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Abstract

We consider the distribution of cycle counts in a random regular graph, which is
closely linked to the graph’s spectral properties. We broaden the asymptotic regime
in which the cycle counts are known to be approximately Poisson, and we give an
explicit bound in total variation distance for the approximation. Using this result,
we calculate limiting distributions of linear eigenvalue statistics for random regular
graphs.

Previous results on the distribution of cycle counts by McKay, Wormald, and
Wysocka (2004) used the method of switchings, a combinatorial technique for asymp-
totic enumeration. Our proof uses Stein’s method of exchangeable pairs and demon-
strates an interesting connection between the two techniques.

Keywords: switchings, Stein’s method, exchangeable pairs, random regular graphs,
linear eigenvalue statistics

1 Introduction

Suppose that λ1, . . . , λn are the eigenvalues of an n × n random matrix. The random
variable

∑n
i=1 f(λi) for a given function f is known as a linear eigenvalue statistic, and it

is a common object of study in random matrix theory, typically as n tends to infinity.
Let G be chosen uniformly at random from the space of all simple d-regular graphs

on n vertices, and consider its adjacency matrix. Brendan McKay determined the first-
order behavior of its linear eigenvalue statistics, showing that n−1

∑n
i=1 f(λi) converged in

probability to a deterministic limit as n → ∞ [23]. In [13], the second-order behavior of
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linear eigenvalue statistics was computed for a slightly different model of random regular
graph, with improved results given in [27, Chapter 3]. The motivating goal of this paper
is to prove similar results for uniformly chosen random regular graphs, which we carry
out in Theorems 19 and 21.

We will defer further discussion of this problem and its background until Section 4.
Until then, we discuss several combinatorial and probabilistic results interesting in their
own right that we will achieve along the way. Let Ck denote the number of cycles of length
k in the random regular graph G. The distribution of these random variables has been
studied since [6, 36], where it was proven that (C3, . . . , Cr) converges in law to a vector of
independent Poisson random variables as n tends to infinity, with r held fixed. As early
as [23], the cycle counts of a graph have been used to investigate properties of the graph’s
eigenvalues. We take this approach as well, converting our original problem into one of
accurately estimating the distribution of this random vector.

The strongest results on the cycle counts of a random regular graph came in [26], where
the Poisson approximation was shown to hold even as d = d(n) and r = r(n) grow with
n, so long as (d− 1)2r−1 = o(n). This is a natural boundary: in this asymptotic regime,
all cycles in G of length r or less have disjoint edges, asymptotically almost surely. If
(d− 1)2r−1 grows any faster, this fails. This led the authors in [26] to speculate that the
Poisson approximation failed beyond this threshold. Surprisingly, this is not the case. In
Theorem 11, we give a Poisson approximation for the cycle counts that holds so long as√
r(d−1)

3

2
r−1 = o(n). We give a quantitative bound on the accuracy of the approximation,

which is the necessary ingredient for our results on linear eigenvalue statistics. As a bonus,
we give in Theorem 7 a distributional approximation not just of the cycle counts, but of
a more general process defined by the cycles.

The Poisson approximation in [26, Theorem 1] uses a combinatorial technique for
asymptotic enumeration known as the method of switchings. We adapt this technique
to use Stein’s method of exchangeable pairs for Poisson approximation. We discuss both
methods further in the following section. As noted in [37], they have some obvious
similarity, but we believe that this is the first time they have been connected in a rigorous
way. This connection gives a novel construction of an exchangeable pair for use with
Stein’s method, and it allows the machinery of Stein’s method to be used in some new
combinatorial settings.

In Section 2, we give some basic definitions and preliminary estimates on random
regular graphs. Section 3 presents our Poisson approximation. The core argument and
the most general result is Theorem 7, and our main result on cycle counts is Theorem 11.
In Section 4, we give the context and proofs of our results on linear eigenvalue statistics
of random regular graphs.

1.1 Switchings and Stein’s method

The method of switchings, pioneered by Brendan McKay and Nicholas Wormald, has
been applied to asymptotically enumerate combinatorial structures that defy exact counts,
including Latin rectangles [16] and matrices with prescribed row and column sums [24, 25,
19]. It has seen its biggest use in analyzing regular graphs; see [22], [26], [21], and [5] for
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some examples. A good summary of switchings in random regular graphs can be found in
Section 2.4 of [35].

The basic idea of the method is to choose two families of objects, A and B, and
investigate only their relative sizes. To do this, one defines a set of switchings that connect
elements of A to elements of B. If every element of A is connected to roughly p objects in B,
and every element in B is connected to roughly q objects in A, then by a double-counting
argument, |A|/|B| is approximately q/p. When the objects in question are elements of a
probability space, this gives an estimate of the relative probabilities of two events.

Stein’s method (sometimes called the Stein-Chen method when used for Poisson ap-
proximation) is a powerful and elegant tool to compare two probability distributions. It
was originally developed by Charles Stein for normal approximation; its first published
use is [30]. Louis Chen adapted the method for Poisson approximation [11]. Since then,
Stein, Chen, and a score of others have adapted Stein’s method to a wide variety of
circumstances. The survey paper [28] gives a broad introduction to Stein’s method, and
[3] and [10] focus specifically on using it for Poisson approximation.

We will use the technique of exchangeable pairs, following the treatment in [10]. Sup-
pose we want to bound the distance of the law of X from the Poisson distribution. The
technique is to introduce an auxiliary randomization to X to get a new random variable
X ′ so that X and X ′ are exchangeable (that is, (X,X ′) and (X ′, X) have the same law).
If X and X ′ have the right relationship—specifically, if they behave like two steps in an
immigration-death process whose stationary distribution is Poisson—then Stein’s method
gives an easy proof that X is approximately Poisson.

Switchings and Stein’s method have bumped into each other several times. For instance,
both techniques have been used to study Latin rectangles [32, 16], and the analysis of
random contingency tables in [12] is similar to combinatorial work like [18]. Nevertheless,
we believe that this is the first explicit connection between the two techniques. The
essential idea is to use a random switching as the auxiliary randomization in constructing
an exchangeable pair.

We believe the connection between switchings and Stein’s method may prove profitable
to users of both techniques. Using Stein’s method in conjunction with a switching argument
allows for a quantitative bound on the accuracy of the approximation. Stein’s method
can also be used for approximation by other distributions besides Poisson and for proving
concentration bounds (see [9]). On the other hand, Stein’s method cannot prove results as
sharp as [26, Theorem 2], which gives an extremely accurate bound on the probability that
a random graph has no cycles of length r or less. The bare-hands switching arguments
used there might be useful to anyone who needs a particularly sharp bound on a Poisson
approximation at a single point.

2 Preliminaries

A d-regular graph is one for which all vertices have degree exactly d. We call a graph
simple if it has no loops (edges between a vertex and itself) or parallel edges. By random
d-regular graph on n vertices, we mean a random graph chosen uniformly from the space
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of all simple d-regular graphs on n vertices (unless we specifically refer to another model).
When d is odd, we always assume that n is even, since there are no d-regular graphs on n
vertices with d and n odd. By cycle, we mean what is sometimes called a simple cycle: a
walk on a graph starting and ending at the same vertex, and with no repeated edges or
vertices along the way. For vertices u and v in a graph, we will use the notation u ∼ v
to denote that the edge uv exists. The distance between two vertices is the length of the
shortest path between them, and the distance between two sets of vertices is the shortest
distance between a vertex in one set and a vertex in the other.

Here and throughout, we will use c1, c2, . . . to denote absolute constants whose values
are unimportant to us.

Proposition 1. Let G be a random d-regular graph on n vertices, with d 6 n1/3.

(a) Suppose H is a subgraph of the complete graph Kn in which every vertex has degree 2
or higher. Let e be the number of edges and v the number of vertices in H. Suppose
e 6 2n1/10. Then

P[H ⊆ G] 6
c1(d− 1)e

ne
.

(b) Let α be a cycle of length k 6 2n1/10 in the complete graph Kn. Then

P[α ⊆ G] 6
c1(d− 1)k

nk
.

(c) Let β be another cycle in Kn of length j 6 n1/10, and suppose that α and β share f
edges. Then

P[α ∪ β ⊆ G] 6
c1(d− 1)j+k−f

nj+k−f
.

Proof. Statements (b) and (c) are specializations of (a), which follows directly from
Theorem 3a in [26].

3 Poisson approximation of cycle counts by Stein’s method

3.1 Stein’s method background

The main idea of Stein’s method of exchangeable pairs is to perturb a random variable X
to get a new random variable X ′, and then to examine the relationship between the two.
The basic heuristic is that if (X,X ′) is exchangeable and

P[X ′ = X + 1 | X] ≈ λ

c
,

P[X ′ = X − 1 | X] ≈ X

c
,
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for some constant c, then X is approximately Poisson with mean λ. (When X and X ′ are
two steps in a stationary immigration-death chain whose invariant distribution is Poisson
with mean λ, these equations hold exactly.) The following proposition gives a precise,
multivariate version of this heuristic. Recall that the total variation distance between the
laws of two random variables X and Y taking values in N = {0, 1, 2, . . .} is given by

dTV (X, Y ) := sup
A⊆N

|P[X ∈ A]−P[Y ∈ A]| .

Proposition 2 ([10, Proposition 10]). Let W = (W1, . . . ,Wr) be a random vector taking
values in N

r, and let the coordinates of Z = (Z1, . . . , Zr) be independent Poisson random
variables with EZk = λk. Let W

′ = (W ′
1, . . . ,W

′
r) be defined on the same space as W , with

(W,W ′) an exchangeable pair.
For any choice of σ-algebra F with respect to which W is measurable and any choice

of constants ck,

dTV (W,Z) 6
r
∑

k=1

ξk

(

E
∣

∣λk − ckP[∆+
k | F]

∣

∣+ E
∣

∣Wk − ckP[∆−
k | F]

∣

∣

)

,

with ξk = min(1, 1.4λ
−1/2
k ) and

∆+
k = {W ′

k = Wk + 1, Wj = W ′
j for k < j 6 r},

∆−
k = {W ′

k = Wk − 1, Wj = W ′
j for k < j 6 r}.

Remark 3. We have changed the statement of the proposition from [10] in two small
ways: we condition our probabilities on F, rather than on W , and we do not require that
EWk = λk (though the approximation will fail if this is far from true). Neither change
invalidates the proof of the proposition.

Remark 4. There is a direct connection between switchings and a certain bare-hands
version of Stein’s method. Though this is not what we use in this paper, it is helpful in
understanding why Stein’s method and the method of switchings are so similar. If (X,X ′)
is exchangeable, then as explained in [31, Section 2], one can directly investigate ratios of
probabilities of different values of X using the equation

P[X = x1]

P[X = x2]
=

P[X ′ = x1 | X = x2]

P[X ′ = x2 | X = x1]
.

This technique bears a strong resemblance to the method of switchings: if we think of
X as some property of a random graph (for example, number of cycles) and X ′ as that
property after a random switching has been applied, then this formula instructs us to
count how many switchings change X from x1 to x2 and vice versa, just as one does when
using switchings for asymptotic enumeration.
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v0 v1 v2 v3

u0 w0 u1 w1 u2 w2 u3 w3

v0 v1 v2 v3

u0 w0 u1 w1 u2 w2 u3 w3

Figure 1: The change from left to right is a forward switching, and from right to left is a
backward switching.

3.2 Counting switchings

We start by defining our switchings. Besides some small notational differences, the defini-
tions will be the same as those in [26]. To avoid repetition of the phrase “cycles of length
r or less,” we will refer to such cycles as short.

Let G be a d-regular graph. Suppose that α = v0 · · · vk−1 is a cycle in G, and let
ei = vivi+1, interpreting all indices modulo k from now on. Let e′i = wiui+1 for 0 6 i 6 k−1
be oriented edges such that neither ui nor wi is adjacent to vi. Consider the act of deleting
these 2k edges and replacing them with the edges viui and viwi for 0 6 i 6 k − 1 to
obtain a new d-regular graph G′ with the cycle α deleted (see Figure 1). We call this
action induced given by the sequences (vi), (ui), and (wi) a forward α-switching. We will
consider forward α-switchings only up to cyclic rotation of indices; that is, we identify the
2k different α-switchings obtained by cyclically rotating all sequences vi, ui, and wi.

To go the opposite direction, suppose G contains oriented paths uiviwi for 0 6 i 6 k−1
such that vi 6∼ vi+1 and wi 6∼ ui+1. Consider the act of deleting all edges uivi and viwi

and replacing them with vivi+1 and wiui+1 for all 0 6 i 6 k − 1 to create a new graph G′

that contains the cycle α = v0 · · · vk−1. We call this a backwards α-switching. Again, we
consider switchings only up to cyclic rotation of all indices.

We call an α-switching valid if α is the only short cycle created or destroyed by the
switching. For each valid forward α-switching taking G to G′, there is a corresponding
valid backwards α-switching taking G′ to G. Let Fα and Bα be the number of valid
forward and backwards α-switchings, respectively, on some graph G. Using arguments
drawn from [26, Lemma 3], we give some estimates on them.

Lemma 5. Let G be a deterministic d-regular graph on n vertices with cycle counts
{Ck, k > 3}. For any short cycle α ⊆ G of length k,

Fα 6 [n]kd
k. (1)

If α does not share an edge with another short cycle,

Fα > [n]kd
k

(

1−
2k
∑r

j=3 jCj + c2k(d− 1)r

nd

)

. (2)

the electronic journal of combinatorics 22(1) (2015), #P1.33 6



Proof. The question is, with α = v0 · · · vk−1 and ei = vivi+1 given, how many ways are
there to choose e′0, . . . , e

′
k−1 that give a valid switching? There are at most [n]kd

k choices
of oriented edges e′0, . . . , e

′
k−1, which proves the upper bound (1). For the lower bound,

we demonstrate a procedure to choose these edges that is guaranteed to give us a valid
forward α-switching. Suppose that e′0, . . . , e

′
k−1 satisfy

(a) e′i is not contained in any short cycle;

(b) the distance from ei to e′i is at least r;

(c) the distance from e′i to e′i′ is at least r/2;

(d) the distance from wi to ui is at least r.

Then the switching is valid by an argument identical to the one in [26], which we will
reproduce for convenience. By (b), for all i, neither ui nor wi is adjacent to vi (or to vi′
for any i′), as required in the definition of a switching. Let G′ be the graph obtained by
applying the switching. We need to check now that the switching is valid; that is, the
only short cycle it creates or destroys is α.

Since α shares no edges with other short cycles, its deletion does not destroy any
other short cycles. Condition (a) ensures that no short cycles are destroyed by removing
e′0, . . . , e

′
k−1. The switching does not create any short cycles either: Suppose otherwise,

and let β be the new cycle in G′. It consists of paths in G ∩G′, separated by new edges
in G′. Any such path in G ∩G′ must have length at least r/2, because

• if it starts and ends in α and has length less than r/2, then combining this path
with a path in α gives a short cycle in G that intersects α;

• if it starts in α and finishes in W = {u0, w0, . . . , uk−1, wk−1} and has length less than
r/2, then combining this path with a path in α gives a path violating condition (b);

• if it starts at some e′i and ends at e′i′ then it must have length r/2 by (c) if i′ 6= i,
and by (a) if i′ = i.

Thus β contains exactly one path in G ∩G′. The remainder of β must be an edge uivi or
wivi, impossible by (b), or a path uiviwi, impossible by (d).

Now, we find the number of switchings that satisfy conditions (a)–(d) to get a lower
bound on Fα. We will do this by bounding from above the number of switchings out of
the [n]kd

k counted in (1) that fail each condition (a)–(d).

• There are a total of
∑r

j=3 jCj edges in short cycles in G. Choosing one of the edges
e′0, . . . , e

′
k−1 from these and the rest arbitrarily, there are at most

[n− 1]k−1d
k−1k

r
∑

j=3

2jCj

switchings that fail condition (a).
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• The number of edges of distance less than r from some edge is at most 2
∑r

j=0(d−
1)j − 1 = O((d − 1)r). At most [n − 1]k−1d

k−1kO
(

(d − 1)r
)

switchings then fail
condition (b).

• By a similar argument, at most [n]k−1d
k−1k2O

(

(d− 1)r/2
)

switchings fail condition
(c).

• By a similar argument, at most [n]k−1d
k−1kO

(

(d− 1)r
)

switchings fail condition (d).

Adding these up and combining O(·) terms, we find that at most

[n− 1]k−1d
k−1k

(

r
∑

j=3

2jCj +O
(

(d− 1)r
)

)

switchings out of the original [n]kd
k fail conditions by (a)–(d), establishing (2).

For backwards switchings, we give a similar upper bound, but we only give our lower
bound in expectation.

Lemma 6. Let G be a random d-regular graph on n vertices, and let α be a cycle of length
k 6 r in the complete graph Kn. Then

Bα 6
(

d(d− 1)
)k

(3)

and

EBα >
(

d(d− 1)
)k
(

1− c3k(d− 1)r−1

n

)

. (4)

Proof. The question this time is given α, how many choices of oriented paths yield a valid
switching? For any fixed α, there are at most (d(d−1))k choices of oriented paths, proving
(3). For the lower bound, let B =

∑

β Bβ, where β runs over all cycles of length k in the
complete graph. We will first show that

B >
[n]k
(

d(d− 1)
)k

2k

(

1−
4k
∑r

j=3 jCj +O
(

k(d− 1)r
)

nd

)

. (5)

As in Lemma 5, we give conditions that ensure a valid switching. Let β = v0 · · · vk−1, and
suppose that the paths uiviwi in G for 0 6 i 6 k − 1 satisfy

(a) the edges viui and viwi are not contained in any short cycles;

(b) for all 1 6 j 6 r/2, the distance between the paths uiviwi and ui+jvi+jwi+j is at least
r − j + 1.
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Any choice of edges satisfying these conditions gives a valid backwards switching: Condi-
tion (b) ensures that vi 6∼ vi+1 and wi 6∼ ui+1, as required in the definition of a switching.
Let G′ be the graph obtained by applying the switching. We need to check that no short
cycles besides β are created or destroyed by the switching. By (a), none are destroyed.
Suppose a short cycle β′ other than β is created in G′. It consists of paths in G ∩ G′,
portions of β, and edges wiui+1. Any such path in G ∩G′ must have length at least r/2
because

• if it starts at ui, vi, or wi and ends at ui+j, vi+j, or wi+j for 1 6 j 6 r/2, then (b)
implies this;

• if it starts and ends at one of ui, vi, and wi, then (a) implies this.

Hence β′ must contain exactly one such path. The remainder of β′ must either be an edge
wiui+1, or a portion of β′, both of which are impossible by (b).

There are [n]kd
k/2k choices for β, and at most (d(d− 1))k choices for ui, wi, 0 6 i < k.

As before, we count how many of these potential switchings satisfy conditions (a) and (b)
to get a lower bound on B. By similar arguments as in the proof of Lemma 5, we find
that at most

2[n− 1]k−1

(

d(d− 1)
)k−1

(d− 1)
r
∑

j=3

jCj

of the switchings violate condition (a), and at most [n]k−1

(

d(d − 1)
)k−1

O
(

(d − 1)r+1
)

violate condition (b), which proves (5).
By Proposition 1b (or by [26, eq. 2.2]),

ECk 6
c1(d− 1)k

2k
.

Applying this to (5) gives

EB >
[n]k
(

d(d− 1)
)k

2k

(

1−O

(

k(d− 1)r−1

n

))

By the exchangeability of the vertex labels of G, the law of Bβ is the same for all
k-cycles β. It follows that EB = ([n]k/2k)EBα, proving (4).

3.3 Applying Stein’s method

Rather than prove a theorem about the vector of cycle counts, we will give a result on
a more general process. Let I be an index set of possible cycles in Kn that the random
graph G might contain, and for α ∈ I, let Iα be an indicator on G containing α. We will
show that the entire process (Iα, α ∈ I) is well approximated by a vector of independent
Poissons, with the accuracy of the approximation depending on the size of the set I. We
will also prove a slight variant in Proposition 10 which achieves a better error bound, at
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the expense of considering a less general process. Our result on cycle counts, Theorem 11,
will follow easily from this.

Though we have no need for these process approximations in our paper, similar results
for the permutation model of random graph have proven useful in [20]. In any event, the
machinery of Stein’s method gives them to us with no extra effort.

Theorem 7. Let G be a random d-regular graph on n vertices. For some collection I of
cycles in the complete graph Kn of maximum length r, we define I = (Iα, α ∈ I), with
Iα = 1{G contains α}. Let Z = (Zα, α ∈ I) be a vector of independent Poisson random
variables, with EZα = (d− 1)|α|/[n]|α|, where |α| denotes the length of the cycle α.

For some absolute constant c4, for all n and d, r > 3 satisfying r 6 n1/10 and d 6 n1/3,

dTV (I, Z) 6
∑

α∈I

c4 |α| (d− 1)|α|+r−1

n|α|+1
.

Before we give the proof, we show the result of applying this theorem when I is all
cycles of length r or less:

Corollary 8. Let G be a random d-regular graph on n vertices, and let I be the collection
of all cycles of length r or less in the complete graph Kn. Define I and Z as in the previous
theorem. For some absolute constant c5, for all n and d, r > 3,

dTV (I, Z) 6
c5(d− 1)2r−1

n
.

Proof of the corollary. If r > n1/10 or d > n1/3, then c5(d− 1)2r−1/n > 1 for a sufficiently
large choice of c5, and the total variation bound is trivial. Thus we can assume that this
is not the case and apply the previous theorem:

dTV (I, Z) 6
∑

α∈I

c4 |α| (d− 1)|α|+r−1

n|α|+1

=
r
∑

k=3

[n]k
2k

(c4k(d− 1)k+r−1

nk+1

)

= O
((d− 1)2r−1

n

)

.

The strength of Theorem 7 is that one can consider a smaller set I of possible cycles
and get a tighter total variation bound. For instance, if I is the set of all cycles in Kn of
length r or less containing vertex 1, then I and Z are within O

(

r(d− 1)2r−1/n2
)

in total
variation norm.

Remark 9. Since the cycle counts (C3, . . . , Cr) are a functional of I, this corollary implies
that

dTV

(

(C3, . . . , Cr), (Z3, . . . , Zr)
)

6
c5(d− 1)2r−1

n
,

where (Z3, . . . , Zr) is a vector of independent Poisson random variables with EZk =
(d− 1)k/2k. In fact, we will give a slightly better result in Theorem 11.

the electronic journal of combinatorics 22(1) (2015), #P1.33 10



Proof of Theorem 7. We will construct an exchangeable pair by taking a step in a re-
versible Markov chain. To make this chain, define a graph G whose vertices consist of
all d-regular graphs on n vertices. For every valid forward α-switching with α ∈ I from
a graph G0 to G1, make an undirected edge in G between G0 and G1. Place a weight of
1/[n]|α|d

|α| on each of these edges. The essential fact that will make our arguments work is
that valid forward α-switchings from G0 to G1 are in bijective correspondence with valid
backwards α-switchings from G1 to G0. Thus, we could have equivalently defined G by
forming an edge for every valid backwards switching.

Define the degree of a vertex in a graph with weighted edges to be the sum of the
adjacent edge weights. Let d0 be the maximum degree of G as defined so far. To make G

regular, add a weighted loop to each vertex that brings its degree up to d0. Now, consider
a random walk on G that moves with probability proportional to the edge weights. This
random walk is a Markov chain reversible with respect to the uniform distribution on
d-regular graphs on n vertices. Thus, if G has this distribution, and we obtain G′ by
advancing one step in the random walk, the pair of graphs (G,G′) is exchangeable.

Let I ′α be an indicator on G′ containing the cycle α, and define I′ = (I ′α, α ∈ I). It
follows from the exchangeability of G and G′ that I and I′ are exchangeable, and we can
apply Proposition 2 on this pair. Define the events ∆+

α and ∆−
α as in that proposition. By

our construction,

P[∆+
α | G] =

Bα

d0[n]|α|d|α|
, P[∆−

α | G] =
Fα

d0[n]|α|d|α|
.

Thus by Proposition 2 with all constants set to d0,

dTV (I, Z) 6
∑

α∈I

E

∣

∣

∣

∣

(d− 1)|α|

[n]|α|
− Bα

[n]|α|d|α|

∣

∣

∣

∣

+
∑

α∈I

E

∣

∣

∣

∣

Iα − Fα

[n]|α|d|α|

∣

∣

∣

∣

. (6)

We will bound these two sums. Fix some α ∈ I, and let |α| = k. Applying first the upper
bound and then the lower bound from Lemma 6,

E

∣

∣

∣

∣

(d− 1)k

[n]k
− Bα

[n]kdk

∣

∣

∣

∣

= E

[

(d− 1)k

[n]k
− Bα

[n]kdk

]

6
c3k(d− 1)k+r−1

n[n]k
. (7)

To bound the other sum, partition the state space of random regular graphs into three
events:

A1 = {G does not contain α},
A2 = {G contains α, which does not share an edge with another short cycle in G},
A3 = {G contains α, which shares an edge with another short cycle in G}.

On A1, we have Iα = Fα = 0. On A2, both bounds from Lemma 5 apply, giving us
∣

∣

∣

∣

Iα − Fα

[n]kdk

∣

∣

∣

∣

6
2k
∑r

j=3 jCj + c2k(d− 1)r

nd
.
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On A3, we have Iα = 1 and Fα = 0. In all,

E

∣

∣

∣

∣

Iα − Fα

[n]kdk

∣

∣

∣

∣

6 E

[

1A2

2k
∑r

j=3 jCj + c2k(d− 1)r

nd
+ 1A3

]

=
2k

nd
E

[

1A2

r
∑

j=3

jCj

]

+
c2k(d− 1)r

nd
P[A2] +P[A3].

Let J be the set of all cycles of length r or less in Kn that share no edges with α. On
the event A2, the graph G contains no cycles outside of this set (except for α), and
∑r

j=3 jCj = k +
∑

β∈J |β| Iβ. Thus

E

∣

∣

∣

∣

Iα − Fα

[n]kdk

∣

∣

∣

∣

6
2k2

nd
E1A2

+
2k

nd

∑

β∈J

|β|E1A2
Iβ +

c2k(d− 1)r

nd
P[A2] +P[A3]

6
2k2

nd
EIα +

2k

nd

∑

β∈J

|β|EIαIβ +
c2k(d− 1)r

nd
EIα +P[A3]. (8)

By Proposition 1b,

2k2

nd
EIα = O

(k2(d− 1)k−1

nk+1

)

(9)

and

c2k(d− 1)r

nd
EIα = O

(k(d− 1)k+r−1

nk+1

)

. (10)

By Proposition 1c with f = 0, for any β ∈ J we have EIαIβ 6 c1(d− 1)j+k/nj+k, where
j = |β|. For each 3 6 j 6 r, there are at most [n]j/2j cycles in J of length j. Therefore

2k

nd

∑

β∈J

|β|EIαIβ 6
2k

nd

r
∑

j=3

[n]j
2j

(jc1(d− 1)j+k

nj+k

)

6
k

nd

r
∑

j=3

c1(d− 1)j+k

nk
= O

(k(d− 1)k+r−1

nk+1

)

. (11)

The last term of (8) is the most difficult to bound. Let K be the set of short cycles in
Kn that share an edge with α, not including α itself. By a union bound,

P[A3] 6
∑

β∈K

EIαIβ. (12)

Now, we classify and count the cycles β ∈ K according to the structure of α∪ β. Suppose
that β has length j, and consider the intersection of α and β (the graph consisting of
all vertices and edges contained in both α and β). Suppose this intersection graph has p
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components and f edges. As computed on [26, p. 5], the number of possible isomorphism
types of α ∪ β given p and f is at most (2r3)p−1/(p− 1)!2. For each possible isomorphism
type of α ∪ β, there are no more than 2knj−p−f possible choices of β such that α ∪ β falls
into this isomorphism class. This is because α ∪ β has j + k − p− f vertices, k of which
are determined by α. In defining β, the remaining j − p − f vertices can be chosen to
be anything, and the intersection of α and β can be rotated around α in 2k ways, all
without changing the isomorphism class of α ∪ β. In all, we have shown that the number
of j-cycles whose overlap with α has p components and f edges is at most

(2r3)p−1

(p− 1)!2
2knj−p−f .

For any such choice of β, we have EIαIβ 6 c1(d − 1)j+k−f/nj+k−f by Proposition 1c.
Applying this to (12),

P[A3] 6
r
∑

j=3

∑

p,f>1

(2r3)p−1

(p− 1)!2
2knj−p−f c1(d− 1)j+k−f

nj+k−f

=
r
∑

j=3

∑

p,f>1

(2r3)p−1

(p− 1)!2
2kc1(d− 1)j+k−f

nk+p

=
r
∑

j=3

O
(k(d− 1)j+k−1

nk+1

)

= O
(k(d− 1)k+r−1

nk+1

)

. (13)

Combining (9), (10), (11), and (13), we have

E

∣

∣

∣

∣

Iα − Fα

[n]kdk

∣

∣

∣

∣

= O
(k(d− 1)k+r−1

nk+1

)

.

Applying this and (7) to (6) establishes the theorem.

As mentioned in Remark 9, we can apply this theorem to give a total variation bound
on the law of any functional of I. This bound is often less than optimal, since this theorem
fails to exploit the λ

−1/2
k factors in Proposition 2. We will take advantage of these factors

in the following proposition, and then apply this to prove Theorem 11.

Proposition 10. With the set-up of Theorem 7, divide up the collection of cycles I into
bins B1, . . . ,Bs. Let

Ik =
∑

α∈Bk

Iα, Zk =
∑

α∈Bk

Zα,

and let λk = EZk. Then

dTV

(

(I1, . . . , Is), (Z1, . . . , Zs)
)

) 6 c4

s
∑

k=1

ξk
∑

α∈Bk

|α| (d− 1)|α|+r−1

n|α|+1
,

where ξk = min
(

1, 1.4λ
−1/2
k

)

.
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Proof. Define the exchangeable pair (G,G′) as in Theorem 7, and define I ′1, . . . , I
′
s as the

analogous quantities in G′. Define ∆+
k and ∆−

k as in Proposition 2, noting that

P[∆+
k | G] =

∑

α∈Bk

Bα

d0[n]|α|d|α|
, P[∆−

k | G] =
∑

α∈Bk

Fα

d0[n]|α|d|α|
.

By Proposition 2,

dTV

(

(I1, . . ., Is), (Z1, . . . , Zs)
)

6

s
∑

k=1

ξk
(

E
∣

∣λk − d0P[∆+
k | G]

∣

∣+ E
∣

∣Ik − d0P[∆−
k | G]

∣

∣

)

=
s
∑

k=1

ξkE

∣

∣

∣

∣

∣

∑

α∈Bk

(

(d− 1)|α|

[n]|α|
− Bα

[n]|α|d|α|

)

∣

∣

∣

∣

∣

+
s
∑

k=1

ξkE

∣

∣

∣

∣

∣

∑

α∈Bk

(

Iα − Fα

[n]|α|d|α|

)

∣

∣

∣

∣

∣

.

These summands were already bounded in expectation in Theorem 7, and applying these
bounds proves the proposition.

Theorem 11. Let G be a random d-regular graph on n vertices with cycle counts (Ck, k >

3). Let (Zk, k > 3) be independent Poisson random variables with EZk = (d − 1)k/2k.
For any n > 1 and r, d > 3,

dTV

(

(C3, . . . , Cr), (Z3, . . . , Zr)
)

6
c6
√
r(d− 1)3r/2−1

n

Proof. If d > n1/3 or r > n1/10, then c6
√
r(d− 1)3r/2−1/n > 1 for a sufficiently large choice

of c6, and the theorem holds trivially. Thus we can assume that d 6 n1/3 and r 6 n1/10.
Let λk = (d − 1)k/2k. With Ik defined as the set of all cycles in Kn of length k, we

apply the previous proposition with bins I3, . . . , Ir to get

dTV

(

(C3, . . . , Cr), (Z3, . . . , Zr)
)

6 c4

r
∑

k=3

1.4λ
−1/2
k

∑

α∈Ik

k(d− 1)k+r−1

nk+1

=
r
∑

k=3

O
(

√
k(d− 1)k/2+r−1

n

)

= O
(

√
r(d− 1)3r/2−1

n

)

.

4 Eigenvalue fluctuations of random regular graphs

Consider a random symmetric n × n matrix Xn with eigenvalues λ1 > · · · > λn. As we
mentioned in the introduction, a linear eigenvalue statistic is a random variable of the
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1

2

3

4

5

Figure 2: The walk 1 → 2 → 3 → 4 → 5 → 2 → 1 is non-backtracking, but not cyclically
non-backtracking.

form
∑n

i=1 f(λi) for some function f . A common problem in random matrix theory is to
understand the asymptotic behavior of linear eigenvalue statistics. Typically, one shows
convergence to a deterministic limit under one scaling (the first-order behavior), and to a
distributional limit under another scaling (the second-order behavior). The prototypical
example is when Xn is a Wigner matrix: the first-order behavior is given by Wigner’s
semicircle law (see [1] for a modern account of Wigner’s result), and for sufficiently smooth
f , the fluctuations from this are normal [29, 2].

Recently, the problem of finding the fluctuations of linear eigenvalue statistics was con-
sidered for random permutation matrices [4], where for sufficiently smooth f , the limiting
distribution is non-Gaussian. This is striking because this behavior is non-universal. The
näıve expectation would have been that the eigenvalues of these matrices should behave
as in the Gaussian orthogonal ensemble, which consists of Wigner matrices with Gaussian
entries. In [13], the same problem was considered for the adjacency matrices of random d-
regular graphs drawn from the permutation model. As with random permutation matrices,
for sufficiently smooth f , the limiting fluctuations are non-Gaussian if d is a fixed constant.
On the other hand, if d grows to infinity with n, the limiting fluctuations are Gaussian.
The first-order behavior of linear eigenvalue statistics shows the same dichotomy, with the
non-universal Kesten-McKay limit when d is fixed replaced by the semicircle law when d
grows with n [14, 33].

Our goal is to extend these fluctuation results to the uniform model of random regular
graph. Following the approach of [13], we will use Theorem 11 to estimate the distribution
of counts of cyclically non-backtracking walks. Using a connection between these counts and
the graph’s eigenvalues, we compute the non-Gaussian limiting fluctuations in Theorem 19.
We will then show in Theorem 21 that when d grows with n, the eigenvalue fluctuations
converge to nearly the same limit as in the GOE.

If a walk on a graph begins and ends at the same vertex, we call it closed. We call a
walk on a graph non-backtracking if it never follows an edge and immediately follows that
same edge backwards. Non-backtracking walks are also known as irreducible.
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Consider a closed non-backtracking walk, and suppose that its last step is anything
other than the reverse of its first step (that is, the walk does not look like the one given
in Figure 2). Then we call it a cyclically non-backtracking walk. These walks occasionally
go by the name strongly irreducible.

Let Gn be a random d-regular graph on n vertices from the uniform model, and let C
(n)
k

be the number of cycles of length k in Gn. We define the random variable CNBW
(n)
k to be

the number of cyclically non-backtracking walks of length k in Gn. Define (C
(∞)
k , k > 3)

to be independent Poisson random variables, with C
(∞)
k having mean λk = (d − 1)k/2k.

It will be convenient to define C
(∞)
1 , C

(∞)
2 , C

(n)
1 , and C

(n)
2 as zero.

Define

CNBW
(∞)
k =

∑

j|k

2jC
(∞)
j .

For any cycle in Gn of length j, where j divides k, we obtain 2j cyclically non-backtracking
walks of length k by choosing a starting point and direction and then walking around the
cycle repeatedly. In fact, if d and k are small compared to n, then these are likely to be
the only cyclically non-backtracking walks of length k in Gn, as the following proposition
will show.

Proposition 12. Suppose d 6 n1/3 and k 6 n1/10. Let

B
(n)
k := CNBW

(n)
k −

∑

j|k

2jC
(n)
j ,

the number of cyclically non-backtracking walks in the random d-regular graph Gn that are
not repeated walks around cycles. Then

EB
(n)
k 6

c7k
6(d− 1)k

n
.

Proof. Call a cyclically non-backtracking walk bad if it is not a repeated walk around a
cycle. We just need to enumerate the possible bad walks and apply Proposition 1a to
bound the probability of each one. First, we give some notation first used in [7]. Let
v0, . . . , vk ∈ {1, . . . , n} satisfying v0 = vk be a sequence of vertices that forms a bad
cyclically non-backtracking walk. Let 1 6 i 6 k. We say that the ith step of the walk is

• free if vi did not previously occur in the walk;

• a coincidence if vi previously occurred in the walk, but the edge vi−1vi did not;

• and forced if the edge vi−1vi previously occurred in the walk.

Let χ + 1 be the number of coincidences and f the number of forced steps in the walk.
With v the number of vertices and e the number of edges in the graph formed by the walk,
we then have

v = k − χ− f,

e = k − f.

It follows from the walk being bad that χ > 1.
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Claim 13. Consider walks on Kn such that when the walk is viewed as a subgraph, all
vertices have degree at most d. The number of such walks with given values χ > 1 and
f > 0 is at most k3χ+2(d− 1)fnk−χ−f .

Proof of the claim. Imagine laying out the coincidences, then the forced steps, and then
the free steps. Given that there are χ + 1 coincidences, there are

(

k
χ+1

)

6 kχ+1 possible

subsets of indices {1, . . . , k} where the coincidences can occur. The vertex at a coincidence
has already occurred in the walk, so there are fewer than k choices for each of them, giving
us a total of k2χ+2 choices so far.

Forced steps can occur only after a coincidence or another forced step. After each
coincidence, imagine assigning some number of the steps to be forced. The number of
ways to do this is at most the number of weak compositions of f elements into χ+1 parts,
(

f+χ
χ

)

, which we can bound by kχ. At each forced step, the walk can only move along
an edge that has already been traversed, so there are at most d − 1 possible choices of
vertices at each forced step. In all, this gives us at most kχ(d− 1)f choices for the forced
steps.

At each of the k−χ−1−f free steps, we have at most n choices of where to move, and
we have an additional n choices for v0, giving us another nk−χ−f choices in all. Multiplying
together these three bounds proves the claim.

The probability of a given bad walk being found in Gn is at most c1
(

(d− 1)/n
)k−f

by
Proposition 1a. Applying Claim 13 and summing over all possible bad walks,

EB
(n)
k 6

∑

χ>1

k−1
∑

f=0

k3χ+2(d− 1)fnk−χ−f c1(d− 1)k−f

nk−f

=
∑

χ>1

k−1
∑

f=0

O

(

k3χ+2(d− 1)k

nχ

)

= k3(d− 1)k
∑

χ>1

O

(

k3χ

nχ

)

= O

(

k6(d− 1)k

n

)

,

completing the proof of Proposition 12.

Corollary 14.

dTV

(

(

CNBW
(n)
k , 3 6 k 6 r

)

,
(

CNBW
(∞)
k , 3 6 k 6 r

)

)

6
c8
√
r(d− 1)3r/2−1

n
.

Proof. For any measurable function f and random variables X and Y , it holds that
dTV (f(X), f(Y )) 6 dTV (X, Y ). It follows by Theorem 11 that

dTV





(

∑

j|k

2jC
(n)
j , 3 6 k 6 r

)

,
(

CNBW
(∞)
k , 3 6 k 6 r

)



 6
c6
√
r(d− 1)3r/2−1

n
. (14)
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By the previous proposition, P[B
(n)
k > 1] 6 c7k

6(d− 1)k/n. Summing these probabilities
from k = 3, . . . , r,

(

∑

j|k

2jC
(n)
j , 1 6 k 6 r

)

=
(

CNBW
(n)
k , 1 6 k 6 r

)

(15)

with probability 1−O
(

r6(d− 1)r/n
)

. If two random variables are equal with probability
1 − ǫ, then the total variation distance between their laws is at most ǫ. Thus the two
random vectors in (15) have total variation distance O

(

r6(d− 1)r/n
)

. This fact and (14)
prove the corollary.

To relate Corollary 14 to the eigenvalues of the adjacency matrix of Gn, we define a
set of polynomials

Γ0(x) = 1,

Γ2k(x) = 2T2k

(x

2

)

+
d− 2

(d− 1)k
for k > 1,

Γ2k+1(x) = 2T2k+1

(x

2

)

for k > 0.

Here {Tn(x)}n∈N are the Chebyshev polynomials of the first kind on the interval [−1, 1],
defined inductively by

T0(x) = 1,

T1(x) = x,

Tn+1(x) = 2xTn(x)− Tn−1(x), n > 2.

Proposition 15 ([13, Proposition 32]). Let A be the adjacency matrix of a (deterministic)
d-regular graph G, and let λ1 > · · · > λn be the eigenvalues of (d− 1)−1/2A. Let CNBWk

be the number of cyclically non-backtracking walks of length k in G. Then

n
∑

i=1

Γk(λi) = (d− 1)−k/2CNBWk.

By Corollary 14, we know the limiting distribution of
∑n

i=1 f(λi) when f(x) = Γk(x).
The plan now is to extend this to a more general class of functions by approximating
by this polynomial basis. We note the following bounds on the eigenvalues of uniform
random regular graphs.

Proposition 16. Let Gn be a random d-regular graph on n vertices with eigenvalues
λ1 > · · · > λn. Let λ = maxi=2,...,n |λi|, the maximum nontrivial eigenvalue in absolute
value.

(a) Suppose that d > 3 is fixed. For any ǫ > 0,

P[λ > 2
√
d− 1 + ǫ] → 0

as n → ∞.
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(b) Suppose that d = d(n) satisfies d = o(n1/2). Then for some constant K,

P[λ > K
√
d] 6

c9
n2

for all n.

Proof. It is well known that (a) follows from the results in [15] by various contiguity results,
but we cannot find an argument written down anywhere and will give one here. When d is
even, it follows from [15, Theorem 1.1] and the fact that for fixed d, permutation random
graphs have no loops or multiple edges with probability bounded away from zero. This
implies that the eigenvalue bound holds for permutation random graphs conditioned to be
simple, and [17, Corollary 1.1] transfers the result to the uniform model. When d is odd
(and n even, as it has to be), we apply [15, Theorem 1.3], which gives the eigenvalue bound
for graphs formed by superimposing d random perfect matchings of the n vertices. These
are simple with probability bounded away from zero, and [35, Corollary 4.17] transfers
the result to the uniform model.

Fact (b) is proven in a more general context in [8, Lemma 18].

Following some facts from approximation theory, we will state the main result on the
limiting distribution of linear eigenvalue statistics.

Definition 17. For ρ > 1, let Eρ denote the image under the map z 7→ z+z−1

2
of the open

disc of radius ρ in the complex plane, centered at the origin. We call this the Bernstein
ellipse of radius ρ. The ellipse has foci at ±1, and the sum of the major semiaxis and the
minor semiaxis is exactly ρ.

Proposition 18 ([34, Theorem 8.1]). Suppose that f : [−1, 1] → R can be analytically
extended to Eρ and is bounded by M there. Then f has a unique expansion on [−1, 1] as

f(x) =
∞
∑

k=0

akTk(x),

and the coefficients of this expansion satisfy

|a0| 6 M, |ak| 6
2M

ρk
.

By applying the bound |Tk(x)| 6 1 and summing, we see that the approximations
fk(x) =

∑k
i=0 akTk(x) satisfy

|f(x)− fk(x)| 6
2M

ρk(ρ− 1)
(16)

for x ∈ [−1, 1].
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Theorem 19. Fix d > 3, and let Gn be a random d-regular graph on n vertices with
adjacency matrix An. Let λ1 > · · · > λn be the eigenvalues of (d− 1)−1/2An.

Suppose that f is a function such that f(2z) is analytic on Eρ, where ρ = (d− 1)α for
some α > 3/2. Then f(x) can be expanded on [−2, 2] as

f(x) =
∞
∑

k=0

akΓk(x), (17)

and Y
(n)
f :=

∑n
i=1 f(λi)−na0 converges in law as n → ∞ to the infinitely divisible random

variable

Yf :=
∞
∑

k=1

ak
(d− 1)k/2

CNBW
(∞)
k .

Proof. Let fk(x) =
∑k

i=0 aiΓi(x). First, we show that fk(x) is a good approximation to
f(x). Applying Proposition 18 to f(2x) gives the expansion (17) and shows that

|ak| 6 c10(d− 1)−αk (18)

for all k > 1. On any interval [−A,A] with A > 1, the maximum of |Tk(x)| occurs at the
endpoints. Using a well-known expression for Tk(x), we have

max
|x|6A

|Tk(x)| =
(

A−
√
A2 − 1

)k
+
(

A+
√
A2 − 1

)k

2
. (19)

Applying this, one can see that for any δ > 0, it is possible to choose ǫ > 0 such that for
|x| 6 2 + ǫ,

|Γk(x)| 6 (1 + δ)k

for all sufficiently large k. Choosing δ small enough, this shows in combination with (18)
that

sup
|x|62+ǫ

|f(x)− fk(x)| 6 c11(d− 1)−α′k (20)

for some 3
2
< α′ < α. We also note that applying (18) and (19) in the same way

with A = d/2
√
d− 1 shows that fk → f uniformly on [−d/

√
d− 1, d/

√
d− 1], which

deterministically contains all the eigenvalues of (d− 1)−1/2An.
The sum defining Yf converges almost surely, since it can be rewritten as

Yf =
∞
∑

j=1

∞
∑

i=1

aij
(d− 1)ij/2

2jC
(∞)
j ,
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and this is a sum of independent random variables, bounded in L2 by (18). Choose β
satisfying 1

α′
< β < 2

3
and define

rn =

⌊

β log n

log(d− 1)

⌋

,

X
(n)
f =

rn
∑

k=1

ak
(d− 1)k/2

CNBW
(n)
k .

We will use X
(n)
f to approximate Y

(n)
f , noting that X

(n)
f =

∑n
i=1 frn(λi)− na0 by Propo-

sition 15. By Corollary 14 and the fact that β < 2
3
, the total variation distance between

X
(n)
f and

∑rn
k=1(d−1)−k/2akCNBW

(∞)
k vanishes as n tends to infinity. This sum converges

almost surely to Yf as n tends to infinity, so X
(n)
f converges in law to Yf . By Slutsky’s

Theorem, we need only show that Y
(n)
f −X

(n)
f converges to zero in probability.

Fix δ > 0. We need to show that

lim
n→∞

P
[∣

∣

∣
Y

(n)
f −X

(n)
f

∣

∣

∣
> δ
]

= 0.

We have

∣

∣

∣
Y

(n)
f −X

(n)
f

∣

∣

∣
6

n
∑

i=1

|f(λi)− frn(λi)| .

As noted before, fk(x) → f(x) for any |x| 6 d/
√
d− 1. In particular, for the deterministic

top eigenvalue λ1 = d/
√
d− 1, we have fk(λ1) → f(λ1). Thus f(λi) − frn(λi) < δ/2 for

all sufficiently large n.
Suppose that the remaining eigenvalues are contained in [−2− ǫ, 2 + ǫ]. By (20),

n
∑

i=2

|f(λi)− frn(λi)| 6 M(n− 1)(d− 1)−α′rn 6 Mn−α′β+1,

and this tends to zero since α′β > 1. For sufficiently large n, this sum is thus bounded by
δ/2. We can conclude that for all large enough n,

P
[∣

∣

∣Y
(n)
f −X

(n)
f

∣

∣

∣
> δ
]

6 P

[

sup
26i6n

|λi| 6 2 + ǫ

]

,

and this tends to zero by Proposition 16a.

In our next theorem, we extend this theorem to the case when the degree grows with n.
We will need a technical lemma on a normal approximation for the Poisson distribution:

Lemma 20 (Lemma 19 in [27]). Suppose X ∼ Poi(λ) and W = (X − λ)/
√
λ. Then X

can be coupled with Z ∼ N(0, 1) so that E|W − Z| 6 1/
√
λ.
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An entire function f is said to be of order less than m if |f(z)| 6
∣

∣ez
m
∣

∣ for all sufficiently
large z. Given a test function of order less than m, our theorem gives conditions on the
growth of the degree of the random regular graphs such that the eigenvalue fluctuations
converge to Gaussian. The theorem also gives the limiting variance:

Theorem 21. Let Gn be a random dn-regular graph on n vertices, with dn → ∞ as
n → ∞. Let An be the adjacency matrix of Gn, and let λ1 > · · · > λn be the eigenvalues
of (dn − 1)−1/2An.

Suppose that f is entire with order less than m, which implies that it can be expressed
as f(x) =

∑∞
k=0 akTk(x/2). If dn 6 (log n)

2

3m
−ǫ for some ǫ > 0, then

n
∑

i=1

f(λi)− E

n
∑

i=1

f(λi) (21)

converges in law to normal with mean zero and variance 1
2

∑∞
k=3 ka

2
k.

Proof. Note that the sum defining the limiting variance is finite by Proposition 18. Choose
β satisfying 2

3
−mǫ < β < 2

3
, and let

rn :=

⌊

β log n

log(dn − 1)

⌋

.

First, we show that the expression

rn
∑

k=3

kak
(dn − 1)k/2

(

C
(∞)
k − EC

(∞)
k

)

. (22)

converges to the desired limit. Then, we will gradually change this expression while
maintaining the same limit until we arrive at (21).

Let {Zk}k∈N be i.i.d. standard Gaussians. By Lemma 20, this collection can be coupled

with
{

C
(∞)
k

}

k∈N
so that

E

∣

∣

∣

∣

√
2k

(dn − 1)k/2

(

C
(∞)
k − EC

(∞)
k

)

− Zk

∣

∣

∣

∣

6

√
2k

(dn − 1)k/2
.

Thus the L1 distance between (22) and
∑rn

k=3

√
kakZk/

√
2 is at most

E

rn
∑

k=3

√
kak√
2

∣

∣

∣

∣

∣

√
2k

(dn − 1)k/2

(

C
(∞)
k − EC

(∞)
k

)

− Zk

∣

∣

∣

∣

∣

6

∞
∑

k=3

kak
(dn − 1)k/2

,

which vanishes as n → ∞. This implies that (22) converges in law to a centered Gaussian
with variance

∑∞
k=3

k
2
a2k.

Now, we present some expressions and show that they converge to the same limit.

Expression 1:

rn
∑

k=3

ak
2(dn − 1)k/2

(

CNBW
(∞)
k − ECNBW

(∞)
k

)
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The difference between Expression 1 and (22) is

rn
∑

k=3

ak
(dn − 1)k/2

∑

j|k
j<k

j
(

C
(∞)
j − EC

(∞)
j

)

6

∞
∑

j=3

∞
∑

i=2

jaij
(dn − 1)ij/2

(

C
(∞)
j − EC

(∞)
j

)

=
∞
∑

j=3

O

(

ja2j
(dn − 1)j

)

(

C
(∞)
j − EC

(∞)
j

)

,

and the variance of this vanishes as n → ∞. Thus the difference between Expression 1
and (22) converges to 0 in probability.

Expression 2:

rn
∑

k=3

ak
2(dn − 1)k/2

(

CNBW
(n)
k − ECNBW

(∞)
k

)

By Corollary 14 and our choice of rn, the total variation distance between Expressions 1
and 2 vanishes as n → ∞.

Expression 3:

rn
∑

k=3

ak
2(dn − 1)k/2

(

CNBW
(n)
k − ECNBW

(n)
k

)

The difference between Expressions 2 and 3 is the deterministic quantity

rn
∑

k=3

ak
2(dn − 1)k/2

(

ECNBW
(∞)
k − ECNBW

(n)
k

)

. (23)

Using the decomposition

CNBW
(n)
k =

∑

j|k

2jC
(n)
j +B

(n)
k

from Proposition 12, we have

ECNBW
(∞)
k − ECNBW

(n)
k =

∑

j|k

(

(d− 1)j − 2jEC
(n)
j

)

− EB
(n)
k .

By [26, eq. (2.2)] and Proposition 12, this is O
(

k6(k + d)(d− 1)k/n
)

. By our choice of rn
and the fact that ak → 0 as k → ∞, equation (23) vanishes as n → ∞.

Expression 4:

n
∑

i=1

f(λi)− E

n
∑

i=1

f(λi)

Let fk :=
∑k

i=0 akTk(x/2). By Proposition 15 and the fact that λ1 is deterministic,
Expression 3 is equal to

n
∑

i=2

frn(λi)− E

n
∑

i=2

frn(λi).
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Thus it suffices to show that
∑n

i=2

(

f(λi)− frn(λi)
)

vanishes in L1.
Let E be the event that supi=2,...,n |λi| 6 K, where K is the constant from Proposi-

tion 16b that makes P[EC ] 6 c9n
−2. We have

E

∣

∣

∣

∣

n
∑

i=2

(

f(λi)− frn(λi)
)

∣

∣

∣

∣

6 E1 + E2 + E3,

where

E1 := E

[

1E

n
∑

i=2

∣

∣f(λi)− frn(λi)
∣

∣

]

,

E2 := E

[

1EC

n
∑

i=2

∣

∣f(λi)
∣

∣

]

,

E3 := E

[

1EC

n
∑

i=2

∣

∣frn(λi)
∣

∣

]

,

and we need to show that these quantities vanish as n → ∞.
By Proposition 18,

|ak| 6 2
[

sup
z∈Eρ

f(2z)
]

ρ−k
6 2 exp

[

(

ρ+
1

ρ

)m
]

ρ−k (24)

for sufficiently large ρ. By (19), supx∈[−K,K] |Tk(x/2)| = O(Kk). This gives us

sup
x∈[−K,K]

|f(x)− fk(x)| 6
∞
∑

i=k+1

|aiTi(x/2)| = O

(

exp

[

(

ρ+
1

ρ

)m
](

K

ρ

)k+1)

.

Set ρ = k1/m to approximately optimize this, and substitute k = rn to get

sup
x∈[−K,K]

|f(x)− frn(x)| 6 O(1) exp

(

β log n

log(dn − 1)

(

O(1)− log log n− log log(dn − 1)

m

)

)

.

By the condition dn 6 (log n)
2

3m
−ǫ,

sup
x∈[−K,K]

|f(x)− frn(x)| 6 O(1) exp

(

β log n

log(dn − 1)

·
(

O(1)−
1

2

3m
−ǫ

log(dn − 1)− log log(dn − 1)

m

)

)

= O(1) exp

(

O
(β log n log log(dn − 1)

m log(dn − 1)

)

− β
2
3
−mǫ

log n

)

= O(1) exp

(

log n

(

o(1)− β
2
3
−mǫ

)

.
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Since β > 2
3
−mǫ, this expression is o(n−1), and

E1 6 (n− 1) sup
x∈[−K,K]

|f(x)− frn(x)| → 0

as n → ∞.
Next, we show that E2 → 0. For large enough dn, it holds that if |x| 6 dn(dn − 1)−1/2,

then

|f(x)| 6 exp

(

dmn
(dn − 1)m/2

)

= exp
(

O
(

dm/2
n

))

= exp
(

O
(

(log n)1/3
))

.

As EC occurs with probability at most c9n
−2,

E2 6 O
(

n−2
)

(n− 1) exp
(

O
(

(log n)1/3
)

)

→ 0

as n → ∞.
Last, we consider E3. We apply (24) with ρ = k1/m to show that for some C depending

on m but not k,

|ak| 6 Ckk−k/m

for all k > 1. By (19), for all |x| 6 dn(dn − 1)−1/2,

|Tk(x/2)| 6 dk/2n .

Thus

frn(x) 6 a0 +
rn
∑

k=1

(

Cd
1/2
n

k1/m

)k

6 a0 +
∞
∑

k=1

(

C(log n)
1

3m

k1/m

)k

.

Let Nn =
⌊

(2C)m(log n)1/3
⌋

, and break the sum into two pieces, one from 1 to Nn and

the other from Nn + 1 to ∞. Each term in the first piece is at most CNn(log n)Nn/3m, and
a bit of analysis shows that

NnC
Nn(log n)Nn/3m = o(n).

The second piece is o(1), as can be seen by comparing it to a geometric series. Thus

E3 6 O
(

n−2
)

(n− 1)o(n) → 0

as n → ∞.

Remark 22. The only difference between the limiting distributions of Theorems 19 and
21 and those of the permutation model of random graph in [13] derives from the slightly

different expectations of CNBW
(∞)
k in the two models, and from the fact that CNBW

(∞)
1 =

CNBW
(∞)
2 = 0 in the uniform model. The limiting variance in Theorem 21 is the same as

for eigenvalue fluctuations of the GOE, except that the coefficients a1 and a2 are ignored.
(As the variance term for the GOE fluctuations can be expressed in many different ways,
this is not entirely obvious. See Section 1.5 and in particular Proposition 3 from [27].)
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