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Excitability in ramped systems: the
compost-bomb instability

BY S. WIECZOREK*, P. ASHWIN, C. M. LUKE AND P. M. COX

Mathematics Research Institute, University of Exeter, Exeter EX4 4QF, UK

The paper studies a novel excitability type where a large excitable response appears
when a system’s parameter is varied gradually, or ramped, above some critical rate.
This occurs even though there is a (unique) stable quiescent state for any fixed setting
of the ramped parameter. We give a necessary and a sufficient condition for the
existence of a critical ramping rate in a general class of slow–fast systems with folded
slow (critical) manifold. Additionally, we derive an analytical condition for the critical
rate by relating the excitability threshold to a canard trajectory through a folded
saddle singularity. The general framework is used to explain a potential climate tipping
point termed the ‘compost-bomb instability’—an explosive release of soil carbon from
peatlands into the atmosphere occurs above some critical rate of global warming even
though there is a unique asymptotically stable soil carbon equilibrium for any fixed
atmospheric temperature.

Keywords: excitability; singular perturbation theory; climate tipping points; soil carbon;
folded saddle; non-autonomous systems

1. Introduction

An excitable system remains in a quiescent state, if undisturbed, produces a
small response to a ‘small’ stimulus but fires a large transient response when
the small stimulus exceeds a certain threshold. The notion of excitability was
first introduced in biology and physiology in an attempt to understand the
spiking behaviour of neurons (Hodgkin & Huxley 1952; FitzHugh 1955, 1961)
and their electronic simulators (Nagumo et al. 1962). Soon after this work,
excitability was found in chemical reactions (Zaikin & Zhabotinsky 1970; Ruoff
1982). More recently, there have been a number of theoretical and experimental
demonstrations of excitability in liquid crystals (Coullet et al. 1994), optical
systems including lasers (Dubbeldam et al. 1999; Yacomotti et al. 1999; Tredicce
2000; Wieczorek et al. 2002; Wünsche et al. 2002; Krauskopf et al. 2003; Goulding
et al. 2007) and photonic crystals (Yacomotti et al. 2006). A hallmark of
excitability is a genuine or apparent discontinuity in the system’s response versus
the stimulus strength (FitzHugh 1955; Hoppensteadt & Izhikevich 1997; Doi
et al. 1999; Izhikevich 2006). It has become clear that this strongly nonlinear
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phenomenon is mathematically intriguing and relevant to different fields of
science. In this paper, we demonstrate a new form of excitability that is relevant
to the stability of peatlands under global warming.

From the original notion of excitability, which is purely phenomenological, one
can conclude that an excitable system has to have the following properties:

(P1) A quiescent state.
(P2) An excitability threshold above which the system initially evolves away

from the quiescent state giving rise to an excitable response.
(P3) A return mechanism that specifies the type of excitable response and, when

the stimulus is off, brings the system back to the quiescent state so it can
be excited again.

A typical candidate for a stimulus that perturbs the system from the quiescent
state to above the excitability threshold is a fast and large enough change in one of
the system parameters, a short impulse, for example (Wünsche et al. 2002). Other
possibilities include stochastic fluctuations in the system variable(s) (Lindner
et al. 2004). This work studies excitability owing to parameter ramping—a steady,
slow and monotonic change in one of the system parameters referred to as the
ramped parameter. In the problem considered here, a (unique) quiescent state
exists for any fixed setting of the ramped parameter. However, a very large
excitable response appears when the parameter is ramped sufficiently fast from
one setting to another.

(a) Summary of main results

In §2, we define the excitability phenomena in rigorous terms of dynamical
systems, give a brief survey on classification of excitability, and describe two
different types of excitability, namely type A and type B. This work focuses on
an in-depth analysis of type B excitable models, and §3 describes excitability
properties in these models with state jumps.

In §4, we study a general class of type B excitable models with parameter
ramping, of which the compost-bomb problem is a representative. We show that
if a suitable parameter is ramped in a slow–fast system with an asymptotically
stable equilibrium and locally folded critical (slow) manifold, then there may be
a critical value of the ramping rate above which an excitable response appears.
This result is obtained in two steps using concepts from singular perturbation
theory. In the first step, we show that a necessary and sufficient condition for
the existence of a critical ramping rate is a folded saddle singularity in the
corresponding desingularized system. In the second step, we derive an analytical
condition for calculating the critical ramping rate.

The general analysis in §4 is motivated by a need to understand the response
of peatlands to global warming (or atmospheric temperature ramping), which
represents a potential tipping point in the response of the climate system to
anthropogenic forcing (Lenton et al. 2008). It is estimated that peatland soils
contain 400–1000 billion tonnes of carbon, which is of the same order of magnitude
as the carbon content of the atmosphere. Peat carbon is increased by plant
litter and reduced by microbial decomposition in the soil. Peat decomposition
is expected to accelerate under global warming, leading to concerns that carbon
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could be released to the atmosphere, accelerating the rate of carbon dioxide
increase and providing a positive feedback to global warming (Cox et al. 2000;
Khvorostyanov et al. 2008b). There is also strong empirical evidence of peat
instability in response to warm and dry climate anomalies, such as the peatland
fires in Russia in summer 2010.

Although many global climate-carbon cycle models predict loss of soil carbon
under global warming (Friedlingstein et al. 2006), few properly deal with organic
soils such as peats, and all ignore the effects of biochemical heat release associated
with microbial decomposition (Khvorostyanov et al. 2008a). In their recent work,
Luke & Cox (in press) define the peatland soil system in terms of its vertically
integrated soil carbon content, C (kg m−2) and soil temperature, T (◦C). Soil
carbon is increased by litter fall from plants, P = 1.055 (kg m−2 yr−1), and reduced
by microbial decomposition, which depends on the store of carbon, C , and also
the temperature sensitivity of the decomposition rate per unit carbon, r(T ),

dC
dt

= P − Cr(T ). (1.1)

Empirical studies suggest that r(T ) is approximately exponential in temperature,
such that it increases by a factor of 2 to 5 for each 10◦C of warming (Kirschbaum
1995). We choose

r(T ) = r0 exp (aT ),

with r0 = 0.01 (yr−1) and a = ln(2.5)/10 (◦C−1). Soil temperature relaxes back
to the prescribed atmospheric temperature, Ta, with a time scale dependent
on the thermal inertia, m = 2.5 × 106 (J m−2 ◦C−1), and the soil-to-atmosphere
heat transfer coefficient, l = 5.049 × 106 (J yr−1 m−2 ◦C−1). Soil temperature is
increased by microbial respiration, Cr(T ), with a constant of proportionality,
A = 3.9 × 107 (J kg−1), derived from the enthalpy of the respiration reaction
(Thornley 1971). This gives the soil temperature equation

e
dT
dt

= Cr(T ) − l

A
(T − Ta), (1.2)

with a small parameter e = m/A ≈ 0.064 (kg ◦C−1 m−2). Global warming is
approximated by an atmospheric temperature ramp

dTa

dt
= v > 0, (1.3)

with a constant rate v in units of ◦C yr−1. Equations (1.1)–(1.3) are the climate-
carbon cycle model with global warming. The system (1.1)–(1.2) has a unique
asymptotically stable equilibrium for any fixed atmospheric temperature Ta.
However, numerical simulations of equations (1.1)–(1.3) suggest that biochemical
heat release could destabilize peatland above some critical rate of global warming,
vc. The result is an explosive increase in the soil temperature accompanied by a
catastrophic release of peatland soil carbon into the atmosphere, which has been
termed the ‘compost-bomb instability’ (Luke & Cox in press). Until now, the
reason for the rate dependence of the compost-bomb instability has not been
rigorously understood, but the present paper shows that this arises from a novel
form of excitability.

Proc. R. Soc. A (2011)
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In §5, we use the results of §4 to show that for an initial condition at the unique
stable equilibrium of equations (1.1)–(1.2) and e small, the climate-carbon cycle
model (1.1)–(1.3) undergoes a very large excitable response (the compost-bomb
instability) if the global warming rate exceeds the critical value

vc ≈ r0

2Ba
exp

[
aT 0

a + 1 + 1

2B(B + √
1 + B2)

]
≈ 0.08◦C yr−1, (1.4)

where T 0
a is the initial atmospheric temperature and

B = [2(1 − aAPl−1)]−1 ≈ 1.97

is a dimensionless coefficient.

2. Excitable dynamical systems

To define the excitability phenomenon in the language of dynamical systems,
we consider an n-dimensional autonomous dynamical system referred to as a
stimulus-free problem

dX
dt

= F (X , P), (2.1)

where X ∈ R
n is the state vector and P ∈ R

m the (constant) parameter vector.
A stimulus is represented by some prescribed time dependence of the parameter
vector, P(t) ∈ R

m , so the corresponding non-autonomous stimulus problem reads

dX
dt

= F (X , P(t)). (2.2)

To be able to express the phenomenological properties (P1)–(P3) of equations
(2.1) and (2.2) in more rigorous terms, let Br [a(P(t))] ⊂ R

n denote a ball of
radius r about a(P(t)) such that a(P) is the only attractor for system (2.1)
within Br [a(P)], and define:

Definition 2.1. A quiescent state a(P) ∈ R
n is an asymptotically stable state

for the stimulus-free problem (2.1).

Definition 2.2. An excitable response (with respect to suitably chosen d
and s such that 0 < d ≤ s) is a trajectory X(t) ∈ R

n that starts within
Bd[a(P(0))], leaves Bs[a(P(t))] for some time, before entering into Bd[a(P(t))].
As t → ∞, X(t) may remain within Bd[a(P(t))] or leave and return to
Bd[a(P(t))] repeatedly.

Definition 2.3. Given P(t), an excitability threshold is a boundary in the phase
space X ∈ R

n separating initial conditions X(0) that give excitable responses from
those that give no excitable responses.

Definition 2.4. The stimulus-free problem (2.1) is called excitable if it has
properties (P1)–(P3).

A typical candidate for a quiescent state is a stable equilibrium but other
possibilities include small-amplitude periodic orbits or even ‘small’ chaotic
attractors (Marino et al. 2004, 2007; Al-Naimee et al. 2009). An excitable response
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 on May 14, 2013rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


Excitability in ramped systems 1247

s

a

Wu

W s

a

Sa

Sr

L

(a) (b)

x1

x

x2 z
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m,

εż = g(x, z, P, ε), 0 < ε << 1

Figure 1. Examples of phase portraits illustrating two different excitability types in system (2.1)
with a stable equilibrium a: (a) type A excitability near a saddle point s and (b) type B
excitability near a fold L of critical manifold S = Sa ∪ L ∪ Sr. Shown are trajectories starting at
initial conditions below and above the excitability threshold. The excitable response depends on
the return mechanism (dashed) specified by the form of f in (a) and the form of g in (b).

in definition 2.2 is a trajectory that (repeatedly) moves far enough from a(P(t))
before coming close to a(P(t)), where ‘far enough’ is quantified by the choice of s.
In definition 2.3, if the time-dependent component of P(t), namely pr(t) ∈ R

k≤m ,
is a solution to an autonomous differential equation, pr can be treated as an
additional state variable. Then, the excitability threshold is a boundary in the
phase space X × pr ∈ R

n+k separating initial conditions (X(0), pr(0)) that give
excitable responses from those that give no excitable responses. Unlike a quiescent
state, an excitability threshold can be defined in both the stimulus free (2.1) and
the stimulus (2.2) problems. However, the threshold may change in the presence
of a stimulus and it may depend on the form of P(t).

(a) Classification of excitability

Here, in the spirit of the original work by FitzHugh (1955), we classify
excitability by the type of threshold and the resulting increase in the system’s
response versus the stimulus strength. Specifically, we distinguish two excitability
types. In type A excitability, there is a unique threshold given by the stable
manifold of an unstable state, and an increase in the excitable response is
discontinuous (related to the singular-point threshold phenomenon of FitzHugh
(1955)). In type B excitability, the threshold is not unique, meaning that it weakly
depends on the choice of s in definition 2.2, and an increase in the response is
abrupt but continuous (related to the quasi-threshold phenomenon of FitzHugh
(1955)). Figure 1 shows examples of type A and B systems that produce excitable
responses following a state jump from below to above the excitability threshold.

Proc. R. Soc. A (2011)
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Both examples have the time-scale separation resulting in slow–fast dynamics
near a. However, a different shape of the critical manifold (green in figure 1)
approximating the slow dynamics, and the fact that the type A system has an
unstable (saddle) state near a while the type B system does not, give rise to
different types of excitability threshold.

In an example of the type A excitability from figure 1a, the unique excitability
threshold for the stimulus-free problem is the stable invariant manifold W s(s)
of the saddle s. For state jumps of magnitude D, the plot of the maximum
(Euclidean) distance between X(t) and a(P(t)) following a jump versus D has
a discontinuity defining a unique threshold value for D. The return mechanism
specified by f (x , p) is less obvious. Previous studies focused on systems near to
a homoclinic bifurcation (Kuznetsov 1995). After a single and suitably chosen
jump from a to above W s(s), the system follows the upper branch of W u(s) and
produces a single-pulse response near to a 1-homoclinic bifurcation (Plaza et al.
1997; Ventura et al. 2002; Krauskopf et al. 2003), a n-pulse response near to a
n-homoclinic bifurcation (Wieczorek et al. 2002), or an irregular and
unpredictable response near to the so-called chaotic Shil’nikov case. An example
of the type B excitable system from figure 1b does not have a unique excitability
threshold, except in the singular limit e → 0, as explained in §3. This system is
the main focus of this work and its in-depth analysis is presented in §3 for state
jumps and in §4 for parameter ramping.

Here, we consider an excitability problem where the stable state a(P) for
system (2.1) exists for any fixed value of the ramped parameter P. More recently,
various classifications of excitability have emerged in the context of a different but
related problem of excitable bursting where the stable state a(P) for system (2.1)
loses stability or disappears at a certain setting of the ramped parameter P
(Rinzel & Ermentrout 1989). For example, Hoppensteadt & Izhikevich (1997)
and Izhikevich (2006) distinguish between class 1 and class 2 neuronal excitability
depending on the bifurcation of the quiescent state and the associated continuous
or discontinuous increase in the frequency of bursting. Similarly, Gerstner &
Kistler (2002) distinguish between type I and type II excitabilities that are the
same as Hoppensteadt & Izhikevich’s class 1 and 2 excitabilities, respectively.
More generally, Golubitsky et al. (2001) classify excitable bursters by the
codimension of the bifurcation in whose unfolding they first appear. Clearly, class
1 and 2, type I and II as well as Golubitsky’s excitabilities cannot be directly
compared to our type A and B excitabilities because they refer to a different
dynamical problem. Nonetheless, different excitability problems can be related
in the following sense. For example, type A excitability occurs near a saddle-
node-homoclinic bifurcation (Kuznetsov 1995) that gives rise to class 1/type
I excitability, and type B excitability occurs near a singular Hopf bifurcation
followed by a canard explosion (Benoît et al. 1981) that gives rise to class 2/type
II excitability (Gerstner & Kistler 2002; Izhikevich 2006).

3. Type B excitability with state jumps

In this section, we fix P and discuss excitability in the (autonomous) stimulus-
free problem (2.1) with instantaneous jumps of magnitude D in the state vector
X . This is a convenient framework for discussing excitability thresholds and the

Proc. R. Soc. A (2011)
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novel return mechanism found in the climate-carbon cycle model (1.1)–(1.2). It is
also a good starting point for the analysis of the more complicated problem (2.2)
with a time-dependent parameter in §4.

We focus on an example of the type B excitable behaviour shown in figure 1b
in a singularly perturbed system of the form

dx
dt

= f (x , z , P, e)

and e
dz
dt

= g(x , z , P, e),

⎫⎪⎪⎬⎪⎪⎭ (3.1)

with slow variable x ∈ R, fast variable z ∈ R, and parameter vector P ∈ R
m . There

is a singular perturbation parameter 0 < e � 1, meaning that the system evolves
on fast (t/e) and slow (t) time scales. It is useful to introduce a critical manifold

S(P) = {(x , z) ∈ R
2 : g(x , z , P, 0) = 0}

that approximates the slow dynamics and is the dz/dt = 0 isocline when g does
not depend on e. Assume that system (3.1) satisfies the following conditions:

(A1) There is an asymptotically stable equilibrium

a(P, e) ∈ {(z , x) ∈ R
2 : f (x , z , P, e) = g(x , z , P, e) = 0}.

(A2) vg(x , z , P, 0)/vx �= 0 for any (x , z) ∈ S(P) so that the critical manifold
can be written as x = h(z , P). Furthermore, near to a(P, e), the
critical manifold has a fold transverse to the (slow) x direction, L(P),
where vh/vz = 0 and v2h/vz2 �= 0. Differentiating the critical manifold
condition, g(h(z , P), z , P, 0) = 0, with respect to z shows that vh/vz = 0
is the same as (vg(x , z , P, 0)/vz)|x=h(z ,P) = 0, and v2h/vz2 �= 0 requires
v2g(x , z , P, 0)/vz2|x=h(z ,P) �= 0. Therefore,

L(P) ∈
{
(x , z) ∈ R

2 :
vg(x , z , P, 0)

vz

∣∣∣∣
x=h(z ,P)

= 0,
v2g(x , z , P, 0)

vz2

∣∣∣∣
x=h(z ,P)

�= 0

}
.

(A3) Initial conditions from within Bd(a(P, e)) ⊃ L(P) in the (x , z) phase space
converge to a(P, e) as t → ∞.

System (3.1) satisfying assumptions (A1)–(A3) has properties (P1)–(P3) so
we call this system excitable. In particular, fold L(P) provides an excitability
threshold as shown in figure 1b, and g(x , z , P, e) specifies the return mechanism,
that is the shape, magnitude and duration of excitable responses. We will now
describe the excitability threshold owing to a locally folded critical manifold, and
the new return mechanism found in the climate-carbon cycle model (1.1)–(1.2).

(a) Excitability threshold

In contrast to the example from figure 1a, the excitability threshold in the
singularly perturbed system (3.1) from figure 1b is not unique. This property is
best understood by looking at the limiting problem e → 0 on different time scales

Proc. R. Soc. A (2011)
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canard
trajectories

L

a

Wc
lay

SrSa

a

Sa, ε

Sr, ε

(a) (b)ε = 0 0 < ε << 1

x x

z z

Figure 2. Sketches of phase portraits near locally folded critical manifold S = Sa ∪ L ∪ Sr (green)
illustrating excitability threshold in (a) the reduced system (3.2) and (b) the singularly perturbed
system (3.1) with canard trajectories (blue). W c

lay denotes the centre manifold of the saddle-node
equilibrium L for the one-dimensional layer system (3.3), a denotes the stable equilibrium for
system (3.1), Sa,e and Sr,e (red) denote the attracting and repelling part of the slow manifold for
system (3.1), respectively.

(Arnol’d 1994; Szmolyan & Wechselberger 2001). On the slow time scale t, one
obtains the reduced system:

dx
dt

= f (x , z , P, 0)

and 0 = g(x , z , P, 0)

⎫⎬⎭ (3.2)

that describes the evolution of the slow variable x on the critical manifold S(P).
In figure 1b, S(P) is partitioned into an attracting part Sa(P), a repelling part
Sr(P), and the fold point L(P). On the fast time scale t = t/e, one obtains the
layer system:

dx
dt

= 0

and
dz
dt

= g(x , z , P, 0)

⎫⎪⎪⎬⎪⎪⎭ (3.3)

that describes the evolution of the fast variable z for fixed x , in fast time t = t/e.
Sa(P) and Sr(P) correspond to the stable and unstable equilibrium, respectively,
of the layer system. A fold L(P) of S(P) transverse to the slow x direction
corresponds to a saddle-node bifurcation for the layer system. Therefore, in the
limit e → 0 there is a unique excitability threshold, W c

lay(L(P)) ∪ L(P) ∪ Sr(P)
(figure 2a), where W c

lay(L(P)) is the left branch of the centre manifold of the
saddle-node equilibrium L(P) for the one-dimensional layer system (3.3).

The geometric singular perturbation theory describes how to paste together the
dynamical behaviour of the fast and slow limiting problems to obtain dynamics for
the singularly perturbed problem with sufficiently small but non-zero e (Fenichel
1979; Jones 1995). Away from L(P), the normally hyperbolic manifolds Sa(P) and

Proc. R. Soc. A (2011)
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Sr(P) of hyperbolic equilibria for the layer system persist for sufficiently small
e as invariant (and still normally hyperbolic) attracting Sa,e(P, e) and repelling
Sr,e(P, e) slow manifolds (shown in red in figure 2b) for the singularly perturbed
system (3.1). The smaller the e, the closer to L(P) is this persistence valid. In
figure 2, the non-hyperbolic equilibrium L(P) for the layer system is the only place
where normal hyperbolicity fails on S(P). Near to L(P), Sa,e(P, e) and Sr,e(P, e)
typically split, allowing for canard trajectories or ducks that follow the repelling
slow manifold for a considerable amount of time before rapidly moving away
from Sr ,e(P, e) in the fast z direction (figure 2b; Benoît et al. 1981; Benoît 1983;
Arnol’d 1994; Krupa & Szmolyan 2001; Szmolyan & Wechselberger 2001). Owing
to the e-dependent splitting between Sa,e and Sr,e and the associated continuum
of canard trajectories, the unique excitability threshold of the limiting problem
does not persist in the singularly perturbed system (3.1). Rather, for different
choices of s in definition 2.2, the excitability threshold is given by a different
canard trajectory. One may want to choose s such that the excitability threshold
is the canard trajectory that follows Sr,e(P, e) for the longest time. In contrast
to type A excitability, the plot of max[z(t)/za] versus the jump magnitude D
is continuous giving no unique threshold value for D, where za denotes the z
component of a(P, e).

We illustrate these effects for the excitable system

dx
dt

= p1 − x Q(z , P)

and e
dz
dt

= p2 + p3z + xQ(z , P),

⎫⎪⎪⎬⎪⎪⎭ (3.4)

with

Q(z , P) =
N∑

n=0

znpn+4.

Figure 3 shows the response of system (3.4) to jumps of magnitude D in x ,
with dependence on the singular perturbation parameter e and the order N of
the specific polynomial function Q(z , P) = ∑N

n=0 zn/n!. While the increase in the
response remains distinct as an apparent discontinuity for e ≤ 10−2 and N ≥ 2, its
position on the D-axis varies noticeably with e ≥ 10−3 and N ≤ 4. The unusually
large response max[z(t)/za] in figure 3a is shown to scale as e−1 owing to the
novel return mechanism described in the following section.

(b) The return mechanism

The most commonly studied return mechanism is found in variants of the
excitable van der Pol and FitzHugh–Nagumo equations (van der Pol 1920;
FitzHugh 1961; Nagumo et al. 1962; Doi et al. 1999; Izhikevich 2006) and can be
modelled using excitable systems of the form:

dx
dt

= p1 + p2x + p3z

and e
dz
dt

= x + Q(z , P).

⎫⎪⎪⎬⎪⎪⎭ (3.5)

Proc. R. Soc. A (2011)

 on May 14, 2013rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


1252 S. Wieczorek et al.

0 0.2 0.4 0.6

101

102

103

104

0 0.2 0.4 0.6

101

102

N = 2•

(a) (b)

ε = 10−1

10−2

10−3

10−4

m
ax

 [
z(

t)
/z

a ]

m
ax

 [
z(

t)
/z

a ]

D D

Figure 3. Response of the excitable system (3.4) to jumps in x of magnitude D. We used p1 = 0.5,
p2 = 0.1, p3 = −1 and Q(z , P) = ∑N

n=0 zn/n!. (a) Responses for N = 3 and different e. (b) Responses
for e = 10−2 and different N = 2, 3, 4, and ∞ (from right to left). Note the logarithmic vertical scale
in both panels.

Specifically, for Q(z , P) = p7z3 + p6z2 + p5z + p4 and 3p5p7 < p2
6, the return

mechanism is given by a cubic or an N -shaped critical manifold x =
−Q(z , P). This is illustrated in figure 4a for Q(z , P) = −(z − 1.2)3 + z − 1.2.
Upon perturbing such a system from the stable equilibrium a to above the
excitability threshold where |ż | � |ẋ |, the trajectory rapidly moves away from
a towards larger z at a speed ∼ O(e−1) until it slows down by the attracting part
Sa2 of critical manifold S (figure 4a). Then, the trajectory crosses Sa2 towards
smaller x and moves along Sa2 at a speed ∼ O(1) until it reaches fold L2. Next,
the trajectory rapidly moves towards smaller z , slows down by Sa1, crosses Sa1
towards larger x and approaches a along Sa1. Such an excursion in the phase
space results in a square-like excitable response (figure 4b) whose magnitude is
given approximately by the horizontal distance between L1 and L2,

A ∼ 2

√
p2

6 − 3p5p7

3p7
,

and whose duration is ∼ O(1).
The same type of excitability threshold with a distinctively different

return mechanism is found in the climate-carbon cycle model (1.1)–(1.2) and
system (3.4). In system (3.4), the critical manifold x = −(p2 + p3z)/Q(z , P)
grows monotonically with z , then folds and decays monotonically to zero if
p4, p6 > 0, p5 ≥ 0 and pj ≥ 0 for j = 7, 8, . . .. This is illustrated in figure 4c for
Q(z , P) = z3/3! + z2/2! + z + 1. Upon perturbing such a system from a to above
the excitability threshold where |ż | � |ẋ |, the trajectory rapidly moves away from
a towards larger z but it does not encounter any slow manifold that would
abruptly stop its predominantly horizontal motion. Rather, for small enough e,
the trajectory converges rapidly to a line x = K − ez , where K > 0, and moves
along this line until it arrives at approximately (zmax, 0), where zmax ∼ K/e. To see
this, assume that the trajectory starts at (z0, x0) at time t0, and P is such that
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Figure 4. Different return mechanisms ((a) and (c)) give rise to different types of excitable response
((b) and (d)). Shown are trajectories starting at initial conditions below (blue) and above (red)
the excitability threshold, and the two nullclines (green). (a), (b) are obtained using equation (3.5)
with p1 = 0.5, p2 = p3 = −1, e = 10−3 and Q(z , P) = −(z − 1.2)3 + z − 1.2. (c)–(e) are obtained
using equation (3.4) with p1 = 0.5, p2 = 0.1, p3 = −1, e = 10−3 and Q(z , P) = z3/3! + z2/2! + z + 1.
(e) expanded view around the right-most turning point of the (red) excitable trajectory from (c).
Note the logarithmic vertical scales in (c)–(e).

Q(z , P) > Kzn for some K > 0 and n ≥ 3 to the right of z0. Then, for fixed x �= 0,
the term (−1, e−1)xQ(z , P) in the vector field for (dx/dt, dz/dt) will dominate
for large enough z , to the extent that away from x = 0, trajectories will run
parallel to a line x = K − ez . As the trajectory approaches x ∼ 0, it sharply turns
around by crossing the two nullclines dz/dt = 0 and dx/dt = 0 (figure 4e). Next,
the trajectory moves towards smaller z , slows down by Sa, crosses Sa towards
larger x , and approaches a at a speed ∼ O(1) along Sa. Such an excursion in the
phase space results in an excitable response that is much shorter and has a much
larger amplitude when compared with the response in systems (3.5). As e → 0,
the response amplitude becomes

A = zmax − z0 ∼ K
e

− z0,

where K depends linearly on x0. This result explains the e−1 scaling of the
amplitude of excitable responses plotted in figure 3a. The time at which maximum
is reached can be estimated using the time to blow-up for the singular system
and will be tmax ∼ t0 + O(e).
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4. Type B excitability with parameter ramping

This section discusses excitability in the (non-autonomous) stimulus problem
(2.2), where one component of the parameter vector P(t), namely pr(t) ∈ R, is
ramped at a rate v,

pr(t) = pr(0) + vt, (4.1)

and all the remaining components of P(t), including p ∈ R
k and a small parameter

e ∈ R, do not vary in time. Henceforth, we refer to pr(t) as the ramped parameter,
to the stimulus-free problem (2.1) as the unramped system, and to the stimulus
problem (2.2) as the ramped system. In addition to assumptions (A1)–(A3), we
make two extra assumptions:

(A4) v is constant and, without any loss of generality, v > 0.
(A5) In the unramped system (2.1), given by setting v = 0, a stable equilibrium

a(P) and excitability threshold, e.g. due to a fold L(P) in type B systems
from figure 1b, exist for any fixed setting of the ramped parameter pr(t).

Whether the ramped system (2.2) produces an excitable response depends on the
initial condition X(0) and on pr(t). This brings us to an interesting question:
what is the excitability threshold in ramped systems that preserve a quiescent
state and, given X(0) and pr(0), what is the critical rate, vc, required to trigger
an excitable response? In the context of the climate-carbon cycle problem with
global warming (1.1)–(1.3), this question has relevance to the notion of dangerous
rates of climate change.

We focus on type B excitable systems from figure 1b with parameter ramping.
If v is small compared with the fast time scale of system (3.1), that is v � e−1, then
pr(t) becomes an additional slow variable and one has to consider a singularly
perturbed problem

dx
dt

= f (x , z , pr , p, e),

dpr

dt
= v

and e
dz
dt

= g(x , z , pr , p, e),

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.2)

with two slow variables x , pr ∈ R and one fast variable z ∈ R. System (4.2) has no
equilibrium points when v �= 0. Rather, a one-dimensional manifold

a(p, e) ∈ {(x , z , pr) ∈ R
3 : f (x , z , pr , p, e) = g(x , z , pr , p, e) = 0}

indicates the position of the stable equilibrium of the unramped system (3.1) for
different fixed settings of pr(t) in the (x , z , pr) phase space.

In §3, we showed that the excitability threshold in the unramped system (3.1)
is unique only in the limiting case e → 0. Guided by this result we seek answers
to the questions about the excitability threshold and critical rate in the ramped
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system (4.2) by analysing the ‘slow’ reduced system given by

dx
dt

= f (x , z , pr , p, 0),

dpr

dt
= v

and 0 = g(x , z , pr , p, 0).

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(4.3)

With q denoting f or g and k denoting x , z or pr , we simplify notation
by introducing

qS (z , pr , p) = q(x , z , pr , p, 0)|x=h(z ,pr ,p),

qk(x , z , pr , p, e) = vq(x , z , pr , p, e)
vk

,

qS
k (z , pr , p) = vq(x , z , pr , p, 0)

vk

∣∣∣∣
x=h(z ,pr ,p)

and qS
kk(z , pr , p) = v2q(x , z , pr , p, 0)

vk2

∣∣∣∣
x=h(z ,pr ,p)

.

In the (x , z , pr) phase space, the reduced system evolves on a folded two-
dimensional critical manifold

S(p) = {(x , z , pr) ∈ R
3 : g(x , z , pr , p, 0) = 0}.

Near to a(p, e), S(p) is partitioned into the attracting part Sa(p), repelling part
Sr(p), and a one-dimensional fold transverse to the (slow) x direction

L(p) ∈ {(x , z , pr) ∈ R
3 : gS

z (z , pr , p) = 0 and gS
zz(z , pr , p) �= 0},

which follows from assumptions (A2) and (A5). Furthermore, S(p) is a graph
over pr and z ,

x = h(z , pr , p), (4.4)

which follows from gS
x (z , pr , p) �= 0 in assumption (A2) and the implicit

function theorem.
Since excitable responses appear in the fast variable z (figure 4c–d), we need

to study the evolution of z on S(p) in slow time t, and this is obtained by
differentiating the algebraic constraint in equations (4.3) with respect to t,

gz(x , z , pr , p, 0)
dz
dt

= −gx(x , z , pr , p, 0) f (x , z , pr , p, 0) − gpr (x , z , pr , p, 0)v. (4.5)
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Then, the reduced system (4.3) becomes

dx
dt

= f (x , z , pr , p, 0),

dpr

dt
= v

and
dz
dt

= −gx(x , z , pr , p, 0) f (x , z , pr , p, 0) + gpr (x , z , pr , p, 0) v

gz(x , z , pr , p, 0)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(4.6)

Furthermore, it is useful to project (4.6) onto the (z , pr) plane using equation (4.4)
to get the projected reduced system

dpr

dt
= v

and
dz
dt

= −gS
x (z , pr , p) f S (z , pr , p) + gS

pr
(z , pr , p) v

gS
z (z , pr , p)

.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.7)

Note that system (4.7) is singular at a fold, L(p), where gS
z (z , pr , p) = 0. As a

result, z(t) blows up (diverges off to infinity in finite time t) when trajectories
reach typical points on L(p). However, trajectories that approach special points on
L(p) where gS

x (z , pr , p) f S (z , pr , p) + gS
pr

(z , pr , p) v = 0 in a (hyperbolic) direction
so that dz/dt remains finite may cross a fold with finite speed (Benoît 1983).
Such special points

F(p, v) ∈ {(x , z , pr) ∈ R
3 : gS

z (z , pr , p) = gS
x (z , pr , p) f S (z , pr , p) + gS

pr
(z , pr , p)v = 0},

are called folded singularities (Takens 1976; Arnol’d 1994), pseudo singularities
(Argemi 1978) or canard points (Szmolyan & Wechselberger 2001). In graphical
terms, folded singularities are intersection points between one-dimensional
manifolds L(p) and

Ŝ(p, v) = {(x , z , pr) ∈ R
3 : gS

x (z , pr , p)f S (z , pr , p) + gS
pr

(z , pr , p) v = 0} ∈ S(p),

in the (x , z , pr) phase space. To eliminate certain degenerate cases, we assume that

(A6) Ŝ(p, v) is a graph over pr and can be expressed as z = u(pr).

The associated trajectories that cross from Sa(p) to Sr(p) via F(p, v) are
called singular canards. Folded singularities are absolutely essential to the
understanding of the excitability threshold in slowly ramped systems that
preserve stable equilibrium and, to make progress, we need to analyse the flow
near folded singularities of the projected reduced system (4.7). The analysis
is greatly facilitated by the following scaling also known as desingularization
(Dumortier & Roussarie 1996; Krupa & Szmolyan 2001),

t = −t̂gS
z (z , pr , p), (4.8)
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which preserves the direction of time on Sa(p) but reverses it on Sr(p). The scaling
gives the desingularized system,

dpr

dt̂
= −gS

z (z , pr , p)v

and
dz

dt̂
= gS

x (z , pr , p)f S (z , pr , p) + gS
pr

(z , pr , p)v.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.9)

Clearly, a folded singularity of the projected reduced system (4.7) is a regular
equilibrium of the desingularized system (4.9). This means that we can study
the phase portrait of the desingularized system (4.9) in a neighbourhood
of F(p, v) using standard techniques. Then, we obtain the phase portrait
of the projected reduced system (4.7) simply by changing the direction of
time on Sr(p) in the phase portrait of (4.9). In general, folded singularities
are classified as folded nodes, folded foci, folded saddles and folded saddle-
nodes, based on their classification as equilibria of the desingularized system.
The relevant problem of possible types of folded singularities and singular
canards in R

3 with a folded two-dimensional critical manifold was addressed by
Szmolyan & Wechselberger (2001).

In the phase portrait of the projected reduced system (4.7), one should be
able to identify up to three different types of initial condition within Sa(p).
The first type consists of initial conditions for which trajectories approach L(p)
and then blow-up along a fast direction. They represent initial states of the
ramped system that lead to excitable responses. The second type consists of
initial conditions for which trajectories remain within Sa(p) for all time. If these
trajectories additionally approach and remain near a(p, e) as t → ∞, we say
that the ramped system adiabatically follows the stable but changing equilibrium
of the unramped system. The third type is initial conditions that give rise to
canard trajectories crossing from Sa(p) to Sr(p) via the folded singularity F(p, v).
According to definition 2.3, a boundary separating regions of the first and second
type is the excitability threshold within Sa(p).

(a) Necessary and sufficient condition for critical rate

Given assumptions (A1)–(A6), a phase portrait of the projected reduced
system (4.7) has the following properties:

(i) a(p, e) ∩ L(p) = ∅ or a(p, e) ⊂ Sa(p) (an intersection between a(p, e) and
L(p) would correspond to a Hopf bifurcation (Benoît et al. 1981) of the
stable equilibrium for the unramped system (3.1) and violate (A5)).

(ii) Ŝ(p, v) contains no folds transverse to the x direction nor self-intersections
by assumption (A6).

(iii) A folded singularity F(p, v) corresponds to an intersection between L(p)
and Ŝ(p, v); this follows from equations (4.7) and definitions of L(p) and
Ŝ(p, v).

(iv) The vector field points in the direction of increasing pr for all (z , pr) ∈
S(p) \ (L(p) \ F(p, v)); this follows from equations (4.7) and (A7).
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(v) If v �= 0, given gS
x (z , pr , p) �= 0 in (A2) and definitions of a(p, e), S(p) and

Ŝ(p, v), it follows that Ŝ(p, v) intersects a(p, e) only at special points
(z , pr), such that gS

pr
(z , pr , p) = 0. Also, Ŝ(p, v) → a(p, e) in the limit v → 0

(figure 5a).

One can check that properties (i)–(v) allow for two qualitatively different phase
portraits of the projected reduced system (4.7) without a folded singularity, shown
in figure 5b,c, one of the eight different portraits with a single-folded singularity
shown in figure 5d–k, or combinations of these.

An excitable portrait requires an excitability threshold defining a critical
value of v. In the two simple cases, either Ŝ(p, v) remains within Sa(p) and can
intersect a(p, e) if gS

pr
(z , pr , p) = 0 (figure 5b), or Ŝ(p, v) lies entirely within Sr(p)

(figure 5c). Neither case involves an excitability threshold within Sa(p) because all
initial conditions from Sa(p) remain in Sa(p) for all time (figure 5b) or reach L(p)
and blow-up (figure 5c). More interesting are transition cases between figure 5b
and c, because these involve a folded singularity F(p, v) (figure 5d–k). A necessary
condition for a folded singularity

gS
pr

(z , pr , p) = −gS
x (z , pr , p)f S (z , pr , p)

v
�= 0, (4.10)

requires the ramped parameter pr(t) in the fast dz/dt component of the vector
field; see appendix A(a) for details. Guided by the grey-shaded regions indicating
subsets of Sa(p) that remain in Sa(p) for all time, we identify only two cases that
involve an excitability threshold within Sa(p). These are a folded saddle in phase
portrait (figure 5d) and a folded saddle-node in figure 5e. Since a folded saddle-
node is not structurally stable (Kuznetsov 1995), it will unfold under typical
changes in the parameter vector p into either phase portrait in figure 5b or a pair
of folded singularities including folded saddle from figure 5d and folded node from
figure 5j . This leaves only one phase portrait involving an excitability threshold
that is structurally stable.

Hence, under assumptions (A1)–(A6), the ramped system (4.2) has an
excitability threshold defining a critical ramping rate, vc, if the desingularized
system (4.9) has an equilibrium F(p, v), and

v

[
vgS

z

vz

(
f S vgS

x

vpr
+ gS

x
vf S

vpr
+ vgS

pr

vpr
v

)
− vgS

z

vpr

(
f S vgS

x

vz
+ gS

x
vf S

vz
+ vgS

pr

vz
v

)]
F

< 0,

(4.11)
meaning that F(p, v) is a saddle; see appendix A(b) for a derivation of
equation (4.11). Furthermore, in the limit e → 0, the excitability threshold is
unique. Within Sa(p), this threshold is typically given by the singular canard
trajectory through a folded saddle (shown in dark blue in figure 5d). In the three-
dimensional (x , z , pr) phase space, the excitability threshold consists of three
components: (I) the singular canard trajectory within Sa(p) and all trajectories
that converge to it, (II) the part of the fold curve L(p) past the folded saddle
F(p) and all trajectories that converge to it, and (III) the subset of Sr(p)
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Figure 5. Phase portraits of the projected reduced system system (4.7) satisfying assumptions
(A1)–(A6) corresponding to the projections of critical manifold S onto the (z , pr ) plane in the
reduced system (4.6). Sa, L and Sr denote the attracting part, fold and the repelling part of S ,
respectively. Initial conditions from Sa that remain in Sa for all time are shaded in grey. a denotes
the stable equilibrium of the unramped system (dashed curve), Ŝ denotes the dz/dt̂ = 0 isocline of
desingularized system (4.9) (green curve) and F denotes folded singularities (black dots). Canard
trajectories that cross from Sa to Sr through F are shaded in light blue and unique singular
canards tangent to the strong stable manifold of the equilibrium for the desingularized system are
in dark blue.
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Figure 6. A sketch of the phase portrait of the ramped system (4.2) near a folded saddle F . (a)
Three components of the excitability threshold (I)–(III) in the limit e → 0. Perturbations that take
trajectories from the shaded region across (I), (II) or (III) will cause an excitable response. The
trajectory through F is the singular canard (dark blue). Sa, L and Sr denote the attracting part,
fold and repelling part of critical manifold S , respectively (cf. figure 5d). (b) Phase portrait for
0 < e � 1. The slow attracting manifold, Sa,e, and the slow repelling manifold, Sr,e, intersect along
the maximal canard trajectory (dark blue).

dividing initial conditions that end up on the grey-shaded part of Sa(p) from
those that blow-up (figure 6a). For sufficiently small but non-zero e and away
from L(p), the (normally hyperbolic) attracting Sa(p) and repelling Sr(p) parts
of the critical manifold S(p) perturb to nearby invariant (and still normally
hyperbolic) slow manifolds Sa,e(p, e) and Sr,e(p, e), respectively (Fenichel 1979;
Jones 1995). At the fold curve, however, Sa,e(p, e) and Sr,e(p, e) typically split
except for where they intersect along a special trajectory that is called a maximal
canard (figure 6b). Specifically, Szmolyan & Wechselberger (2001) prove that a
singular canard through a folded saddle for the limiting problem perturbs to a
maximal canard for sufficiently small e. As the excitability threshold is no longer
unique in analogy to the two-dimensional problem in figure 2, one may want to
choose s in definition 2.2 such that the threshold component (I) in the singularly
perturbed system is the maximal canard trajectory and all trajectories that
converge to it.

(b) A framework for calculating the critical rate

To calculate the critical rate of ramping, vc, consider a phase portrait as
in figure 5d with folded saddle at (zF (p, v), pF

r (p, v)) and assume the system
to be at (z0, p0

r ) ∈ Sa(p) at t = 0. Then, the critical rate is the value of v at
which the (v-dependent) excitability threshold crosses (z0, p0

r ). In most cases, the
threshold can be computed only numerically as the stable invariant manifold
W s(F) of the saddle equilibrium F(p, v) for the desingularized system (4.9).
This means that vc too has to be obtained numerically. However, if (z0, p0

r ) is
sufficiently close to F(p, v), the threshold can be approximated by its linearization
at F(p, v), that is a straight line through F(p, v) in the direction of the eigenvector
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w(p, v) = (w1(p, v), w2(p, v))T corresponding to the negative eigenvalue of saddle
equilibrium F(p, v). Then, vc can be calculated from the condition for the
threshold line to cross (z0, p0

r ):

p0
r − pF

r (p, vc) = w2(p, vc)
w1(p, vc)

[z0 − zF (p, vc)]. (4.12)

In some cases, this implicit general condition simplifies to an explicit formula for
the critical rate vc. For example, later equation (5.5) gives such a formula for the
climate-carbon cycle model (1.1)–(1.3).

5. The compost-bomb instability

In this section, we explain the compost-bomb instability reported in Luke & Cox
(in press). Specifically, we derive the critical speed of global warming above which
the mechanism of type B excitability causes an abrupt increase in peatland soil
temperature that is accompanied by a potentially catastrophic release of peatland
carbon into the atmosphere.

To use the general framework developed in §4, we recognize that the climate-
carbon cycle model with global warming (1.1)–(1.3) is a singularly perturbed
system with two slow variables C , Ta ∈ R, one fast variable T ∈ R and singular
perturbation parameter e. The slow dynamics of equations (1.1)–(1.3) can be
approximated by the reduced flow, obtained by setting e = 0, evolving on a
two-dimensional critical manifold

S = {(C , T , Ta) ∈ R
3 : C = l(T − Ta)[Ar(T )]−1} (5.1)

that has a unique fold transverse to the (slow) C direction

L = {(C , T , Ta) ∈ R
3 : Ta = T − a−1}.

The ramped system (1.1)–(1.3) has no equilibrium points but the unramped
system, obtained by setting v = 0 in equations (1.1)–(1.3), has a unique
equilibrium at

(C eq, T eq) = (P r(T eq)−1, Ta + APl−1).

We find from linearizing (1.1)–(1.2) that (C eq, T eq) is asymptotically stable if

exp[a(APl−1 + Ta)] >
aAP − l

mr0
≈ −51.16 and

l

m r(T eq)
> 0,

that is for all Ta ∈ R. In the phase space of the ramped system (1.1)–(1.3),

a = {(C , T , Ta) ∈ R
3 : Ta = T − A P l−1} ⊂ S

indicates the position of the unique asymptotically stable equilibrium of the
unramped system for different but fixed settings of Ta. It follows that, for
the given parameter values, the climate-cycle carbon model (1.1)–(1.3) satisfies
requirements (A1)–(A5) for all Ta ∈ R.
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To describe the evolution of the fast variable T on S in slow time t, we set
e = 0 in equations (1.1)–(1.3) to get the reduced system, differentiate the resulting
algebraic equation with respect to t, and rewrite the reduced system as

dC
dt

= P − Cr(T ),

dTa

dt
= v

and
dT
dt

= −r(T )(APl−1 + Ta − T ) + v

aAl−1Cr(T ) − 1
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(5.2)

Then, we use the condition for S in equation (5.1) to obtain the projection of the
reduced system onto the (T , Ta) plane

dTa

dt
= v

and
dT
dt

= −r(T )(APl−1 + Ta − T ) + v

a(T − Ta) − 1

⎫⎪⎪⎬⎪⎪⎭ (5.3)

that is singular at the fold L where a(T − Ta) − 1 = 0. This singularity is removed
by the following scaling

t = −t̂ [a(T − Ta) − 1],
which gives the desingularized system

dTa

dt̂
= v[1 + a(Ta − T )]

and
dT

dt̂
= r(T )(APl−1 + Ta − T ) + v.

⎫⎪⎪⎬⎪⎪⎭ (5.4)

In the desingularized system (5.4), the dT/dt̂ = 0 isocline

Ŝ = {(C , T , Ta) ∈ R
3 : Ta = T − (APl−1 + v r(T )−1)},

intersects the dTa/dt̂ = 0 isocline L at a point

F = (TF , TF
a ) =

(
1
a

log
[

v

r(a−1 − APl−1)

]
, TF − 1

a

)
.

For the given parameter values, condition (4.11) is satisfied so F is a saddle
equilibrium of the desingularized system (5.4) (and, hence, a folded saddle of the
reduced system (5.3)) with eigenvalues

s± = (±
√

B2 + 1 − B)av,

and the eigenvector w = (w1, w2)T corresponding to the negative eigenvalue s− is
given by

w = (1 + B +
√

B2 + 1, 1)T,

where
B = [2(1 − aAPl−1)]−1 ≈ 1.97.
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Figure 7. (a) Critical rate of global warming, vc, as a function of e = m/A with fixed A = 3.9 ×
107 (J kg−1) and varied m, obtained using (solid curve) numerical solutions to equations (1.1)–
(1.3) as well as analytical formulae (dashed line) (5.6) and (dotted line) (5.7) derived for e → 0.
(b) Critical time to reach 100◦C, tc, calculated for v = vc + 0.001 (◦C yr−1). The initial condition
is the stable equilibrium of the unramped system with T 0

a = 0 (◦C). The dots indicate e ≈ 0.064
(kg ◦C−1 m−2) for m = 2.5 × 106 (J m−2 ◦C−1).

We now have all the necessary ingredients to extract the critical rate of
global warming, vc, from the general condition (4.12). Given an initial condition
(C 0, T 0, T 0

a ) ∈ Sa sufficiently close to F , using equation (4.12), and as far as
e = m/A → 0, the climate-carbon cycle model (1.1)–(1.3) will exhibit a very large
excitable response (the compost-bomb instability) if the rate of global warming
exceeds the critical value

vc = r0

2Ba
exp

[
(1 + B + √

1 + B2)(aT 0
a + 1) − aT 0

B + √
1 + B2

]
+ Elin + Ee, (5.5)

where Elin accounts for the deviation of the actual stable manifold of F from
its linearization at the initial condition (C 0, T 0, T 0

a ) used in the derivation of
equation (4.12), and Ee is a correction for non-zero e. In the special but realistic
case with the initial condition at the unique stable equilibrium of the unramped
system, that is (C 0, T 0, T 0

a ) = (Pr−1
0 e−aT 0

, T 0
a + APl−1, T 0

a ), the critical rate
formula (5.5) simplifies to

vc ≈ r0

2Ba
exp

[
aT 0

a + 1 + 1

2B(B + √
1 + B2)

]
, (5.6)

where ‘≈’ arises from neglecting Elin and Ee. Furthermore, if 2B2 � 1,
equation (5.6) simplifies to

vc ≈ r0

2Ba
exp(aT 0

a + 1) (5.7)

that is independent of the initial conditions C 0 and T 0. A comparison in figure 7a
between numerically calculated vc (solid curve) and its approximation given by
equations (5.6) (dashed line) and (5.7) (dotted line) reveals a very good agreement
for sufficiently small e. A small discrepancy between the solid curve and the
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Figure 8. Spiky excitable responses in the climate-carbon cycle model with global warming (1.1)–
(1.3) with e ≈ 0.064 (kg ◦C−1 m−2) and r(T ) = r0

∑6
n=0(aT )n/n!. The solution starting at the

equilibrium of the unramped system (C , T , Ta) = (50, 8.15, 0) (red dot) is shown as (left column) a
trajectory in the (C , T , Ta) phase space and (right column) a response of the soil temperature
T in time t. Different rows show (a) sub-threshold response for v = 0.075 (◦C yr−1) < vc,
(b) single-spike excitable response for v = 0.09 (◦C yr−1) > vc and (c) double-spike excitable
response for v = 0.3 (◦C yr−1) > vc. For reference, included are: the two-dimensional critical
manifold S = Sa ∪ L ∪ Sr (grey surface), the unique fold L of S and the unique asymptotically
stable equilibrium a of the unramped system (black curves), the folded saddle F (black dot) and
the singular canard trajectory (blue) indicating the excitability threshold within Sa (for e → 0).
Note the logarithmic T -scale.
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dashed line is expected even as e → 0 because of Elin. Given a value of vc, it
is interesting to calculate the critical time, tc, defined as the time to reach the
temperature of 100 (◦C). Results in figure 7b suggest that about 20 years of global
warming at a constant rate vc ≈ 0.09 (◦C yr−1) may already cause spontaneous
combustion of peatlands.

In figure 8, we fix the initial condition (red dot) and explain three qualitatively
different responses of the climate-carbon cycle model (1.1)–(1.3) for different
rates of global warming v. To avoid numerical problems encountered in Luke &
Cox (in press) owing to the model stiffness illustrated in figure 4e, we used
r(T ) = r0

∑6
n=0(aT )n/n! rather than r(T ) = r0 exp (aT ) = r0

∑∞
n=0(aT )n/n!. For

v = 0.075 (◦C yr−1) < vc (figure 8a), the initial condition is below the excitability
threshold approximated by the singular canard trajectory (blue), so the system
does not produce any excitable responses. Rather, the (red) trajectory moves
towards a straight away, meaning that the ramped system quickly approaches and
then adiabatically follows the stable but changing equilibrium of the unramped
system. However, as the rate of global warming is increased to v = 0.09 (◦C yr−1)
> vc (figure 8b), the folded singularity F and the excitability threshold shift
their position such that the same initial condition is now above the excitability
threshold. As a result, the ramped system reaches the fold of the slow manifold
and exhibits an explosive increase in the soil temperature, T , associated with a
catastrophic release of soil carbon into the atmosphere. After the excitable spike,
the system returns to the attracting part of the slow manifold approximated by
Sa, finds itself below the excitability threshold, approaches and then adiabatically
follows the stable but changing equilibrium a of the unramped system. Clearly,
for large enough v, the system can exhibit more than one excitable spike. In
figure 8c for v = 0.3 (◦C yr−1) > vc, when the system returns to the attracting
part of the slow manifold following the first excitable spike, it still finds itself
above the excitability threshold and produces the second spike only after which
the trajectory approaches a. Note that the phenomenon of multi-pulse excitability
was first described by Wieczorek et al. (2002) in connection with n-homoclinic
orbits to a saddle focus. The multiple-spike excitable response described here
manifests in a similar way but has a rather different underlying dynamical
mechanism.

6. Conclusions

This work identifies and analyses a novel excitability type in systems with
ramping—a steady, slow and monotonic change in one of the parameters, pr ,
called the ramped parameter. The unramped system considered here is of slow–
fast nature and its (unique) asymptotically stable equilibrium exists for any fixed
setting of pr . When pr is ramped sufficiently slowly from one setting to another,
the system can adiabatically follow the stable but changing equilibrium. However,
very large excitable responses appear when pr is ramped above some critical rate
of ramping.

We showed that such an excitable system forms a singularly perturbed problem
with at least two slow variables and focused on the case with locally folded
critical (slow) manifold. Using concepts from singular perturbation theory, we
studied the system dynamics in terms of folded singularities and associated
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canard trajectories corresponding to the intersection of an attracting and repelling
slow manifold. In this way, we uncovered possible phase portraits of the ramped
system, identified those that give rise to excitability, and gave a necessary and
sufficient condition for the existence of a critical ramping rate. Furthermore,
we identified a novel type of excitability threshold related to a singular canard
trajectory through a folded saddle, and explained the very large amplitude of
excitable responses by revealing a novel slow–fast return mechanism that allows
for single- or multiple-spike excitable responses. Finally, we derived a general
condition for calculating the critical rate of ramping.

The general analysis was motivated by the recently reported ‘compost-
bomb instability’ (Luke & Cox in press)—a potentially catastrophic explosive
release of peatland soil carbon into the atmosphere as the greenhouse gas
carbon dioxide, which could significantly accelerate anthropogenic global warming
(Khvorostyanov et al. 2008b). Such apparent discontinuities in the response of the
climate system to forcing are commonly termed ‘climate tipping points’. Previous
studies of climate tipping points have tended to focus on bifurcations or the
levels of equilibrium global warming beyond which each tipping point is likely
to be excited (Lenton et al. 2008; Thompson & Sieber in press). In contrast, we
have shown here that there is a general class of dynamical systems, including
the climate-carbon cycle model (1.1)–(1.3), which define a dangerous rate rather
than a dangerous level per se. We suspect that such rate-dependent tipping points
are much more common in the climate system than is typically assumed, and
suggest that deriving the associated critical rates of global warming, as we have
done here for the ‘compost-bomb instability’, would provide valuable guidance
for climate change policy.

S.W. thanks Mark Holland for useful remarks. P.A. thanks Kiyoyuki Tchizawa for helpful
discussions about canards in singular systems.

Appendix A

(a) Folded singularity condition

A point (pr , z) ∈ S is a folded singularity for system (4.7) iff (pr , z)
is an equilibrium for system (4.9) or gS

z (z , pr , p) = gS
x (z , pr , p)f S (z , pr , p) +

vgS
pr

(z , pr , p) = 0. By definition of L, (pr , z) is an equilibrium for system (4.9) if
(pr , z) ∈ L. Because f S (z , pr , p) = 0 iff (pr , z) ∈ a by definition of a, and a ∩ L = ∅
by property (i), we have f S (z , pr , p) �= 0 if (pr , z) ∈ L. Also, gS

x (z , pr , p) �= 0 is
required by assumption (A2). Hence, (pr , z) is an equilibrium for system (4.9)
iff (pr , z) ∈ L and gS

pr
(z , pr , p) = −gS

x (z , pr , p)f S (z , pr , p)/v �= 0.

(b) Folded saddle condition

Linearizing system (4.9) at F gives a 2 × 2 Jacobian matrix with entries J11 =
−v(vgS

z (z , pr , p)/vpr)|F , J12 = −v(vgS
z (z , pr , p)/vz)|F , J21 = (v[gS

x (z , pr , p)f S (z , pr ,
p) + gS

pr
(z , pr , p) v])/vpr |F , and J22 = (v[gS

x (z , pr , p)f S (z , pr , p) + gS
pr

(z , pr , p) v])/
vz |F . If J11J22 − J12J21 < 0, the Jacobian matrix has two real eigenvalues of
opposite sign so F is a saddle equilibrium of the desingularized system (4.9)
and a folded saddle of the projected reduced system (4.7).
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CORRECTION

Proc. R. Soc. A 467, 1243–1269 (8 May 2011) (doi:10.1098/rspa.2010.0485)

Excitability in ramped systems: the
compost-bomb instability

BY S. WIECZOREK, P. ASHWIN, C. M. LUKE AND P. M. COX

A folded saddle singularity for equation (4.9) (figure 5d) is a sufficient condition
for the existence of a critical ramping rate in system (4.2), not a necessary and
sufficient condition as we say in the abstract, the second paragraph of §1a, the
title of §4a and the second paragraph of §6.

Another sufficient condition for the existence of a critical ramping rate in
system (4.2) is a transition between the phase portrait in figure 5b and any of the
phase portraits in figure 5c,g–k as the ramping rate v is varied. Such a transition
defines a critical ramping rate that, unlike the one defined by a folded saddle
singularity in equation (4.12), is independent of the initial condition within Sa .
An example is given in Ashwin et al. (2011, §3.3.1). Note that system (4.2) may
not have a unique critical ramping rate. For example, as v is varied, there can be
multiple transitions between the phase portraits in figure 5b–k, giving rise to more
than one v-interval where the system ‘tips’ (produces an excitable response).

Finally, there is an error in equation (4.8). This equation should read

dt = −dt̂ gS
z (z , pr , p) ⇒ t = −

∫ t̂

0
gS
z (z(s), pr(s), p)ds,

and the scaling below equation (5.3) should read

dt = −dt̂ [a(T − Ta) − 1].
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