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ABSTRACT: The enhancement of excitation and reemission of molecules in close
proximity to plasmonic nanostructures is studied with special focus on the compar-
ison between idealized and realistically shaped nanostructures. Numerical experi-
ments show that for certain applications choosing a realistic geometry closely resem-
bling the actual nanostructure is imperative, an idealized simulation geometry yielding
significantly different results. Finally, a link between excitation and reemission pro-
cesses is formed via the theory of optical reciprocity, allowing a transparent view of
the electromagnetic processes involved in plasmon-enhanced fluorescence and
Raman-scattering.
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In the past decade, one important application of plasmonic
nanostructures has been the exploitation of their localized field

enhancement for amplifying fluorescence and Raman scatter-
ing.1-5 On the experimental side, astonishing single-molecule
sensitivity has been demonstrated6-13 while large numbers of
numerical investigations have been performed studying the effect
of size and shape on the optical response, and thus the tunability
of such structures.14-19While the performed simulations studied
many aspects of the particles’ geometric configuration, for the
most part they were restricted to idealized geometric primitives
such as cylinders and prisms, which often bear only limited
resemblance to realistic, fabricated structures.20 In addition,
many reports on numerical studies show only the structures’ far-
field response, for example, the scattering or extinction cross
sections.21,22 Fluorescence or Raman enhancements, however,
depend on the near-field properties of the structure, which can
differ quite drastically from observations in the far-field. In this
study, we investigate the effect of some such simplifications often
made in numerical analyses on the validity of their results, our
main focus set on the difference between realistic and idealized
objects.

When simulating nanophotonic structures, one can choose
from a wide range of methods. Differential equation formulations
such as the finite element method (FEM)23 or the finite differ-
ence time-domain (FDTD) method24 are flexible in their appli-
cation but require absorbing boundary conditions for simulating
isolated particles. Other specialized methods yield very accurate
results, but only for particular geometries, for example, rigorous
coupled-wave analysis (RCWA) for gratings and periodic geom-
etries.25 Integral equation (IE) methods have proved to be very

useful in scattering analyses as their calculations fulfill the
Sommerfeld radiation condition26 and thus intrinsically include
the complete far-field information. In particular, surface integral
equation (SIE) methods, also referred to as boundary element
methods (BEM), have grown in popularity in optics27 as they
unify a range of advantages otherwise not found in a single method.
Unstructured meshes allow for efficient and accurate discretiza-
tion while only the structures’ surfaces have to be discretized,
reducing the simulation complexity, especially for large struc-
tures. In addition, while all IE methods intrinsically supply far-
field information, SIE methods in particular are able to compute
the extreme near-field response of the simulated structures,
making this approach ideal for the current study. For the pre-
sented simulations, we use an in-house SIE code that has been
shown to yield accurate results in the near and far fields even in
resonant plasmonic conditions.28

To explore the differences between realistic and idealized
structures, two specific geometries were considered. The idea-
lized case was represented by a regular, rectangular dipole nano-
antenna as shown in Figure 1a. The antenna’s arms have a 40 �
40 nm2 cross section and a length of 98.5 nm, edges rounded to a
5 nm radius, separated by a gap of 25 nm width. As a realistic
structure, a nonregular dipole antenna based on a scanning
electron microscope (SEM) image of a real fabricated antenna
was derived, as shown in Figure 1b. The two antennae are about
the same size and the nonregular case might easily represent the
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fabricated result of the idealized design. Both antennae are
modeled as gold, the dielectric constant taken from experimental
data.29 As the nanostructures are modeled as regions of bulk
metal, a possible crystallite substructure is not considered in this
study. It might, however, be taken into account by using a mod-
ified dielectric function.30

While the geometries of the two cases differ substantially, an
initial characterization might not be able to show the difference.
Figure 2 shows the scattering cross sections of both antennae
upon x-polarized plane wave excitation incident from the þz-
direction. This demonstrates the behavior onemight observe in a
dark-field microscope measurement of the given antennae.While
the absolute amplitudes of the resonance peaks are slightly dif-
ferent, the resonance wavelength of the two geometries are
indistinguishable. A close look at the near-field distribution,
however, makes clear that the antennae do not behave as similarly
as the scattering cross section suggests. Figure 4 shows the inten-
sity enhancement of the resonantly excited rectangular and
realistic nanoantennae on a surface 1 nm outside the antennae’s
arms unwrapped using an equirectangular projection like a map

of the globe, the antennae’s axes intersecting the surfaces at (0�N,
-90�E) and (0�N,90�E), see Figure 3. The resonance wave-
length is chosen according to the maximum in Figure 2, λres =
630 nm. Figure 4a shows the left and right arms of the idealized,
rectangular antenna and Figure 4b shows those of the realistic
case. Clearly the field distribution is very different for both
geometries, the rectangular antenna showing “hot spots” near
its corners while the realistic antenna shows the highest field
strength near the arms’ centers. While in both cases the areas of
highest field enhancement are located in the gap between the
antennae’s arms and at the arms’ outside edges, the actual field
distributions are indeed different and far from homogeneous as
sometimes assumed.31 This is particularly important when con-
sidering plasmonic nanoantennae as a mediator for localized
detection or trapping at the nanoscale.32,33

An interesting question is how close to the antenna one has to
be for the difference in geometries to become noticeable. To this
end, the intensity enhancement was mapped similarly to in
Figure 4 but at distances of 1, 2, 5, and 10 nm from the antennae’s
left arms, shown in Figure 5. While the maps at 1 nm show a very
different field distribution, the difference diminishes quickly with
the maps at 10 nm appearing to be almost identical. When using
plasmonic structures to enhance fluorescence or Raman scatter-
ing, the active particles are normally localized near the structure
either deposited directly on its surface, separated by a dielectric
spacer of few nm thickness or, if chemical selectivity is desired, via
surface functionalization at distances on the order of 2-5 nm. In
any case, the distance to the plasmonic structure is very small and
the active particles indeed experience a field distribution depend-
ing critically on the geometry and topology of the enhancing
structures. Thus, for such cases, taking the actual geometry of a
structure into account is imperative to achieve accurate simula-
tion results.

At the same time, we can see that to accurately simulate the
enhancement properties of plasmonic nanostructures the precise
knowledge of the extreme near-field of such structures must be
obtained. Of the methods mentioned in the introduction, most
are capable of accurately determining the intermediate near-field
of a given geometry, giving correct results down to a few
nanometers above the structure’s surface. At close proximities,
however, many popular methods fail to accurately reproduce the
field due to the used discretization. Volume integral equation
(VIE) methods such as the discrete dipole approximation
(DDA), for example, will show ripples caused by the discrete
dipoles used to model the scatterer34,35 while the FDTD may
introduce staircasing artifacts due to the structured grid required
by the simulation technique.36 On the other hand, methods
allowing for unstructured grids and continuous basis functions

Figure 1. Studied geometries: (a) idealized rectangular nanoantenna
and (b) realistic nanoantenna derived from SEM image (inset).

Figure 2. Scattering cross sections of idealized and realistic dipole
antennae as shown in Figure 1.

Figure 3. Coordinate system used for equirectangular projection of
realistic nanoantenna. The antenna’s axis corresponds to the x-axis and is
shown by the red line.
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such as the FEM or the SIE method are capable of delivering the
required precision.

It should be noted that the electromagnetic simulations per-
formed in this study do not take quantummechanical effects into
account, satisfying the classical Maxwell’s equations only. Re-
cently, fully quantum mechanical time-dependent density func-
tional theory (TDDFD) has been applied in a fascinating
investigation of the effects of electron spill-out on the tunability
and field enhancement properties of small plasmonic nanostruc-
tures.37,38 In these studies, quantum effects were shown to have a
noticeable effect on the field distribution around very small (<10 nm
in size) plasmonic particles. The effects, however, were limited to
distances of less than 0.5 nm from the particles’ surfaces. While
the authors expect nonclassical behavior to extend to larger dis-
tances for larger particles, it remains unclear if effects will be
noticeable at distances of 1-10 nm as studied here. In addition, if

the quantum effects are indeed present even at these distances,
the importance of the difference between realistic and idealized
structures remains unchanged.

Besides concentrating incident light in “hot spots,” plasmonic
structures can increase the efficiency of fluorescence and Raman
scattering by enhancing the radiation of the re-emitted light to
the far-field where it can be detected.39-42 In some studies, this
mechanism is not considered with the focus set only on the
localized enhancement of the incident field.16 In others, it is
taken into account but at the cost of a completely new set of
calculations, as the chosen methods are not capable of simulating
both effects.43 The SIE method used in this paper is capable of
simulating a structure’s response not only under plane wave
illumination but also excited by a dipole source placed arbitrarily
close to its surface. This makes it a suitable choice for simulating
both the incident field enhancement and the radiation enhance-
ment of light re-emitted from a fluorescent or Raman-active
particle.

The solid lines in Figure 6 show the enhancement of the light
radiated by a dipole source to the þz-direction, caused by the
proximity to a rectangular (a-c) or realistic (d-f) plasmonic
nanoantenna. The dipole source is located at three different
points in the x-z-plane as indicated by the dots in the insets.
Intensity enhancement is calculated for x-oriented (red lines)
and z-oriented (green lines) dipole sources; the field is detected
in the far-field at (x,y,z) = (0,0,106 nm) in x-polarization, parallel
to the axis of the antennae. One can see that for a dipole located
in the center of the gap (a,d) the intensity enhancement closely
resembles the scattering cross section shown in Figure 2, the
rectangular and realistic antennae displaying nearly the same
behavior. The main difference, again, lies in the amplitude of the
resonance peak, with the realistic case showing a slightly higher
maximum enhancement (see Supporting Information, Figure
S.1). Moving away from the center of the gap, however, the
similarity between both geometries quickly vanishes. Not only do
the proportions between x- and z-polarizations differ but also the
wavelengths at which the intensity is enhanced. The difference
between polarizations is a direct effect of the shape of the
scatterer: The coupling of a dipole to a metal surface strongly
depends on the dipole’s orientation relative to the surface.44 The
spectral deviation between idealized and realistic antennae is the
effect of the breaking of symmetry relative to the x-y-plane. In
case of symmetry (a,d) the spectrum is predominantly defined by

Figure 4. Intensity enhancement of a resonantly excited nanoantenna (λres = 630 nm)mapped on a surface 1 nm above the surface of the antennae.Map
is unwrapped using an equirectangular projection (Figure 3).

Figure 5. Unwrapped intensity maps at distances of 1, 2, 5, and 10 nm
from surface of the antennae’s left arms for resonantly excited rectan-
gular and real antennae. Scale as in Figure 4.
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the antennae’s geometry in x-direction (arm length and gap size),
which is comparable for both geometries. Exciting the antennae
away from their centers, other dimensions begin to play a role
and the irregular shape of the realistic antenna causes its spectral
response to be more complex than its idealized counterpart (see
Supporting Information, Figure S.2).

While we have shown that the simulation routine used in this
paper is capable of calculating the enhancement factors for both
far- to near-field coupling and vice versa, this is not even neces-
sary in many cases. The symbols in Figure 6 show the exact reverse
process of the corresponding solid curves with the enhancement
of a dipole source placed in the far-field and detected at different
positions and polarizations in the near-field of the antennae.
While it may at first seem remarkable that the solid curves and
symbols show the exact same behavior, this can easily be ex-
plained using the theory of electromagnetic reciprocity, which
allows the interchanging of electric current densities and the
resulting electromagnetic fields.45,46 Reciprocity states that

p1 3E2ðr1Þ ¼ p2 3E1ðr2Þ ð1Þ

where p1, p2 are two dipole sources at the positions r1,r2 and
E1(r),E2(r) are the resulting electric fields in the given system.
Denoting p1 as the distant dipole and p2 as the dipole in the near-
field of the structure, the polarization-dependent field enhance-
ments invoked by the nanoantenna can be written as

F12 ¼
p2 3E1ðr2Þ

p2 3E
0
1ðr2Þ

, F21 ¼
p1 3E2ðr1Þ

p1 3E
0
2ðr1Þ

ð2Þ

where F12 and F21 are the enhancements in the case of far-field
and near-field dipole illumination, respectively, and E0 is the
respective field without the antenna. Utilizing the transposition
properties26 of the dyadic Green’s function G

_
0 used to calculate

Ei
0(r) = G

_
0(r,ri) 3 pi,

p2 3G
_ 0

ðr2, r1Þ 3p1 ¼ p1 3G
_ 0

ðr2, r1Þ
T
3p2

¼ p1 3G
_ 0

ðr1, r2Þ 3 p2 ð3Þ

it can easily be shown that F12 = F21. From eq 2 one can see that
the factors F describe the effect of the antenna on the system’s
dyadic Green’s function.47

This simple relation has significant meaning in the study of
plasmonic structures as a means for emission enhancement. It
states that the effect of a structure as an amplifier for the radiative
decay of localized emitters, including polarization dependence,
can be described by the field enhancement around the same
structure upon far field illumination, obtainable in a single sim-
ulation. So simply repeating the simulation shown in Figure 4 for
the shifted emission wavelength would result in a similar field
distribution, this time showing areas in which a fluorescent or
Raman-active molecule would efficiently couple to the far-field,
the vectorial field direction representing the orientation of the
corresponding dipole emitter. Only if the emission enhancement
into a large solid angle is to be calculated, as when using a high-
numerical aperture microscope objective, would a simulation
with a near-field source be required, as the method above using
reciprocity only considers emission in a single spatial direction,
viz.: the relative position of the far-field illumination source.

Already the comparison between two structures performed in
this study clearly demonstrates the difference between using a
realistic geometrical model in optical simulations and using a
simplified, idealized design. In some cases, such as when deter-
mining a structure’s scattering properties, a simplified model is
adequate. This is the case, for example, when studying the use of
plasmonic scatterers to enhance the efficiency of solar cells48,49 or
light-emitting diodes.50-52 When interested in the structure’s
near-field, however, such as when studying the use of plasmonic
structures for fluorescence enhancement or optical trapping, the
difference becomes substantial. Not only does the magnitude of
the field enhancement depend on the structure’s geometry, but
so, too, does its distribution, dictating where the intensity will be
maximal. If the materials to be exposed to light are widely
dispersed over the whole area of the structure, the maximum
field enhancement factor plays a dominant role, less its spatial
distribution. In cases where localized detection is important,
however, such as when combining fluorescence with optical
trapping of single particles,33,53,54 knowledge of the field dis-
tribution is of eminent importance, as otherwise a particle may be
localized in a position at which only low field enhancement
occurs.

The second big difference between the optical properties of
idealized and realistic structures is their response with respect to

Figure 6. Solid lines show the enhancement of the intensity radiated to the far-field by a dipole source in the proximity of a rectangular (a-c) or realistic
(d-f) nanoantenna. The source is located in the x-z-plane as indicated by the dots in the insets, oriented in x-direction (red curves) or z-direction
(green curves) while far-field detection is at (x,y,z) = (0,0,106 nm) and in x-polarization. Symbols represent the reverse process with source and detection
points exchanged: the x-polarized source is located at (x,y,z) = (0,0,106 nm) and detection is in the near field in x-polarization (crosses) and
z-polarization (circles).
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polarization and wavelength, as shown in Figure 6. Clearly, the
two structures behave the same only in certain conditions, that is,
regarding a particle in the center of the antennae’s gaps, preserv-
ing symmetry in the system's geometry. If this symmetry is
lifted, the similarity between idealized and realistic cases vanishes.
Again, this difference is only relevant in certain applications. Con-
sidering the magnitude of the field enhancement shown in Figure 6,
one can see that the symmetric cases (a,d) show by far the greatest
values. Thus, if the activematerials are randomly or broadly dispersed,
the greatest contribution will come from these locations, and the
precise geometry of the structure will play only a minor role on the
system’s response. If the location of the active particle is important,
however, and it is placed at a position not preserving symmetry, the
effect of the nanostructure’s geometry will become important and its
consideration in such simulations absolutely necessary.

In conclusion, we have compared the optical response of two
plasmonic nanoantennae, one with an idealized geometry and the
other realistically shaped. Both far-field and near-field response was
investigated using a program based on the SIEmethod.While the
far-field showed a similar response between the two geometries,
the near-field properties of the two structures were distinctly
different. In particular, the near-field distribution as well as the
polarization and spectral behavior differed between the two, especially
in cases showing low symmetry and thus encouraging the irregular
shape of the realistic antenna to affect the optical response. Simu-
lations were matched with possible applications, discriminating
between those in which the exact geometry of the investigated struc-
ture is only of minor importance, and those where its consideration
would be imperative. The former includes using structures purely
as scatterers and cases where near-field enhancement need not be
localized, whereas the latter describes cases where field enhance-
ment is paired with particle localization and trapping.
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