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Abstract 13 

 14 

The inhalation of particulate matter (PM) is a significant health risk associated with reduced life 15 

expectancy due to increased cardio-pulmonary disease and exacerbation of respiratory diseases such as 16 

asthma and pneumonia.  PM originates from natural and anthropogenic sources including combustion 17 

engines, cigarettes, agricultural burning, and forest fires.  Identifying the source of PM can inform effective 18 

mitigation strategies and policies, but this is difficult to do using current techniques.   Here we present a 19 

method for identifying PM source using excitation emission matrix (EEM) fluorescence spectroscopy and 20 

a machine learning algorithm.  We collected combustion generated PM2.5 from wood burning, diesel 21 

exhaust, and cigarettes using filters.  Filters were weighted to determine mass concentration followed by 22 

extraction into cyclohexane and analysis by EEM fluorescence spectroscopy.  Spectra obtained from each 23 

source were used as machine learning training data for source identification in mixed samples. This method 24 

can predict the presence or absence of the three laboratory sources with an overall accuracy of 89% when 25 
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the threshold for classifying a source as present is 1.1 µg/m3 in air over a 24-hour sampling time.  We apply 26 

this method to a small set of field samples to evaluate its effectiveness. 27 
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1. Introduction 33 
 34 

According to the Global Burden of Disease study, air pollution is the world’s largest environmental 35 

health risk accounting for 4.9 million deaths and 147 million disability adjusted life years in 2017.1  36 

Particulate matter (PM) originates from a wide range of natural and anthropogenic sources. Most PM is a 37 

result of emissions directly from sources such as diesel engines, agricultural burning, cooking with biomass, 38 

electrical power generation, pollen, bacteria, and soil.  In addition to these primary sources, PM results from 39 

chemical processes in the atmosphere, referred to as secondary sources.2  The human respiratory system is 40 

effective at removing many of the particles that enter the respiratory tract before they enter deep into the 41 

lungs.  Larger particles are removed by impaction and sedimentation in the upper respiratory tract and 42 

branching airways of the lungs while smaller particles can penetrate deeper into the lungs.3  A size cut-off 43 

of 2.5 µm in aerodynamic equivalent diameter (PM2.5) and smaller has been established for the purpose of 44 

regulation of PM pollution.4  The USEPA standards for maximum exposure levels are 12 µg/m3 annual 45 

average and 35 µg/m3 daily average.5  The World Health Organization (WHO) guidelines are lower at 10 46 
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and 25 µg/m3, respectively.6  Studies suggest that some sources of PM are worse for health than others. For 47 

example, black carbon, which is associated with traffic, has been shown to be worse for health than PM2.5 48 

alone,7,8 but the body of evidence as a whole does not conclusively show what sources or combinations 49 

thereof are the worst for health.9–12 50 

Asthma is known to be exacerbated by PM2.5 exposure.13  In practice, clinicians advise asthmatic 51 

patients to avoid exposure to pollution that they are sensitive to and to avoid exertion outdoors when air 52 

quality is poor.14  A study using  parental questionnaires and proximity to roadways found increased asthma 53 

risk in children with exposure to second hand smoke, but not with roadway proximity.15  User-friendly and 54 

inexpensive tools for monitoring source specific PM exposure will enable continued and more quantitative 55 

epidemiological research in the area of source specific health impacts and may enable regulations targeting 56 

the worst sources of PM pollution.16 57 

In this work, we use excitation-emission matrix (EEM) fluorescent spectroscopy and machine learning 58 

to identify the source of PM.  Fluorescence spectroscopy is a sensitive analytical technique with the ability 59 

to detect fluorescence from a single molecule using sophisticated instrumentation.17  With widely available 60 

benchtop fluorimeters limits of detection are around 1 ng/mL for polycyclic aromatic hydrocarbons, a 61 

common chemical component of PM air pollution.18,19  For this reason, fluorescence spectroscopy is an 62 

attractive analytical technique for PM analysis due to typical sample sizes of PM being small.  Although 63 

fluorescence is a very sensitive technique it is not highly specific due to many analytes having overlapping 64 

spectra.  EEM spectroscopy can increase the specificity of fluorescence spectroscopy by collecting 65 

fluorescent emission spectra at multiple excitation wavelengths, giving a 2D dataset or matrix of 66 

fluorescence intensities.20  EEM spectroscopy has been widely applied to analysis of complex 67 

environmental water samples21 as well as analysis of atmospheric PM.22–28  Mladenov et. al. suggested EEM 68 

could be useful as a source identification tool for atmospheric PM, but did not evaluate the ability of EEM 69 

alone to identify sources.26  Other work applying EEM to atmospheric aerosols discusses the chemical 70 

composition of various regions of fluorescence, but does not discuss using EEM as a source apportionment 71 

or identification tool.22–25,27,28  72 
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EEMs provide complex spectral information consisting of thousands of wavelength dependent 73 

fluorescent intensities (~20,000 datapoints for the EEMs in this work), as such, a variety of approaches 74 

have been used to interpret EEM spectra.  Fluorescent regional integration considers specific regions of an 75 

EEM spectrum based on compounds of interest that display fluorescence in various regions (e.g. aromatic 76 

protein and humic acid like regions when applied to water samples).23  This approach has the advantage of 77 

simplicity, but it is unable to distinguish overlapping spectra which was a challenge in our samples.  78 

Techniques used for interpreting EEM spectra that can handle overlapping spectra include partial least 79 

squares regression (PLS), parallel factor analysis (PARAFAC), and multivariate curve resolution (MCR). 80 

These techniques have been used successfully to identify specific chemical components of atmospheric 81 

PM, but have not been used for source apportionment.18,22,25  In this work we used a convolutional neural 82 

network (CNN), a machine-learning technique that is well suited to handle 2D data like EEM spectra.  83 

Machine learning techniques, like a CNN, do not rely on underlying theory or assumptions to create a 84 

model, instead these techniques use data inputs and expected outputs, referred to as training data, to create 85 

a non-parametric model.  The model framework is defined and then the training data are used to iteratively 86 

adjust model parameters to best fit the training data, this is the learning or training process. 87 

A CNN is a combination of a neural network29 preceded by a feature recognition process called 88 

convolution.30  Individual steps in the network are called layers. The first layers are convolutional layers 89 

consisting of filters of user-defined size which are iteratively scanned, or convolved, across the input data.   90 

The filter values are randomly initialized and adjusted to identify relevant features during the training 91 

process. CNNs excel at processing 2D data (e.g. image classification31,32) due to their ability to learn 92 

patterns or features encoded in spatial data using the convolutional layers.  The result of the convolution 93 

process is fed into a neural network to map the learned patterns and features to an output value or 94 

classification.  95 

Neural networks and CNNs have been applied to a variety of PM exposure related problems.  For 96 

example, a CNN has been used to predict continuous PM2.5 concentrations from discrete measurements.33  97 

Source apportionment has been conducted using a neural network with elemental composition as the input, 98 
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which is similar to our work, but the input data was 1D elemental data so convolution layers are not used.34  99 

Neural networks have been used to process EEM spectra for analysis of water samples, contaminates in 100 

olive oil, and antibiotics in urine.35–38 In these examples, neural networks are used because of their ability 101 

to fit non-linear behavior without the need for assumptions about the underlying data and their ability to 102 

interpret information from the entire EEM, both of which are applicable to our work. 103 

In this paper, we demonstrate the ability of EEM coupled with a convolutional neural network to 104 

identify PM from woodsmoke, cigarettes and diesel exhaust with a limit of detection of 2.6 µg/m3 based on 105 

a 24-hour sampling time.  PM2.5 samples were collected on PTFE filters using personal sampling devices.  106 

Samples were weighed to determine PM2.5 mass concentration and then extracted in cyclohexane.  The 107 

cyclohexane extracts were analyzed using EEM fluorescence.  The spectra from the three sources show 108 

unique but overlapping fluorescent EEM spectra.  We applied a CNN to identify the presence or absence 109 

of the three sources present in a set of EEM spectra consisting of one, two, or all three sources.  We achieved 110 

an overall accuracy of 89% in identifying sources.  This technique has a limit of detection well below the 111 

USEPA and WHO recommended exposure levels for PM and may be useful for personal monitoring in 112 

epidemiological studies of respiratory diseases such as asthma.   113 

 114 

2. Materials and Methods 115 

2.1 Particulate Matter Sampling and Extraction 116 

We sampled PM2.5 from cigarettes, diesel exhaust, and woodsmoke using 2.0 µm pore PTFE 117 

membrane filters (Pall Zefluor®, Pall Cat. # P5PJ037) housed in Harvard School of Public Health Personal 118 

Exposure Monitor (BGI, Butler, NJ Cat. # HP2518) sampling cassettes.  Filters were operated at a flowrate 119 

of 1.8 lpm using either portable or stationary vacuum pumps (AirChek XR5000 pump, SKC Inc., Eighty 120 

Four, PA or VP0625-V1014-D2-0511, Medo USA, Roselle, IL with custom manifold of nine VFB-65-BV 121 

roto-meters, Dwyer Instrument, Michigan City, IN). Flow rates were verified using an air flow calibrator 122 

(Gilian Gilibrator PN# 800268, Sensidyne, St. Petersburg, FL). 123 
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We collected woodsmoke by burning 1 ½ by ¾ inch Douglas fir sticks cut from dimensional lumber 124 

in a prototype side-feed, natural-draft, improved cookstove. Our sampling devices were placed in a sealed 125 

chamber connected to the exhaust hood duct at the sampling point described for gravimetric sampling by 126 

Sullivan et. al.39  We collected diesel exhaust particulate from the exposure room in UW’s controlled 127 

inhalation diesel exhaust exposure facility.40  The diesel PM is generated by a 435 cc direct injection single 128 

cylinder diesel engine (Yanmar LW Series) fueled with ultra-low-sulfur diesel.   We collected cigarette 129 

smoke either by lighting cigarettes in a fume hood and allowing them to smolder or from the exposure 130 

chamber of a cigarette smoking machine (Model TE-10B, Teague Enterprises, Woodland, CA). The TE-131 

10B produces mainstream smoke mixed with sidestream smoke from filtered 3R4F research cigarettes 132 

(Tobacco Research Institute, University of Kentucky, Lexington, KY). Two cigarettes were puffed 133 

simultaneously for 2 seconds for a total of 8 puffs, at a flow rate of 1.05 l/min. The smoke collected 134 

represents approximately 10% mainstream and 90% sidestream to more closely resemble secondhand 135 

smoke.  136 

Following collection, filters are removed from the samplers and placed in a chamber with 37% 137 

(SD = 4%) relative humidity for 24 hours.41  The filters were then weighed using a micro-balance with 138 

0.5 µg resolution (Mettler-Toledo UMT-2, Greifensee, Switzerland).  Initial weights of each filter are 139 

recorded in the same manner and we use the difference to calculate the mass of PM2.5 collected.  140 

We placed the filters into 20 mL glass vials (Cat # 89096-774 VWR, Edison, NJ), submerged the filters 141 

in cyclohexane (Uvasol® Cyclohexane for Spectroscopy, MilliporeSigma Cat. #1.02822.2500), and 142 

sonicated for 30 minutes (42 kHz, 2510R-MT Branson, Ultrasonic Corp., Danbury, CT).  Filters were 143 

generally submerged in ~10 mL of cyclohexane to achieve an initial extract concentration of 5 µg PM/mL 144 

cyclohexane or greater.  For filters with low PM loading we cut the filter into fourths to enable extraction 145 

in as little as 3 mL of cyclohexane to maintain extract concentrations at or above 5 µg/mL.  Typically, the 146 

PM was not dislodged from the filter during extraction allowing for direct analysis of the extract.  If 147 

significant PM was dislodged and suspended causing turbidity, the extract was filtered with a 0.2 µm PTFE 148 

syringe filter (VWR Cat. #28145-491) before analysis. 149 
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We collected a total of 37 filter samples and used the extracts from these filters to create 113 samples 150 

for EEM analysis.  They consisted of 81 single source samples diluted to concentrations between 0.2 µg/mL 151 

and 10 µg/mL, 21 mixtures of the single source samples and five samples from filters with mixed PM from 152 

serial sampling of the sources.  We also collected six spectra from liquid extracts of filters that were loaded 153 

into sampling devices and weighed, but no air was drawn through the filters (method blanks).  For training 154 

our algorithm, we used 12 of the 113 EEM samples leaving a total of 101 samples for testing the algorithm. 155 

Table 1 summarizes the total number of each type of sample used for training and testing.  156 

 157 

Table 1: Number of unique filter samples and liquid extract samples generated from extracts, dilutions of extracts 

and mixtures of extracts for each category of sample.  We collected a total of 113 EEM spectra. Twelve of these 

spectra were used to generate training data leaving 101 spectra in the test set.   

Sample Type 
Number of Unique 

Filters Samples for EEM Spectra used for training 

Cigarette  9 26 4 
Diesel 10 29 4 
Woodsmoke 9 26 4 
Extract Mixtures N/A* 21 0 
Multiple-Exposure  5 5 0 
Method Blanks 4 6 0 
Total 37 113 12 
*Mixtures of Cigarette, Diesel, and Woodsmoke samples  

 158 

In addition to the samples collected in the laboratory, we collected twelve field samples to evaluate 159 

our method on real world samples.  Eight field samples were taken in Seattle homes and in campus buildings 160 

(“background” field samples) and four were collected in areas we expected to be dominated by cigarette, 161 

diesel, or woodsmoke (“expected primary source” field samples).  We collected and extracted the field 162 

samples using the same equipment and methods as the laboratory samples.  EEM spectra collected from 163 

these two groups of field spectra are shown in Figure S7. 164 

 165 
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2.2 Fluorescence EEM analysis 166 
PM extracts were stored in 4 ml vials (Cat # 66009-876 VWR, Edison, NJ) until analysis.  For 167 

EEM spectroscopy ~3 ml of PM extract was transferred to a 1 cm x 1 cm quartz cuvette (Item # 168 

CV10Q3500FS, Thorlabs Inc., Newton, New Jersey). We collected EEM data using a fluorometer with an 169 

extended-UV 150W xenon-arc lamp (Aqualog-880-C, HORIBA Instruments Inc. Edison, New Jersey).  170 

We excited samples between 200 to 500 nm at 2 nm increments with an excitation slit width of 5 nm and 171 

recorded emission spectra between 246 and 826 nm on a CCD array.  The CCD array has 1000 pixels 172 

each covering 0.58 nm.  We collected data using 4-pixel binning giving an effective emission slit width of 173 

2.32 nm.  We kept emission data between 246 and 572 nm and excitation data between 224 and 500 nm.  174 

Emission data above 572 nm were discarded because minimal fluorescence was observed above this 175 

wavelength and excitation wavelengths below 224 nm were removed due to low excitation lamp intensity 176 

between 200 and 224 nm yielding extensive noise in the data.  The raw fluorescent signal is corrected for 177 

detector response and lamp intensity by the instrument,42 and is normalized to Raman units using Raman 178 

area data collected daily from a Milli-Q water sample.43  Daily solvent blanks are recorded and used for 179 

blank subtraction to minimize the effect of Rayleigh and Raman scatter.  To further reduce the effects of 180 

Rayleigh scatter we excised values within 10 nm of the first and second order Rayleigh scattering bands 181 

followed by replacement of the values using 2-dimmensional interpolation.44  We did not correct for the 182 

inner filter effect because we observed absorbance below 0.2 for our samples that were recorded with the 183 

Aqualog during EEM collection.   184 

 185 

2.3 Machine Learning for Identification of Sources Present 186 
We used a CNN to identify the presence or absence of known PM sources in the EEM spectra.  The 187 

CNN was trained on 6,375 training spectra generated from twelve single source spectra from cigarette, 188 

diesel, and woodsmoke PM (four from each source).  We generated the training dataset using a data 189 

augmentation approach by mathematical combination of twelve original spectra, assuming fluorescence is 190 

linearly proportional to concentration (see section S3 for data supporting this assumption).  The process for 191 
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generating spectra is shown schematically in Figure 1 and described in more detail in section S4.  First, we 192 

created 1000 spectra for cigarette, diesel, and woodsmoke in a linearly spaced concentration range from 0 193 

to 5 ug/mL resulting in 3000 single-source spectra.  Then we created digital mixtures of the three sources 194 

in a logarithmically spaced concentration range from 0.01 to 6.3 in fifteen steps (153 combinations) giving 195 

3375 training spectra consisting of mixtures. In creating mixtures by mathematically combining spectra 196 

from pure sources we assumed matrix effects of mixing to be negligible.  We showed this to be a reasonable 197 

assumption by comparing digital and actual mixtures as illustrated in Figure S5.   198 

 199 

 

Figure 1:  Graphical representation of the loop used to generate training spectra.  Twelve original spectra, four from 

each of cigarette, diesel, and woodsmoke, (A) are averaged using random weights (B) producing prototypical 

spectra for each source (C) that are scaled (D) giving single source spectra at target concentration (E) that are 

combined (F) to generate a training spectra (G).  This loop is repeated for the beginning for each training spectra 

generated in order to simulate variability associated with PM sampling and EEM collection. 

   

 200 

 The CNN used in this work consists of three convolutional layers each followed by max pooling,45 201 

as shown in Figure 2.  All convolutions are performed using padding, so the dimensions of input and output 202 
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data are the same.45  The first convolutional layer contains twenty 5-by-5 filters equating to 11.6 nm in 203 

emission (height) and 10 nm in excitation (width) as shown by the red box (Figure 2a).  This is followed 204 

with 3-by-3 max pooling that reduces the data from 143-by-139 to 47-by-46. The second convolutional 205 

layer is ten 10-by-10 filters followed by 3-by-3 max pooling.  The final convolutional layer applies ten 206 

15-by-15 filters to the 15-by-15 feature maps.  The output of the third convolutional layer is max pooled to 207 

a size of 5-by-5 and then flattened and connected to a dense neural network with three hidden layers having 208 

512, 256, and 256 nodes in each layer, respectively.  A dropout rate of 20% is used between all 209 

convolutional and fully connected layers.46 The exponential linear unit was used as the activation function 210 

for all convolutional and hidden layers  and a linear activation function was used for the output layer,47 the 211 

loss function was the mean-squared-error.29  The results described are from a network that was trained for 212 

80 epochs.  Details of how we selected the training duration are included in the SI.  The CNN was 213 

implemented in Python 3 using Keras48 and TensorFlow.49 214 

Our EEMs are 2D spatial data made up of combinations of peaks and valleys, which correlate to a 215 

particular chemical or combination of chemicals that are extracted from the PM samples.  These peaks and 216 

valleys vary in their intensity across emission and excitation dimensions.  The convolution filters learn to 217 

fit these varying shapes to better detect peak presence as they are iteratively applied over the EEM.  218 

Subsequent convolutional layers are used to identify patterns of lower level features, for example, a second 219 

convolutional layer may look for a group of narrow peaks identified in the previous convolutional layer.  220 

The results of the convolutional layers are feature maps showing the presence or absence of features. The 221 

feature map data are fed into fully connected layers that map this information to the desired output.  In our 222 

case this process assigns a predicted concentration value for each source that we use to predict the presence 223 

or absence of the sources.   224 

 225 

 226 
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Figure 2: CNN Network Diagram.  (a) Input spectra are first convolved with twenty 5-by-5 filters.  (b) convolutional 

layers and max pooling layers are shown with associated data shapes. Convolutions (10x10 followed by 15x15) are 

shown in red and 3-by-3 max pooling is shown in black.  Filters, data, and pooling sizes are shown to scale. (c) 

Output of the convolutional layers is flattened to a shape of 250 by 1 and fed into fully connected layers resulting 

in 3 output values (not to scale). 

 227 

3. Results and Discussion 228 
 229 

PM extracts from cigarette, woodsmoke, and diesel show unique EEM spectra, as shown in Figure 3.  230 

We also extracted cigarette and woodsmoke in methanol and water for comparison as shown in Figure S11. 231 

Cigarette spectra consist of two peaks at ~350 nm emission wavelength.  Diesel spectra consist of single 232 

primary peak also located at ~350 nm emission with less fluorescence surrounding the peak than cigarette.  233 

Woodsmoke has spectra consisting of six peaks in the region from 400-475nm emission and 225 – 275 nm 234 

excitation.  Cigarette and woodsmoke have similar maximum fluorescent intensity levels per mass of PM 235 

while diesel has a lower intensity.  Woodsmoke shows fluorescence over the broadest region and generally 236 

at higher emission wavelengths than cigarette and diesel.  The spectra from the different sources have 237 

overlapping regions suggesting challenges in distinguishing individual sources from mixed samples. 238 

 239 
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Figure 3: Fluorescence EEM spectra of (a) cigarette smoke at an extract concentration of 2 µg/ml, (b) diesel soot 

at 10 µg/ml, and (c) woodsmoke at 2 µg/ml.  PM samples from the three sources were extracted in cyclohexane 

and exhibit unique spectral fingerprints.  Cigarette and woodsmoke have similar maximum fluorescent intensity 

on a per mass basis while diesel has a lower signal intensity. 

 240 

The CNN algorithm was trained on EEM spectra with known particulate concentrations generated 241 

as described in the methods section.  True concentration values are determined from PM mass measurement 242 

and extraction volume. We then provide the CNN this same training data and ask it to predict the 243 

concentration of the three sources. These results are shown in Figure 4.  The diagonal line represents perfect 244 

prediction of the samples where the CNN prediction values are equal to the values provided during training.  245 

The data points that result from the analysis of the original training data roughly follow the diagonal.  The 246 

R2 value for the fit to the training data for cigarette, diesel, and woodsmoke are 0.99, 0.97, 0.97 respectively.  247 

One reason for scatter in the training data is extracts at the same particulate matter concentration have 248 

different fluorescent signal strengths. This variation in signal strength is shown in Figure S4 which plots 249 

fluorescent intensity vs. concentration for single source spectra.   250 

We then predict the concentration of the 101 test spectra which are shown in the parity plots of 251 

Figure 4.  The results generally follow the diagonal trend, but there are significant under- and over-252 

predictions.  This can be attributed to the fact that total fluorescent intensity from a given source varies 253 

from sample to sample at the same concentration.  The R2 value for the fit to the test data for cigarette is 254 
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0.86, for diesel it is 0.79, and for woodsmoke it is 0.89.  The lower R2 values for the test data are due to the 255 

overlap of the signals (Figure 4) that makes mixtures difficult to quantify and variation in fluorescent signal 256 

intensity among samples at the same concentration (Figure S4).  257 

Figure 4: Parity plots showing predicted concentration vs. true extract concentrations for (a) cigarette (R2 training 

= 0.99, R2 test = 0.86),  (b) diesel (R2 training = 0.96, R2 test = 0.79) and (c) woodsmoke (R2 training = 0.97, R2 

test = 0.89).  The data points shown as solid colors (orange, brown and green) are from 101 test spectra, the points 

shown in light blue are the results for the simulated training data.  

 258 

We used the predicted results for samples containing only a single source to determine the limit of 259 

detection (LoD).  The LoD for each source was evaluated according to the Clinical and Laboratory 260 

Standards Institute method as described in the supporting information.50,51  The measured LoD for each 261 

source is provided in Table 2.  Here we provide the detection limit in mass of particulate matter per volume 262 

of extraction liquid as well as a calculated particulate matter concentration per volume of sampled air, 263 

assuming a 24-hour sampling time at 1.8 liters per minute (see section S1 for calculation details).  Diesel 264 

has the weakest fluorescence intensity and thus the highest LoD of 2.2 µg/mL cyclohexane or 2.6 µg/m3 265 

air.  The LoD for each source in a 24-hour sampling period is significantly lower than the WHO and USEPA 266 

24-hour mean exposure guidelines of 25 and 35 µg/m3 respectively.5,6   267 

 268 

 269 



14 

 270 

Table 2: LoD determined by applying the CNN model to single 

source samples. The column reporting LoD in µg/mL is 

determined using PM mass measurement of filters dispersed in 

a volume of cyclohexane.  The column reporting µg/m3 in air 

is determined by converting the LoD in µg/mL to µg/m3 

assuming a 24-hours sampling time at an air sampling rate of 

1.8 liters per minute. 

Source 
LoD 

[µg/mL cyclohexane] 
LoD 

[µg/m3 air] 

Cigarette 0.6 0.7 

Diesel 2.2 2.6 

Woodsmoke 0.8 0.9 

 271 

  The ability to identify if PM from a source is present or absent above a threshold level could be a 272 

useful tool for clinicians and asthma patients in treating asthma or for asthma research, for example.  To 273 

this end, we evaluated the ability of the CNN analysis of EEM spectra to detect the presence of individual 274 

sources above a threshold of 1 µg/mL.  This threshold corresponds to an average exposure of nearly 275 

10 µg/m3, the WHO annual average guideline, during a three-hour sampling period at 1.8 L/min.  In 276 

Figure 5, we plot the predicted concentration of each source in either a negative or positive column.  277 

Samples are considered positive if they had a true concentration (measured gravimetrically) of 1 µg/mL or 278 

greater of any of the single sources, and negative if they are below this concentration.  This analysis method 279 

is based on the establishment of a cut off value for a qualitative diagnostic health test.51  The clinical 280 

sensitivity, specificity, and overall accuracy of the diagnostic is then determined by choosing a threshold 281 

which delineates the positive from negative results.  Depending on the purpose of the diagnostic test, the 282 

threshold may be set to achieve a specific outcome.  For example, in the case of screening for a deadly but 283 

treatable disease, the number of false negatives would be minimized (i.e. maximizing sensitivity).51  In this 284 

work, we choose the threshold that maximizes the accuracy for each source.  Figure 5D shows a plot of 285 

source detection accuracy as a function of the calibrated threshold value used as a cut off between positive 286 

and negative detection.  This plot shows that as we increase calibrated threshold value the detection 287 

accuracy for each source increases to a maximum and then decreases because as the threshold increases 288 
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nearly all positive samples are classified as negative.    The threshold of maximum accuracy varies with the 289 

source.  The predicted concentration thresholds for maximum detection accuracy for cigarette, diesel, and 290 

woodsmoke are 0.6, 0.8, and 0.7 µg/mL, respectively.  These thresholds are shown by red horizontal lines 291 

in Figure 5A-C and when applied, we achieve an overall accuracy of 89%.  The accuracies for identifying 292 

cigarette and woodsmoke were 98% and 99% respectively.  Diesel was more challenging because of its low 293 

signal intensity relative to the other sources and had one false positive and seven false negatives giving an 294 

accuracy of 92%.   295 

 296 

Figure 5: Classification plots showing classification of test data for (a) cigarette, (b) diesel and (c) woodsmoke 

sources as present or absent.  Data points above the threshold (red horizontal line) are predicted as positive for the 

source.  The location of the threshold was chosen to give the maximum accuracy for classifying each source 

individually. The source detection accuracies vs. calibrated thresholds are shown in (d). 

 297 

 After setting threshold values for source classification using all 101 test spectra, we evaluated the 298 

model performance on sub-groups of the test set.  The sub-group of spectra containing single sources 299 

consisted of sixty-nine spectra from sixteen filter samples ranging in concentration from 0.2 µg/mL to 10 300 

µg/mL.  Within this group we classified the samples with an overall accuracy of 91%.  Cigarette and 301 

woodsmoke spectra were identified with the best results while diesel was the most often misclassified with 302 
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a sensitivity of 0.91 and a specificity of 0.98.  Next, we tested the algorithm on the sub-group of test spectra 303 

containing two or more sources. Twenty-one samples were generated by mixing liquid extracts together 304 

and five were from exposing an individual filter to multiple PM sources.  The results of the analysis are 305 

shown in Table 3.  The CNN algorithm was able to identify the sources present in mixed samples with an 306 

overall accuracy of 81%.  The sensitivity and specificity for cigarette and woodsmoke was perfect; however, 307 

diesel continued to show challenges with a specificity of unity and a sensitivity of 0.75.  The relatively low 308 

sensitivity of diesel is a result of the diesel spectra being weaker than and overlapping with the other sources 309 

resulting in five false negative results.  Finally, we evaluated six process blank spectra and the algorithm 310 

correctly identified them all as not containing any of the sources. The results for classification of sub-groups 311 

are summarized in Table 3.     312 

Table 3: Classification results for sample sub-groups containing spectra with only one PM source and mixtures 

(two or three sources).  The overall accuracy for the single source and mixtures groups were 91% and 81% 

respectively. 

 Single Source  Mixtures  Process Blanks 

 Cigarette Diesel Wood  Cigarette Diesel Wood  Cigarette Diesel Wood 

True + 16 21 17  21 16 20  0 0 0 
True - 51 45 51  5 6 6  6 6 6 
False + 1 1 0  0 0 0  0 0 0 
False - 1 2 1  0 5 0  0 0 0 
Accuracy 0.97 0.96 0.99  1.00 0.81 1.00  1.00 1.00 1.00 
Sensitivity 0.94 0.91 0.94  1.00 0.75 1.00  1.00 1.00 1.00 
Specificity 0.98 0.98 1.00  1.00 1.00 1.00  1.00 1.00 1.00 

 313 

We evaluated a partial least squares (PLS) and a linear model to interpret the EEM spectra in the 314 

same manner as the CNN.  The linear model achieved an overall accuracy of 68% and the PLS model had 315 

an overall accuracy of only 40%.  Both the PLS and linear models performed poorly largely due to an 316 

inability to accurately predict diesel concentration.  We included the results of these comparative models 317 

in section S7. 318 

 319 

 We tested the limits of our algorithm by applying it to a set of twelve field spectra.  We had a 320 
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limited number of spectra available for this test and the algorithm was optimized for the laboratory samples, 321 

therefore the results are limited in scope to understanding potential difficulties when applying this method 322 

to a larger set of field samples. EEM spectra from the field samples were mathematically normalized to an 323 

extract concentration of 10 µg/mL for ease of interpreting results: the classification threshold used to train 324 

the CNN was 1 µg/mL so a spectrum will be classified as positive for a source if that source makes up 10% 325 

or more of the normalized EEM.  We expect many sources of PM to contribute to the field samples such as 326 

crustal dust and biological material. The EEMs from the eight background field samples looked most 327 

similar to diesel and cigarette spectra (Figure S7A).  The CNN predicted cigarette as present in three 328 

background samples, diesel as present in four and woodsmoke as present in two.  We did not expect any of 329 

the background samples to contain cigarette smoke, as they came from non-smoking households and 330 

buildings, but this source was detected in three samples that had spectra of similar appearance to cigarette 331 

smoke.  This suggests that some sources of PM have similar EEM spectra.  Diesel may have been present 332 

as all samples were collected in urban areas of Seattle.  Woodsmoke was detected in two background 333 

samples.  The spectra where woodsmoke was detected looked most similar to diesel, but had higher 334 

fluorescent intensity than diesel at the same concentration (10 µg/mL).   This illustrates that the CNN may 335 

give unexpected results when analyzing spectra that are different than spectra used in training.  These results 336 

illustrate that an appropriate training set containing as many of the expected sources of PM as possible will 337 

be key for successful application to real world samples.   338 

 339 

Woodsmoke was the expected primary source in an ambient sample taken in the UW cookstove 340 

lab and in a sample taken from an open window during a time when forest fire smoke was causing air 341 

pollution in Seattle.  Woodsmoke was detected in the cookstove lab sample as expected and the EEM 342 

resembled other woodsmoke spectra (Figure S7B).  We believe this was due to small amounts of 343 

woodsmoke escaping the ventilation system during stove testing.  Woodsmoke was not detected in the 344 

sample taken during the forest fire smoke episode.  We believe this is due to the forest fire smoke having a 345 

different composition than the laboratory generated woodsmoke due to a combination of aging during 346 
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atmospheric transport and different combustion conditions in a forest fire compared to a cookstove.  Diesel 347 

exhaust was expected and detected as present in a sample taken in a mechanical room at the diesel exhaust 348 

exposure facility.  We believe this was due to fugitive emissions of diesel exhaust as with the cookstove 349 

sample.  Cigarette smoke was expected in a sample taken outdoors near a smoking area but only diesel was 350 

detected.  In retrospect, we believe this was due to minimal amount of cigarette smoke present in the sample 351 

as the PM concentration measured by the filter was 6.3 µg/m3, while the average concentration measured 352 

over the same time period at two nearby air monitoring sites in Seattle was 5.5 µg/m3 showing that this 353 

outdoor sample likely consisted of a typical mixture of urban PM that would be expected to include diesel 354 

exhaust.52   355 

4. Conclusions 356 
     We used a CNN model to successfully classify cigarette, diesel, and woodsmoke sources as present or 357 

absent in a series of laboratory samples.  The limit of detection for our method is 0.7, 2.6, and 0.9 µg/m3 in 358 

air for cigarette, diesel, and woodsmoke respectively.  The CNN was able to identify cigarette and 359 

woodsmoke individually and in the presence of the other sources with 98% and 99% accuracy respectively, 360 

while classification of diesel was less accurate with an accuracy of 92%, sensitivity of 0.84 and specificity 361 

of 0.98.  The overall classification accuracy for all three sources was 89%.  When testing the limits of our 362 

algorithm by classifying field samples, some samples were classified as expected while in others, sources 363 

were detected as present even when they were not expected.  This illustrates the need for a training data set 364 

with samples from more sources is needed for application to field samples.   365 
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Figure S1. Laboratory sources of particulate matter: (a) diesel exposure chamber, (b) cigarettes, and (c) clean 
cookstove. Particulate matter collected on a 1-inch diameter PTFE filter shown in a HPEM with the inlet 
removed(d) and PTFE filter in cyclohexane for extraction (e).  

 

 

S1 Limit of Detection 
 
We determined the limit of detection (LoD) of pure sources using the Clinical and Laboratory 

Standards Institute method for determining LoD. 1,2  This procedure accounts for variation present in blank 
measurements and measurements of low levels of analyte to assign a LoD that represents 95% confidence 
in differentiating a low concentration sample from a blank and visa-versa.  First the limit of blank (LoB) 
was determined as, 

 𝐿𝑜𝐵 =  𝜇𝐵 + 1.645𝜎𝐵, (Equation S1) 

where 𝜇𝐵 is the mean and  𝜎𝐵 is the standard deviation of the blank measurement.  This method is assuming 
measurements are normally distributed. 1.645 is the z-score for which 95% of values in the standard normal 
distribution are below.  Next, dilutions of extracts at low levels were analyzed.  Extract concentrations were 
0.5, 1.0, and 2.0 µg/mL for cigarette and woodsmoke and 1.0, 2.0 and 3.0 for diesel.  From these low-level 
measurements, the LoD was calculated as, 

 𝐿𝑜𝐷 =  𝐿𝑜𝐵 + 1.645/ (1 − 14𝑓) ∙ 𝜎𝑆, (Equation S2) 

where 𝜎𝑆 is the average standard deviation of low-level sample measurements and 𝑓 is the degrees of 
freedom calculated as the number of low-level samples analyzed minus one.  For cigarette and woodsmoke, 𝜎𝑆 was calculated from the 0.5, 1.0 and 2.0 µg/mL samples and for diesel from the 1.0, 2.0 and 3.0 µg/mL 

samples.  Figure S2 shows error bars calculated as 1.645/ (1 − 14𝑓) ∙ 𝜎𝑆 for all the low-level samples 

measured.  Graphically, the LoD is where these error bars intersect with the LoB which is shown as a black 
horizontal dashed line in Figure S2.  The LoD in terms of actual concentration (shown on the x-axis) is 
determined by finding the value at which the line of best fit (shown with a dotted line in Figure S2) intersects 
the value of LoD.  The LoD as reported in Table 2 is shown in Figure S2 by the red dashed vertical line. 
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Figure S2. Plots showing data used to determine LoD. Only samples containing a single source were used 
to determine the LoD.  The LoB (Equation S1) is shown by the black horizontal dashed line, the LoD 
(Equation S2) on the predicted concentration-axis (y-axis) is shown by the red horizontal line.  The LoD 
on the true concentration axis is shown by the vertical red dashed line.  This value (reported in Table 2) 
is determined using the line of best fit which is shown as a dotted line.  The model is not constrained to 
predicted only positive concentrations so the LoB for cigarette is slightly below zero due to predicted 
concentrations of blank samples being just below zero.   

 

The Lodes in units of volume of air sampled were calculated assuming a sampling time of 24 hours, an air 
sampling rate of 1.8 liters/min and an extraction volume of 3 ml. An example conversion is given as, 1 µ𝑔𝑚𝑙 𝑠𝑜𝑙𝑣𝑒𝑛𝑡 ∗ 3 𝑚𝑙 𝑠𝑜𝑙𝑣𝑒𝑛𝑡𝑠𝑎𝑚𝑝𝑙𝑒 ∗ 𝑠𝑎𝑚𝑝𝑙𝑒24 h𝑜𝑢𝑟𝑠 ∗ 1 h𝑜𝑢𝑟60 𝑚𝑖𝑛𝑠 ∗ 1 𝑚𝑖𝑛1.8 𝑙𝑖𝑡𝑒𝑟𝑠 𝑎𝑖𝑟 ∗ 1000 𝑙𝑖𝑡𝑒𝑟𝑠1 𝑚3 = 1.16 µ𝑔𝑚3. 

 

S2 Accuracy, Sensitivity and Specificity 
 

The individual classification accuracy and overall classification accuracy are calculated as: Accuracy 
=  (Correctly Identified Samples) / (Total Samples).   Individual accuracy only considers the classification 
results for the source of concern while overall accuracy considers all sources simultaneouslty such that if 
any of the three sources are incorrectly identified (false positive or false negative) the entire sample is 
considered incorrect.  Sensitivity is a measure of the ability of a test to identify positive results successfully 
defined as: Sensitivity =  (True Positives) / (True Positives + False Negatives).  Specificity is a measure of 
ability of a test to classify negative results properly as defined by: Specificity =  (True Negatives) / (True 
negatives + False Positives).  
 

S3 Fluorescent Intensity 
 The measured fluorescent intensity is linearly proportional to PM extract concentration for an 
individual filter.  Figure S3 plots integrated fluorescence intensity for single source spectra vs. PM extract 
concentration.  The R2 values for these dilution series are all close to one.  This nearly perfect linear 
relationship for a dilution series supports our approach of linearly scaling fluorescent intensity when 
generating training data.    
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Figure S3: Integrated fluorescence intensity for single source spectra vs. PM extract concentration.  Two 
dilution series are shown for each source (marked with circles and X’s) for cigarette (a) diesel (b) and 
woodsmoke (c).  The R2 values for linear fit to these dilution series are all above 0.998.  These high R2 
values support our method of linearly scaling fluorescent intensity when generating training data.  

 
 Although fluorescence intensity scales linearly with concentration for a single filter, there is 
significant variation in fluorescence from filter to filter for a given mass concentration.  The fluorescence 
coefficient of variation for samples at 5 µg/mL is 0.09, 0.27, and 0.66 for the cigarette, diesel, and 
woodsmoke.   For this reason, if we fit a single linear line to all single source spectra for each source, we 
obtain R2 values of 0.97, 0.84, and 0.69 for cigarette, diesel, and woodsmoke, respectively (Figure S4).  We 
believe this variation is due in part to the variability in source concentration in the air sampled as well as 
variability in combustion conditions.  For example, we have observed that the fluorescent intensity from a 
filter decreases when HEPA filtered air is passed through the filter after sampling the source.  

 

 

Figure S4: Soot mass vs. integrated fluorescence intensity. Cigarette (A) and woodsmoke (C) have higher 
fluorescence per mass than diesel soot (B).   Samples from multiple filters show a positive correlation 
with concentration, r2=0.97 for cigarette (26 spectra), 0.84 for diesel (29 spectra) and 0.69 for wood 
smoke (26 spectra).  The four points in each plot with a circle around them are the samples used for 
generating the training data. 
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S4 Data Augmentation 
 

 We generated an augmented training dataset consisting of 6,375 spectra by linearly scaling and 
mathematically combining spectra from 12 unique samples (4 from each of the 3 sources, cigarette, diesel 
and woodsmoke).  These 12 spectra are only used in the training data and are not used for testing.  Figure 
S4 shows the integrated fluorescent intensity of single source spectra for cigarette, diesel and woodsmoke.  
The spectra chosen for the data augmentation process are denoted with large circles in Figure S4.  These 
spectra were chosen so that the samples used to generate the training data are not present in any samples in 
the test data.  This means the samples used for data augmentation are not present in any dilutions or 
mixtures.  For cigarette these spectra lay roughly on the line of best fit  (Figure S4-A), for diesel three of 
the calibration spectra lie roughly on the line of best fit and one has above average signal intensity (Figure 
S4-B) and for woodsmoke two calibration spectra are  above the line of best fit, one below and one near 
(Figure S4-C).  The relative intensity of the spectra chosen for training influences the model to over or 
underpredict the test spectra.  For example, the woodsmoke calibration spectra above average fluorescent 
intensity in total so the model tends to underpredict the concentrations of woodsmoke in the test data.  
 To simulate noise and variability we average the four spectra from each source together using a 
weighted average using randomly assigned weights to produce a prototypical spectrum for each source.  
The prototypical spectra for the three sources are scaled to the desired concentration and combined to 
generate a training spectrum.  For each spectrum generated the entire process is repeated in a loop to 
simulate variability associated with PM sampling and EEM collection. This process is depicted graphically 
in Figure 1. 
 We employed two sampling strategies to create the augmented training dataset. First, we created 
1000 spectra for each of the three sources containing only one source in a linearly spaced concentration 
range from 0 to 5 ug/mL, resulting in 3000 spectra. Then we created digital mixtures of the three sources 
in a logarithmically spaced concentration range from 0.01 to 6.3 in fifteen steps (153 combinations) giving 
3375 training spectra consisting of mixtures.   
 This process assumes the Beer–Lambert law to apply to absorbance, constant fluorescence quantum 
yield, and negligible inner filter and matrix effects.3  We tested these assumptions in 2 ways.  First, we 
analyzed series of dilutions made using extracts from single filters.  When looking at just these dilution 
series as plotted in Figure S3 we show that fluorescence is indeed proportional to concentration as we are 
assuming.  Next, to test that matrix effects due to mixing multiple sources together are minimal we 
compared liquid and digital mixtures of the 3 sources to confirm that liquid mixture and the digital mixture 
gave similar results.  The results of this analysis are shown in Figure S5. 
 

 
Figure S5: (a) shows a liquid mixture of cigarette and woodsmoke extracts each at 5 µg/mL,  (b) and  (c) 
show cigarette and woodsmokes extracts respectively also at 5 µg/mL, and (d) is the result of subtracting 
(b) and (c) from (a) showing  nearly zero remaining signal which illustrates that matrix effects due to 
mixing are minimal. 
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S5 Classification of Method Blanks 
 

We collected spectra from four unique method blank filters.  Extracts from two of these method 
blanks were scanned on two separate days giving a total of 6 method blank spectra.   The method blank 
filters were processed in the same manner as other filters which included weighing, loading intro sampling 
devices, and extraction as described in the materials and methods section.  The only step that was not 
conducted with these samples was air sampling.  The spectra from these samples showed almost no 
fluorescence and when input to the model the classification results (Figure S6) were all negative showing 
our sampling procedure and filter material does not cause significant interference. 
 

Figure S6. Classification plots showing classification results for method blank samples.  All method 
blank samples are classified as negative by the algorithm. 

 

S6 Field Sample Spectra 
 
Figure S7A shows “background” field sample spectra from Seattle homes and University of 

Washington buildings.  The spectra are mathematically normalized to an extract concentration of 10 µg 
PM/mL solvent.  Below each spectra a table summarizes the predicted concentration (µg PM/mL solvent) 
and classifies if the source is present based on the criteria applied to the laboratory samples.  The 
classification threshold applied to the laboratory samples was 1 µg PM/mL solvent.  When the normalized 
spectra are classified according to these criteria the algorithm will assign the source as present if the 
algorithm predicts the source makes up 10% or more of the spectra from the field sample. 

Figure S7B shows “expected primary source” filed sample spectra collected in areas or at times 
when we expected the samples to be made up of a majority of cigarette, diesel or woodsmoke sources.  
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Figure S7A. Background field samples taken in homes of researchers and inside campus buildings.  The 
spectra look most similar to cigarette and diesel.  The table below each spectrum shows the model 
predicted concentration of each source (µg PM/mL solvent) and the associated classification.  A one 
indicates the spectra was classified as containing the source while a zero indicates not present. 
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Figure S7B. Expected primary source field samples taken in locations where there was an a priori 
expectation that a primary source would contribute to the spectra.  The table below each spectrum shows 
the model predicted concentration of each source (µg PM/mL solvent) and the associated classification.  
A one indicates the spectra was classified as containing the source while a zero indicates not present. 

 

 

 

S7 PLS and Linear Model Results 
 

We used the same testing and training data to assess a Partial Least Square (PLS) model.  PLS, also 
known as “Projection to Latent Structure” is a modeling technique that projects the original predictors 
(fluorescent intensities) and responses (concentrations) into a lower dimensional space.  The new 
representation of the predictors and responses are used to fit a linear model.  The conceptual framework of 
PLS is described by G. James et al. in An Introduction to Statistical Learning: with Applications in R  and 
Wegelin provides a detailed discussion of the PLS algorithm.4,5 We implemented the PLS algorithm using 
Scikit-learn in Python 3.6 

The number of dimensions in the lower dimensional space (referred to as components) is a tuning 
parameter for a PLS model.  We fit models with 3 to 6 components.  Of these models the 3-component 
model had the best results which are shown in Figure S8.  The PLS model performance for Cigarette and 
Woodsmoke was acceptable with an accuracy of 88% for these sources, but it was unable to accurately 
identify diesel resulting in 49% accuracy for diesel and an overall accuracy of 41%. 
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Figure S8. PLS classification results for a three-component model.  The PLS model performs acceptably well on 
cigarette and woodsmoke but fails to classify diesel with any accuracy. 

 
We fit a linear model to the test data set.  First, we determined average EEM spectra (𝑺𝑎𝑣𝑔) for 

each source using the 4 calibration spectra from each source as: 𝑺𝑎𝑣𝑔 = ∑ 𝑺𝑖 𝑐𝑖⁄4
𝑖=1 , 

where 𝑺𝑖  is a single source calibration-spectra and 𝑐𝑖 is the concentration of the calibrant?  We assumed 
the 3 average spectra profiles could be used to reconstruct a test spectrum according to, 𝑺 =  𝑐𝐶𝑺𝐶 + 𝑐𝐷𝑺𝐷 +  𝑐𝑊𝑺𝑊 +  𝑬, 
Where 𝑺 is a test-spectra, 𝑐𝐶, 𝑐𝑑, and 𝑐𝑑 are the predicted concentrations of cigarette, diesel and 
woodsmoke, respectively, 𝑺𝐶 , 𝑺𝐷 , and 𝑺𝑊  are the average EEM spectra for cigarette, diesel and 
woodsmoke, respectively and E the error.  To predict the three concentration values, we used the 
Needler-Mead optimization algorithm in SciPy to minimize the root-mean-square of 𝑬.   

 The results of the linear model are summarized in Figure S9.  The performance of this model was 
superior to the PLS model, with an overall accuracy of 63%, but was worse than the CNN model that had 
an overall accuracy of 89%.  The performance of the linear model on cigarette and woodsmoke was close 
to the performance of the CNN with accuracies of 93% and 98% compared to 98% and 99%.  The linear 
model performed poorly on diesel with an accuracy of only 70% compared to an accuracy of 92% for the 
CNN model.       
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Figure S9. Linear model classification results. The linear model performed well on cigarette and woodsmoke but 
had poor performance on diesel.  The poor performance on diesel led to the low overall classification accuracy of 
63%  

 
 

S8 Model Training  
 

We trained the model for a total of 150 epochs.  At each epoch we saved the model parameters and 
prediction results.  At the end of the 150 epochs of training we selected the model with the best overall 
classification accuracy.  The results presented in the paper are for a single model training run.  The model 
was trained for 80 epochs to achieve the reported results.  We repeated the training process a total of three 
times and each time resulted in an overall accuracy of 89%.  The other two model training runs reached 
89% accuracy at 73 and 85 epochs.   

In Figure S10A we plot overall accuracy vs. epoch with a solid blue line and show the individual 
accuracies of cigarette, diesel, and woodsmoke with circles, squares, and triangles, respectively.  In just a 
few epochs the model learns to accurately classify cigarette and woodsmoke, but it takes much longer to 
improve accuracy on diesel.  The diesel classification accuracy varies more over each epoch than the others 
due the lower signal intensity of diesel and the resulting higher limit of detection.   

In figure S10B we plot loss vs. epoch, using the mean-squared-error as the loss function.  The 
training loss is noisy due to the small size of the training data set.  This plot shows that the test loss reaches 
a minimum near 80 epochs suggesting that training beyond this point will result in overfitting.  
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Figure S10. (A) Plot of classification accuracy as the CNN is trained for 150 epochs.  Overall accuracy is shown 
with a solid blue line and the individual accuracies for cigarette, diesel, and woodsmoke are show with orange 
circles, brown squares, and green triangles, respectively.  We selected the model trained for 80 epochs based on it 
having the highest overall classification accuracy of 89%.  (B) Plot of model loss as the CNN is trained for 150 
epochs.  A leveling off the test loss at about 80 epochs suggests that training beyond this point results in overfitting.   

 

S9 EEM Spectra from Water and Methanol Extracts 
 
We evaluated extracts in various solvents by dividing filters into quarters using a scalpel.  We compared 
spectra from extracts in ultrapure water, methanol and cyclohexane.  Results were similar for methanol 
and cyclohexane while water extracts showed different spectra.  Methanol and cyclohexane extracts were 
measured at lower concentrations (5ug/mL) compared to water extracts (25ug/mL and 10 ug/mL for 
cigarette and woodsmoke respectively).  Accounting for the concentration difference between the 
extracts, the cyclohexane extracts had the best signal intensity.  The goal of our work is to identify 
combustion sources of PM, so cyclohexane is a good choice for solvent given the observed signal 
intensity and the fact that combustion products are expected to contain non-polar fluorophores such as 
polycyclic aromatic compounds (PAHs).   
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Figure S11. EEMs of in various solvents.  Cigarette in cyclohexane at 5 µg/mL (A), in methanol at 5 µg/mL (B), 
and in ultra-pure water at 25 µg/mL (C).  Woodsmoke in cyclohexane at 5 µg/mL (D), in methanol at 5 µg/mL (E), 
and in ultra-pure water at 10 µg/mL (F). 
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