
VU Research Portal

Excitation energies with time-dependent density matrix functional theory: Singlet two-
electron systems
Giesbertz, K.J.H.; Pernal, K.; Gritsenko, O.V.; Baerends, E.J.

published in
Journal of Chemical Physics
2009

DOI (link to publisher)
10.1063/1.3079821

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Giesbertz, K. J. H., Pernal, K., Gritsenko, O. V., & Baerends, E. J. (2009). Excitation energies with time-
dependent density matrix functional theory: Singlet two-electron systems. Journal of Chemical Physics, 130(11),
114104. https://doi.org/10.1063/1.3079821

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 24. Aug. 2022

https://doi.org/10.1063/1.3079821
https://research.vu.nl/en/publications/d47698d8-8a7b-46c1-96b0-2d9983ac9c80
https://doi.org/10.1063/1.3079821


Excitation energies with time-dependent density matrix functional theory:
Singlet two-electron systems

K. J. H. Giesbertz,1 K. Pernal,1,2 O. V. Gritsenko,1 and E. J. Baerends1,a�

1Theoretical Chemistry, VU University, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
2Institute of Physics, Technical University of Lodz, ul. Wolczanska 219, 93-005 Lodz, Poland

�Received 3 November 2008; accepted 20 January 2009; published online 19 March 2009�

Time-dependent density functional theory in its current adiabatic implementations exhibits three
striking failures: �a� Totally wrong behavior of the excited state surface along a bond-breaking
coordinate, �b� lack of doubly excited configurations, affecting again excited state surfaces, and �c�
much too low charge transfer excitation energies. We address these problems with time-dependent
density matrix functional theory �TDDMFT�. For two-electron systems the exact
exchange-correlation functional is known in DMFT, hence exact response equations can be
formulated. This affords a study of the performance of TDDMFT in the TDDFT failure cases
mentioned �which are all strikingly exhibited by prototype two-electron systems such as dissociating
H2 and HeH+�. At the same time, adiabatic approximations, which will eventually be necessary, can
be tested without being obscured by approximations in the functional. We find the following: �a� In
the fully nonadiabatic ��-dependent, exact� formulation of linear response TDDMFT, it can be
shown that linear response �LR�-TDDMFT is able to provide exact excitation energies, in particular,
the first order �linear response� formulation does not prohibit the correct representation of doubly
excited states; �b� within previously formulated simple adiabatic approximations the
bonding-to-antibonding excited state surface as well as charge transfer excitations are described
without problems, but not the double excitations; �c� an adiabatic approximation is formulated in
which also the double excitations are fully accounted for. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3079821�

I. INTRODUCTION

Dissociation of molecular systems poses a serious chal-
lenge within the density functional theory �DFT� framework.
This is already true for the ground state energy curve, cf.
e.g., Refs. 1 and 2. For excited states the problems are even
worse, there are various kinds of excitations which are not
correctly represented in time-dependent DFT �TDDFT� cal-
culations. Figure 1 displays the failure of TDDFT �in its
adiabatic GGA �BP86� variant� for the potential energy sur-
face �PES� of the first excited state of H2, 1 1�u

+. As high-
lighted in Ref. 3, this PES goes to zero instead of going
through a minimum and then asymptotically to �10 eV as is
the case for the exact excitation energy �triple zeta basis plus
polarization function �TZP� basis set is used here�. In Ref. 4
this catastrophic behavior of adiabatic TDDFT has also been
shown for Li2 and N2. B3LYP does not improve the situation
the least. This state corresponds to the simple �g→�u orbital
excitation in H2. The prototypical photochemical bond-
breaking event resulting from bonding-to-antibonding orbital
excitation takes place on the triplet surface �1 3�u

+� corre-
sponding to the same excited ��g�1��u�1 configuration. The
triplet state is typically populated by intersystem crossing
from the singlet state, hence the great importance of this type
of excitation. The failure of TDDFT is not just quantitative,
in very large basis sets such as aug-cc-pVQZ basis the exact
excitation energies as well as the TDDFT ones change con-

siderably for the higher excited states, actually deteriorating
the agreement between the two, but the TDDFT 1 1�u

+ con-
tinues to exhibit the same qualitatively wrong behavior. In
Fig. 2 we show the TDDFT �g

+ excitation energies of disso-
ciating H2. It is evident that there is an exact state �the third
at Re=1.4 bohr�, which is completely missing in the TDDFT
calculations. It becomes lower with increasing R and has �in
the exact calculations� avoided crossings with the second and
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FIG. 1. TDDFT potential energy curves for the lowest 1�u
+ excited states for

dissociating H2 in a TZP basis set. Solid lines: Exact solutions in the given
basis; dashed lines: TDDFT-BP86; dotted lines: TDDFT-B3LYP.
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first state, becoming the lowest excited 1�g
+ state �2 1�g

+�
from �2.5 bohr onward. This is a doubly excited state,
��g�2→ ��u�2. It is totally missing in the TDDFT calcula-
tions. After some initial optimism that such doubly excited
states would be accurately calculated in TDDFT,5–7 it has
become clear this is not the case.8–11 We note in passing that
also in the higher part of the spectrum—above 0.6 Hartree—
TDDFT performs very poorly, there is hardly any agreement
with the exact spectrum. In Fig. 3 the energies for a few
charge transfer excitations are shown, namely, the excitation
energies for the lowest three 1� excited states of HeH+ along
the dissociation coordinate. The TDDFT excitation energies
exhibit the well-known severe underestimation at long dis-
tance, where these excitations have strong charge transfer
character, from He�1s� to H�1s� in 21� and from He�1s� to
H�2s ,2pz� in 31� and 41�. The hybrid functional B3LYP
improves a little on the pure GGA BP86. We note that in the
charge transfer excited states we do not have oppositely

charged fragments, but a neutral atom �H� and a positive ion
�He+�. Accordingly, the energy does not have a −1 /R
asymptotic behavior. One of the errors of TDDFT is that this
−1 /R behavior is lacking for the case of a positive and nega-
tive fragment, but most of the TDDFT error arises from the
failure of the adiabatic exchange-correlation kernels of TD-
DFT to make the large correction that is required in this
case12 to the Kohn–Sham �KS� one-electron energy differ-
ence, which is the leading term in the TDDFT excitation
energy calculation. We will use the HeH+ system to test if the
methods developed in this paper work for charge transfer
excitations, although we recognize that the TDDFT error for
he HeH+ system is somewhat atypical for TDDFT, which we
briefly explain in Appendix A.

A remedy for these deficiencies of DFT might be sought
in density matrix functional theory �DMFT�.13–24 For the
ground state total energy curve along the dissociation coor-
dinate, successes have already been reported18 with approxi-
mate DM functionals that represent improvements on the
form formulated long ago by Müller13 and Buijse and
co-worker.14,15 It is the purpose of the present paper to ad-
dress the above-mentioned problem cases for TDDFT exci-
tation energy calculation with DMFT, using the development
of linear response based time-dependent density matrix func-
tional theory.25,26 We will restrict ourselves to the two-
electron systems H2 and HeH+, which exhibit all the prob-
lems, but which have the advantage that we do not have to
introduce an approximate functional since the exact one is
known for two-electron systems �see below�. A preliminary
account has appeared.27

We will first set up and study the equations of exact
linear response �LR�-TDDMFT, without any further approxi-
mation, neither an adiabatic approximation �AA� in the “ker-
nel” nor an approximation in the functional. Next we will
investigate AAs, which will be advantageous in order to
speed up the calculations and which will be required when
approximate functionals will be introduced for many-
electron systems. Here we shall investigate if adiabatic TD-
DMFT is able to solve the trouble described above with adia-
batic TDDFT.

In DMFT, the one-body reduced density matrix, instead
of just the density ���x��, is used to represent the system. The
one-body reduced density matrix of an N-electron system,
which will be denoted one-matrix hereafter, is given as

��x1,x1�� � ����̂†�x1���̂�x1���	

= N
 dx2. . .
 dxN��x1,x2, . . . xN�

� ���x1�,x2, . . . ,xN� , �1�

where xi denotes the combined spatial coordinate and spin
index �xi=risi�. Note that the density of the system is given
by the diagonal ���x�=��x ,x��. The one-matrix is a Hermit-
ian function, so it can be written in its spectral form

��x,x�� = �
k

nk	k�x�	k
��x�� . �2�
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FIG. 2. TDDFT potential energy curves of the lowest 1�g
+ excited states for

dissociating H2 in a TZP basis. Solid lines: Exact solutions in the given
basis; dashed lines: TDDFT-BP86; dotted lines: TDDFT-B3LYP.
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FIG. 3. Potential energy curves of 1� excitations for dissociating HeH+.
Solid lines: Exact solutions in the given basis; dashed lines: TDDFT-BP86;
dotted lines: TDDFT-B3LYP. The dots indicate a high �1�g�2→ �1�u�2

double excitation character.
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The eigenfunctions are referred to as natural orbitals
�NOs� and the eigenvalues are called the �natural� occupation
numbers. If the one matrix is known, the kinetic energy and
potential energy of the system are known exactly since they
only involve one-body operators. However, the contribution
of the interaction between the particles requires knowledge
of �the diagonal of� the two-body reduced density matrix,
which will be named two-matrix hereafter. We define the
two-matrix with the following normalization:


�x1x2,x2�x1�� � ����̂†�x1���̂
†�x2���̂�x2��̂�x1���	 . �3�

The Hohenberg–Kohn theorem28 for the diagonal density can
be extended to the one-matrix: There is a one-one correspon-
dence between ground state wave functions and one matrices
��↔��.29 Therefore all the ground state quantities can be
regarded as functionals of the one matrix, including the two
matrix. The ultimate success of DMFT will depend on find-
ing accurate one-matrix functionals for the exchange and
correlation energies. For two-electron systems, however,
such an approximation is not necessary, as can be seen as
follows. The spatial part of a singlet two-electron wave func-
tion is symmetric at all times t, so the matrix C�t� of Eq. �4�
is symmetric as well. It can be diagonalized by a unitary
matrix U�t� by the transformation �U�t�C�t�UT�t��kl=ck�t��kl,

��r,r�;t� = �
kl

Ckl�t�	k�r�	l�r�� = �
k

ck�t��k�rt��k�r�t� .

�4�

The density matrix �=2CC† is obtained in the diagonal form

��r,r�;t� = �
kl

�kl�t�	k�r�	l
��r�� = �

k

nk�t��k�rt��k
��r�t� ,

�5�

which shows that the wave function coefficients c�t� of Eq.
�4� are related to the NO occupation numbers, nk�t�
=2�ck�t��2. Also the two-matrix reduces to a particularly
simple form


�r1,r2,r2�,r1�;t� = �
klrs


klrs�t� � 	s
��r1��	r

��r2��	l�r2�	k�r1�

= �
klrs

�2ck�t�cs
��t��kl�rs�

� �s
��r1�t��r

��r2�t��l�r2t��k�r1t� . �6�

This shows that in a singlet two-electron system the two-
matrix can be reconstructed easily from the one-matrix �ex-
cept that the phase of the expansion coefficients ck�t� is not
known from ��. It is this property which gives two-electron
systems their special place in DMFT.

Lately, it has been realized that analogous to the time-
dependent generalization of DFT due to Runge and Gross,30

a time-dependent formulation of DMFT should also be
possible.25,26 The formalism is based on the equation of mo-
tion �EOM� of the one matrix, which depends on the time-
dependent two matrix. This equation was already known as a
part of the Bogolyubov–Born–Green–Kirkwood–Yvon
�BBGKY� hierarchy.31 The BBGKY hierarchy has a “chain-
like” structure, where the calculation of the n-body reduced

density matrix requires the EOM of the �n+1�-body reduced
density matrix. Therefore it contains the EOMs of all the
reduced density matrices up to the N-matrix. Using all the
reduced density matrices would be equivalent to a calcula-
tion of the time-dependent Schrödinger equation and is not
feasible. Therefore, this “chain” has to be terminated in ac-
tual calculations. It is common practice to retain at least the
EOM of the two-matrix to ensure energy conservation.32

However, in TDDMFT only the EOM of the one matrix is
kept and the time-dependent two matrix has to be recon-
structed from the time-dependent one matrix, which can be
done for singlet two-electron systems.

First we derive in Sec. II some conditions for a station-
ary state, which serves as our reference state for the linear
response. Then we use the time-dependent Schrödinger equa-
tion to obtain the EOM for the wave function, in particular,
its expansion coefficients C�t�. Using the stationary state as a
reference state, we derive in Sec. IV exact response equa-
tions for the singlet two-electron wave function. Since the
wave function and the one matrix have large similarities for
the singlet two-electron system, we can easily transform the
LR equations of the wave function into exact LR-TDDMFT
equations.

Subsequently �Sec. V�, these equations are studied.
However, the �-dependence of the effective response matrix
in the case of exact LR-TDDMFT precludes finding its zeros
by a simple diagonalization. Moreover, the �-dependence is
not known for general N-electron systems. AAs are therefore
introduced in Sec. VI. Finally, in Sec. VII the results for the
excited state potential energy curves of H2 and HeH+ are
presented and the conclusions are formulated in Sec. VIII.

II. STATIONARY STATES

The Hamiltonian of a general nonrelativistic two-
electron system

Ĥ�r1,r2� = T̂ + V̂ + Ŵ = ĥ�r1� + ĥ�r2� + w�r1,r2� , �7�

has a one-electron part consisting of the kinetic energy and a
local �external� potential

ĥ�r� = − 1
2�r

2 + v�r� , �8�

and a two-particle interaction given by Ŵ=w�r1 ,r2�=r12
−1.

Since the Hamiltonian is invariant under time-reversal, it suf-
fices to work with a real representation of the wave function
for the stationary states. Therefore we can choose all the
quantities in the diagonal expansion �Eq. �4�� to be real and
we obtain the expression originally noted in Ref. 33,

��r1,r2� = �
k

ck	k�r1�	k�r2� . �9�

The spatial part of the one-particle density matrix becomes

��r,r�� = 2�
k

ck
2	k�r�	k

��r�� �10�

so the NO occupations are nk=2ck
2. Using the following defi-

nitions of the integrals:

hkl �
 dr	k
��r�ĥ�r�	l�r� , �11a�

114104-3 Excitation energies with TDDMFT J. Chem. Phys. 130, 114104 �2009�
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wklrs �
 dr1
 dr2	k
��r1�	l

��r2�w�r1,r2�	r�r2�	s�r1� ,

�11b�

the energy is simply calculated to be

E � ���Ĥ��	 = �
k

nkhkk + �
kl

ckclwkkll. �12�

We note in passing that this energy is not strictly a one-
matrix functional since it depends on the choice of the signs
of the coefficients �ck, while the one matrix, hence any ex-
plicit one-matrix functional, does not. This point is not un-
important, but it does not affect the developments in this
paper, and we proceed to determine the NOs �	k and coef-
ficients �ck �and from them the occupations nk� by optimiz-
ing the energy under the constraints that the NOs should be
orthonormal and the wave function should be normalized. To
this end we introduce the following Lagrangian

 = ���Ĥ��	 − �
kl

�kl��	l�	k	 − �lk� − ���
k

ck
2 − 1� .

�13�

To optimize the energy under these constraints, we differen-
tiate the Lagrangian  with respect to 	l�r�, 	k

��r�, and ck to
find its stationary points

�

�	k
��r�

= 2�
p

ckcphkp	p�r� + nk�ĥ	k��r�

+ 2�
p

ckcp�	k�w�	p	�r�	p�r� − �
p

�kp	p�r� = 0,

�14a�

�

�	l�r�
= 2�

p

cpclhpl	p
��r� + nl�ĥ	l���r�

+ 2�
p

cpcl�	p�w�	l	�r�	p
��r� − �

p

�pl	p
��r� = 0,

�14b�

1

2

�

�ck
= �2hkk − ��ck + �

p

cpwppkk = 0. �14c�

The solutions are dependent on the values of the Lagrange
multipliers, which we should determine from the constraints.
We will, however, not solve the integrodifferential equations
for the NOs and the coefficients �cp explicitly, but derive a
few useful relations. Equations �14a� and �14b� determine,
with the correct values of the Lagrange multipliers and the
coefficients substituted, the NOs. We use the orthogonality
constraint by multiplying Eq. �14a� by 	l

��r� and multiplying
Eq. �14b� by 	k�r�, and integrating to obtain in both cases
�kl. Subtracting these expressions for �kl gives

0 =
 dr	l
��r�

�

�	k
��r�

−
 dr	k�r�
�

�	l�r�

= �nk − nl�hkl + 2�ck − cl��
p

cpwppkl, �15�

which will be proven useful later.
The Lagrange multiplier � can be obtained from the nor-

malization constraint by multiplying Eq. �14c� by ck and
summing over k. Using the constraint �kck

2=1, one obtains

� = �
k

nkhkk + �
kl

ckclwkkll. �16�

Comparing Eq. �16� to Eq. �12�, we see that not unexpect-
edly the energy E and � �often denoted the chemical poten-
tial� are related by E=�.

Equations �14c� and Eq. �15� can be combined into the
simple equation

�ck + cl�hkl + �
p

cpwppkl = �ck�kl, �17�

which will be proven to be another useful analytical relation.
Our results in this section constitute sets of equations

that determine the stationary wavefunctions. Their solutions
are equivalent to the full configuration interaction �CI� solu-
tions. These sets of equations are nonlinear and they are
coupled and are difficult to solve in general. We use the
results of this section primarily for the analytical relations
that have been obtained, in order to simplify the response
equations.

III. TIME-DEPENDENT LINEAR RESPONSE DMFT

The excitation energies can be conveniently obtained
from the poles of the one-matrix response function ����. To
obtain ���� or to be more precise �−1��� we need the equa-
tion for the time-dependent response of the one matrix to a
small time-dependent perturbing potential, see Ref. 25. For
completeness we give a brief derivation here.

We start from the EOM of the one matrix, which can
easily be constructed by combining the EOMs of the creation
and annihilation operators,

i�̇kl�t� = �
r

�hkr�t��rl�t� − �kr�t�hrl�t��

+ �Wkl
† ����t� − Wkl����t�� , �18�

where W�t� is defined as

Wkl�t� � �
rst


krst����t�wtsrl. �19�

Suppose that the system is first in a stationary state and that
the one matrix is given in its diagonal representation �kl

=nk�kl. Now we perturb the system by a potential �v�t�. Col-
lecting all first order contributions in the EOM, we have

114104-4 Giesbertz et al. J. Chem. Phys. 130, 114104 �2009�
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i��̇kl�t� = �nl − nk��vkl�t� + �
r

�hkr��rl�t� − ��kr�t�hrl�

+
 dt��
rs

Kkl,sr�t − t����rs�t�� , �20�

where we used the coupling matrix K�t− t�� to describe the
effects from the interactions between the electrons

Kkl,sr�t − t�� ����Wkl
† ����t� − Wkl����t��

��rs�t��
�

��0�
. �21�

To go to the frequency domain, we take the Fourier trans-
form which conveniently transforms the convolution product
in an ordinary product

���kl��� = �nl − nk��vkl��� + �
r

�hkr��rl��� − ��kr���hrl�

+ �
rs

Kkl,sr�����rs��� . �22�

In general we do not have an explicit expression for K���
and we have to resort to approximations. In particular we
will ultimately need �-independent approximations, which
should result from the AA, to make the response equations
routinely solvable. However, in this paper we will recon-
struct the effects of the exact K��� in the case of a two-
electron system by considering the response of the wave
function first and transforming it to the response of the one
matrix.

IV. WAVE FUNCTION DYNAMICS

The most straightforward way to derive the EOM for the
wave function is to use the time-dependent Schrödinger
equation directly on a CI expansion for the spatial part of the
singlet two-electron wave function

i�t�
kl

Ckl�t�	k�r�	l�r�� = Ĥ�t��
kl

Ckl�t�	k�r�	l�r�� , �23�

as was done in Ref. 26. To obtain an EOM for the expansion
coefficients C�t�, we multiply by 	k

��r�	l
��r�� and integrate

over the coordinates to obtain

iĊkl�t� = �
r

�hkr�t�Crl�t� + Ckr�t�hrl�t�� + �
rs

wklrsCsr�t� .

�24�

We will be interested in linear response. Suppose we have a
system initially in a stationary state, so Ckl�t�=e−iEtck�kl and
Eq. �17� is satisfied. We will perturb the system with a po-
tential �vkl�t� which will induce a first order response in the
coefficients

Ckl�t� → e−iEt�ck�kl + �Ckl�t�� , �25�

where for convenience the �Ckl�t� are defined such that an
overall phase factor e−iEt can be used. For the perturbed co-
efficients �Ckl�t� we get the following EOM:

i�Ċkl�t� = �cl + ck��vkl�t� − E�Ckl�t�

+ �
r

�hkr�t��Crl�t� + �Ckr�t�hrl�t��

+ �
rs

wklrs�Csr�t� . �26�

In order to exhibit clearly the number of independent vari-
ables, we consider separately the response of the real and
imaginary parts of the Ckl,

i�Ċkl
R/I�t� = �ṽkl

I/R�t� − �
rs

Kkl,rs�Csr
I/R�t� , �27�

where we introduced the Hermitian K matrix

Kkl,rs � E�ks�lr − �hks�lr + �kshlr� − wklrs, �28a�

�ṽkl
I/R�t� � �cl + ck��vkl

I/R�t� , �28b�

fR/I � 1
2 �f � f�� . �28c�

Because C is a symmetric matrix, there are only m2+m in-
dependent variables �all �Ckl

I/R�t� , l�k� and equations. The
equations are Fourier transformed to the frequency domain,

��Ckl
R/I��� + �

r�s

K̃kl,rs�Csr
I/R��� = �ṽkl

I/R��� , �29�

where K̃ is defined as

K̃kl,rs �
1

1 + �rs
�Kkl,rs + Kkl,sr� . �30�

Note that we effectively derived the inverse response func-
tion, �−1���, for �C and �ṽ. This can be better seen if we
cast Eq. �29� in the matrix form

��1M+m K̃

K̃ �1M+m
���CR���

�CI���
� = ��ṽI���

�ṽR���
� . �31�

The excitation energies are easily found as the eigenvalues of

K̃ since we need for an excitation

0 = ��−1���� = ��1 K̃

K̃ �1
� = ��1 − K̃� · ��1 + K̃� . �32�

We use m for the number of diagonal elements Ckk
R/I ,k

=1, . . . ,m �m is the number of basis functions�, and M
=m�m−1� /2 for the number of unique off-diagonal CR/I ele-
ments ��Ckl

R/I , l�k�. As an illustration we have calculated the

excitation energies of H2 by diagonalizing K̃ in an aug-cc-
pVQZ basis set.34,35 First the ground state NOs were ob-
tained by a CI singles and doubles �CISD� calculation with
the GAMESS-U.K. package.36 The integrals in the NO basis
were stored on file for the excitation calculation. The expan-
sion coefficients �cp were calculated within the program us-
ing Eq. �14c� directly. For the linear algebra we used the
LAPACK routines.37

The results for the first 1�g
+ and 1�u

+ excitations are
shown in Table I. As a check we also calculated the excita-
tion energies exactly �within the given basis set� by solving
for multiple roots in CISD calculations with the DALTON
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package.38 These benchmark values are shown in the first
column. For a good agreement it was necessary to set a very
tight criterion for the roots in Dalton and explicitly demand a
Cartesian basis set �which is what we are also using�. The
agreement between the CISD �full-CI in this case� and the
linear response calculations is perfect �within the numerical
precision of the calculations�. It is to be noted that the lowest
excited 1�g

+, which we have seen involves doubly excited
configurations, is perfectly represented in the linear response
calculations.

V. EXACT LINEAR RESPONSE TDDMFT

A. The exact „�-dependent… equations

We now proceed to derive the exact response equations
of the density matrix, �����. Since the one matrix is Hermit-
ian, we have m2 variables in total �the M real and M imagi-
nary parts of the off-diagonal elements ��kl���, l�k, and m
real diagonal elements�. In general the wave function has
many more degrees of freedom, but in the two-electron case
this is actually only m more �the imaginary parts of the di-
agonal elements �Ckk

I have to be included since the C matrix
is symmetric, not Hermitian�. The size of the TDDMFT re-
sponse problem is not only reduced compared to the wave
function response of Eq. �29�, the structure of the response
equations is also more complicated due to �-dependence of
the DM response matrix, see below.

The one matrix is simply related to the wave function
expansion coefficients as �kl�t�=2�C�t�C†�t��kl, so for the
perturbed ��R/I��� we have ��kl

R/I���=2�cl�ck��Ckl
R/I���

���� sign for the imaginary parts�. We see that all the �C���
terms have a corresponding ����� term except the diagonal
�Ckk

I , which agrees exactly with the fact that m fewer vari-
ables are needed for the density matrix response.

It is convenient to use instead of the off-diagonal ��kl���
the equivalent variables

��̃kl
R ��� = ��kl

R ���/2�cl + ck� = �Ckl
R ��� , �33a�

��̃kl
I ��� = ��kl

I ���/2�cl − ck� = �Ckl
I ��� , �33b�

for the elements l�k. For the diagonal elements we use in-
stead of ��kk���=�n���� the variables

�ñk��� = ��kk���/4ck = �Ckk
R ��� . �33c�

We can now immediately use the linear response equations
of the wave function to obtain the TDDMFT response equa-
tions up to this trivial transformation

�� −
CCT

�
���̃R��� + A��̃I��� −

CE
�

�ñ���

= −
1

�
C�ṽD��� , �34a�

���̃I��� + A��̃R��� + C�ñ��� = �ṽR��� , �34b�

�� −
E2

�
��ñ��� + CT��̃I��� −

ECT

�
��̃R���

= −
1

�
E�ṽD��� , �34c�

where we denoted the off-diagonal subblock of K̃ with A,
the diagonal subblock with E and the off-diagonal
�diagonal subblock with C, i.e.,

Akl,sr = K̃kl,rs ∀ k � l, r � s , �35a�

=E��kr�ls + �ks�lr� − �wklsr + wklrs�

− ��krhls + �kshlr + �lrhks + �lshkr� , �35b�

Ckl,r = K̃kl,rr ∀ k � l , �35c�

=− 2�hkl��kr + �lr� + wklrr� , �35d�

Ekr = K̃kk,rr = 2��E − 2hkk��kr − wkkrr� . �35e�

For the potential �ṽ we write �ṽD for the vector of diagonal
elements �ṽkk ,k=1, . . . ,m, while �ṽR is the vector of off-
diagonal elements �ṽkl ,k� l. The matrices A and E are Her-
mitian, while C is symmetrical in the kl indices in the case of
real functions.

Note that these equations are exact response equations
for the one matrix. They show the explicit �-dependence of
the nonadiabatic terms in the response equations, which is

TABLE I. The first �g
+ and �u

+ excitations of H2 in hartree for several bond
distances compared to a DALTON CISD calculation.

RH–H

�bohr� Excitation DALTON Eq. �32�

1.5 �g
+ 0.470 341 871 0.470 341 869

�u
+ 0.452 601 361 0.452 601 359

5.0 �g
+ 0.294 179 573 0.294 179 573

�u
+ 0.289 329 519 0.289 329 519

10.0 �g
+ 0.362 455 118 0.362 455 117

�u
+ 0.362 402 224 0.362 402 224

1Σ
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2Σ
g

+

1Σ
u

+

3Σ
g

+
2Σ

u

+ 1Π
u

1Π
g4Σ
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FIG. 4. The eigenvalues �i��� of ��1−�����−1 for H2 at a bond distance of
5.0 bohr calculated with an aug-cc-pVQZ basis set, plotted as function of �.
To speed up the calculation, only pairs kl with l�3 and k=1, . . . ,m were
used �see Sec. V C�. The thick lines are doubly degenerate roots. The dashed
line is ����=�.
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pleasingly simple. Further note that these equations are non-
linear in � which implies that the excitation energies cannot
be calculated by a straightforward diagonalization. Instead,
we have to solve the following matrix equation:

�
CCT

�
− A

CE
�

− A 0 − C
ECT

�
− CT E2

�

����̃R���
��̃I���
�ñ���

� = ����̃R���
��̃I���
�ñ���

� . �36�

We can solve the equations iteratively by diagonalizing the
matrix for trial values of �, and search for those values of �,
where an eigenvalue �i��� becomes equal to the input �. The
solutions are the � values where the curve �i��� intersects
the line �=�. As an example of this procedure we show the
lowest roots �i��� of the matrix as a function of � in Fig. 4
and determine its intersections with �=�. It is interesting
that we have here an example of the form the �-dependence
of the exchange-correlation kernel may take, and of the ef-
fects of this �-dependence, which has received considerable
attention in the TDDFT case.8,9,39,40 For all � there is an
�0���=0 eigenvalue. The line �0���=0 is cut by the �=�
line at �=0, yielding the trivial “zero-excitation” solution
�=0 �this solution is better called “trivial” than “erroneous,”
cf. Ref. 25�. We will next discuss the results that are obtained
in this way for the excitation energies and for the composi-
tion of the solution vectors of ��̃kl elements.

B. Interpretation of the results of TDDMFT calculations

The following observations can be made �see the com-
position of the solution vectors in Tables II–IV and NO com-
position in Table V�.

�a� The most striking observation is that many excitation
energies are totally independent of �, and are equal to
the exact energies at any �. This is strong encourage-
ment for TDDMFT. For the present highly symmetrical
molecule this phenomenon is related to the symmetry,
i.e., all excitations to states of different symmetries
than the ground state, e.g., to �u

+, �u, and �g states, are
independent of �. Good quality will certainly persist
with �small� perturbation of the symmetry �see below
for HeH+�. This indicates that �-dependence is rela-
tively unimportant, which suggests that very accurate
excitation energies can also be obtained within AAs
��-independent approximations� to the inverse re-
sponse matrix of TDDMFT. The distinguishing elec-
tronic structure feature of these excitations is that they
do not contain diagonal doubles �no �ñ elements�: Si-
multaneous double excitations to the same orbital occur
in a different symmetry ��g

+�. Table IV demonstrates
that the 1 1�u

+ at 5 bohr is predominantly the 1�g

→1�u single excitation, as expected. �All our calcula-
tions are for singlet excited states; we will not indicate
this explicitly in the state symbols.� Similarly the low-
est �u and �g excitations have the expected character
of single excitation to the 2p� orbitals. The higher ex-
citations in these symmetries also have plausible elec-
tronic character. However, the NOs are ordered by their
occupation numbers. There are no orbital energies like
in the KS model. Low occupation numbers sometimes

TABLE II. Most important components of the �g
+ excitations of H2 at

R�H–H�=5.0 bohr.

k , l

1�g
+ 2�g

+ 3�g
+ 4�g

+ 5�g
+

���̃kl
R �2+ ���kl

I �2

3,1 0.18 0.13 0.14
6,1 0.18 0.03 0.09

19,2 0.04 0.15 0.13 0.10
109,1 0.07 0.28 0.42 0.03
110,2 0.04 0.33

k ��ñk�2

1 0.63 0.19 0.02
2 0.37 0.33 0.01 0.04

TABLE III. Most important components of the �g/u excitations at
R�H–H�=5.0 bohr.

1�u 1�g

k , l ���̃kl
R �2+ ���̃kl

I �2

4 ,1+5,1 0.51
4,2+5,2 0.41
10,1+11,1 0.22
10,2+11,2 0.15
50,1+51,1 0.32
50,2+51,2 0.14

TABLE IV. Most important contributions to the �u
+ excitations R�H–H�

=5.0 bohr.

1�u
+ 2�u

+ 3�u
+ 4�u

+

k , l ���̃kl
R �2+ ���̃kl

I �2

2,1 0.68 0.02 0.12
3,2 0.04 0.08 0.18 0.11

19,1 0.08 0.27 0.11
109,2 0.12 0.18 0.38
110,1 0.16 0.37

TABLE V. Most important atomic orbital �AO� contributions to the NOs.

NO Irreducible representation Main AO

1 �g 1s
2 �u 1s
3 �g 2pz

4/5 �u 2px /2py

6 �g Hybrid
10/11 �u 3dxz /3dyz

19 �u 2pz

50/51 �g 2px /2py

109 �g 2s
110 �u 2s
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correspond to energetically easily accessible states.
�b� With respect to the �g

+ states it is very interesting to
observe that the double excitations, notably to the 2�g

+

state with much �1�g�2→ �1�u�2 character, are also
given exactly in the LR-TDDMFT calculations, depen-
dent, however, on the proper treatment of the
�-dependence. The �=0 root occurs in this symmetry,
it corresponds to the ground state 1�g

+ and yields pre-
cisely the composition of the ground state in terms of
the �1�g�2 and �1�u�2 configurations. The linear re-
sponse formalism does not pose any problem for
double excitations. This is a significant difference be-
tween density matrix response equations and density
response equations, which are employed in TDDFT.
Double excitations can naturally be represented in TD-
DMFT with the �ñk terms �“diagonal doubles”� and
with ��̃kl

R , k� l, k and l both virtual �“off-diagonal
doubles”�, while in TDDFT only occupied-virtual or-
bital products �“single excitations”� feature. It is in
principle possible to obtain correct excitation energies
corresponding to double excitations also in TDDFT,
but then the AA has to be abandoned.8,9,41 Interestingly,
we see in Fig. 4 that in the exact TDDMFT calculations
it is the 2�g

+, corresponding to the doubly excited con-
figuration �1�u�2, that exhibits significant
�-dependence. Therefore, one might expect that such
double excitations are much harder to treat within an
AA in TDDMFT too �but see below�. We observe that
it is not the double excitation nature per se that is the
problem. Off-diagonal doubles which yield states of
different symmetry than the ground state �e.g., the
�1�u�1�1�u�1 configuration leading to a �g state�, do
yield exact excitation energies at any �. It is also not
just a matter of symmetry, i.e., not all states of the same
symmetry as the ground state are problematic. For in-
stance, the 3�g

+ is very flat around the excitation energy
�=0.376 H, at which �2�g

+���=�. At those �-values it
has virtually no diagonal double ��ñ� character, and
only a modest amount of off-diagonal double excitation
character �excitation to NO pair �2,19�, see Table II�. It
is basically a Ha�1s� ·Hb�2s ,2pz�+Ha�2s ,2pz� ·Hb�1s�
state �excitations 1→109 and 1→3�, while the near by
2�u

+ is Ha�1s� ·Hb�2s ,2pz�−Ha�2s ,2pz� ·Hb�1s�. It is
the diagonal doubles, represented by large �ñk ele-
ments, such as occur in the 2�g

+, which lend a state
significant �-dependence. Interestingly, the 2�g

+ be-
comes rather flat ��-independent� at small values of �,
see Fig. 4, and indeed we observed that for �→0 the
2�g

+ loses its �ñ character �the 3�g
+ acquires some�. The

4�g
+ has no �ñ character, and is perfectly flat, until �

�3.0, but then in the avoided crossing with 5�g
+ it

takes over the �modest� double excitation character of
the latter and is no longer flat.

�c� At any �-value we diagonalize a
�M +M +m=m2�-dimensional matrix and obtain this
number of eigenvalues. Yet, the �-dependence of the
matrix, together with the condition �i���=� provides
for m2+m roots, the same number �and values� as in
the wave function case. This is better illustrated with a

simple example, which we will offer for just a two-
orbital case �m=2� in Appendix A. It can also be easily
inferred that Eq. �36� has m2+m solutions in the fol-
lowing way. Write Eq. �36� in the homogeneous form
by moving the right hand side to the left hand side, i.e.,
adding −� to the diagonal of the matrix in the lhs.
Solutions to the homogeneous set of equations are ob-
tained if the determinant of the matrix is zero. It is
elementary to show that the characteristic polynomial
in � that is obtained is of order m2+m, hence m2+m
roots.

C. Dimensional considerations

At this point we comment on the size of the matrix prob-
lems of the linear response TDDMFT equations. We will use
AAs in the next sections which will remove the
�-dependence of the matrix to be diagonalized, so we are left
with a diagonalization problem of dimension m2 �or half of
that when we can exploit that the roots appear in positive-
negative pairs�. This is effectively the square of the basis set
size, which is �notably in many-electron systems� much
smaller than the size of typical CI calculations, certainly than
the full-CI problem, but still considerably larger than the size
of TDDFT equations �only occupied-virtual orbital prod-
ucts�. However, in practice the TDDFT and TDDMFT di-
mensions will be much more similar since most of the in-
crease in the size of the problem compared to TDDFT comes
from the many virtual-virtual elements ��̃kl ,k , l both virtuals.
These are not all needed, as is suggested by the composition
of the solution vectors discussed above, and which can be
seen as follows. Let us refer to the strongly occupied NOs
�	p , p�N /2,N is the number of electrons� as the “occupied
orbitals” and to the weakly occupied ones �	p , p�N /2� as
the “virtual orbitals.” With respect to the interpretation of the
linear response results, we should caution that the higher NO
virtuals �very weakly occupied ones� are totally different
compared to Hartree–Fock �HF� or DFT virtuals. On the
other hand, the occupied NOs and “lower” virtual NOs �i.e.,
the still significantly occupied ones� do correspond to the
occupied and lower virtual “valence orbitals” of HF or DFT.
One would expect that in particular the “higher” �very
weakly occupied� virtual-virtual pairs kl will not give a sig-
nificant contribution to the �lower� excitation energies. On
the other hand, in for instance H2 the l=2 orbital �1�u� can
hardly be classified as a virtual orbital at long bond dis-
tances, where in the ground state the �1�u�2 configuration
mixes strongly with the �1�g�2 configuration. Its occupation
will tend to 1.0 from below at long bond distance. In view of
practical applications it is important to determine to what
extent virtual-virtual pairs might be excluded, in order to
reduce the dimension of the inverse response matrix ��−1�
and speed up the calculation. As a simple test we have done
the excitation calculation with only a limited number of
pairs. For this purpose we exploit the fact that in the two-
electron system the exact wave function dynamics leads to
practically the same size of the problem �cf. Eqs. �31� and
�32�� and to the same variables ���̃kl

R/I=�Ckl
R/I� as the TD-

DMFT. We can omit in Eq. �32� selected virtual-virtual pairs
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and with simple diagonalization �without a tedious search
through �-values� determine how the results are affected
compared to the exact benchmark results of Table I.

The results for H2 are shown in Figs. 5 for the first 1�g
+

and first 1�u
+ excitation. All “diagonal” elements �Ckk

R/I are
always included. For the off-diagonal elements ��̃kl

R/I , l�k
−1, the range of l is restricted, while k runs always over all
m NOs. We denote the maximum l value with L, so that in
the kl pairs l�min�k−1,L�. Restricting l to occupied orbit-
als only �in this case there is only one occupied orbital, so
L=1�, gives approximately the size of the TDDFT problem.
This still yields a sizable error of several hundredths Hartree
at the equilibrium distance, which resembles the poorer TD-
DFT cases. However, the error rapidly drops with addition of
just the first and second virtual to the “l set.” The errors also
generally diminish at larger bond distances of H2. So restrict-
ing l to only the first three highest occupied NOs reproduces
the excitation energies quite well already. The matrix to be
diagonalized in the aug-cc-pVQZ basis is reduced signifi-
cantly from a 6105�6105 matrix to a 434�434 matrix,
with a large concomitant increase in speed. Thus, the size of
the diagonalization problem is not excessively increased
compared to TDDFT.

VI. CONNECTIONS WITH ADIABATIC
APPROXIMATIONS

A. Relation with the static approximation

It is desirable to develop approximations such that we
can obtain �approximate� excitation energies by solving ei-
genvalue equations without �-dependence in the matrix.
This is usually achieved by AA to the coupling matrix K���
of Eq. �22� whose �-dependence is not known for general
N-electron systems anyway. Here we investigate how, start-
ing from the exact TDDMFT equations �Eq. �34�� and con-
sidering their �→0 limit, �-independent equations may be
obtained and how they are related to the AAs studied
earlier.26

In the �→0 limit, the exact TDDMFT equations should
give correct static response equations. It is immediately clear
that the 1 /� terms in the exact Eq. �34� will diverge for
small �. In fact for �→0 these terms should perfectly bal-
ance each other in both Eqs. �34a� and �34c�, to avoid diver-
gence. This yields the following equations:

C�CT��̃R�0� + E�ñ�0� − �ṽD�0�� = 0, �37a�

E�CT��̃R�0� + E�ñ�0� − �ṽD�0�� = 0. �37b�

These equations are satisfied if the m-dimensional vector

CT��̃R�0� + E�ñ�0� − �ṽD�0� �38�

belongs to the kernel of both the matrices C and E. The
kernel of both matrices consists of just the vector c, as can be
seen by multiplying C and E �Eqs. �35c� and �35e�� by �the
column vector� c and using the stationary condition �17� to
obtain

�
r

Ckl,rcr = �
r

Ek,rcr = 0. �39�

Therefore one has to require

CT��̃R�0� + E�ñ�0� − �ṽD�0� = − c�E�0� , �40�

where the no-divergence conditions �37� are obeyed for any
value of the constant �E�0�. The constant is not arbitrary but
is determined by the choice of the gauge of the applied po-
tential. Suppose the applied potential has a spatially constant
part V0, and the rest of the perturbing potential has diagonal
matrix elements zero �as would for instance be the case for a
polarizing finite field along the bond axis of H2, V�r�=V0

−Ez�, then �vpp
R �0�=V0∀ p. Multiplying Eq. �40� with cT and

using cTCT=0 and cTE=0 and �ṽp
D�0�=2cp�vpp

R �0� �Eq.
�28b�� leads to

�
p

cp�ṽp
D�0� = �

p

np�vpp
R �0�

= 2V0 = �
p

�cp�2�E�0� = �E�0� . �41�

So �E�0� is simply the shift in energy of this two-electron
system with an applied constant field V0. Of course one can
adjust the gauge of the field so that a possible nonzero value
of �pnp�vpp

R �0��2V1 for the rest of the potential is compen-
sated by the choice of gauge, i.e., choose V0=−V1 so that
�E�0�=0. Then condition �40� becomes

CT��̃R�0� + E�ñ�0� = �ṽD�0� . �42�

We note that Eq. �40� is equivalent to the perturbed version
of Eq. �16� with ��=�E�0�. Recovering this equation is cru-
cial for obtaining a correct static response. Equation �16� has
its counterpart for a general N-electron system, and indeed
this has been perturbed to derive the static response equa-
tions of DMFT in Ref. 42. It is important that any approxi-
mation recovers Eq. �40� in some way for the �→0 limit.
Applying Eq. �42� �also at finite �� in Eq. �34�, which
amounts to omitting all terms with �−1 behavior, leads to

���̃R��� + A��̃I��� = 0, �43a�

A��̃R��� + ���̃I��� + C�ñ��� = �ṽR��� , �43b�

��ñ��� + CT��̃I��� = 0, �43c�

which looks like an AA in the sense that no �-dependent
coupling matrix elements appear. These equations are actu-
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FIG. 5. Plot of the error in the first 1�g
+ �left� and 1�u

+ �right� excitations as
a function of the maximum l value �l�L�. All k are used in ��̃kl and ��̃kk.
The straight, dashed, and dotted lines are the excitation energies for bond
distances of 1.5, 5.0, and 10.0 bohr, respectively.
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ally practically identical to the equations which have been
obtained as the SA in Ref. 26. We will denote them as SA, a
comment on the slight difference to the SA of Eq. �3.4� in
Ref. 26 can be found in Appendix A.

Excitation energies are obtained in the SA approximation
by setting �ṽR to zero and finding the eigenvalues of

� 0 − A 0

− A 0 − C
0 − CT 0

����̃R���
��̃I���
�ñ���

� = ����̃R���
��̃I���
�ñ��� .

� . �44�

Since these equations can also be obtained when one takes in
the exact matrix of Eq. �36� the �→� limit, the solutions to
the SA equations should coincide with the eigenvalues of the
exact TDDMFT matrix at �→�. Figure 4 suggests that at
least some eigenvalues will go to zero in the �→� limit,
possibly those related with diagonal double excitation char-
acter. It is in fact possible to deduce that the SA Eq. �44�
yield at least m solutions with �=0 for the excitation ener-
gies. We obtain the eigenvalues by setting the secular deter-
minant to zero

��1M A 0

A �1M C
0 CT �1m

� = 0. �45�

The determinant of a partitioned matrix can be written

�A B

C D
� = �A� · �D − CA−1B� , �46�

which we use to obtain

��1M A 0

A �1M C
0 CT �1m

� = �m��21M − A2 − CCT� . �47�

To find out what causes these m-fold �=0 roots, we consider
the Eq. �43� �no external field, �ṽR���=0� for �=0. From
Eq. �43a� for ��̃R��� we obtain ��̃I=0. Equation �43c�,
CT��̃I=0, is then trivially satisfied so it is redundant. Equa-
tion �43b� gives A��̃R=−C�ñ so we can solve for the M
unknowns ��̃R for a given choice of the vector �ñ as long as
A is invertible. We may choose m independent orthogonal
vectors, for instance, �ñk=1,�ñl�k=0 for k=1, . . . ,m. So the
m �=0 roots correspond to the m diagonal double excita-
tions, where for each diagonal double excitation the solution
of Eq. �43b� determines to what extent single excitations and
off-diagonal doubles mix into it. It turns out that such admix-
ture is very small, but not zero. In the present SA approxi-
mation the occupation number changes are not strictly zero
�as they were in the SA of Ref. 26�, but they are �too� small.

An example of the behavior of the double excitations is
apparent from the 2�g

+ curve in Fig. 4. The eigenvalue
�i��� , i=2�g

+ tends to zero for �→�. This should be true for
all the other diagonal double excitations, which numerical
solution corroborates. So we will have excitation energies
zero for all diagonal double excitations in the SA approxi-
mation, which is a serious deficiency of this approximation.

The second factor in the right hand side of Eq. �47�
yields M roots for �2, corresponding to plus and minus val-
ues of �, i.e., the 2M remaining eigenvalues of Eq. �44�.
Indeed, this second factor is the secular determinant of the
equations obtained when substituting for ��̃R��� and �ñ���
from Eqs. �43a� and �43c� into Eq. �43b�,

��21M − A2 − CCT���̃I���/� = 0. �48�

Evidently, since the secular determinant will have roots in
�2, the SA equations have preserved the symmetry of the
exact TDDMFT equations between positive and negative �
values. Having solved these equations at the eigenvalues �i,
the full solutions can be obtained by calculating the remain-
ing parts of the eigenvectors of Eq. �44� �the quantities
��̃R��i� and �ñ��i�� from ��̃I��i� with the Eqs. �43a� and
�43c� respectively. This yields M excitation energies �dis-
carding the negative � values� and excitation vectors, de-
scribing the transition densities. The results for the SA cal-
culations to be reported in Sec. VII have been obtained in
this way.

Apart from the fact that the SA fails to obtain the exci-
tations with predominant double excitation character, it also
fails to reproduce exactly the static polarizability when the
response is evaluated for applied fields with �→0, see Ref.
26. The static response of the two-electron system can be
obtained independently by perturbing the time-independent
stationary conditions �Eqs. �16� and �17��, and has been stud-
ied in Ref. 42. As expected this failure persists for general N
electron systems.26 The source of the failure is that the no-
divergence conditions �37� are applied in the SA, but they
are not included in the set of equations that is solved and
therefore are not enforced. Actual SA calculations prove that
the condition of Eq. �42� does not hold for the solutions
obtained.

It is clear that the conditions �42� play a crucial role. We
will discuss in the next section attempts to incorporate them.
At the end of this section we note that the m zero roots we
have found in the SA make it possible to solve this problem
of incorporation of 42 straightforwardly in the case of static
response ��=0�. The Eq. �42� can simply be added as an
additional set of m equations to the exact TDDMFT equa-
tions. The 1 /� terms in the first and third sets of equations
�Eq. �34a� and Eq. �34c�� can then be eliminated by substi-
tution, enabling solution of the �extended� set of equations at
�=0. The m additional Eq. �42� can be retained, in order to
properly enforce them, without the system of equations be-
coming overcomplete since we saw that the SA equations,
which have resulted from the substitution, have a kernel
space of dimension m. We can therefore add m equations.
Correct static polarization results will be obtained at �=0.
We will consider such polarizability calculations �also at fi-
nite � values, where overcompleteness does occur� else-
where.

B. Relation with the AA

We note that the approximation indicated as AA in Ref.
26 has also resulted from an attempt to explicitly impose Eq.
�42�, but in a way which will not solve all deficiencies. In the
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AA, Eq. �40� is employed explicitly as one of the equations
for the response vector at �=0. The no-divergence Eq. �37�
is then obeyed. When extending the condition to finite �
values, one obtains

CT��̃R��� + E�ñ��� = �ṽD��� − �2c�E��� . �49�

Application of the condition Eq. �49� should give reasonable
results at finite but small � values, and become exact for �
→0, as required for an AA. In Ref. 26 the m Eq. �49� have
not been added but they have been substituted for the third
set of the SA equations, the Eqs. �43c� �or rather the Eq. �A1�
in that paper�; we shall denote this approximation AA1. With
the nondivergence achieved by imposing Eq. �49�, we obtain
the SA Eq. �43a� from the first exact TDDMFT equation, Eq.
�34a�. The third of the exact equations, Eq. �34c�, would
become, with substitution of Eq. �49�, the SA Eq. �43c�. Now
at �=0 Eq. �43a� gives ��̃I�0�=0 �if A is invertible�. This
result when substituted into Eq. �43c� yields the redundant
result 0=0 �at �=0�. This m Eq. �43c� have therefore been
discarded in AA1 and have been substituted by the m Eq.
�49�. This takes care that the no-divergence condition is ac-
tually implemented. A set of equations is thus obtained for
determining frequency dependent polarizabilities at finite
�small� values of �, that will yield the static polarizability in
the �→0 limit,

���̃R��� + A��̃I��� = 0, �50a�

A��̃R��� + ���̃I��� + C�ñ��� = �ṽR��� , �50b�

CT��̃R��� + E�ñ��� = �ṽD��� − �2c�E��� . �50c�

Specializing now to excitation energy calculations, �ṽ=0
�hence �E���=0�, we have to solve 2M +m homogeneous
equations for 2M +m unknowns, which can only be achieved
when the determinant of the coefficient matrix is zero,

��1M A 0

A �1M C
CT 0 E � = 0. �51�

Unfortunately, this yields a characteristic polynomial of only
order 2M in �, so only 2M roots are obtained. We therefore
lose m excitation energies compared to the exact TDDMFT
equations. Since the kernel of E is formed by the vector c,
the matrix E can be inverted on a subspace where the vector
c has been projected out. This allows us to write Eq. �50c� as

�ñ��� = − E−1CT��̃R��� . �52�

Together with Eq. �50a� one can eliminate ��̃R��� and �ñ���
from Eq. �50b� to obtain

��21M − A2 + CE−1CTA���̃I��� = 0. �53�

The excitation energies are obtained as the �i for which this
equation is solvable, i.e., for which the determinant of the
matrix of Eq. �53� is equal to zero. From the solution vector
��̃I the remaining parts, ��̃R and �ñ, are obtained from Eqs.
�50a�, �50c�, and �52�. We obviously obtain M �2 roots,
hence 2M symmetrical positive and negative �i roots. As

with the SA, the symmetry between positive and negative
roots has not been lost in AA1. Comparing to the SA equa-
tion for the nonzero roots, Eq. �48�, the AA1 approximation
apparently yields a very similar equation. The calculated ex-
citation energies may not be very different, as will be
checked numerically in the next section. More importantly,
the AA1 obviously does not solve the problem of the SA of
the disappearing �diagonal� double excitations. They are now
no longer at �=0, but they have simply been lost.

The total number of solutions is not the most important
issue since from a large basis set many high-lying excitation
energies will result, which are not physical. It is, however,
important that the m excitations which arise from the �ñ
degrees of freedom are properly taken into account. This is
important for those states which have significant �diagonal�
double excitation character, and it is of course crucial for the
“doubly excited” states which have predominantly this char-
acter. So we need to retain the third of the exact TDDMFT
equations, Eq. �34c� �the “�ñ equation”�, it should not be
discarded as in AA1 or made inactive as in SA. It is at the
same time necessary to build in the nondivergence condition
of Eq. �49�. It is also clear that, when compared to SA and
AA1 we are going to have m additional eigenvalues, up to a
total of 2M +m, so including the m doubly excited states, we
no longer can have symmetrical positive and negative roots.
If the matrix to be diagonalized is no longer �-dependent, as
was the case for the exact TDDMFT inverse response matrix,
we will have not more than 2M +m eigenvalues. Our goal
can therefore only be to obtain at least M +m positive eigen-
values that constitute �approximations to� the excitation en-
ergies. The requirement of obeying the nondivergence con-
dition is met by using as the third set of equations the sum of
the third SA equation, Eq. �43c�, and the nondivergence con-
dition Eq. �49�. We then obtain what we call the AA2 set of
equations,

���̃R��� + A��̃I��� = 0, �54a�

A��̃R��� + ���̃I��� + C�ñ��� = �ṽR��� , �54b�

− CT��̃R + CT��̃I��� + �� − E��ñ���

= �2c�E��� − �ṽD. �54c�

At �=0 Eq. �54a� �identical to the SA Eq. �43a�� would yield
the same result as before ���̃I�0�=0�. However now Eq.
�54c� no longer reduces to a redundant 0=0 equation, but it
yields precisely Eq. �49�. We therefore have a consistent ap-
proximation, since Eq. �49� is enforced at �=0, which is
necessary to make it possible in the first place to remove the
�−1 terms of the exact equations and write Eqs. �54a� and
�54c� in the above form.

The “AA” AA2 takes fully into account the solutions
associated with the �ñ degrees of freedom, and therefore also
incorporates changes of occupation number. We obtain m
positive eigenvalues corresponding to these excitations. The
price we pay for this approximation is loss of symmetry
between the other M positive eigenvalues and the M nega-
tive eigenvalues. Indeed, it can be proven, from a factoriza-
tion of the secular determinant of AA2 along the same lines
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as the AA1 one in Eq. �47� that with our sign choice for the
incorporation of Eq. �49� in order to obtain the proper �
→0 behavior, we obtain meaningful excitation energies from
M +m positive �or zero� roots �see Sec. VII�. The M remain-
ing negative roots, although they approximately mirror M of
the positive roots, need not be meaningful and are discarded.
We will deal with just the positive roots, corresponding to
positive excitation energies, in all cases �SA, AA1, and
AA2�.

VII. NUMERICAL RESULTS FOR STRETCHED H2 AND
HeH+ SYSTEMS

In this section we compare the excitation energies ob-
tained with the various “adiabatic” approximations �i.e.,
�-independent coupling matrices� to exact calculations in an
aug-cc-pVQZ basis set. The excitation energies can be found
by setting �v���=0 and searching for �i for which the re-
sponse equations can still be solved �i.e., “free” responses or
oscillations can exist in the system�. In all cases we have
been able to cast this in the form of a straightforward diago-
nalization. For the calculation of the exact excitation ener-
gies, from the linear response equations of the wave function
dynamics, we used Eq. �32�. For the calculations called SA,
the symmetrical matrix of Eq. �48� was diagonalized directly,
and the full solutions can then be obtained by calculating the
remaining parts of the eigenvectors �the quantities ��̃R��i�
and �ñ��i�� from ��̃I��i� with the Eqs. �43a� and �43c�, re-
spectively.

For the AA1 calculations, Eq. �53� is written such that a
symmetrical matrix diagonalization can be performed �note
that A and E are symmetrical matrices�,

�− A�A − CE−1CT��− A · �− A��̃I���
�

= �2 · �− A��̃I���
�

. �55�

Since the matrix A is negative semidefinite, the minus sign
is required to make the square root well defined. The matrix
E−1 is required for the AA1, which is at least singular for one
root �the eigenvector c has zero eigenvalue�. In the calcula-
tions it turned out to be the only singular value and it was
simply removed by a standard singular value decomposition.
The full solution vector, with ��̃R��i� and �ñ��i� parts, is
obtained from Eqs. �50a�, �50c�, and �52�.

For the AA2 model the full matrix of Eq. �54� �with
�ṽ=0� has been diagonalized. Although this matrix is not
symmetric, only real eigenvalues were obtained, which can
be understood by factorizing the secular determinant of Eq.
�54�, which with some algebra leads to

0 = ��1M A 0

A �1M C
− CT CT �1m − E �

= �A + �1M� · �A − �1M C
CT E − �1m

�
= �A + �1M� · �K̃ − �1M+m� . �56�

It is clear from the hermiticity of A and K̃ �cf. Eq. �30�� that
AA2 has real but different positive and negative solutions.
We use the positive excitation energies coming from the fac-

tor with the K̃ matrix. Comparing to the equations for the
exact wave function dynamics, Eq. �32�, it is clear that the
AA2 model for the two-electron systems always yields the
exact excitation energies.

As a basis set we took the aug-cc-pVQZ �Refs. 34 and
35� basis. The NOs were first obtained with a CISD calcula-
tion with the GAMESS-UK

36 package. The integrals in the NO
basis were stored on file for the excitation calculation. The
expansion coefficients c were calculated within the program
using Eq. �14c� directly. For the linear algebra we used the
LAPACK routines.37

We will discuss the H2 and HeH+ systems separately
since the symmetry aspects are different. For H2 we first
consider the results for the �u

+ excitations, which are shown
in Fig. 6. �The exact results differ from the exact TZP results
in the Introduction due to the larger aug-cc-VQZ basis.� In-
terestingly, in this symmetry the SA, AA1, and AA2 all co-
incide with the exact excitation energies along the whole
bonding distance. This is an effect of the symmetry of these
excitations. We first note that all matrices to be diagonalized
can be fully symmetry blocked so that we only need to con-
sider the diagonalization per irreducible representation.

Within the �u
+ symmetry, which involves all orbital prod-

ucts kl that are of �u
+ symmetry �or have �u

+ component�, the
matrix C is zero since from the definition �Eq. �35c�� it fol-
lows that the matrix elements Ckl,r are zero if the NOs k and
l involved are of different symmetries. In the first place, then
obviously hkl=0 �first term of C�. Moreover wklrr=0 �second
term of C� if 
k � 
r �density of electron 1� does not contain
the same irreducible representation�s� as 
l � 
r �density of
electron 2�, i.e., if
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FIG. 6. Plot of �u
+ excitations for dissociating H2. All AAs coincide with the

exact solutions.
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A1 � 
k
� 
r

� 
l
� 
r, i.e., A1 � 
k

� 
l. �57�

Now if the pair kl has �u
+ symmetry, i.e., the product of 
k

� 
l contains �u
+, 
k, and 
l must be different irreducible

representations so their product does not contain A1=�g
+ and

wklrr=0. With a C matrix equal to zero, Eq. �36� for the exact
excitations will have the upper left block of the matrix de-
coupled from the lower right block �with the E2 matrix�. It is
easily seen that the upper left block leads by elimination to
the equation �A2−�21M���̃I=0. However this is precisely
also what in the C=0 case the SA of Eq. �48� and the AA1 of
Eq. �55� yield. There is no contribution of the E2 matrix to
the �u

+ block since the diagonal double excitations repre-
sented by the �ñ never have �u

+ symmetry. Note that these
arguments also hold for other excitations such as the �g and
�u excitations.

At the excitation energies �the eigenvalues of A2� the
character of the excitation is determined by the ��̃I, ��̃R

vector ���̃R= ���̃I�. The lowest �u
+ excited states are all of

mostly single excitation type, see Table IV, but off-diagonal
doubles also enter. For e.g., the 3 1�u

+, 36% at least are off-
diagonal doubles �only 73% of the total composition is
shown�; for 4 1�u

+ 49% is off-diagonal doubles �72% speci-
fied character�. The character in terms of NO contributions is
therefore very different from the one in TDDFT, which fea-
tures in this case only k←1 �k�2� excitations and no off-
diagonal doubles of type k← l with k� l�2. It would be
interesting to perform these calculations in e.g., a KS orbital
basis or HF basis instead of NO basis to make a comparison
with TDDFT or TDHF possible.

While it is clear now why the SA and AA1 give the same
result as the exact calculations since these methods all reduce
to diagonalization of A2, it is also interesting to consider the
AA2 model, cf. Eq. �56�. In the �u

+ symmetry C=0 and there
is no E block, so AA2 factorizes into �A+�1M� and �A
−�1M� blocks. Obviously, again the same excitation energies
�eigenvalues of A� are obtained.

Results for the �g
+ excitations are shown in Fig. 7. Now

the energy curves of the AAs are not identical to the exact
ones. The SA and AA1 models are completely missing the
state with predominantly doubly excited character, that is
high lying at short distance and then on its way down crosses
the other states, see the dots on the curves indicating the
double excited character. For the rest they perform remark-
ably well, following quite closely the exact curves. The de-
ficiency of the SA and AA1 AAs in TDDMFT, i.e., their
inability to represent double excitations, is actually very
similar to the adiabatic TDDFT deficiency discussed in Sec.
I, except that the agreement of the calculated excitations with
the other �nondoubly excited� excitation energies is now
much better. The singly excited state �1�g→2�g� which is
the 2 1�g

+ state �the lowest excited state� below 3 bohr, and
which is the second excited state �3 1�g

+� at longer bond
lengths, is for both the SA and AA1 approximations very
accurate compared to the exact calculation. This indicates
that the matrix elements of C, although not zero in this sym-
metry, are still small for this excitation. The coupling of the
��̃ to the doubles �ñ, which is present in the exact calcula-
tion but is absent in the SA and the AA1, is indeed small for

this excitation, as is apparent from the small �ñ contributions
for the third and higher 1�g

+ states in Table II. Around 5 bohr
the calculated excitation energy deviates somewhat from the
exact energy for the 3 1�g

+, although the SA is appreciably
better than AA1. At the distance of 5.0 bohr the lack of
coupling to diagonal double excitations seems to affect the
excitation to the 4 1�g

+ �the highest state in the figure� rather
less than it affects the second one. At shorter distance there is
clearly the missing of the avoided crossing with the double
excitation �around 2.5 bohr�.

It is gratifying that the AA2 approximation brings in the
coupling to the diagonal doubles very effectively, in fact per-
fectly. This resolves one of the main disadvantages of SA
and AA1, and in fact of adiabatic TDDFT, while still em-
ploying an AA in the sense that a constant matrix
��-independent� can be diagonalized. One does not have to
search for �-roots, as is the case for the exact TDDMFT
calculations.

We finally turn to the HeH+ system, where some of the
symmetry advantages of H2 are lost. The results for the �+

and � excitations are shown in Figs. 8 and 9, respectively.
For the HeH+ system we observe again that the � excited
states, with a different symmetry than the 1�+ ground state,
are reproduced exactly by all “adiabatic” approximations
�see Fig. 9�. This good performance of SA and AA1 is pos-
sible due to the absence of diagonal double excitation char-
acter in the � states.

It is important to stress that at long distance already
some of the lowest of these � states are pure charge transfer
states. The lowest one at 0.810 hartree is for 95% a He�1s�
→H�2p�� CT transition. The second one at 0.892 hartree,
however, is almost purely �97%� a local excitation to
He�2p��. Both states are perfectly represented in all the adia-
batic calculations.
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FIG. 7. Plot of �g
+ excitations for dissociating H2. The exact solutions are

represented by the solid lines. The approximated excitation energies are
plotted with the dotted and the dashed lines for the SA and AA1, respec-
tively. The AA2 excitation energies coincide with the exact ones.
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The low lying �+ excitations are, similar to the �g
+ exci-

tations in H2, not perfect in the SA and AA1 approximations,
but they are clearly rather accurate. In this case the AA1
performs better than the SA, especially for the lowest �+

excitation and also for the other two. We observe that at long
distance the lowest excited state, 2�+ at �0.40 hartree, is a
pure CT state, He�1s�→H�1s�. On the other hand, 3�+ at
�0.74 hartree is at long distance a mixed local �He�1s�
→He�2s�� and charge transfer �He�1s�→H�2s ,2p�� excita-

tion. The 4�+ at �0.82 hartree is mostly CT, He�1s�
→H�2s ,2p�. The different characters of these states do not
seem to influence the accuracy of the AAs. Diagonal
doubles, which will eventually enter states of �+ symmetry,
are too high lying to be visible in these figures. For instance,
at 8 bohr the first �and rather pure� double is at 2.3 hartree
��ñ60=0.98�. For those states the SA and AA1 approaches
break down. The AA2 is exact for all the �+ �and �� excited
states.

VIII. CONCLUSIONS

We have studied the time-dependent density matrix
method for excitation calculations. In this method the linear
response of the one-matrix is used to obtain the excitation
energies as the responses �“free oscillations”� at zero applied
field. Since in two-electron systems the two matrix is known
as a functional of the NOs and the NO occupation numbers,
one can study the TDDMFT method without the use of ap-
proximate functionals. We have shown that the exact TD-
DMFT equations can then be derived. It provides an exact
method for excitation energy calculations, in the sense that
its results are identical to those of linear response results for
the full wave function dynamics, and indeed to full-CI cal-
culations. It also has exact results for doubly excited con-
figurations, the linear response formalism as such does not
restrict the good quality of the results to singly excited states.
The exact TDDMFT method has the disadvantage that the
excitation energies are not obtained by a single matrix diago-
nalization, but the matrix is frequency dependent, and an
iterative search of excitation energies has to be performed.
Approximations are required to obtain an energy-
independent matrix, which can be straightforwardly diago-
nalized. We have been developing such adiabatic approxima-
tions. Two simple, previously proposed AAs �SA and AA1�
work quite well at the equilibrium distance of the studied
systems �H2 and HeH+�. The agreement is actually perfect
for states of different symmetry �irreducible representation�
than the totally symmetric ground states. This also holds for
two problem cases of TDDFT. The first is exemplified here
by the lowest 1�u

+ excited state of H2. The PES of this state is
totally wrong in TDDFT, going monotonously to zero with
increasing R, while it should exhibit a minimum and rise to
ca. 10 eV at R→�. The second problem are the charge trans-
fer excitations, which for instance occur in HeH+ at long
bond distance �He→H+ CT excitations�. Also such CT exci-
tations meet with no difficulty in the adiabatic TDDMFT.

For excited states of the same symmetry as the ground
state, the situation is different. The approximations SA and
AA1 are no longer perfect. They are nevertheless very good
at the equilibrium geometry, and also quite decent along the
dissociation coordinate for most states. However, a major
drawback of SA and AA1 is that states corresponding to
doubly excited configurations are totally missed. Also states
to which such double excitations make a sizable contribu-
tion, are not so accurate. The third adiabatic approximation
we have formulated, called AA2, fully incorporates these
double excitations. It actually obtains the exact excitation
energies �with still an energy-independent matrix, i.e., with a
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FIG. 8. Plot of �+ excitations for dissociating HeH+. The exact solutions are
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FIG. 9. Plot of � excitations for dissociating HeH+. The exact solutions
coincides with both approximations.
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single diagonalization� in these two-electron systems at the
cost that it no longer yields negative energies symmetrical to
the positive ones.

We conclude that adiabatic TDDMFT is, in principle,
capable of solving the notorious failure cases of TDDFT.
TDDMFT in its application on two-electron systems in this
paper performs very well. The ultimate applicability of TD-
DMFT in many-electron systems will depend on the devel-
opment of DMFT functionals for the exchange and correla-
tion energies in terms of the NOs and occupation numbers.
Good progress is being made with such functionals for the
ground state, both at equilibrium geometry,18,22,23,43 as well
as along the entire dissociation coordinate,18,24 which offers
good prospects for the response calculations. Reasonable re-
sults have been obtained with available functionals such as
BBC2 and BBC3 �Ref. 18� for simple diatomics at Re,

44 but
we have found that they do not appear to work well at elon-
gated bond lengths; more development is needed.

APPENDIX A: COMPARISON TO THE SA OF
REFERENCE 26

Let us compare the present SA Eq. �43� to the equations
which have been introduced as AA �the SA�, see Eq. �3.4� in
Ref. 26,

���̃R��� + �Ãm���̃I��� = 0, �A1a�

�Ãp���̃R��� + ���̃I��� + D̃�ñ��� = �ṽR��� , �A1b�

��ñ��� + 2G̃��̃I��� = 0, �A1c�

where we have defined Ap/m�A�B and the tilde indicates
that we now deal with transformed quantities. The transfor-
mation is given by Eq. �33� and note that XR/I���=��R/I���
and ZR���=�n���.

These equations are remarkably similar in structure to
the Eq. �43�. As a matter of fact, if the energy expression Eq.
�12� for the two-electron system would be used for the deri-
vations in Ref. 26, the transformations of the two different
matrices A−B and A+B would lead to the same matrix A
= Ãm= Ãp, and also D̃=C and 2G̃=CT would hold. This
would imply complete equivalence of our Eq. �43� with the
SA Eq. A1 of Ref. 26. However, because as noted before the
energy Eq. �12� is not in the form of a proper density matrix
functional, it has been rewritten in Ref. 26 in a slightly dif-
ferent form, with the two-electron integrals wklkl being used
instead of wkkll. This does not change the stationary total
energy, but it has the effect that the energy expression be-
comes independent of the phases of the NOs, as required for
a proper density matrix functional. Using that form of the

energy leads to Ãm� Ãp�A and 2G̃=0, i.e., to differences
with our present equations. These differences turn out to be
reasonably small along most of the dissociation coordinate
�note, e.g., that the matrix C, although in our case not nec-
essarily zero, is often zero by symmetry anyway, see Sec.
VII�. Since our present Eq. �43� yields results that are iden-
tical to the SA of Ref. 26 if the latter is derived with Eq. �12�
for the total energy, and to rather similar results if the SA of

Ref. 26 is derived from the alternative energy expression, we
have denoted and discussed the approximation incorporated
in Eq. �43� in this paper also simply as SA. We will address
the subtle issue of the invariance of a proper density matrix
functional under the phases of the NOs elsewhere.

APPENDIX B: CHARGE TRANSFER EXCITATIONS OF
HeH+ WITH TDDFT

The charge transfer excitation energy in adiabatic TD-
DFT reduces for two systems that are very far apart �at dis-
tances where 1 /R can be neglected� to just the orbital energy
difference between the two orbitals between which the elec-
tron transfer takes place since the coupling matrix contribu-
tion goes to zero if the differential overlap between donor
orbital and acceptor orbital is zero. For the simple example
of transfer from the highest occupied molecular orbital
�HOMO� of the donor D to the lowest unoccupied orbital
�LUMO� of the acceptor A, the excitation energy should be
just the difference of ionization energy and electron affinity,
I−A. Even for a perfect KS calculation, the orbital energy
difference between the LUMO of the acceptor and the
HOMO of the donor, �A−�D, is in principle not equal to this.
Although the exact �D is equal to −I, the exact LUMO en-
ergy �A is not equal to −A. Only the energy of the acceptor
orbital in the negative ion would be equal to −A �since the
highest orbital energy is equal to the ionization energy, and
the ionization energy of A− is the electron affinity of A�. The
orbital energy of the acceptor orbital of A lacking the neces-
sary upshift to its value in A− leads to the error in the TDDFT
excitation energy, which is therefore typically too low.

However, in one case there is no error in the acceptor
orbital energy. This is for H+, where in this zero electron
density system both the electron Coulomb potential and the
exchange-correlation potential are zero and the orbital en-
ergy is simply the normal energy of the 1s orbital in the field
of the +1 charge of the nucleus. This is the electron affinity
of this acceptor system. In this particular case the whole
error of the TDDFT charge transfer excitation energy in ac-
tual calculations arises from the fact that in any generalized
gradient approximation �GGA� the donor orbital energy is
not equal to the ionization potential, but is too high �not
negative enough� by some 4–5 eV. This GGA error is par-
ticularly large for the 1s orbital energy in He, hence the
considerably too low excitation energy in the TDDFT charge
transfer calculation in this case. When the systems are at
finite distances where 1 /R is no longer negligible these ob-
servations remain true, the He 1s orbital energy is shifted
down by the field of the proton, and the orbital energy of the
H+ 1s LUMO is also shifted down by −1 /R because of the
−1 /R tail in the exact KS potential of the He atom �which,
however, is absent in local density approximation or GGA�.

APPENDIX C: EXACT TDDMFT WITHIN A TWO-
ORBITAL MODEL

To clarify how the nonlinearity in the exact TDDMFT
equations introduces additional roots, we evaluate the equa-
tions within a two-orbital model. We use a H2 system with
two 1s orbitals, one on each H-atom, so the NOs are just 1�g
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and 1�u. We have m=2 and M =1. Note that we have C=0
since the orbitals belong to different irreducible representa-
tions. The secular determinant of Eq. �36� blocks into an
upper left part containing A and a lower left block contain-
ing E2. The first leads to �2−Auggu

2 =0, corresponding to the
�u

+ root

�1�u
+ = � Auggu = � �E0 − hgg − huu − wuggu − wugug� .

�C1�

For the �g
+ roots we have to solve

�� −
�E2�gg

�
−

�E2�gu

�

−
�E2�ug

�
� −

�E2�uu

�
� = 0. �C2�

Using the definition of E we obtain

�1�g
+ = 0 and �2�g

+ =
4

ngnu
wugug

2 1

�
. �C3�

In Fig. 10 the solutions are shown as functions of � in the
specific case of H2 at a distance of 5.0 bohr in a STO-6G
basis45 set.

Although the dimension of the matrix is m2=4, we do
obtain m2+m=6 roots from the intersection of the �=� line
with the �i��� curves. The �1�u

+ are constant lines at �Auggu,
yielding two intersection points. The 2�2 E2 block yields
four roots for the �g

+ symmetry. One is the �=0 root for the
ground state. The �2�g

+ hyperbola cuts the �=� line at two
nonzero points, which are the positive and negative roots
corresponding to the 2�g

+ excitation energy. The number of 6
roots is reached by taking into account the intersection of the
hyperbola with the �=� line at the “degenerate” �=0 point,
where it switches from −� to +�. In the large basis set cal-
culation on H2 displayed in Fig. 4 there are also m hyperbo-
las, but their asymptotes toward �=0 are not visible, being at
too high energy.
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