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In this paper we present an accurate numerical scheme for extracting interatomic exchange parameters (Jij )

of strongly correlated systems, based on first-principles full-potential electronic structure theory. The electronic

structure is modeled with the help of a full-potential linear muffin-tin orbital method. The effects of strong

electron correlations are considered within the charge self-consistent density functional theory plus dynamical

mean-field theory. The exchange parameters are then extracted using the magnetic force theorem; hence all the

calculations are performed within a single computational framework. The method allows us to investigate how the

Jij parameters are affected by dynamical electron correlations. In addition to describing the formalism and details

of the implementation, we also present magnetic properties of a few commonly discussed systems, characterized

by different degrees of electron localization. In bcc Fe, treated as a moderately correlated metal, we found a minor

renormalization of the Jij interactions once the dynamical correlations are introduced. However, generally, if the

magnetic coupling has several competing contributions from different orbitals, the redistribution of the spectral

weight and changes in the exchange splitting of these states can lead to a dramatic modification of the total

interaction parameter. In NiO we found that both static and dynamical mean-field results provide an adequate

description of the exchange interactions, which is somewhat surprising given the fact that these two methods

result in quite different electronic structures. By employing the Hubbard-I approximation for the treatment of

the 4f states in hcp Gd we reproduce the experimentally observed multiplet structure. The calculated exchange

parameters result in being rather close to the ones obtained by treating the 4f electrons as noninteracting core

states.
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I. INTRODUCTION

The interatomic exchange interaction (Jij ), together with
the magnetic moment, are the key quantities for a microscopic
description and understanding of magnetism in real materials.
Being of a purely quantum origin, they define most of the
macroscopic properties of magnetic materials, in particular
their Curie temperature (Tc), the magnon dispersion, and the
magnetic response to external stimuli such as an applied
magnetic field. Having a sufficiently large Tc, preferably above
room temperature, is the key ingredient for any magnetic
material that is to be used in the new generation electronic
devices (see, e.g., Ref. [1]), or for applications in more tradi-
tional fields of magnetism such as new permanent magnetic
materials. Therefore, an ability to predict from first-principles
electronic structure theory the exchange couplings in various
materials is an essential step towards achieving important goals
in the design of materials for emerging technologies.

From a theoretical viewpoint, the basic microscopic mech-
anisms which give rise to the exchange couplings are quite
well known [2]. However, when it comes to real systems,
predicting the sign and the magnitude of the Jij parameters is a
challenging theoretical problem. In fact the electronic structure
of real materials is complex and results in a competition
between various exchange mechanisms. Which one happens
to dominate is rather difficult to judge a priori.

In 1987, a general scheme was proposed for the extraction
of the exchange integrals from electronic structure calculations

[3]. (The basic idea was published a few years earlier
in Ref. [4].) Within this approach the energy of the electronic
Hamiltonian is mapped onto a classical Heisenberg model of
the form

Ĥ = −
∑

i �=j

Jij �ei · �ej , (1)

where �ei denotes the unit vector along the magnetic moment
at the site i. The Jij parameters between sites i and j are
defined as the response to infinitesimally small rotations of
the corresponding atomic spins, i.e., in a linear-response
manner. The approach was successfully applied to a variety
of different materials and has become the primary tool for
studying intersite magnetic interactions from first principles
[5–10]. Note that the exchange parameters defined in this way
are, in general, dependent on initial magnetic configuration.
In itinerant systems such a dependence may be quite strong,
which implies the non-Heisenbergian character of the mag-
netic interactions [11].

In 2000 it was shown that in the presence of dynamical
correlations the formalism is still valid if the self-energy
� is local [12]. This is exactly the case of the dynamical
mean-field theory (DMFT) [13], which, combined with the
density functional theory (DFT), is the state-of-the-art method
for ab initio modeling of the electronic structure of correlated
materials [14–16]. In 2006 Wan et al. used the same formalism
to study the prototypical materials with strong electronic
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correlations, i.e., the transition-metal monoxides [17]. Despite
that Wan and coworkers employed several approximations to
make the calculations feasible, they managed to successfully
compute the exchange parameters, which were then used to
simulate the magnon spectra. The authors also reported that the
best agreement between theory and experiment was achieved
by employing a DMFT-type technique.

In this paper we describe our implementation of the
formalism of Ref. [12] in a full-potential electronic structure
method, in which strong electron correlations are treated with
DMFT [18–23]. We apply this implementation to several
materials with different strength of correlations. After this
Introduction, the present article is organized in the following
way. In Sec. I the general computational scheme is presented.
Section II is dedicated to the discussion about how the choice
of local projections affects the computed exchange parameters.
Sections III–V report the results obtained for bcc Fe, NiO, and
hcp Gd. The last section will highlight the main conclusions
of our study, and perspectives on our future research.

II. THEORETICAL METHODS

We model the electronic structure with the help of the full-
potential linear muffin-tin orbitals (FP-LMTO) code “RSPt”
[18,19]. In order to treat strongly correlated materials, where
the conventional DFT fails, we use a combination of DFT
and DMFT (DFT + DMFT), as implemented in a FP-LMTO
electronic structure method. Details of this implementation
have been presented elsewhere [20–23] and will not be
repeated here with the exception of some specific details that
will be needed for our discussion. In DFT + DMFT one first
selects a subset of electrons that are not described properly by
standard local or semilocal exchange-correlation functionals.
Then the Kohn-Sham Hamiltonian of the DFT problem is
corrected with an explicit two-particle term describing the
local Coulomb repulsion U among these localized electrons
minus a double-counting term. The latter assures that the
contributions of the added Coulomb term are removed from
the Kohn-Sham Hamiltonian, where they are described less
accurately (due to the failure of the exchange-correlation
functional). The obtained Hamiltonian is an effective Hubbard
model and can be solved by DMFT. Once the DMFT cycle
is converged, a new electron density is obtained, which leads
to a new Kohn-Sham Hamiltonian. All simulations performed
in this study are fully converged with respect to the electron
density [20].

The effective impurity problem, which is at the core of the
DMFT method, can be solved by means of various techniques.
The results presented in Sec. III, for bcc Fe, were obtained
through the spin-polarized T-matrix plus fluctuation exchange
(SPTF) solver [24], which is based on perturbation theory. The
solver enforces the system to have the Fermi liquid properties
and has to be used with care, i.e., only when U is smaller
than the bandwidth W . This is usually true for the transition
metals. The results presented in Sec. IV for NiO, instead, were
obtained by means of the exact diagonalization (ED) solver.
This is one of the most accurate techniques and can be applied
for an arbitrary correlation strength. Recently ED has been
applied to study the spectral properties of the transition-metal
monoxides and has led to a great agreement between theory

and experiment. Finally the results presented in Sec. V, for
hcp Gd, were obtained in the Hubbard-I approximation (HIA)
[15], where the hybridization between the correlated orbitals
and the rest is neglected, and hence the impurity electrons
can only redistribute themselves within a given l shell. The
HIA approximation is usually employed for compounds with
extreme localization of certain valence electrons. For example,
it was applied to a series of rare-earth-based compounds and
showed a good agreement with the measured photoemission
spectra and ground state properties [25–28].

Once the electronic structure problem is solved, one can
extract the Jij couplings. To this aim we should define a set
of local orbitals |i,ξ,σ 〉 for the atomic site i. In a crystal i

indicates both the lattice vector �R of the unit cell and the
basis vector τ within the unit cell, so that it points uniquely
to a given ion. The exact shape of the local orbitals does not
need to be specified now, and we will postpone this topic to
the next section. For now we keep the formulation as general
as possible, and we use the global index ξ to refer to a set
of quantum numbers labeling the basis functions. σ is a spin
index, and can have values {↑,↓}. With this in mind, we can
formulate a generalized expression for the intersite exchange
parameters in DFT + DMFT:

Jij =
T

4

∑

n

Tr[�̂i(iωn)Ĝ
↑
ij (iωn)�̂j (iωn)Ĝ

↓
ji(iωn)], (2)

where the trace is intended over the orbital degrees of freedom
ξ , T is the temperature, and ωn = 2πT (2n + 1) is the nth
fermionic Matsubara frequency. Ĝσ

ij is the intersite Green’s
function between sites i and j and projected over a given spin
σ . We use only one spin index, since in this whole article we
assume that contributions due to the spin-orbit coupling are
negligible. The term �̂i gives the exchange splitting at the
site i:

�̂i(iωn) = Ĥ
i,↑
KS + �̂

↑
i (iωn) − Ĥ

i,↓
KS − �̂

↓
i (iωn), (3)

where we introduced the spin- and site-projected Kohn-Sham
Hamiltonian ĤKS and local self-energy �̂. The latter comes
from the solution of the DMFT equations. In the absence of
self-energy we recover the standard DFT expression [3], with
a static exchange splitting. In DMFT [12], instead, due to
the fact that the self-energy is dynamical, the exchange field
becomes dynamical too. One has to realize that �̂, in spite of
being local, also affects the intersite Green’s function. This is
so, because the Green’s function is the resolvent of the entire

Hamiltonian Ĥ :

Ĝ(z) =
1

z − Ĥ
. (4)

Hence the inversion operation mixes all the matrix elements:
site on- and off-diagonal ones. From a numerical viewpoint,
the computation of Eq. (2) is not demanding at all, even if the
sum runs over an infinite number of Matsubara frequencies.
Since each Green’s function at high frequencies behaves as
∼1/iωn, the quantity under summation decays at least as fast
as ∼1/(ω2

n). In practice the amount of Matsubara points used
for evaluation of the self-energy in a standard DMFT cycle
(the exact number depends on the temperature T) is more than
sufficient for a reliable evaluation of the Jij parameters.
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III. LOCAL ORBITALS AND EXCHANGE PARAMETERS

In this section we provide a detailed description of the
construction of the localized basis {|i,ξ,σ 〉} for the evaluation
of the exchange couplings. Given that also the DFT + DMFT
method requires the definition of local orbitals, we will first
present our formalism referred to this method. Later on, we
will contextualize the discussion to the exchange parameters.
The LMTO basis functions [29] that are used to solve the DFT
problem are {| �R,τ,χ,σ 〉}, where �R and τ refer respectively
to the lattice site and the basis vector within the unit cell,
while σ is again the spin. From {| �R,τ,χ,σ 〉} one can construct

the Bloch sums {|�k,τ,χ,σ 〉} used to solve the DFT eigenvalue
problem and subsequently for the DMFT one-electron Green’s
function. In FP-LMTO the index χ stands for {n,l,m,κ}, where
n is the principal quantum number, l the angular quantum
number, m the magnetic quantum number, and κ the value of
the kinetic energy tail, which defines the asymptotic behavior
of the functions at large distances. It is possible to use a
minimal basis set, using only a single set of n,l,m, and κ .
However, for a better converged basis, it is useful to adopt a
basis with several κ values. This ensures the flexibility of the
basis set to describe various shapes of the electron density (see
Ref. [19] for more details).

We consider two types of local orbitals {|i,ξ,σ 〉}, which
we label as “ORT” and “MTH”. These orbitals are schemat-
ically represented in Fig. 1. The localized orbitals “ORT”
are constructed directly from the LMTO basis functions

{| �R,τ,χ,σ 〉} (also depicted in Fig. 1) through the following

FIG. 1. (Color online) Schematic view of the various local or-

bitals used in RSPt: (a) the nonorthonormal LMTO basis set used in

DFT; (b) the Löwdin orthonormalized LMTO “ORT” used as first

projection scheme; (c) the muffin-tin head projected orbitals “MTH”

orbitals used as second projection scheme.

Löwdin orthogonalization:

|i,ξ,σ 〉ORT =
∑

�k,χ

ei�k �Ri
[
Ŝ

−1/2

�k, �R0

]
χσ,ξσ

|�k,τi,χ,σ 〉, (5)

where S�k, �R0
is the overlap matrix between the LMTO Bloch

sums and the local orbitals in the unit cell at the origin �R0.
Hence, the {|i,ξ,σ 〉} are obtained from the original basis
by performing a k-point-wise orthonormalization. In fact,
such transformation mixes all the wave functions, including
the ones centered at different atomic sites. Such mixing is
anyway small, and the whole construction is analogous to the
construction of the Wannier functions [30]. In practice, due to
the long decaying tails of the LMTO, these orbitals are not very
localized, which is more physical from the electronic point of
view. Moreover, there is a one-to-one correspondence between
the index ξ and the index χ . This may be a problem if one
has DFT + DMFT simulations in mind, since an atomic-like
basis is required for a proper parametrization of the Coulomb
interaction. For the ORT basis this condition is satisfied only
when using a single κ value. However, multiple κ values are
often needed for a proper description of the interstitial region
between atomic spheres.

The localized orbitals “MTH” on the other hand result from
a projection onto the so-called muffin-tin head of the LMTO.
The MTH functions are written as

〈�r|i,ξ,σ 〉MTH =

{
�nξ lξ σ (|�ri |)Y

mξ

lξ
(�̂ri), |�ri | < RMT,

0, otherwise,
(6)

where ri = �r − �Ri and � reads as the solution of the radial
Schrödinger equation inside the MT sphere at the linearization
energy [22]. The MTH orbitals are extremely localized, since
they are basically atomic functions. They have a pure l,m char-
acter and do not overlap by construction. For DFT + DMFT the
MTH set is particularly convenient, as in this case ξ = {n,l,m},
as clear from Eq. (6). There is no need to be in a one-to-one
relation with χ , and one can use basis functions {|�k,τ,χ,σ 〉}
with multiple κ for each physical orbital, which results in
a very accurate basis. On the other hand, the MTH orbitals
completely neglect the interstitial charge and magnetization
densities.

The discussion on the advantages and disadvantages of
these projection schemes can be extended to the evaluation
of exchange parameters. It is worth mentioning that the
problem is not entirely the same as that described in the
previous paragraphs. For instance, for rare-earth metals, the 4f

electrons are exposed to pronounced many-body effects, which
manifest themselves in the formation of multiplet features in
the spectral function. However, it is primarily the 5d electrons
which participate in the “communication” between different
atoms by means of exchange interaction. Therefore, the local
orbitals to use in DMFT do not have to coincide with those
used for the Jij calculation. It was recently shown that the
Wannier functions can be employed for the calculations of
exchange parameters [31]. This solution is commonly used in
combination with the plane-wave-based DFT codes, since the
basis functions are completely itinerant. In LMTO one does not
necessarily have to go via this step, because the LMTO basis
is atomic centered and sufficiently localized. The advantage
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of using the two projection schemes outlined above is that the
creation of the basis is less ambiguous and perfectly integrated
within the electronic structure code. When focusing on the
exchange parameters, one can use ORT local orbitals without
any restriction on the number of κ tails. In fact, when one
creates {|i,ξ,σ 〉} uniquely for defining a physical separation
of the space, there is nothing that prevents one from using
multiple basis functions of the same l character.

Since the choice of the localized states is a somewhat
arbitrary procedure, we should analyze how it affects the final
results. The MTH projection totally neglects the interstitial
contribution to the magnetization. This fact already implies
that the Jij parameters obtained with different projections
will not be the same, simply because the magnetic moments
are defined differently. On the other hand, large values of
the interstitial magnetization might be an indication that the
system is too itinerant to be studied by means of Eq. (1).
Hence, if the results strongly depend on the projection, the
very meaningfulness of the Jij is doubtful in this case.

To better illustrate the differences related to the local basis,
in the upper panel of Fig. 2 we report the computed exchange
parameters for hcp Gd (upper panel) and fcc Ni (lower panel).
The computational setup of Gd is discussed in Sec. VI. The
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FIG. 2. (Color online) Upper panel: Intersite exchange parame-

ters in hcp Gd, extracted from the LSDA, where 4f electrons were

treated as core. Lower panel: Intersite exchange parameters in fcc Ni,

extracted from LSDA simulations. In each panel two sets of results

were obtained by means of the two different projection schemes ORT

and MTH.

data reported here are obtained from DFT simulations in local
spin density approximation (LSDA), and for Gd we treated
the 4f electrons as nonhybridizing core states. The magnetic
moment carried by the valence electrons inside the muffin-tin
sphere is estimated for Gd to be about 0.61μB , in addition to
the 7μB coming from the 4f core electrons. Moreover, there
is a 0.17μB per atom of the magnetization in the interstitial.
The latter contributes to the ORT-projected magnetic moment,
since the underlying wave functions leak out from the MT
spheres (see Fig. 1, middle panel), but is absent in the MTH
case. These differences among the local moments represent the
primary reason for the differences between the computed Jij

parameters, as seen in Fig. 2. Due to the truncation of the wave
functions, present in MTH projection, the nearest-neighbor
hopping integrals are expected to be the most renormalized.
The same conclusion holds for the exchange couplings, as
confirmed by our results. Interactions with more distant
neighbors in the two projection schemes are not so different,
since the detailed shape of the wave functions becomes less
important. It is fundamental to note that in the entire range of
interatomic distances, the sign and the relative magnitude of
interactions is defined unambiguously, i.e., does not depend
on the projection scheme.

Excluding the 4f electrons from the consideration, magne-
tization density in Gd is quite itinerant, which manifests itself
in a substantial moment in the interstitial. Contrary to that
situation, magnetization density in 3d metals is much more
localized around the atoms. Hence different projections are
supposed to yield very similar results. For instance, in the lower
panel of Fig. 2 we show calculated Jij parameters in fcc Ni.
We have chosen rather large, almost touching radii of the MT
spheres in order to decrease the size of the interstitial region.
In this case the amount of the magnetization which is not
attributed to any atom is only about −0.02μB . The magnetic
moment inside the sphere (MTH projection) was computed
to be 0.63μB . An inspection of Fig. 2 reveals that different
definitions of the localized basis sets do not significantly
influence the results, even in the present case, where the value
of a magnetic moment is relatively small.

IV. EXCHANGE INTERACTIONS IN A WEAKLY

CORRELATED METAL: bcc IRON

The first system we choose to investigate using the DMFT
scheme is bcc iron. Its electronic structure is well known and
has been studied by means of DFT + DMFT methods by
several research groups [22,32–34]. In these studies it was
pointed out that iron can be treated as a moderately correlated
material. Therefore, one can resort to a perturbative solver,
such as SPTF with values of U and J parameters equal to
2.3 and 0.9 eV, respectively. The static part of the self-energy,
average over all orbitals per each spin channel, was used as
a double-counting correction. With this choice the exchange
splitting coming from the DFT part is affected only through
the exchange-correlation functional. The temperature was set
to T = 300 K and 1024 Matsubara points were sufficient to
converge the self-energy � up to the 10−5 Ry. Both MTH
and ORT projections were studied in DFT + DMFT and lead
to similar electronic structures [22]. For the present study we
used two sets of basis functions with different κ to describe the
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FIG. 3. (Color online) Exchange parameters in bcc iron (in mRy)

as a function of the interatomic distance (in the units of the lattice

constant). Positive sign corresponds to the ferromagnetic coupling.

“ORT” projection scheme was employed in the present calculation

of the interatomic exchange. DMFT results were produced using the

SPTF solver.

3d states; thus MTH projection was employed for the solution
of the effective impurity problem. After that, the Jij couplings
were computed using ORT orbitals, taking advantage of an
extended basis set. However, as discussed above, for transition
metals the exchange parameters obtained by means of the two
projection schemes are very similar.

We have extracted the exchange parameters from the
converged LSDA, LSDA + U, and LSDA + DMFT calcu-
lations. The results of these calculations are shown in Fig. 3.
Overall, the obtained Jij couplings are quite similar, at least
for the LSDA and LSDA + DMFT computational schemes.
The LSDA + U approach deviates noticeably, at least for
the nearest-neighbor (NN) interactions, from the other two
methods.

The most drastic difference concerns the 2nd-NN inter-
action (J2), which is significantly suppressed in the case of
LSDA + U. A more detailed analysis of the individual orbital
contributions to this exchange parameter reveals drastically
different contributions from 3d states with Eg and T2g

symmetry; in particular we find that J
Eg−Eg

2 is AFM, while

J
T2g−T2g

2 is FM. This result can also be explained by considering
the overlap of the 3d wave functions [35]. The lobes of the T2g

states of the central atom and its 2nd NN form a 90◦ angle,
leading to a relatively small orbital overlap and, therefore,
FM coupling. The Eg orbitals are pointing towards each
other and the exchange interaction is expected to be AFM.

As an example, for LSDA we obtain J
Eg−Eg

2 = −0.06 mRy

and J
T2g−T2g

2 = 0.62 mRy. Interestingly, in the LSDA + U

approximation the local exchange splitting of the Eg states,
being about 0.21 Ry, is enhanced with respect to the LSDA
value of 0.16 Ry. The opposite tendency is found for the T2g

orbitals (0.06 Ry versus 0.13 Ry, respectively). Since the local
exchange splitting � enters Eq. (2) twice, any changes of this
quantity strongly influence the effective exchange parameter.

As a result, the J
Eg−Eg

2 completely compensates the J
T2g−T2g

2

contribution in the case of LSDA + U. We checked that further

increase of U leads to the overall change of the J2 sign, because
the AFM contribution starts to prevail.

The data shown in Fig. 3 were produced using the same
U and J parameters for LSDA + U and LSDA + DMFT.
The latter approach, however, contains also the 3d screening
on the effective on-site potential, which is totally neglected
in the static mean-field LSDA + U. Therefore, for the same
strength of U one can expect that the results of LSDA + DMFT
will be somewhat closer to that of the conventional LSDA
calculation. This expectation is in line with the results of
our numerical simulations. We can also use the computed
exchange parameters to evaluate the ordering temperature in
the mean-field approximation (MFA): T MFA

c = 2
3kB

J0, where

J0 =
∑

j J0j . We obtain a value of 925 K in LSDA, 905 K in
LSDA + U, and 840 K in LSDA + DMFT. The experimental
value of Tc is about 1045 K, but any agreement in absolute
numbers should be regarded as somewhat fortunate. In fact
we should mention that, in general, the MFA gives higher
values of Tc when compared with Monte Carlo simulations.
This is mainly due to that numerical estimations are based on
the assumption that there is no short-ranged order above the
critical temperature and there is no temperature dependence
of the exchange parameters. However, both approximations
are in general rather questionable. In fact recent work suggests
that the interatomic exchange does depend on the temperature-
driven magnetic configuration [36].

The differences in the interactions for the more distant
neighbors, shown in Fig. 3, are difficult to distinguish. It is
known that RKKY interactions [37] are expected to have a R−3

ij

asymptotics, where Rij is the interatomic distance. Hence, in
order to illustrate the long-ranged character of the magnetic
couplings, Fig. 4 contains the exchange parameters with the
first 99 shells, multiplied with R3

ij . These results were obtained

with a very dense k-point grid, consisting of 963 points in
the entire Brillouin zone (BZ). This is an unnecessarily large
number for the accuracy of the local quantities, but is, however,
necessary for that of the intersite Green’s function [5].

Inspection of Fig. 4 reveals that indeed LSDA and
LSDA + DMFT results are extremely similar. It is worth
mentioning that this is also related to the fact that we use
the SPTF solver for the DMFT problem, which intrinsically
forces moderate correlation effects, but this is what is expected
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R

ij
 / a

-2.0
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1.0
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(R
ij
/a
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 (

m
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y
)
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LSDA+U
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FIG. 4. (Color online) Exchange parameters Jij in bcc iron,

factorized by interatomic distance R3
ij .
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FIG. 5. (Color online) Magnon dispersion along [100] direction

in the BZ of bcc Fe, simulated using the computed Jij parameters.

All calculations were performed for T = 300 K. Experiment: Room

temperature inelastic neutron scattering data (from Ref. [38]) are

shown with circles.

for bulk bcc Fe. One can see that the effect of dynamical
correlations is such that the Jij parameters are renormalized
with respect to the LSDA values. The renormalization is,
however, anisotropic and is dependent on the direction of the
interatomic bond. Regarding the comparison of the absolute
values, one also has to bear in mind that the calculated magnetic
moment per Fe is about 2.2μB in LSDA, whereas it is 1.95μB

and 2.15μB in LSDA + U and LSDA + DMFT, respectively.
In the considered form of the Hamiltonian [Eq. (1)] it means
that this difference is effectively contained within the Jij

parameters.
In order to quantify the differences in the obtained exchange

parameters, we have simulated the frozen magnon spectra,
expressed through their Fourier transform J (�q) (see, e.g.,
Ref. [5]). Figure 5 shows the simulated magnon dispersions
along the [100] direction together with the inelastic neutron
scattering data. For small |�q| the results obtained with different
electronic structure methods are quite similar. Most of the
differences become evident at higher momenta, but these
regions are difficult to access experimentally. Within the
considered range of q space, the agreement with experimental
data is quite good.

Recently Mazurenko et al. have shown that in the Fermi-
liquid regime the total exchange interaction J0 for a given site is
supposed to be rescaled with an effective mass enhancement
factor Z [39]. In general, our results are in line with their
conclusion, since we also report an overall decrease in the
magnitude of the magnetic couplings once correlations are
introduced. On the other hand, within the LSDA + DMFT
approach the self-energy is different for both spin channels and
so is the Z factor. Moreover, during the charge self-consistency
the unperturbed DFT Hamiltonian gets also modified. Most
importantly, our analysis of the next NN coupling in bcc
Fe demonstrated that if there are several exchange paths,
the modifications of the exchange parameters can be highly
nontrivial. Thus the relation between J0 obtained in LSDA
and that in LSDA + DMFT is more complex.

V. STRONGLY CORRELATED SYSTEM: NICKEL OXIDE

Next, we have applied our implementation to the canonical
example of transition-metal oxides (TMOs), namely NiO.
Magnetic interactions in these materials are rather short-
ranged, since they are insulating; hence considering a few
neighboring shells is usually sufficient to describe their spin-
wave spectra [40,41]. In the literature, the exchange parameters
have been successfully described by means of the LSDA + U

approach [42–44]. Concerning the details of the electronic
structure the LSDA + U is only moderately successful.
Magnetic moments and band gap are well described in these
materials, but the comparison between experimental photo-
electron spectra and theoretical one-particle excitation spectra
is far from satisfactory [45]. Hence, in order to reproduce both
valence band [21] and magnon [17] spectra within the same
framework one must use the more sophisticated LDA+DMFT
method, as we argue here.

Since the correlation effects are known to be very
pronounced for these compounds, we could not use the
SPTF solver for the impurity problem, but we preferred the
ED solver. Differently from Ref. [17] we performed DMFT
simulations starting from the LSDA solution. In this way the
spin polarization already exists at the level of the DFT part of
the problem, i.e., before the solution of an effective impurity
problem. We employed full-localized limit DC, which is
appropriate for the systems close to atomic localization [46]. At
convergence, the exchange splitting is due to both the effects of
the exchange-correlation functional and those of the dynamical
self-energy [47].

The DFT + DMFT simulations with ED were obtained
with the same parameters used in Ref. [21]. The fitting of the
hybridization function was done with two bath sites per each
3d orbital. The U and J parameters for Ni 3d states were set to
8.2 and 0.95 eV, respectively. In order to reach the saturation of
the local magnetization, the temperature was lowered down to
80 K, thus leading to an increase of the number of Matsubara
frequencies up to 6144 points. In the following we only present
results obtained with the ORT projection.

According to the results of the LSDA + DMFT calculation,
NiO is characterized by a band gap of about 3.5 eV and 1.85μB

of spin moment per Ni ion. The LSDA + U simulations gave
similar results. The calculated magnetic moments are in fair
agreement with the experimental value of 1.90μB [48]. The
calculated exchange parameters in NiO obtained by means of
different techniques are listed in Table I.

It is known that the LSDA gives a rather poor description of
the electronic structure of the TMOs. In the present calculation
we obtained a tiny band gap of about 0.5 eV, much smaller than
the experimental estimate. Since the system is an insulator, at
least the underlying exchange mechanism is expected to be
correct; i.e., superexchange is expected. Note that the situation
is much worse for other TMOs, which are predicted to be
metals and hence electrons at the Fermi surface participate
in the magnetic coupling, resulting in a double-exchange
mechanism. As a result, the sign of the leading Jij interaction in
NiO is correct, but its absolute value is way too overestimated
in LSDA, which is a well-known fact.

Overall, the Jij parameters obtained in DMFT are very
similar to those obtained in LSDA + U, both in the present and
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TABLE I. Magnetic interactions in NiO, computed by means

of various ab initio techniques. Exchange parameters JN (in mRy)

denote the interaction with the N th coordination shell. DMFT results

were obtained using ED as an impurity solver.

Computational setup J1 J2

LSDA 0.04 −1.58

LSDA + DMFT −0.003 −0.48

LSDA + U −0.002 −0.50

LSDA + U (U = 8 eV) (Ref. [42]) 0.004/0.0 −0.53

Exp. 1 (Ref. [41]) −0.051 −0.637

Exp. 2 (Ref. [49]) 0.051 −0.67

prior calculations [42–44]. The magnetic interactions in this
class of systems are defined primarily by the virtual electron
hoppings and relative positions of the electron levels. Both
of these quantities are described relatively well already on
the level of LSDA + U. NiO is a particularly illustrative
example, because there is a single d orbital, which participates
in the dominant J2 coupling. The latter, according to the
superexchange mechanism, is expected to be proportional to
t2/U , where t is an effective intersite hopping integral [50].
To test the relevance of the superexchange mechanism in a
quantitative way, we show in Fig. 6 the calculated J2 coupling
as a function of the U parameter.

An inverse proportionality between J2 and U is recogniz-
able. If the exchange is given exactly by the term t2/U one
would expect that J2U should result in a constant value, t2.
In order to test this we show (−J2U ) in the inset of Fig. 6.
One may note that the so obtained value of t2 is essentially
constant and more or less independent of U , illustrating that
the theory captures correctly the superexchange mechanism of
NiO. The results of Fig. 6 also imply that the effective hopping
parameters extracted from LSDA + U and LSDA + DMFT
agree well with each other. On the other hand, a weak
but nonnegligible dependence of the effective hopping with
respect to U is discernible. The reason for that is that the
calculations are done in the charge self-consistent manner,
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FIG. 6. (Color online) Next-NN exchange parameter in NiO for

various values of Hubbard U calculated within LSDA + U and

LSDA + DMFT. Inset: The same plot for (−J2U ).

which implies the change of the DFT potential and, therefore,
t values will depend on the U value used in the calculations.
In fact, in these calculations the U value was varied in an
unrealistically wide range. Considering a narrower window
of more reasonable values, one can approximate t to be
essentially constant.

Hence we can conclude that the improvements of the
use of DMFT are quite moderate for this system, meaning
that static local correlations capture most of the essential
modifications from the LSDA treatment. This is to some extent
surprising since the features of the electronic structure of the
DMFT and LSDA + U approximations are very different.
However, one may argue that in order to get the correct value
of superexchange one needs a correct value of the hopping
parameter and the gap, and it seems LSDA + U does a good
job in providing these properties accurately. We suspect that
the present conclusion holds for most wide-gap insulators with
large localized magnetic moments.

We also report a fair agreement with experimental data, but a
few words about these data are needed. From Table I we see that
different experiments lead to slightly different values of the Jij

parameters, and there is not even consensus about the sign of
the NN coupling. The experimental data reported in Table I are
obtained by fitting the measured magnon spectra to an effective
Heisenberg model. The precision of this procedure is question-
able, especially if one consider that Refs. [41] and [49] report
on the studies that are forty years old. From the numerical side,
as seen from Fig. 6, by choosing a bit smaller U (about 6.8 eV)
one can obtain J2 = 0.62 mRy. With this respect, we consider
our theoretical values in good agreement with experimental
data. Our analysis leads to the AFM NN coupling, but the
absolute value of this interaction is very small.

VI. RARE-EARTH METAL: hcp Gd

The 4f -shell of heavy rare-earth metals is sufficiently
localized and essentially does not participate in the chemical
bonding. However, if treated at the LDA level, these states
acquire finite dispersion and are placed at the Fermi level in
contradiction with existing experimental data. In particular, in
hcp Gd the LSDA approximation leads to an appearance of
antiferromagnetic 4f-5d exchange interaction, which destabi-
lizes the true ferromagnetic ground state (see, e.g., Ref. [51]).
One possibility to overcome this issue is to use the LSDA + U

approach, which results in a static U correction, shifting the
4f states away from the Fermi level [46]. It was also shown
that treatment of 4f states as purely nonhybridizing core
levels improves the description of intersite magnetic couplings
[52,53]. There was, however, a discrepancy in the calculated
Jij parameters, which can be explained by the use of different
computational codes. Here we have investigated the electronic
and magnetic structure of metallic Gd by describing 4f states
within HIA. The U and J parameters were respectively set to
8.2 eV and 0.7 eV, in agreement with prior studies [46,54].
Given that our localized basis is different from those used
in these other studies, a one-to-one correspondence of the
exchange parameters cannot be expected.

The HIA can be seen as a trivial solution in DMFT,
where one performs an ED calculation by removing all the
hybridization of the local orbitals with all the other states.
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hcp Gd as computed in LSDA + DMFT method within the Hubbard-I
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(BIS) data are adapted from Ref. [55].

However, one is still able to foster multiplet peaks, which are
measured experimentally. The calculated electronic structure
from the LSDA + DMFT calculations is depicted in Fig. 7,
where it is compared to experimental data.

An inspection of the plot reveals that the 4f states form
two distinct groups of multiplets, located around −8 eV and
4 eV relative to the Fermi level. These two groups of states
have purely opposite spin polarizations. The agreement with
experimental data is acceptable, but can be improved by a
slightly different choice of U and J , which, however, will
not affect the overall picture of the magnetic properties of
the system. Moreover, the photoemission measurements were
done at room temperature, above Tc, where the electron levels
are spin degenerate. We note here that because the ground state
of Gd has a filled spin-up shell and empty spin-down shell, the
excitations of this configuration become particularly simple
and actually quite similar to results from LSDA + U. However,
for essentially all other rare earths, either as compounds or in
elemental form, the LSDA + U method does not reproduce
the measured multiplet structure.

Regarding the exchange interaction parameters, the values
are shown in Fig. 8. We found that different treatment of 4f

states (by means of HIA or simply treating them as part of
the core) does not give any qualitative changes. The most
dramatic change is associated with the NN couplings. There
is an anisotropy of the in-plane and out-of-plane exchange
parameters, which is a result of an experimentally measured
reduced c/a ratio (equal to 1.59 in the current setup). This
difference is enhanced when the 4f electrons enter explicitly
in the calculation, which seems to be related to a more
nonuniform distribution of the electron density. The rest of
the Jij parameters are quite similar overall: their signs and
relative magnitudes are identical. The spin magnetization,
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FIG. 8. (Color online) Intersite exchange parameters in hcp Gd,

extracted from the ground states with different treatment of 4f

electrons. The MTH-projection scheme was adopted to produce both

sets of results.

associated with the most magnetically “active” 5d electrons,
is about 0.48μB . This results in an induced valence band
moment of 0.68μB/atom (including the interstitial and 6s/6p

MT contributions). The latter is almost independent of the
4f treatment employed. The computed exchange parameters
are of long-ranged nature, clearly showing RKKY oscillations.
Due to this fact, we emphasize that in order to have a converged
estimate of Tc or magnon spectrum (not shown here), we have
to employ interactions with at least 23 first neighboring shells.
Our results are in good agreement with prior studies, given that
the computational schemes are different (e.g., an adoption of
the atomic sphere approximation) [52,53]. Most importantly,
our results are obtained with a full-potential electronic struc-
ture code, that can treat open structures, surfaces, etc.

VII. CONCLUSIONS

We report here on the implementation of interatomic
exchange parameters for correlated electronic structures and
analyze the exchange mechanisms of three classes of corre-
lated electron systems: the weakly correlated transition-metal
elements, the strongly correlated transition-metal oxides, and
the localized electron systems represented by the rare-earth
element Gd. We find that details in how electron correlations
are included influence the exchange interactions in different
amounts, depending on which class one considers. To be more
specific, we analyze the modifications of exchange couplings
in weakly correlated systems, such as bcc Fe, as compared to
the results of conventional LSDA. Since the correlation effects
act differently on each orbital, their contributions to the total
exchange coupling can be substantially different. In the case of
transition-metal oxides, static on-site correlations are shown
to be the most important ones for an adequate description
of the exchange couplings in these systems. Finally we have
applied the method to hcp Gd, where correlated orbitals are of
f nature, but more delocalized spd states actually participate
in the intersite magnetic interactions. We show that the Jij

parameters are barely affected by different treatment of 4f

states, because the corresponding states hybridize weakly with
the rest.
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Regarding the comparison with available experimental data,
it is clear that the LSDA offers an adequate description of the
magnetic properties of weakly correlated metals, whereas the
LSDA + U is suitable for wide-gap insulators. However, only
the DMFT-based calculations provided us a systematically
good agreement for all the materials studied. This fact
underlines that the inclusion of electron correlations beyond
that of LSDA is in general important.

Using the developed machinery one can study the tempera-
ture dependence of the magnetic excitations as one approaches
Tc. A few words have to be said about the calculation of the
Tc. In DMFT one does not take into account all possible finite-
temperature effects. Even by using the most accurate quantum
Monte Carlo (QMC) solver with an approximate matrix of
Coulomb interactions (density-density approximation), there
are only longitudinal fluctuations, which contribute to the
destabilization of the long-range magnetic order (and hence
define the Tc). This is opposite with respect to the linear
response technique, which we adopt, since here one deals with
the transverse spin fluctuations solely. Therefore, the estimates
of the Tc obtained with Jij ’s as calculated here, in combination
with MFA or Monte Carlo simulations, are not expected to be
the same as the results obtained using only DMFT and QMC.

Recently an extension of the method [3,12] was pro-
posed, which permits one to extract magnetic couplings from
noncollinear spin configurations [36]. This is a promising
approach, especially if one wants to model the magnetic
properties at finite temperature, where the partial reorientation
of the spins is present. Moreover, the employed linear-response
approach (at least in the current form) assumes that the
dynamics of the spin waves is adiabatic; i.e., the unperturbed
electronic structure is used to extract effective exchange pa-
rameters. In the general case, the adiabaticity is not guaranteed

and magnetic excitations should be regarded as truly out-
of-equilibrium processes. The formulas for calculating the
magnon spectra in such case have been recently proposed by
Secchi et al. [56]. However, for the moment the method can
only be applied to the model systems and its reconciliation
with the ab initio techniques is far from being at hand.

Many magnetic systems exhibit interesting properties due
to the presence of other types of magnetic interactions,
originating from the spin-orbit coupling. Among those there
are Dzyaloshinskii-Moriya (DM) interaction [57,58] and
magnetocrystalline anisotropy (MA). An interplay between
different terms gives rise to noncollinear spin structures,
observed in multiferroic materials [59], magnetic ions on
surfaces [60], and some low-symmetric TM alloys [61]. Both
DM and MA can be calculated using the linear-response-like
techniques [10,62–65]. However, to our knowledge, the effects
of dynamical correlations on the anisotropic parameters have
not been studied so far. Our implementation provides an ideal
base for conducting an investigation of this problem.
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Condens. Matter 15, 2771 (2003).

[53] S. Khmelevskyi, T. Khmelevska, A. V. Ruban, and P. Mohn,

J. Phys.: Condens. Matter 19, 326218 (2007).

[54] F. Nilsson, R. Sakuma, and F. Aryasetiawan, Phys. Rev. B 88,

125123 (2013).

[55] J. K. Lang, Y. Baer, and P. A. Cox, J. Phys. F: Met. Phys. 11,

121 (1981).

[56] A. Secchi, S. Brener, A. I. Lichtenstein, and M. I. Katsnelson,

Ann. Phys. 333, 221 (2013).

[57] I. Dzyaloshinskii, J. Phys. Chem. Solids 4, 241 (1958).

[58] T. Moriya, Phys. Rev. 120, 91 (1960).

[59] S.-W. Cheong and M. Mostovoy, Nat. Mater. 6, 13 (2007).

[60] M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze,

G. Bihlmayer, A. Kubetzka, O. Pietzsch, S. Blugel, and

R. Wiesendanger, Nature (London) 447, 190 (2007).

[61] X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y.

Matsui, N. Nagaosa, and Y. Tokura, Nature (London) 465, 901

(2010).

[62] M. I. Katsnelson, Y. O. Kvashnin, V. V. Mazurenko, and A. I.

Lichtenstein, Phys. Rev. B 82, 100403 (2010).

[63] I. Solovyev, N. Hamada, and K. Terakura, Phys. Rev. Lett. 76,

4825 (1996).

[64] L. Udvardi, L. Szunyogh, K. Palotás, and P. Weinberger,

Phys. Rev. B 68, 104436 (2003).

[65] V. E. Dmitrienko, E. N. Ovchinnikova, S. P. Collins, G. Nisbet,

G. Beutier, Y. O. Kvashnin, V. V. Mazurenko, A. I. Lichtenstein,

and M. I. Katsnelson, Nat. Phys. 10, 202 (2014).

125133-10

http://dx.doi.org/10.1103/PhysRevB.76.035107
http://dx.doi.org/10.1103/PhysRevB.76.035107
http://dx.doi.org/10.1103/PhysRevB.76.035107
http://dx.doi.org/10.1103/PhysRevB.76.035107
http://dx.doi.org/10.1103/PhysRevB.79.115111
http://dx.doi.org/10.1103/PhysRevB.79.115111
http://dx.doi.org/10.1103/PhysRevB.79.115111
http://dx.doi.org/10.1103/PhysRevB.79.115111
http://dx.doi.org/10.1103/PhysRevB.72.115106
http://dx.doi.org/10.1103/PhysRevB.72.115106
http://dx.doi.org/10.1103/PhysRevB.72.115106
http://dx.doi.org/10.1103/PhysRevB.72.115106
http://dx.doi.org/10.1103/PhysRevB.79.165104
http://dx.doi.org/10.1103/PhysRevB.79.165104
http://dx.doi.org/10.1103/PhysRevB.79.165104
http://dx.doi.org/10.1103/PhysRevB.79.165104
http://dx.doi.org/10.1103/PhysRevB.74.045114
http://dx.doi.org/10.1103/PhysRevB.74.045114
http://dx.doi.org/10.1103/PhysRevB.74.045114
http://dx.doi.org/10.1103/PhysRevB.74.045114
http://dx.doi.org/10.1103/PhysRevB.72.245102
http://dx.doi.org/10.1103/PhysRevB.72.245102
http://dx.doi.org/10.1103/PhysRevB.72.245102
http://dx.doi.org/10.1103/PhysRevB.72.245102
http://dx.doi.org/10.1103/PhysRevB.86.115116
http://dx.doi.org/10.1103/PhysRevB.86.115116
http://dx.doi.org/10.1103/PhysRevB.86.115116
http://dx.doi.org/10.1103/PhysRevB.86.115116
http://dx.doi.org/10.1103/PhysRevB.12.3060
http://dx.doi.org/10.1103/PhysRevB.12.3060
http://dx.doi.org/10.1103/PhysRevB.12.3060
http://dx.doi.org/10.1103/PhysRevB.12.3060
http://dx.doi.org/10.1103/RevModPhys.84.1419
http://dx.doi.org/10.1103/RevModPhys.84.1419
http://dx.doi.org/10.1103/RevModPhys.84.1419
http://dx.doi.org/10.1103/RevModPhys.84.1419
http://dx.doi.org/10.1103/PhysRevB.88.081405
http://dx.doi.org/10.1103/PhysRevB.88.081405
http://dx.doi.org/10.1103/PhysRevB.88.081405
http://dx.doi.org/10.1103/PhysRevB.88.081405
http://dx.doi.org/10.1088/0953-8984/11/4/011
http://dx.doi.org/10.1088/0953-8984/11/4/011
http://dx.doi.org/10.1088/0953-8984/11/4/011
http://dx.doi.org/10.1088/0953-8984/11/4/011
http://dx.doi.org/10.1088/0953-8984/23/25/253201
http://dx.doi.org/10.1088/0953-8984/23/25/253201
http://dx.doi.org/10.1088/0953-8984/23/25/253201
http://dx.doi.org/10.1088/0953-8984/23/25/253201
http://dx.doi.org/10.1103/PhysRevLett.103.267203
http://dx.doi.org/10.1103/PhysRevLett.103.267203
http://dx.doi.org/10.1103/PhysRevLett.103.267203
http://dx.doi.org/10.1103/PhysRevLett.103.267203
http://dx.doi.org/10.1103/PhysRevLett.111.127204
http://dx.doi.org/10.1103/PhysRevLett.111.127204
http://dx.doi.org/10.1103/PhysRevLett.111.127204
http://dx.doi.org/10.1103/PhysRevLett.111.127204
http://dx.doi.org/10.1103/PhysRev.96.99
http://dx.doi.org/10.1103/PhysRev.96.99
http://dx.doi.org/10.1103/PhysRev.96.99
http://dx.doi.org/10.1103/PhysRev.96.99
http://dx.doi.org/10.1103/PhysRev.179.417
http://dx.doi.org/10.1103/PhysRev.179.417
http://dx.doi.org/10.1103/PhysRev.179.417
http://dx.doi.org/10.1103/PhysRev.179.417
http://dx.doi.org/10.1103/PhysRevB.88.085112
http://dx.doi.org/10.1103/PhysRevB.88.085112
http://dx.doi.org/10.1103/PhysRevB.88.085112
http://dx.doi.org/10.1103/PhysRevB.88.085112
http://dx.doi.org/10.1016/S0022-3697(74)80037-5
http://dx.doi.org/10.1016/S0022-3697(74)80037-5
http://dx.doi.org/10.1016/S0022-3697(74)80037-5
http://dx.doi.org/10.1016/S0022-3697(74)80037-5
http://dx.doi.org/10.1103/PhysRevB.6.3447
http://dx.doi.org/10.1103/PhysRevB.6.3447
http://dx.doi.org/10.1103/PhysRevB.6.3447
http://dx.doi.org/10.1103/PhysRevB.6.3447
http://dx.doi.org/10.1103/PhysRevB.88.134427
http://dx.doi.org/10.1103/PhysRevB.88.134427
http://dx.doi.org/10.1103/PhysRevB.88.134427
http://dx.doi.org/10.1103/PhysRevB.88.134427
http://dx.doi.org/10.1103/PhysRevB.80.014408
http://dx.doi.org/10.1103/PhysRevB.80.014408
http://dx.doi.org/10.1103/PhysRevB.80.014408
http://dx.doi.org/10.1103/PhysRevB.80.014408
http://arxiv.org/abs/arXiv:cond-mat/0305668
http://dx.doi.org/10.1103/PhysRevLett.99.156404
http://dx.doi.org/10.1103/PhysRevLett.99.156404
http://dx.doi.org/10.1103/PhysRevLett.99.156404
http://dx.doi.org/10.1103/PhysRevLett.99.156404
http://dx.doi.org/10.1088/0953-8984/9/4/002
http://dx.doi.org/10.1088/0953-8984/9/4/002
http://dx.doi.org/10.1088/0953-8984/9/4/002
http://dx.doi.org/10.1088/0953-8984/9/4/002
http://dx.doi.org/10.1103/PhysRevB.27.6964
http://dx.doi.org/10.1103/PhysRevB.27.6964
http://dx.doi.org/10.1103/PhysRevB.27.6964
http://dx.doi.org/10.1103/PhysRevB.27.6964
http://dx.doi.org/10.1103/PhysRevB.7.5000
http://dx.doi.org/10.1103/PhysRevB.7.5000
http://dx.doi.org/10.1103/PhysRevB.7.5000
http://dx.doi.org/10.1103/PhysRevB.7.5000
http://dx.doi.org/10.1103/PhysRev.115.2
http://dx.doi.org/10.1103/PhysRev.115.2
http://dx.doi.org/10.1103/PhysRev.115.2
http://dx.doi.org/10.1103/PhysRev.115.2
http://dx.doi.org/10.1103/PhysRevB.52.4420
http://dx.doi.org/10.1103/PhysRevB.52.4420
http://dx.doi.org/10.1103/PhysRevB.52.4420
http://dx.doi.org/10.1103/PhysRevB.52.4420
http://dx.doi.org/10.1088/0953-8984/15/17/327
http://dx.doi.org/10.1088/0953-8984/15/17/327
http://dx.doi.org/10.1088/0953-8984/15/17/327
http://dx.doi.org/10.1088/0953-8984/15/17/327
http://dx.doi.org/10.1088/0953-8984/19/32/326218
http://dx.doi.org/10.1088/0953-8984/19/32/326218
http://dx.doi.org/10.1088/0953-8984/19/32/326218
http://dx.doi.org/10.1088/0953-8984/19/32/326218
http://dx.doi.org/10.1103/PhysRevB.88.125123
http://dx.doi.org/10.1103/PhysRevB.88.125123
http://dx.doi.org/10.1103/PhysRevB.88.125123
http://dx.doi.org/10.1103/PhysRevB.88.125123
http://dx.doi.org/10.1088/0305-4608/11/1/015
http://dx.doi.org/10.1088/0305-4608/11/1/015
http://dx.doi.org/10.1088/0305-4608/11/1/015
http://dx.doi.org/10.1088/0305-4608/11/1/015
http://dx.doi.org/10.1016/j.aop.2013.03.006
http://dx.doi.org/10.1016/j.aop.2013.03.006
http://dx.doi.org/10.1016/j.aop.2013.03.006
http://dx.doi.org/10.1016/j.aop.2013.03.006
http://dx.doi.org/10.1016/0022-3697(58)90076-3
http://dx.doi.org/10.1016/0022-3697(58)90076-3
http://dx.doi.org/10.1016/0022-3697(58)90076-3
http://dx.doi.org/10.1016/0022-3697(58)90076-3
http://dx.doi.org/10.1103/PhysRev.120.91
http://dx.doi.org/10.1103/PhysRev.120.91
http://dx.doi.org/10.1103/PhysRev.120.91
http://dx.doi.org/10.1103/PhysRev.120.91
http://dx.doi.org/10.1038/nmat1804
http://dx.doi.org/10.1038/nmat1804
http://dx.doi.org/10.1038/nmat1804
http://dx.doi.org/10.1038/nmat1804
http://dx.doi.org/10.1038/nature05802
http://dx.doi.org/10.1038/nature05802
http://dx.doi.org/10.1038/nature05802
http://dx.doi.org/10.1038/nature05802
http://dx.doi.org/10.1038/nature09124
http://dx.doi.org/10.1038/nature09124
http://dx.doi.org/10.1038/nature09124
http://dx.doi.org/10.1038/nature09124
http://dx.doi.org/10.1103/PhysRevB.82.100403
http://dx.doi.org/10.1103/PhysRevB.82.100403
http://dx.doi.org/10.1103/PhysRevB.82.100403
http://dx.doi.org/10.1103/PhysRevB.82.100403
http://dx.doi.org/10.1103/PhysRevLett.76.4825
http://dx.doi.org/10.1103/PhysRevLett.76.4825
http://dx.doi.org/10.1103/PhysRevLett.76.4825
http://dx.doi.org/10.1103/PhysRevLett.76.4825
http://dx.doi.org/10.1103/PhysRevB.68.104436
http://dx.doi.org/10.1103/PhysRevB.68.104436
http://dx.doi.org/10.1103/PhysRevB.68.104436
http://dx.doi.org/10.1103/PhysRevB.68.104436
http://dx.doi.org/10.1038/nphys2859
http://dx.doi.org/10.1038/nphys2859
http://dx.doi.org/10.1038/nphys2859
http://dx.doi.org/10.1038/nphys2859

