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Abstract. We consider slow magnetosonic standing waves that are impulsively excited in a solar coronal loop. The one-

dimensional numerical model we implement includes the effects of nonlinearity, optionally thermal conduction, heating, and

cooling of the solar plasma. We numerically evaluate excitation and damping times of a standing wave in hot coronal loops on

the basis of a parametric study. Results of the numerical simulations reveal that initially launched impulses mainly trigger the

fundamental mode and its first harmonic, depending on the location of these pulses in space. Parametric study shows that these

standing waves are excited in a dozen or so wave periods corresponding roughly to 13 min and that they are strongly damped

over a similar time-scale.
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1. Introduction

Coronal loop oscillations have recently become a subject of

considerable observational and theoretical interest. Impulsively

generated, standing slow waves in hot (T > 6 MK) loops have

been detected with SOHO/SUMER (Wang et al. 2003a). It is

interesting that these standing waves are strongly attenuated

while the loops cool down (Curdt et al. 2003). Observations

from the SUMER and EIT on SOHO and TRACE have re-

vealed that Yohkoh loop oscillations often seem to be triggered

by micro- or sub-flares near a loop foot-point (Wang et al.

2003b). In such cases the trigger may be plasma flow injected

into the loop from one foot-point.

Several attenuation mechanisms have been proposed: wave

leakage into the chromosphere (Ofman 2002; Van Doorsselaere

et al. 2004), lateral wave leakage due to curvature of loops

(Roberts 2000), phase mixing (Nakariakov 1999; Ofman &

Aschwanden 2002), resonant absorption (Ruderman & Roberts

2002), and non-ideal MHD effects (Roberts 2000). In particu-

lar, Ofman & Wang (2002) have found that thermal conduction

leads to rapid damping of slow standing waves, with a less sig-

nificant contribution from compressive viscosity (Ofman et al.

2002a). Ofman et al. (2002b) have shown that a nonlinear

steepening of slow waves leads to their enhanced dissipation.

Nakariakov et al. (2000a) have found that dissipation and strat-

ification are the main factors influencing slow wave evolution,

while De Moortel et al. (2002a) have deduced that thermal con-

duction can account for the observed damping times.

In another study, Nakariakov et al. (2004) and Tsiklauri

et al. (2004) demonstrated that in a coronal loop an im-

pulsive energy release efficiently excites the second spatial

harmonic. The considered model included the effects of grav-

itational stratification, heat conduction, radiative losses, exter-

nal heat input, and Braginskii bulk viscosity. An extensive re-

view of longitudinal intensity fluctuations observed in coronal

loops is presented by De Moortel et al. (2002b).

Our work is aimed at an explanation of the excitation

mechanism of slow standing waves, while including main

damping mechanism, i.e. thermal conduction. We discuss im-

pulsively generated waves that are described by fully nonlinear

one-dimensional ideal MHD equations. As a consequence of

this one-dimensional assumption, the Alfvén and fast magne-

tosonic waves are removed from the physical system, which

only contains the slow waves.

2. A numerical model

As we only pay attention to slow waves, we consider that the

coronal loop lies along the x-direction. Additionally we as-

sume that velocity V = [V, 0, 0], magnetic field B = [B, 0, 0],

and the plasma quantities only depend on time t and coordi-

nate x. As a consequence of these assumptions we adopt the

one-dimensional MHD equations:

∂̺

∂t
+
∂(̺V)

∂x
= 0, (1)

̺

(

∂V

∂t
+ V
∂V

∂x

)

= −
∂pT

∂x
, (2)

∂(̺E)

∂t
+
∂[(̺E + pT)V]

∂x
=
∂

∂x

(

σ
∂T
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Article published by EDP Sciences and available at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20042319

http://www.edpsciences.org/aa
http://dx.doi.org/10.1051/0004-6361:20042319


702 M. Selwa et al.: Waves in coronal loops

Here ̺ is the mass density, T – the temperature, and the symbol

pT denotes a total pressure that represents the sum of the gas

and magnetic pressures:

pT =

(

p +
B2

2µ

)

, (5)

where µ is the magnetic permeability. E is the plasma energy

density:

E =
̺V2

2
+

pT

γ − 1
, (6)

where γ is the adiabatic index. Coefficient σ corresponds to

the thermal conductivity that follows from the formulation of

Spitzer (1962)

σ = κT 5/2, (7)

where κ = 9.2 × 10−7 erg cm−1 s−1 K−7/2 is the plasma thermal

conductivity.

In Eq. (3) L represents a cooling term due to radiative

losses from an optically thin plasma (Raymond 1978) and H

is the heating term that is implemented phenomenologically as

(Zingale et al. 2002)

H = H0 exp













−
(x − x0)2

2w2
h













exp

(

−
t

τ

)

· (8)

We choose and fix the width of the heating source wh = 1.25 ×

108 cm,H0 = 0.2 erg cm−3 s−1, the duration τ = 41 s, while the

spatial position of heat deposition x0 is left as a free parameter.

These values correspond to parameters of a typical solar flare

according to Nakariakov et al. (2004).

2.1. The loop equilibrium

We consider the equilibrium at which pressure p0 = c2
s̺0/γ =

const. and plasma is at rest, V0 = 0. We choose equilibrium

density profile ̺0, which varies with x such that ̺0 attains large

values at loop foot-points settled at x = 0 and x = L, where

L = 50 × 108 cm is the loop length which corresponds to loop

radius of 13−16 Mm. The loop is relatively short because short

loops are easier to simulate. In Sect. 3.2 we also consider loops

with other lengths. The mass density profile ̺0(x) is similar to

the profile implemented by Ofman (2002), i.e.

̺0(x) = ̺c

{

d

2
[tanh (s (x − xtr) · (x − L + xtr)) + 1] + 1

}

· (9)

Here d is the ratio of the photospheric mass density ̺ph to

coronal mass density ̺c = 10−15 g cm−3. We allow this pa-

rameter to vary in the range 104 ≤ d ≤ 108. The quantity

s = 0.5×10−17 cm−1 denotes the slope of ̺0(x) at the loop foot-

points, and xtr = 0.2842×108 cm corresponds to the position of

the transition region. According to Eq. (9) ̺0 jumps at this loca-

tion. As T0(x) ∼ p0/̺0(x), the plasma temperature T0 is higher

at the solar corona than at the foot-points. We also choose the

sound speed in the solar corona cs =
√

γp0/̺0(x = L/2) =

0.35 × 108 cm s−1.

2.2. Perturbations

For the coronal loop that is described by Eqs. (1)–(3), perturba-

tions can be excited in such a loop in numerous ways. Here we

focus our attention on impulsively excited waves. We launch a

hot pulse in the mass density, pressure, and velocity. This pulse

has the following form:

δ̺(x, t = 0) = A̺ exp
[

−(x − x0)2/w2
]

, (10)

δp(x, t = 0) = Ap exp
[

−(x − x0)2/w2
]

, (11)

δV(x, t = 0) = AV exp
[

−(x − x0)2/w2
]

, (12)

where A̺, Ap, and AV are initial amplitudes of the pulse, x0 its

initial position, and w its initial width.

2.3. Analytical formulae for standing waves

To derive analytical formulae for standing waves, we replace

the profile of Eq. (9) by a uniform profile ̺0 = const., then

neglect thermal conduction, heating, and cooling by setting

σ = H = L = 0 in Eq. (3). Additionally we assume solid-

wall boundary conditions at x = 0 and x = L by setting V = 0

there. In this case initial perturbations after a sufficiently long

time excite the standing wave oscillations given by the analyti-

cal formulae:

V(x, t) = Av cos(ωnt) sin(knx), (13)

δ̺(x, t) = −
̺0Av

cs

sin(ωnt) cos(knx), (14)

δp(x, t) = −̺0Avcs sin(ωnt) cos(knx), (15)

where:

kn =
nπ

L
, ωn = cskn. (16)

Notice that perturbed mass density δ̺ and velocity V display a

phase shift of a quarter wave period.

3. Numerical results

In this part of the paper we present numerically obtained results

for various run parameters. The plasma equations are solved

numerically with the FLASH code (Fryxell et al. 2000). For

most numerical runs 300 blocks are chosen. Each block con-

tains 8 grid cells. We performed grid convergence studies to

verify that the numerical diffusion is negligibly small. Free

boundary conditions are used at the boundaries of the simu-

lation region, and all physical quantities are measured in cgs

units.

We discuss the fundamental mode and the first harmonic,

which are both triggered by temperature perturbations and go

on to pay particular attention to excitation and damping times

of these modes. Our simulations show that these lowest modes

are the dominantly excited ones for the pulse parameters em-

ployed.

3.1. Excitation by temperature perturbation

We now consider the case of ideal plasma for which there is

no thermal conduction, cooling, and heating. This implies that
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Fig. 1. Evolution of velocity V(x = L/4, t) (top panel) and mass den-

sity ̺(x = L/4, t) (bottom panel) for mass density contrast d = 108,

pulse width w = L/40, and initial pulse position x0 = L/4.

the source terms on the right hand side of Eq. (3) are set to

zero. So, we have σ = L = H = 0. Additionally we assume

that there are no initial velocity perturbations. In this case slow

waves are excited solely by temperature perturbations given by

Eqs. (10)–(12) with A̺ = 0.125 ̺0(x0), Ap = 0.25 p0, and AV =

0. We launch the pulses of Eqs. (10)–(11) with a width of w =

L/40, which is a typical value determined from observations

(Nakariakov et al. 2004). We also carry out a parametric study

in which parameters are allowed to vary around the adopted

fiducial values. First we consider in some detail three cases that

correspond to different positions of the initial pulses: (a) x0 =

L/4; (b) x0 = L/2; (c) x0 = 0.

3.1.1. Time evolution of the pulses

The basic time-signature of the excited mode is similar to

a damped oscillation (see Fig. 1). However, the wave form

evolves significantly with time. At the initial stages of evolution

and in addition to the signal that is typical of standing mode,

we observe some short-wave oscillations (Fig. 1), also seen in

FFT spectra – not shown – and in wavelet spectra (Fig. 4). At

later times the signal becomes almost sinusoidal.

3.1.2. Pulses at a quarter of the loop length

and at the apex of the loop

If the initial pulse is launched at x0 = L/4 (x0 = L/2), the fun-

damental (first harmonic) mode is excited. Figure 2 displays

spatial profiles of these waves at given moments in time. As the

fundamental standing wave is twice longer than its harmonic

(Fig. 2), the fundamental wave is less sensitive to the inhomo-

geneous medium, and essentially it occupies the cavity over

all its length L. The harmonic wave is more sensitive to the

Fig. 2. Spatial profiles of velocity V(x, t = 18.842 T1) (left top panel),

V(x, t = 19.274 T1) (left bottom panel), V(x, t = 37.841 T2) (right top

panel), and V(x, t = 38.281 T2) (right bottom panel) for mass density

contrast d = 108, pulse width w = L/40, pulse position x0 = L/4 (left

panels), and x0 = L/2 (right panels). Left (right) profiles correspond

to the fundamental (first harmonic) mode.

Fig. 3. Time-signatures of perturbed mass density δ̺(x = L/4, t) (solid

line) and velocity V(x = L/4, t) (dashed line) for d = 108, w = L/40,

x0 = L/4 (top panel), and x0 = L/2 (bottom panel).

inhomogeneity than the fundamental wave, resulting in en-

hanced energy leakage into the photosphere.

Time-signatures of perturbed mass density δ̺ and veloci-

ty V , which are detected at spatial point x = L/4, are shown

in Fig. 3 for a time after the initial high frequency power has

died away. Oscillation amplitudes decrease with time as a con-

sequence of wave damping due to energy leakage into the pho-

tosphere.

In all considered cases the presence of the standing wave

in the system is evaluated on the basis of normalized phase

shift δφ, for the fundamental (n = 1) or harmonic (n = 2)

standing waves. We establish an excitation criterion according

to which a standing wave is present in the system if δφ departs
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Fig. 4. Spectra of velocity V(x = L/4, t) from Fig. 3. The Fourier spec-

tra are displayed in the top panels and the corresponding wavelet spec-

tra in the bottom panels. Both the Fourier and wavelet analysis lead to

wave periods T1 ≈ 254 s, T2 ≈ 125 s, where Tn is the nth standing

wave period. The hatched area in the lower frames indicate regions

where the wavelet transform is less accurate.

by 20% from 1/4, since the quarter period lag is a signature of

the analytical solution of Sect. 2.3 , viz.

1

4
· 80% ≤ δφ ≤

1

4
· 120%. (17)

This criterion is fulfilled for t > tmin. As the standing wave exci-

tation time we assume tmin. According to this criterion the fun-

damental (harmonic) standing wave is excited at t ≈ 6 T1 (t ≈

3.5T2), where T1 and T2 are the analytically evaluated periods

that are expressed by

Tn =
2Leff

ncs

, (18)

where n denotes the standing wave number, cs – the sound

speed, and Leff – the effective loop length. From Fig. 2 we

estimate that Leff ≈ 45 × 108 cm and then T1 ≈ 257 s and

T2 ≈ 128 s. These values are close to the results of the fast

Fourier transform (FFT) and wavelet analyses (Fig. 4). Small

differences result from the fact that the effective length of the

cavity is lower than L and differs for the case of n = 1 and

n = 2. Moreover, cs is an inhomogeneous function of x in our

simulations, but is assumed to be x-independent when evaluat-

ing Eq. (18).

We have restricted the Fourier analysis to t > 3 T1 in or-

der to remove the transient signal at the initial stage of tempo-

ral evolution. This signal is discernible in the wavelet power

spectrum (Fig. 4) obtained using a Morlet mother function

(Torrence & Compo 1998)

ψ(η) = π−1/4eimηe−η
2/2

with m = 6. The wavelet transform was applied to the full time

series. The solid contour represents 95% confidence, and the

shaded area 90%.

3.1.3. A pulse at a foot-point

The initial pulse of Eqs. (10)–(11) is launched at the loop foot-

point located at x = 0. Figure 5 displays the corresponding
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Fig. 5. A spatial velocity profile at t ≈ 20 T1 (left top panel), time-

signatures (right top panel) of the perturbed mass density δ̺(x =

L/4, t) (solid line), and velocity V(x = L/4, t) (dotted line) for d = 108,

w = L/40, and x0 = 0. The corresponding Fourier and wavelet power

spectra are displayed in the bottom panels.

results. As a result of a hot initial pulse, plasma is heated lo-

cally at the loop foot-point. Just warmed-up and dense pho-

tospheric plasma leaves the excitation region and fills up the

coronal loop. As a consequence, δ̺ grows in time (top right

panels). The mean flow is directed to the loop center, and its

efficiency declines both spatially in the region x > x0 (left top

panel) and with time (right top panel). Velocity power spec-

tra (bottom panels) reveal the wave period of the fundamental

standing wave T1. The background in the Fourier power spec-

trum is introduced by the velocity drift. The wave excitation

time tex ≈ 3 T1, and the damping time τ ≈ 5 T1. Qualitatively

similar results have been obtained in the case of the initial

pulse launched in the photosphere at x0 = −L/50, i.e. outside

the loop, corresponding to subsurface layers of the Sun (not

shown). Recently Tsiklauri et al. (2004) discussed the case of

heat deposition at a loop-foot point.

3.1.4. Excitation of a packet of standing waves

We excite different waves by setting the initial pulses in differ-

ent parts of the loop. Fourier spectra show that an almost pure

first harmonic standing wave is excited when the initial pulse

is launched at the loop apex. In some cases we do not observe

a single standing mode but instead a packet of modes in which

the fundamental and harmonic standing modes make the largest

contribution. Moving the excitation point from the loop apex

to the foot-points results in an excitation of the fundamental

mode. For the excitation points that are close to x0 = L/2 we

observe that the Fourier power in the first harmonic standing

mode is much higher than in the fundamental standing mode,

while for x0 = 3L/8 the scenario changes and the fundamental

mode dominates (Fig. 6).

3.2. Parametric studies of wave excitation

and damping times

In this part of the paper we present results of parametric stud-

ies. We vary several parameters, such as pulse position x0, den-

sity contrast d, pulse width w, temperature of initial pulses, and
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Fig. 6. Fourier spectra of the velocity V(x = L/4, t) for d = 108,

w = L/40, x0 = 0.375L (top panel), and x0 = 0.475L (bottom panel).

Fundamental and the first harmonic standing modes are dominant in

the top and bottom panels, respectively, but the first harmonic and fun-

damental modes are present there too.

perturbations in velocity AV. We analyze how the standing

wave excitation time tex and damping time τ depend on these

parameters.

We first filter out non-oscillatory components from the

time-signatures ̺(x0 = L/4, t) and V(x0 = L/4, t) to remove

trends, such as seen in the upper right panel of Fig. 5, and to get

a pure signal that corresponds solely to oscillations. The filter-

ing is done by the code originally developed by Ofman (2002).

We estimate excitation time tex with the criterion described by

Eq. (17), while for damping time τ we fit an envelope of a

velocity profile into the following formula

V(x = xd, t) = V0 exp

(

−
t − tex

τ

)

, t ≥ tmin, (19)

where xd denotes the detection point, and V0 is the amplitude

of the velocity V at time tex.

We first consider the dependence of tex and τ on the loca-

tion x0 of the initial pulse. Figure 7 shows that the fundamental

(harmonic) standing wave excitation time tex generally grows

(declines) as the pulse position x0 moves from the loop foot-

point (x0 = 0) to its apex (x0 = L/2). In the case of the fun-

damental standing wave, the damping time depends weakly on

x0 with a slight tendency to decrease with x0 (bottom panel of

Fig. 7). The second standing wave damping time decreases as

x0 approaches L/2.

These results support evidence that excitation and damping

times are not constant but depend on the location of the ini-

tial pulse. Excitation time varies from its lowest value of 3 T1

for x0 = 0 to its highest value of 16 T1 for x0 = 0.45 L for

the fundamental standing wave (and from 3 T2 for x0 = L/2

to 8 T2 for x0 = 0.45 L in the case of the second stand-

ing wave). The obtained values of damping time are in the

Fig. 7. Normalized standing wave excitation time tex/Tn (top panel)

and normalized damping time τ/Tn (bottom panel) vs. normalized

pulse position x0/L for d = 108 and w = L/40. The squares (crosses)

correspond to the fundamental (harmonic) standing waves.

range 4.7 T1 < τ < 5.2 T1 for the fundamental standing wave

and 5 T2 < τ < 6.1 T2 for the second standing wave, for

which the lowest (highest) value is obtained for x0 = L/2 (for

x0 = 0.44 L). Note that T1 ≈ 2T2, so that in absolute terms the

2nd wave is damped more rapidly than the fundamental wave.

We conclude from the above results that the fundamental

(harmonic) standing wave is excited most efficiently by an ini-

tial pulse located in the neighborhood of a loop foot-point (of

the loop apex). At these points the excitation (damping) time

of these waves is equal to 3 (5) periods, corresponding roughly

to 13 min (11 min).

The standing wave excitation time varies with density con-

trast d (Fig. 8). For high values of d the fundamental standing

wave is excited less efficiently than for low values, for which

tex attains its minimum; the excitation time is doubled. At the

smallest (largest) considered value of d = 102 (d = 108) the

damping time is 2.5 T1 (6.2 T1). From these results we con-

clude that the fundamental standing wave is excited faster in

low density contrast regions, as such a structure is more suscep-

tible to energy leakage at the foot-points. As a consequence, it

is easier for a perturbation to adjust to standing waves profiles.

Obviously, damping of the wave is enhanced and the damping

time is of the order of a few wave periods. Damping is about

twice weaker at d = 108 than at d = 102, although the depen-

dence of τ on d is complex.

The standing wave excitation time depends on pulse width

w (Fig. 9). For a sufficiently wide pulse the fundamental stand-

ing wave is excited faster by wider pulses, although there is sig-

nificant scatter (top panel). The damping time oscillates around

a value of about 4.8 T1, within a relatively narrow range im-

plying that it is almost independent of w. These results are a

consequence of the fact that wider pulses are closer to the sine
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Fig. 8. Normalized fundamental standing wave excitation time (top

panel) and normalized damping time (bottom panel) vs. log d for w =

L/40 and x0 = L/4.

Fig. 9. Normalized fundamental standing wave (n = 1) excitation time

tex/Tn (top panel), and damping time τ/Tn (bottom panel) vs. pulse

width w for d = 108 and x0 = L/4.

function of x of the standing wave spatial profile of Eqs. (13)–

(15); sufficiently wide pulses adjust faster to the standing

waves.

In the case of the second standing mode, its excitation and

damping times vary with the pulse width (Table 1). For a very

wide pulse the second standing wave is excited more slow-

ely than by narrower pulses, but its damping time is slightly

shorter. Note that, even for w = 3 × 109 cm, the initial pulse is

close to the sine function of x and the second, not the funda-

mental, mode is excited for pulse position x0 = L/2.

Table 1. Excitation time tex and damping time τ for two different

widths of the pulse in the case of the second (n = 2) standing wave for

d = 108 and x0 = L/2.

w/L tex [s] τ [s]

0.025 463 603

0.6 1050 565

Fig. 10. Normalized fundamental standing wave excitation time (top

panel) and damping factor (bottom panel) vs. normalized pulse tem-

perature Tr for d = 108, w = L/40, and x0 = L/4.

So far, we have discussed the initial pulses of constant rela-

tive temperature Tr = Tp/Tc = 1.1, where Tp is the temperature

of the initial pulse and Tc is the temperature of the corona. This

temperature is realized through the choice of pulse amplitudes

A̺ = 0.125̺0(x0) and Ap = 0.25p0. It is worth quantifying

an influence of Tr on mode excitation time tex and damping

time τ. To do so, we consider three values of the tempera-

ture ratio: Tr = 2 (A̺ = 0.125̺0(x0), Ap = 1.25p0), Tr = 4

(A̺ = 0.125̺0(x0), Ap = 3.5p0), Tr = 8 (A̺ = 0.125̺0(x0),

Ap = 8.0p0). Figure 10 summarizes results of the correspond-

ing numerical experiments. According to our expectation a

warmer pulse leads to more efficient standing wave excitation

as the excitation time declines with Tr; a warmer pulse trans-

fers itself in a shorter time to a sinusoidal standing wave profile.

As a consequence of higher energy leakage, the standing wave

is more rapidly damped for higher values of Tr. Given that Tr

changes by a factor of 8, the induced changes in tex and τ are

relatively small (factor of 2). As warmer pulses correspond to

higher amplitudes of the initial pulses we claim that nonlinear-

ity does not play a vital role in affecting tex and τ.

We now compare four cases which correspond to the fol-

lowing loop lengths L0: (a) L0 = L = 50×108 cm; (b) L0 = 2L;

(c) L0 = 4L; and (d) L0 = 6L. The pulse position was chosen

as x0 = L0/4. The normalized excitation time decreases with

the loop length for narrow pulses (Fig. 11), and the damping

time generally grows with loop length L0 (right panel). Note
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Fig. 11. Normalized fundamental standing wave excitation time (top

panel) and damping time (bottom panel) vs. normalized loop length

L0, for d = 108, x0 = L0/4, and w = L/40. Note that Tn now corre-

sponds to the expected period for the appropriate loop length.

that since Tn ∼ L0 the results must be considered carefully, e.g.

tex actually grows with L0 (in s).

3.3. Velocity pulses

In a similar case to the cases discussed above, the only dif-

ference is that to mass density and pressure perturbations we

add a non-zero pulse in velocity. We choose and hold fixed

AV = 0.125 cs(x0). In the case of x0 = L/4 the fundamental

standing wave is generated at tex ≈ 7 T1, which is a little larger

than in the case of AV = 0 (Fig. 12). The damping time at-

tains a value of τ ≈ 5.5 T1, which is 10% higher than without

the velocity pulse. From this result we conclude that the funda-

mental mode is weakly damped while triggered by the velocity

perturbations.

In the case of both x0 = L/2 and the harmonic standing

wave (crosses) the excitation time is larger than in the case of

AV = 0, while the damping time becomes a bit smaller than

without the velocity pulse. The harmonic standing wave is ex-

cited in a longer lapse of time and is stronger damped while

being excited by a velocity pulse.

3.4. Perturbations of non-ideal plasma

Next we consider several cases of non-ideal plasma with differ-

ent effects switched on. In our approach we neglect background

heating, which has been used by Nakariakov et al. (2004) to

keep background temperature at the coronal value of ∼1 MK.

Instead, we direct most of our attention to the effect of non-

ideal plasma on wave propagation. Table 2 summarizes all the

results that are obtained for the width of the pulse W = L/40

and its initial position x0 = L/4.

Fig. 12. Normalized fundamental standing wave excitation time (left

panel) and damping time (right panel) vs. the velocity amplitude of

the initial pulse, AV, for d = 108, w = L/40, x0 = L/4 (squares), and

x0 = L/2 (crosses).

We discuss in some detail the case of thermal conduction,

heating, and cooling acting simultaneously. In this case we do

not observe a pure standing wave but instead a packet of waves

with largest contribution from the fundamental standing wave

(left bottom panel of Fig. 13). Mass density collected at xd =

L/4 exhibits oscillations that decay in time. The mean value of

the mass density grows in time as a result of thermal conduction

(right top panel of Fig. 13). Velocity spectra reveal the mean

period of T1 = 410 s (bottom panels of Fig. 13). Note that this

value is higher than in the case of the ideal plasma due to a

different value of the effective sound speed ceff
s =

√

γp/̺ that

results from the cooling and thermal conduction (Fig. 14).

It is noteworthy that thermal conduction acting alone ex-

cites a bunch of waves at the loop foot-points where the ther-

mal conduction is mostly effective (not shown). The most sig-

nificant value of standing wave period is similar to the case

without conductivity. Taking both thermal conduction and heat-

ing into account leads to a significant increase in the period of

the observed standing wave. In the case of thermal conduction

switched on, evaporation of a photospheric plasma takes place.

It is interesting, however, that it is not continuous but occurs in

the form of parcels which propagate out of the photosphere in

certain lapses of time with each separate from the other.

This scenario can be explained as follows. Photospheric

plasma gets heated due to thermal conduction. As this heated

material is denser than a coronal plasma, a sufficient amount of

heating is needed for a parcel of the photospheric gas to attain

enough pressure to leave the photosphere.

4. Summary

In this paper we have considered the excitation and damping

of slow standing waves in a solar coronal loop that is
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Table 2. Standing wave period T , excitation time tex, and damping time τ for various run parameters in cgs units. The sign − means that a value

could not be evaluated.

A̺ Ap AV d cs[cm s−1] H L σ T [s] tex[s] τ[s]

�0 �0 =0 108 0.35 × 108 =0 =0 =0 254 1578 1250

�0 �0 =0 108 0.35 × 108
�0 =0 =0 208 915 986

�0 �0 =0 108 0.35 × 108
�0 �0 =0 208 916 998

=0 =0 =0 108 0.35 × 108
�0 �0 =0 208 919 1009

=0 =0 =0 108 0.35 × 108 =0 =0 �0 − − −

�0 �0 =0 108 0.35 × 108 =0 =0 �0 500 1291 2289

�0 �0 =0 108 0.35 × 108
� 0 =0 �0 556 1133 1178

=0 =0 =0 104 0.35 × 108 =0 =0 �0 278 − −

�0 �0 =0 104 0.35 × 108 =0 =0 �0 455 − −

�0 �0 =0 108 0.1 × 108 =0 =0 =0 882 4627 3826

�0 �0 =0 108 0.1 × 108 =0 =0 �0 909 1113 3930

�0 �0 =0 108 0.35 × 108
�0 �0 �0 400 827 2170
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Fig. 13. A spatial velocity profile at t ≈ 12 T1 (left top panel), the

corresponding time-characteristics of mass density signal (right top

panel), the Fourier spectrum (left bottom panel), and the wavelet spec-

trum (right bottom panel) for d = 108, w = L/40, x0 = L/4, σ � 0,

H � 0, L � 0, A̺ � 0, Ap � 0, and AV = 0.

approximated by a one-dimensional plasma. Our model

implements optionally thermal conduction, heating, cooling,

and impulses in plasma quantities. The thermal conductivity

follows the formulation of Spitzer (1962). The phenomenolog-

ical heating source term is localized in space and time. Cooling

is due to radiative losses from an optically thin plasma. A Fast

Fourier transform and wavelet analysis of temporal wave pro-

files have shown that in a loop the fundamental or harmonic

standing slow waves are excited depending on the location of

the trigger. We worked out a simple criterion for the presence of

a standing wave based on a phase shift between perturbed mass

density δ̺ and velocity V . The time required for a standing

wave to settle in a loop from a hot initial pulse is of the order

of a dozen or so wave periods and varies, depending on such

parameters of the plasma as the initial location of the pulse,

the density contrast, or the pulse width. In the case of a wide

and strong pulse, as well as of heated plasma, this time-scale is

shorter.

The one-dimensional model we have developed obviously

suffers from several drawbacks. Its main shortcoming is that

Fig. 14. Effective sound speed at t = 0 (top panel) and t = 5000 s

(bottom panel) in the case of Fig. 13.

it only takes slow magnetosonic waves into account and ne-

glects the presence of fast and Alfvén waves in the system.

As a consequence, this model excludes several likely damping

mechanisms that were already suggested in the literature.

However, these neglected effects are believed to be unimpor-

tant as far as the scenario of slow wave excitation and damping

are concerned. More realistic models of slow wave develop-

ment are currently under development and the results will be

reported elsewhere.
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