J'

( J'
b

5Eg 0 10.2172 10.2172 20.4903 20.4903
3T1g(1) 4772 20.3053 20.0881 14.4241 13.9339
3Eg(1) 15476 20.1208 20.2089 10.2251 14.1589
3T1g(2) 16286 20.0016 20.2105 10.0138 14.1727
3Eg(2) 21118 20.0686 20.2791 10.1201 14.2928
3T1g(3) 25907 20.0040 20.2832 10.0252 14.3181
3T1g(4) 28901 20.00002 20.2832 10.00005 14.3181
3Eg(3) 32706 20.0003 20.2835 10.0005 14.3186
3T1g(5) 36521 20.0003 20.2838 10.0015 14.3201
3T1g(6) 46050 20.0107 20.2945 10.0436 14.3637
3T1g(7) 52264 20.0046 20.2991 10.0169 14.3806

Total:b Jz520.2991 J'514.3806

aThe sum of contributions to Jz and J' parameters from the 2S11G i energy levels with the energy less than or equal to E(2S11G i).
bThe sign of Jz and J' corresponds to the true sign of the exchange parameters ~see the text for detail!.

TABLE VIII. Contributions to the Jz and J' exchange parameters from the Jrs(A←B)5Cr(4 f 14) ^ Fs(3d2) states of the 4 f 14-3d2 CT
configuration in the YbCrBr9

32 dimer @since the ytterbium center has the 4 f 14 closed-shell configuration represented by the only state, the
index r at Jrs(A←B)5Cr(4 f 14) ^ Fs(3d2) can be omitted#. All energies are given in cm21.

Cr(4 f 14) ^ Fs(3d2) CT states
Cr 4d2

Ers(A←B)a Contributions to the Jz and J' parametersb

2S11G i Es(
2S11G i) Jz

( Jz
c

J'
( J'

c

3T1g(1,M L50) 0 40325 10.3125 10.3125 20.3125 20.3125
3T1g(1,M L561) 0 40325 24.8323 24.5198 0 20.3125
3T1g(2,M L50) 21049 61384 10.0088 24.5110 20.0088 20.3213
3T1g(2,M L561) 21049 61384 20.1376 24.6486 0 20.3213

Total: Jz524.6486 J'520.3213

aEs(A←B)5U0(A←B)1Es(
2S11G i), where U0(A←B)540 325 cm21 ~5 eV!.

bThe sign of Jz and J' corresponds to the true sign of the exchange parameters ~see the text for detail!.
cThe sum of contributions to Jz and J' parameters from the CT states with the energy less than or equal to Es(A←B).
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E representation, cases ~c! and ~d! @Eqs. ~36! and ~37!#. The
3T1g(1,M L521) and 3T1g(1,M L511) states with the spin
projection M s contribute, respectively, to the ^2

1
2 ,M suHeff

u2 1
2,Ms& @case ~c!# and ^1

1
2 ,M suHeffu1

1
2,Ms& @case ~d!# diag-

onal matrix elements. Consider the contribution to the
^1

1
2 , 3

2 uHeffu1
1
2, 3

2& diagonal matrix element coming from the
3T1g(1,M L511) state ~60c!, which is predominantly pre-
sented by the Det(d0a ,d22a) determinant. This contribution
refers to the case ~c!, S85S2

1
2 , M 85M s2

1
2 , and Jpq(A

←B;S8M 8)PM L511 @Eq. ~38!#. As can be seen from the
comparison between the composition of 3T1g(1,M L511)
and that of the wave function ~30! of the ground 4A2g state
of Cr31(3d3), the ^1

1
2 , 3

2 uHABu(4 f 14) ^ @3T1g(1,M L

511);S851,M 851#& matrix element originates mainly
due to the 4 f←3d transfer, in which an electron moves from
the d2a or d21a orbital; the transfer from the d0a orbital is
less important since the coefficient at the Det(d2a ,d21a)
determinant in 3T1g(1,M L511) @Eq. ~60c!# is much
smaller. The d2a or d21a orbitals are connected to the 4 f 2a
orbital of ytterbium @which is presented with a maximum
weight of A30/54 in the uG6,1

1
2 & wave function ~29!# via the

nonzero transfer integrals t22 and t212 ~Table III!; in other
words, an electron moves from the d21a or d2a orbital on
Cr31 to fill the @4 f 2a# hole on Yb31 and to make the closed
4 f 14 shell. Other 4 f ia←3d ja electron transfers with
i2 j50 or 63 are of minor importance due to much smaller
coefficients at the determinants, which are connected
by these transfers. Numerical values of the
^1

1
2 ,M suHABu(4 f 14) ^ @3T1g(1,M L511);M 85M s21#&

matrix elements are

^1
1
2 , 3

2 uHABu~4 f 14! ^ @3T1g~1,M L511 !;M 851#&

52540.65 cm21, ~61a!

^1
1
2 , 1

2 uHABu~4 f 14! ^ @3T1g~1,M L511 !;M 850#&

52441.43 cm21, ~61b!

^1
1
2 ,2 1

2 uHABu~4 f 14! ^ @3T1g~1,M L511 !;M 8521#&

52311.97 cm21, ~61c!

which are proportional to AS1M s ~with S5
3
2 ), as predicted

by the Eq. ~38!, case ~c!; the matrix element for the ^1 1
2,

2
3
2u state is zero because the u@3T1g(1,M L51);M 8522#&

state does not exist. Similarly for the ^2
1
2 ,M suHABu(4 f 14)

^ @3T1g(1,M L521);M 8#& matrix elements, which obey the
relationships ^2

1
2 ,2M suHABu(4 f 14) ^ @3T1g(1,M L521);

2M 8#&5^1
1
2 ,M suHABu(4 f 14) ^ @3T1g(1,M L511);M 8#& .

From a similar consideration one can also realize that
the ^2

1
2 , 3

2 uHABu(4 f 14) ^ @3T1g(1,M L511);M 8#& and
^1

1
2 , 3

2 uHABu(4 f 14) ^ @3T1g(1,M L521);M 8#& matrix ele-
ments are strictly zero. Therefore, according to Eqs. ~51! and
~52!, the contribution from the 3T1g(1,M L521) and
3T1g(1,M L511) states to the exchange spin Hamiltonian is
given by x1(p ,q)1y1(p ,q)mM s , where y1(p ,q)
524.8323 cm21 is the contribution to Jz determined by Eq.
~52b! ~Table VIII!. The antiferromagnetic sign of Jz is
clearly seen from Eq. ~61!, which shows that the

^1
1
2 , 3

2 uHABu(4 f 14) ^ @3T1g(1,M L511);M 851#& matrix el-
ement is the largest one, and thus the state u1 1

2, 3
2& with the

parallel orientation of the effective spin S5
1
2 of Yb31 and

true spin S5
3
2 of Cr31 ~and, respectively, with the antipar-

allel orientation of their magnetic moments! have the lowest
energy among u1 1

2 ;M s& states.
Similar analysis show that for the 3T1g(1,M L50) state

the ^1
1
2 ,M suHABu(4 f 14) ^ @3T1g(1,M L50);M 85M s1

1
2 #&

and ^2
1
2 ,M suHABu(4 f 14) ^ @3T1g(1,M L50);M 85M s2

1
2 #&

matrix elements are nonzero. As can be seen from the orbital
composition of the wave function 3T1g(1,M L50), Eq.
~60a!, an electron can move from the d0a orbital only and
thus it can arrive at the f 0a orbital or f 63a orbital, which
are represented in the wave functions uG6,m& ~29! with rather
small weights (A8/54 and A5/54, respectively!. As a result,
these matrix elements are considerably smaller

^1
1
2 , 1

2 uHABu~4 f 14! ^ @3T1g~1,M L50 !;M 851#&

5^2
1
2 ,2 1

2 uHABu~4 f 14! ^ @3T1g~1,M L50 !;M 8521#&

579.37 cm21, ~62a!

^1
1
2 ,2 1

2 uHABu~4 f 14! ^ @3T1g~1,M L50 !;M 850#&

5^2
1
2 , 1

2 uHABu~4 f 14! ^ @3T1g~1,M L50 !;M 850#&

5112.25 cm21, ~62b!

^1
1
2 ,2 3

2 uHABu~4 f 14! ^ @3T1g~1,M L50 !;M 8521#&

5^2
1
2 , 3

2 uHABu~4 f 14! ^ @3T1g~1,M L50 !;M 851#&

5137.48 cm21. ~62c!

Correspondingly, the contributions to Jz from the
3T1g(1,M L50) state are considerably smaller than those
from the 3T1g(1,M L521) and 3T1g(1,M L511) states. In
contrast to the previous case, this contribution is ferromag-
netic being consistent with the cases ~a! and ~b!, Eqs. ~36!
and ~37!. Indeed, an electron moves from the d0a orbital of
the 4A2g(M s5

3
2 ) wave function to the f 0a or f 63a orbital

which is contained in the uG6,2
1
2 & wave function, but is not

contained in the uG6,1
1
2 & wave function. Therefore, the

u2 1
2, 3

2& state with the antiparallel orientations of spins ~and
with the parallel orientation of the magnetic moments! is
stabilized due to the contribution described by Eq. ~46!,
while the u1 1

2, 3
2& state is not stabilized. Note that, in contrast

to the 3T1g(1,M L521) and 3T1g(1,M L511) states, the
3T1g(1,M L50) state contributes to J' . Indeed, since the
um ,M s& and um21,M s11& states are connected to the same
3T1g(1,M L50) CT state with the spin projection M 85M s

1m via the nonzero matrix elements, Eqs. ~36! and ~37!, the
^m ,M suHeffum21,M s11& nondiagonal matrix elements are
nonzero, which are directly related to the J' parameter, Eqs.
~47!–~50!.

The analysis of contributions from the excited 3T1g(2)
level at 21 049 cm21 is quite similar to that for the ground
3T1g(1) level. However, since this state is predominantly
represented by the (t2geg) configuration, its contribution al-
most vanishes due to the orthogonality of t2g and eg3d or-
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bitals centered on the Cr31 ion; some nonzero contributions
arise because of a small ~about 4%! admixture of the (t2g)2

configuration ~Table VIII!.
Our results indicate that the 4 f -3d superexchange inter-

action may be strongly anisotropic even if the CF anisotropy
of the exchange-coupled magnetic ions is completely vanish-
ing. Indeed, the exchange spin Hamiltonian H4 f -3d @Eq. ~33!#
of the YbCrBr9

32 dimer is extremely anisotropic ~in which
the Jz and J' exchange parameters even have opposite signs!
despite the fact that the G6 ground state of the Yb31 ion in
the regular YbBr6

32 octahedron is magnetically isotropic.
The same is especially true for the Cr31 ion, whose ground-
state total spin SCr5

3
2 is a good quantum number ~since the

spin-orbit coupling for 3d electrons or zero-field splitting of
the 4A2g ground state were not taken into account in our
approach!. We can therefore conclude that, although it is
commonly believed in the literature that the exchange anisot-
ropy in lanthanide compounds is closely related to the single-
ion magnetic anisotropy of lanthanide ions, strong exchange
anisotropy is an immanent property of the 4 f -3d superex-
change interaction, which is not necessarily related to the CF
anisotropy. Similar results were previously obtained for other
lanthanide exchange-coupled pairs, such as Ln31M n1L11
bioctadedral corner-sharing model dimers ~where Ln31

5Ce31 or Yb31, M n1
5Cr31, Mn21, or Ni21)35 or biocta-

dedral corner-and edge-sharing f 1- f 1 dimers.19 However, in
4 f -3d dimers with a lower symmetry of the ligand surround-
ing around the lanthanide ion, both the exchange anisotropy
and CF anisotropy should be taken in account.

Although the 4s(Br) states give smaller contributions to
the transfer integrals than the 4p(Br) states do ~Table III!,
their taking into account is important for a correct analysis of
4 f -3d exchange interactions. Calculations performed with
various combinations of transfer integrals show that the Jz

and J' exchange parameters are not additive neither with
respect to the 4p(Br) and 4s(Br) contributions to the trans-
fer integrals, nor with respect to s and p 4 f -3d superex-
change pathways.

In our study we tried to establish general principles of the
superexchange interaction between lanthanide and transition
metal ions and to understand the microscopic origin of a
strong 4 f -3d superexchange anisotropy. For this reason we
used a simplified model that includes only the most impor-
tant interactions. In particular, we did not take into account
electron transfers from half-filled 3d(Cr) orbitals to empty
5d(Yb) orbitals whose influence on the exchange parameters
may also be important.19 Further development of the 4 f -3d

superexchange theory requires more accurate determining
the key parameters, especially the transfer integrals and CT
energy gaps in exchange systems involving lanthanide ions.

V. SUMMARY AND CONCLUSIONS

The main purpose of this paper has been to analyze quan-
titatively the microscopic mechanism of the exchange inter-
action between Yb31 and Cr31 ions in the YbCrBr9

32 bio-
ctahedral face-sharing dimer and, especially, to establish the
origin of an extremely strong exchange anisotropy. To this
end, a new form of the superexchange theory has been used

which is specially adapted for an adequate description of a
complicated electronic structure of lanthanide ions in solids
and for a direct calculation of the 4 f -3d exchange param-
eters. The spin Hamiltonian of the Yb31-Cr31 superex-
change interaction obtained from numerical parametric cal-
culations is found to be extremely anisotropic, H4 f -3d

5JzSYb
z SCr

z
1J'(SYb

x SCr
x

1SYb
y SCr

y ), in which the exchange
parameters have opposite signs (Jz,0 and J'.0) in the
whole range of CT energies ~Fig. 5!. The exchange param-
eters Jz524.95 and J'514.06 cm21 calculated at the CT
energies U0(A→B)510 and U0(A←B)55 eV ~estimated
from the redox potentials for Yb31 and Cr31 ions! are very
close to the experimental exchange parameters Jz

525.16 cm21 and J'514.19 cm21.26 This indicates that
the kinetic exchange theory is an adequate approach to the
description of exchange interactions between lanthanide and
transition metal ions in nonmetallic compounds, which can
account for both the absolute value of the exchange param-
eters and the degree of the 4 f -3d exchange anisotropy.

Contributions to the exchange parameters from numerous
individual state of the 4 f 12-3d4 and 4 f 14-3d2 CT configura-
tions have been analyzed in detail and important regularities
have been established. In particular, 4 f→3d and 4 f←3d

electron transfers give rise to a quite different types of the
exchange anisotropy: the contribution from the 4 f 12-3d4 CT
configuration corresponds to an almost pure ferromagnetic
XY spin Hamiltonian, while the contribution from the
4 f 14-3d2 CT configuration results in an almost pure Ising-
like antiferromagnetic Hamiltonian.

Our analysis shows that there is a complicated interplay
between numerous contributions to the exchange parameters
from individual CT states, which cannot be rationalized in a
simple way. The sign of these contributions is different, and
the absolute value of separate contributions can be even
larger than the net exchange parameters. Not only low-lying
CT states, but many CT states lying well above the CT en-
ergy gap contribute to the exchange parameters. This is es-
pecially true for the CT states involving high-lying levels of
the 4 f 12 configuration of the ytterbium ion. As a result, the
total balance of contributions is very sensitive to the actual
CT energies; this implies that the use of a constant average
energy U for all CT state is a poor approximation for 4 f -3d

exchange pairs.
Symmetry-related selection rules for nonzero contribu-

tions from individual CT states have been established for the
YbCrBr9

32 dimer of C3v
symmetry, which are very helpful

in rationalizing the sign and the symmetry of separate con-
tributions. In particular, they account for why the
Yb31-Cr31 exchange spin Hamiltonian is strictly bilinear
with respect to the spin S5

3
2 of Cr31.

There is a special situation occur in mixed 4 f -3d

exchange-coupled pairs due to the fact that the total spin of
the lanthanide ion is not a good quantum number. A special
care should be taken to bring into correspondence the signs
of projection of the effective spin on the 4 f ion and that of
the true spin on the 3d ion. When the quantization axis has a
rotational symmetry, the sign of the components of the effec-
tive spin S5

1
2 should be chosen according to their transfor-
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mational properties, not according to the sign of the projec-
tion of the magnetic momentum. This implies that the
magnetic momentum of the lanthanide ion may be antiparal-
lel to its effective spin. In this case, the Kramers doublet has
a negative g-factor and the sign of the exchange parameters
at spin operators should be reversed. This takes place for the
YbCrBr9

32 dimer, in which the g tensor of ground G6 dou-
blet of the Yb31 ion is negative.

An important result of this study is that the exchange
anisotropy is not necessarily related to the crystal-field an-
isotropy of the lanthanide ion. Indeed, a very strong 4 f -3d

exchange anisotropy is found in the YbCrBr9
32 dimer de-

spite the fact that there is no crystal-field anisotropy on yt-
terbium ion in the regular YbBr6

32 octahedron.
The superexchange theory developed in this paper is not

limited to Kramers ions only, since it can easily be extended
~directly or with some minor changes! to other f ions. There
are some important cases of other ground CF states, such as
the case of the close proximity of a first excited doublet or
the case of the G8 quartet occurring for some ions with the
odd number of f electrons in cubic crystals. These situations
are described by an effective spin S5

3
2 on the lanthanide or

actinide ion ~for two close doublets some zero-field splitting
should be added!. For the even numbers of f electrons the
ground G5 triplet can also occur an a cubic crystal field,
corresponding to an effective spin S51. In these cases, the
superexchange mechanism can be treated quite similarly: the
effective exchange Hamiltonian Heff is described by the set
of the ^m ,M suHeffum8,Ms8& matrix elements where m now rep-
resents the projection of the effective spin S larger that 1

2, i.e.,
S5

3
2 ~two close Kramers doublets or the G8 quartet! or S

51 ~the G5 triplet!. Again, these matrix elements are ob-
tained by the projection of the CT states onto the space of
wave functions um ,M s& of the ground level of the f-d dimer
~f-f dimers can also be analyzed in the frame of this ap-
proach!, as described by Eq. ~22!. The only difference is that
for the case of S.

1
2 the spin Hamiltonian corresponding to

the Heff operator is not necessarily bilinear with respect to
the effective spin S of the f ion. For instance, some quadratic
(S51) or cubic (S5

3
2 ) spin operators can appear in the spin

Hamiltonian. However, the correspondence between the set
of the ^m ,M suHeffum8,Ms8& matrix elements and the exchange
spin Hamiltonian can easily be established. In this way, the
pseudodoublet ground state ~i.e., two close singlet states! or
non-Kramers doublets can also be analyzed. Of course, spe-
cific details of the mechanism of the f-d or f-f superexchange
interactions for non-Kramers ions can differ from the those
for the well-isolated ground Kramers doublet given in Sec.
III, but the general idea of the approach remains unaltered.

Our analysis demonstrates the actual degree of the com-
plexity of the superexchange problem for lanthanide ions.
The 4 f -3d superexchange is complicated even for a rela-
tively simple Yb31-Cr31 pair. For lanthanide ions from the
middle of the 4 f series (Dy31,Sm31) the number of CT
states increases dramatically. However, despite a larger size
of the task, our approach can directly be applied to any com-
bination of the lanthanide ion with the with well-isolated
ground Kramers doublet and transition metal ion because the

general calculation procedure remains the same as for the
present case of the Yb31-Cr31 pair.
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FIG. 6. On the calculation of the A i j quantities. The 4 f i , npk ,
and 3d j orbitals defined in the common quantization axis C3 are
expressed as linear combinations of 4 f M(b), 3dM(b), and 4pM(b)
orbital defined in the local quantization axes Yb-Br and Cr-Br, Eq.
~B3!. These orbitals are obtained by rotations of the 4 f i , npk , and
3d j orbitals by the angle b56ucub , which is positive for the Cr-Br
local quantization axis and negative for the Yb-Br axis.
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APPENDIX A

In this section the matrix elements
^Jkl(AB;SM s)uHABuJpq(A→B;S8M 8)& are expressed via
the t(4 f i-3d j) transfer integrals. For this we expand the
single-center wave functions Ck(4 f N), Cp(4 f N21),
F l(3dM;SM s), and Fq(3dM11;S8M 8) of the lanthanide
and transition metal ions over Slater determinants Det(pA),
Det(qA), Det(pB), and Det(uB) correspondingly:

Ck~4 f N!5(
pA

Fk~pA!Det~pA!, ~A1a!

Cp~4 f N21!5(
qA

Fp~qA!Det~qA!, ~A1b!

F l~3dM;SM s!5(
pB

D l~pB ;SM s!Det~pB!, ~A1c!

Fq~3dM11;M 8S8!5(
uB

Dq~uB ;S8M 8!Det~uB!,

~A1d!

where F(pA), F(qA), D(pB ;SM s), and D(uB ;S8M 8) are
expansion coefficients, in which the vector indices pA , qA ,
pB , and uB are sets of quantum numbers of 4 f or 3d orbitals
involved in the corresponding Slater determinant

pA5$~4 f k1
,sk1

!,~4 f k2
,sk2

!, . . .~4 f kN
,skN

!%→4 f N,
~A2a!

qA5$~4 f m1
,sm1

!,~4 f m2
,sm2

!, . . .~4 f mN21
,smN21

!%

→4 f N21, ~A2b!

pB5$~3d l1
,s l1

!,~3d l2
,s l2

!, . . .~3d lM
,s lM

!%→3dM ,
~A2c!

uB5$~3dn1
,sn1

!,~3dn2
,sn2

!, . . .~3dnM21
,snM11

!%→3dM11,
~A2d!

in which s56
1
2 stands for the spin projection of the corre-

sponding 4 f and 3d orbital. Then the two-center wave func-
tions Jkl(AB;SM s) and Jpq(A→B;S8M 8) are written as

Jkl~AB;SM s!5(
pA

(
pB

Fk~pA!D l~pB ;SM s!

3Det~pA1pB!, ~A3a!

Jpq~A→B;S8M 8!5(
qA

(
uB

Fp~qA!Dq~uB ;S8M 8!

3Det~qA1uB!, ~A3b!

where the Slater determinants for the joint 4 f 13d electronic
system are the products of the corresponding single-center
determinants Det(pA1pB)5Det(pA) ^ Det(pB) and Det(qA

1uB)5Det(qA) ^ Det(uB). Consequently, the matrix ele-
ments of the perturbation operator HAB are given by

^Jkl~AB;SM s!uHABuJpq~A→B;S8M 8!&5(
pA

(
pB

(
qA

(
uB

Fk
*~pA!D l

*~pB ;SM s!Fp~qA!Dq~uB ;S8M 8!

3^Det~pA1pB!uHABuDet~qA1uB!&. ~A4!

This multiple sum is calculated due to the applying the Slater
rules, according to which the nonzero ^Det(pA

1pB)uHABuDet(qA1uB)& matrix elements is simply equal to
a transfer integral

^Det~pA1pB!uHABuDet~qA1uB!&

5H ~21 !Pt i j if ~pA1pB! and ~qA1uB! differ from
each other by only two orbitals 4 f i and 3d jwith
the same spin projections s i5s j

0 otherwise,

~A5!

where P is the parity of the transposition that brings the extra
3d j orbital into the place of the missed 4 f i orbital in going
from (qA1uB) to (pA1pB). Each matrix element
^Jkl(AB;SM s)uHABuJpq(A→B;S8M 8)& is therefore writ-
ten as a sum of t i j transfer integrals multiplied by the corre-

sponding weight factors involved in Eq. ~A4!, and similarly
for the matrix elements ^Jkl(AB;SM s)uHABuJrs(A

←B;S8M 8)&.

APPENDIX B

In this appendix, we provide details of the calculation of
the A i j and B i j quantities defined by Eqs. ~30! and ~31!. The
key point of these calculations is to express the
^4 f iuhuxk(Ln)& and ^xk(Ln)uhu3d j& matrix elements ~reso-
nance integrals! between the metal orbitals (4 f i,3d j) and the
ligand orbitals (4s ,4pk) defined in the common coordinate
frame with the C3 quantization axis @Fig. 6~a!# via the
s( f p), p( f p), s(dp), and p(dp) parameters. The i, j, and
k indices are projections of the orbital momentum of the
respective orbitals to the common C3 quantization axis of the
YbCrBr9

32 dimer. As indicated in the text, these parameters
correspond to the resonance integrals of the s and p types
between the metal and ligand orbitals in the local Yb-Br and
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Cr-Br axes, s( f p)5^4 f 0uhu4p0&, p( f p)5^4 f 61uhu4p61&,
s(dp)5^3d0uhu4p0&, p(dp)5^3d61uhu4p61&, s( f p)
5^4 f 0uhu4p0& , and s( f p)5^4 f 0uhu4p0& . Consider the A i j

quantities, Eq. ~25!

A i j5 (
n51,2,3

(
k50,61

^4 f iuhu4pk~Ln!&^4pk~Ln!uhu3d j&.

For the C3v
symmetry of the YbCrBr9

32 dimer, the nonzero
A i j quantities obey the selection rule i5 j and i5 j63. In-
deed, since the L1,2,3 bridging bromine ligands transfer to
each other upon rotations by the angles 62p/3, the products
^4 f iuhu4pk(Ln)&^4pk(Ln)uhu3d j& for different ligands Ln

are related to each other by the phase factor e6i(2p/3)Dm

^4 f iuhu4pk~L2!&^4pk~L2uhu3d j!&

5e2i~2p/3!Dm^4 f iuhu4pk~L1!&^4pk~L1!uhu3d j&,

~B1a!

^4 f iuhu4pk~L3!&^4pk~L3!uhu3d j&

5e i~2p/3!Dm^4 f iuhu4pk~L1!&^4pk~L1!uhu3d j&,

~B1b!

where Dm5i2 j . Therefore, the sum over the ligands (n

51,2,3) in Eq. ~25! is proportional to the factor

11e i~2p/3!Dm
1e2i~2p/3!Dm

5112 cosS 2p

3
Dm D , ~B2!

which is equal to 3 if Dm50 or 63 and is zero otherwise.
We express the ^4 f iuhu4pk(Ln)& and ^4pk(Ln)uhu3d j&

matrix elements for a given Br bridging ligand Ln via the
s( f p), p( f p), s(dp), and p(dp) parameters ~for concrete-
ness, we consider the ligand Ln with n51). The geometry of
the Yb-Br-Cr bridging group in the YbCrBr9

32 idealized
dimer is shown in Fig. 6~a!. The Cr-Br and Yb-Br bonds
make the angle b56ucub with the C3 quantization axis,

TABLE IX. The expression of the ^4 f iuhu4pk& and ^3d juhu4pk& matrix elements via the s( f p), p( f p),
s(dp), and p(dp) parameters.

4p1 4p0 4p21

3d2
&

6
s~dp!1

2A6

9
p~dp !

&

6
s~dp !2

A6

9
p~dp ! 2

&

6
s~dp !1

A6

9
p~dp !

3d1
1

3
s~dp!1

)

9
p~dp!

1

3
s~dp!1

)

9
p~dp! 2

1

3
s~dp!1

2)

9
p~dp!

3d0 2

1

3
p~dp!

2

3
p~dp!

1

3
p~dp!

3d21 2

1

3
s~dp!1

2)

9
p~dp! 2

1

3
s~dp!2

)

9
p~dp!

1

3
s~dp!1

)

9
p~dp!

3d22
&

6
s~dp!2

A6

9
p~dp !

&

6
s~dp !2

A6

9
p~dp ! 2

&

6
s~dp !2

2A6

9
p~dp !

4 f 3
A10

18
s~ f p !1

A15

9
p~ f p ! 2

A10

18
s~ f p !1

A15

18
p~ f p ! 2

A10

18
s~ f p !1

A15

18
p~ f p !

4 f 2 2

A30

18
s~ f p !2

A5

6
p~ f p !

A30

18
s~ f p !

A30

18
s~ f p !2

A5

6
p~ f p !

4 f 1

A6

18
s~ f p !2

1

6
p~ f p ! 2

A6

18
s~ f p !2

1

2
p~ f p ! 2

A6

18
s~ f p !1

1

3
p~ f p !

4 f 0
2

9
s~fp!1

A6

18
p~ f p ! 2

2

9
s~ f p !1

2A6

18
p~ f p ! 2

2

9
s~ f p !1

A6

18
p~ f p !

4 f 21 2

A6

18
s~ f p !1

1

3
p~ f p !

A6

18
s~ f p !1

1

2
p~ f p !

A6

18
s~ f p !2

1

6
p~ f p !

4 f 22 2

A30

18
s~ f p !1

A5

6
p~ f p !

A30

18
s~ f p !

A30

18
s~ f p !1

A5

6
p~ f p !

4 f 23 2

A10

18
s~ f p !1

A15

18
p~ f p !

A10

18
s~ f p !2

A15

18
p~ f p !

A10

18
s~ f p !1

A15

9
p~ f p !

V. S. MIRONOV, L. F. CHIBOTARU, AND A. CEULEMANS PHYSICAL REVIEW B 67, 014424 ~2003!

014424-26



where ucub is so called cubic angle, cos ucub51/) (ucub
554.7°).
The 4 f i , 3d j , and 4pk orbitals defined for the common co-
ordination frame can be expanded over the 4 f M(b),
3dM(b), and 4pM(b) orbital defined in the local quantiza-
tion axes Yb-Br and Cr-Br ~Fig. 6!

4 f i5 (
M53

23

dMi
3 ~b !4 f M~b !, ~B3a!

3d j5 (
M52

22

dM j
2 ~b !3dM~b !, ~B3b!

4pk5 (
M51

21

dMk
1 ~b !4pM~b !, ~B3c!

where d
M M8

J (b)5D
M M8

J (0,b ,0) is the Wigner D function for
the momentum J ~here J53, 2, 1 and M 85i , j, k for the 4 f ,
3d , and 4p orbitals, respectively!.51 The 4 f M(b), 3dM(b),
and 4pM(b) orbitals are obtained from the rotations of 4 f i ,
3d j , and 4pk orbitals by the angle b, which is negative (b
52ucub) for the Yb-Br axis @Fig. 6~b!# and positive (b
5ucub) for the Cr-Br axis @Fig. 6~c!#. Since in the local quan-
tization axes the nonzero matrix elements
^4 f M(b)uhu4pM8

(b)& and ^3dM(b)uhu4pM8
(b)& occur if

only M5M 8, i.e.,

^4 f 0~b !uhu4p0~b !&5s~ f p !, ~B4a!

^4 f 61~b !uhu4p61~b !&5p~ f p !, ~B4b!

^3d0~b !uhu4p0~b !&5s~dp !, ~B4c!

^3d61~b !uhu4p61~b !&5p~dp !, ~B4d!

we have

^4 f iuhu4pk&5 (
M51

21

dMi
3 ~b !dMk

1 ~b !^4 f M~b !uhu4pM~b !&,

~B5a!

^3d juhu4pk&5 (
M51

21

dM j
2 ~b !dMk

1 ~b !^3dM~b !uhu4pM~b !&

~B5b!

or

^4 f iuhu4pk&5d0i
3 ~b !d0k

1 ~b !s~ f p !1@d
21i
3 ~b !d

21k
1 ~b !

1d1i
3 ~b !d1k

1 ~b !#p~ f p !, ~B6a!

^3d juhu4pk&5d0 j
2 ~b !d0k

1 ~b !s~dp !1@d
21 j
2 ~b !d

21k
1 ~b !

1d1 j
2 ~b !d1k

1 ~b !#p~dp !. ~B6b!

The coefficients at the s( f p), p( f p), s(dp), and p(dp)
parameters are given in Table IX. Then, according to Eq.
~25!, multiplying the ^4 f iuhu4pk& and ^3d juhu4pk& matrix
elements and summing the products over k50, 61 and three
ligands n51 – 3 @the sum over ligands is simply reduced to
the multiplication by the factor defined in Eq. ~B2!#, we ob-
tain the A i j quantities presented in Table II.

Calculations of the B i j quantities for 4s(Br) orbitals are
performed similarly. Note that in this case only s overlap
between metal orbitals and 4s bromine orbitals occurs ~Table
II!.

*Corresponding author. Present address: Department of Chemistry,
Katholieke Universiteit Leuven, Celestijnenlaan 200F,
B-3001 Leuven, Belgium. Email address: mirsa@icp.ac.ru,
vladimir@bohr.quantchem.kuleuven.ac.be ~present!.

1 Y. Shimakawa, Y. Kubo, and T. Manako, Nature ~London! 379,
55 ~1996!; M. A. Subramanian, B. H. Toby, A. P. Ramirez, W. J.
Marshall, A. W. Sleight, and G. H. Kwei, Science 273, 81
~1996!.

2 A. Furrer, P. Allenspach, J. Mesot, and U. Staub, Physica C 168,
609 ~1990!; V. Nekvasil, S. Jandl, M. Cardona, M. Divis, and A.
A. Nugroho, J. Alloys Compd. 323–324, 549 ~2001!.

3 S. Jandl, P. Richard, M. Poirier, V. Nekvasil, A. A. Nugroho, A. A.
Menovsky, D. I. Zhigunov, S. N. Barilo, and S. V. Shiryaev,
Phys. Rev. B 61, 12 882 ~2000!; V. Nekvasil, S. Jandl, M. Car-
dona, M. Divis, and A. A. Nugroho, J. Alloys Compd. 323–324,
549 ~2001!.

4 F. Bartolome, J. Bartolome, M. Castro, and J. J. Melero, Phys.
Rev. B 62, 1058 ~2000!.

5 S. Quezel, F. Tcheou, J. Rossat-Mignod, G. Quezel, and E.
Roudaut, Physica B & C 86–88B, 916 ~1977!.

6 J. Bartolome, E. Palacios, M. D. Kuz’min, F. Bartolome, I. Sos-
nowska, R. Przenioslo, R. Sonntag, and M. M. Lukina, Phys.
Rev. B 55, 11 432 ~1997!.

7 Y. Yamaguchi and T. Sakuraba, J. Phys. Chem. B 41, 327 ~1980!.
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