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Excitation energy dependence of the symmetry energy of finite nuclei
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A finite-range density and momentum-dependent effective interaction is used to calculate the density and
temperature dependence of the symmetry energy coefficient Csym(ρ, T ) of infinite nuclear matter. This symmetry
energy is then used in the local density approximation to evaluate the excitation energy dependence of the
symmetry energy coefficient of finite nuclei in a microcanonical formulation that accounts for thermal and
expansion effects. The results are in good harmony with the recently reported experimental data from energetic
nucleus-nucleus collisions.
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The symmetry energy Esym(ρ, T ) represents with a very
good accuracy the energy cost per nucleon to convert all
the protons to neutrons in symmetric nuclear matter at the
density ρ and temperature T . Study of its density and energy
dependence is of utmost contemporary importance. It is
essential not only for understanding many aspects of exotic
nuclear physics induced by collisions of radioactive nuclei but
also a number of important issues in the astrophysical scenario
like supernovae explosions [1], explosive nucleosynthesis,
cooling of protoneutron stars [2], and abundances of relatively
heavier elements. Even on a more mundane level, the neutron
skin thickness of heavier nuclei is intimately correlated to the
density derivative of the symmetry energy [3,4] as it reflects
the pressure difference on the neutrons and protons.

In addition to a kinetic contribution, the symmetry energy
has a contribution arising from the difference between the
neutron-proton (n-p) interaction and that between like pairs
(n-n, p-p). Given an interaction, it is straightforward to
calculate the symmetry energy at different densities and tem-
peratures for infinite matter. There have been several attempts
in this direction. Calculations of the nuclear equation of state
(EOS) in the microscopic framework using both bare [4,5] and
effective interactions [6,7] have been done. The outcome of
these calculations for the symmetry energy is similar (∼ 30–
35 MeV) at saturation density but is considerably different
at subnormal as well as at supranormal densities where the
available data from experiment to confront with theory are
more scarce.

Laboratory information on the density dependence of the
symmetry energy can be obtained from energetic nucleus-
nucleus collision experiments. At densities above the normal, it
can be inferred from the comparison of theoretical predictions
with experimental data on the differential flow of neutrons
and protons, from the π−/π+,K0/K+ ratios, etc. [8]. At
subnormal densities, disassembly of a hot expanded nucleus
offers the best tool to study the characteristics of the symmetry
energy [9,10]. Experimental data related to isotopic distribu-
tions, isospin diffusion, and isoscaling try to constrain the
density dependence in the subnormal region, but there is still
considerable uncertainty.

A nucleus expands with excitation with increasing temper-
ature in general. This implies an excitation energy dependence
of the symmetry energy because of the density change.
Experimentally, this information is generally extracted [10]
from the fit of the experimental isotopic distributions at
different excitation energies to those obtained from a model
for multifragmentation like the statistical multifragmentation
model (SMM) [11] or from isoscaling [12]. Currently, calcu-
lations for the energy dependence of the symmetry energy are
available for infinite matter, but no microscopic calculation has
yet been performed for the energy dependence of finite nuclei.
The main purpose of this communication is to report such a
calculation.

For an expanding system pursuing the equilibrium config-
uration, the surface diffuseness is likely to play an important
role [13], thus a zero-range interaction like the Skyrme force
widely used to explore the nuclear ground-state properties may
not be the most adequate for generating such a density profile.
It is further noted that a constrained expanded system in a
Thomas-Fermi approach may lead to numerical instabilities
[14] and the gradient (surface) terms in the energy density
functional were replaced with a suitable Yukawa interaction
[15]. We have therefore chosen the modified Seyler-Blanchard
(SBM) effective interaction [16] for our microscopic calcu-
lation in the finite temperature Thomas-Fermi formulation.
This interaction is of finite range and momentum and density
dependent. The interaction reproduces quite satisfactorily the
ground-state bulk properties of nuclei over the whole periodic
table for A > 16. The EOS calculated [17] with this interaction
agrees very favorably with those obtained microscopically
with a realistic interaction in a variational approach [18,19].
The SBM interaction is given by

v(r1, r2, p, ρ) = −Cl,u

{
1 − p2

b2
− d2 [ρ(r1) + ρ(r2)]n

}

× exp(−r/a)

(r/a)
. (1)

Here r = |r1 − r2| and p = |p1 − p2| are the relative separa-
tion of the interacting nucleons in coordinate and momentum
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space, ρ(r1) and ρ(r2) are the densities at the sites of the two
interacting nucleons, and Cl and Cu are the strengths for like
pair and unlike pair nucleon-nucleon interaction. The density
exponent n controls the stiffness of the nuclear EOS. The
values of the parameters Cl, Cu, b, d, a, and n are given in
Refs. [16,20]. The energy per nucleon e(ρ, T ) calculated with
this interaction for infinite nuclear matter is given by

e(ρ, T )

= 1

ρ

∑
τ

ρτ

[
T J3/2(ητ )/J1/2(ητ )

(
1 − mk

τV
1
τ

) + 1

2
V 0

τ

]
,

(2)

where τ refers to the isospin index (n, p). Here Jq(η) are the
Fermi integrals, mk

τ the effective k mass of the nucleon, and
ητ the fugacity given by

ητ = (
µτ − V 0

τ − V 2
τ

)/
T , (3)

with µτ as the nucleon chemical potential. In Eqs. (2) and (3),
the Vτ ’s are the different components of the single-particle
potential whose expressions can be found in Ref. [16].

The symmetry energy per nucleon of asymmetric nuclear
matter with asymmetry X = (ρn − ρp)/ρ is

esym(ρ, T ,X) = e(ρ, T ,X) − e(ρ, T ,X = 0). (4)

It can be written as

esym(ρ, T ,X) = Csym(ρ, T )X2 + O(X4). (5)

The terms beyond X2 are negligible over a considerable range
of X (as involved in finite nuclei). The symmetry energy
coefficient Csym is obtained from

Csym(ρ, T ) = 1

2

∂2

∂X2
esym(ρ, T ,X)|X=0. (6)

In the top panel of Fig. 1, the density dependence of Csym

at T = 0 is displayed in the density region 0.1 � ρ/ρ0 � 1.0
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FIG. 1. Symmetry energy coefficient of infinite nuclear matter as
a function of density for different variants of the SBM interaction (see
text) at T = 0.0 MeV (top panel). In the bottom panel the temperature
dependence of Csym at several fixed densities is shown for n = 1/6.

for three variants of the SBM interaction with density
exponents n = 1/6, 2/3, and 4/3, in increasing order of the
stiffness of the nuclear EOS. The values of the nuclear
incompressibility with these three interactions are K∞ =
238, 300, and 380 MeV. The symmetry energy coefficient
calculated with them can be very nicely represented by
Csym(ρ) ∼ Csym(ρ0)(ρ/ρ0)γ with Csym(ρ0) = 34.0 MeV and
γ = 0.65, 0.68, and 0.70, respectively. The value of the expo-
nent γ appears not very sensitive to the nuclear EOS. The
agreement of the functional form of the symmetry energy
coefficient and the value of γ with those obtained recently
[10] from experimental data (γ � 0.69) is excellent. The
nuclear incompressibility with n = 1/6 compares very well
with the presently accepted value of K∞ ∼ 230 MeV; all the
subsequent calculations are therefore reported for the SBM
interaction with n = 1/6. In the bottom panel of Fig. 1, the
temperature dependence of the symmetry energy coefficient
at different densities (ρ/ρ0 = 0.3, 0.6, and 1.0) is shown. At a
fixed density, dependence on temperature is not much evident.

In calculating the excitation energy or density dependence
of the symmetry energy coefficient of a finite nucleus with N

neutrons and Z protons (A = N + Z) with excitation energy
E∗, we remind ourselves that the hot nucleus prepared in
the laboratory in energetic nuclear collisions is an isolated
system with a fixed total excitation E∗ and thus should be
described by microcanonical thermodynamics [21]. Left to
itself, the system expands due to unbalanced thermal pressure
in search of maximal entropy where the total pressure vanishes
and the system is in equilibrium in a bloated mononuclear
configuration with the same excitation energy. The expansion
is simulated through a self-similar scaling approximation for
the density:

ρλ(r) = λ3ρ(λr), (7)

where λ is the scaling parameter (0 < λ � 1) and ρ(r) is the
base density profile. The base density, employing the SBM
interaction, is generated in the self-consistent Thomas-Fermi
framework. The subtraction scheme [22,23] is used to render
the density profile independent of the box size with an effective
temperature T chosen so as to give the maximum entropy
for the given excitation E∗. The excitation energy is calculated
as

E∗ = E(λeq, T ) − E(λ = 1, T = 0), (8)

where λeq is the scaling parameter for the equilibrium density
profile corresponding to this excitation.

The SBM interaction, being momentum dependent, renor-
malizes the bare nucleon mass m to an effective k mass. A
frequency dependent mass factor mω/m is further phenomeno-
logically incorporated [24,25] in the calculation. It is very
relevant in the present context; the ω mass mω/m is generally
larger than unity, it has the effect of bringing down the excited
states from higher to lower energy near the Fermi surface, thus
increasing the many-body density of states at low excitations
that allow comparatively more accommodation of entropy at
a given excitation energy. Details on the generation of the
equilibrium density profile, effective temperature, frequency
dependent mass, etc., as employed in this calculation, are given
in Refs. [26,27].

041602-2



RAPID COMMUNICATIONS

EXCITATION ENERGY DEPENDENCE OF THE SYMMETRY . . . PHYSICAL REVIEW C 76, 041602(R) (2007)

Once the equilibrium density ρ(r) of a nucleus at excitation
E∗ is known, the symmetry energy is calculated in the local
density approximation as

Csym(E∗)

(
N − Z

A

)2

= 1

A

∫
ρ(r)Cl

sym[ρ(r), T ]

×
[
ρn(r) − ρp(r)

ρ(r)

]2

dr. (9)

Here Cl
sym[ρ(r), T ] is the symmetry energy coefficient at

temperature T of infinite nuclear matter at a value of the
local density ρ(r). The local isospin density is given by
ρn(r) − ρp(r). It may be mentioned that both the volume and
the surface terms in the liquid drop type mass formula are
asymmetry dependent [28]. The symmetry energy coefficient
Csym(E∗) defined through Eq. (9) may therefore be taken as an
effective parameter incorporating both the volume and surface
contributions from asymmetry and may be written as

Csym = Cvol
sym − Csurf

sym/A1/3. (10)

In a microcanonical formulation, it has been found that the
equilibrium density at a given excitation depends on the mass
and asymmetry of the nucleus concerned [26]. In investigating
the excitation energy dependence of the symmetry energy
coefficient, it would then be worthwhile to investigate its
system dependence. We have therefore chosen three systems,
two isobars of A = 150, namely Cs and Sm, and a lighter
system 40S. In the bottom panel of Fig. 2, the coefficient Csym

as calculated using Eq. (9) is displayed as a function of E∗/A
for the isobars of A = 150. It is found that at a fixed excitation,
including the ground state, Csym is somewhat sensitive to
the asymmetry of the nucleus; it increases with increasing
proton fraction of the system. This is at variance with the
expectation from the liquid-drop formula where the effective
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FIG. 2. The equilibrium temperature (top panel), equilibrium
central density (middle panel) and the symmetry energy coefficient
(bottom panel) as a function of excitation energy for the A = 150
isobars (Cs and Sm). The experimental data for T are from Ref. [33],
those for ρ/ρ0 are from Refs. [30] (circles) and [31,32] (squares),
and those for Csym are from Refs. [10] (inverted triangles and circles)
and [29] (squares).

symmetry energy coefficient given by Eq. (10) is independent
of charge for a given mass. This may be understood from the
fact that the parameters of the liquid-drop formula are based
on a global fit to the binding energies of nuclei over the entire
periodic table around the stability line, excluding the very light
ones. Here, the Coulomb energy (= acZ

2/A1/3) coefficient
ac is taken as a constant for the whole mass range. In our
calculations for isobars, it is seen that with increasing charge
as the proton distribution is pushed outward, ac decreases and
Csym increases. This effectively explains the isobaric variation
of binding energies.

Some representative experimental results [10] for Csym

obtained from the analysis of isoscaling data for lighter
fragments are shown in the bottom panel of Fig. 2 as inverted
open triangles and solid circles. At relatively lower excitations
(E∗/A ∼ 2–3 MeV), experimental data from isoscaling for
heavier fragments [29] are also shown as solid squares.
Our calculated energy dependence of the symmetry energy
coefficient agrees favorably with these experimental findings,
the calculated values are somewhat lower. The variation
of Csym with excitation stems basically from the changing
equilibrium density with excitation energy, which is shown in
the middle panel of the figure for the two systems. Because
the density has a profile, the choice of a single value of the
density leaves room for ambiguity; we have taken ρc/ρc,0 as
the measure of the density where ρc is the central equilibrium
density at the relevant excitation and ρc,0 is the ground-state
central density. The theoretically calculated results are in nice
agreement with the experimental data from Ref. [30] (solid
circles of the middle panel) derived from the analysis of
caloric curve measurements. The data obtained from Coulomb
barrier systematics [31,32] are shown with open squares. For
completeness, in the top panel, the caloric curves along with
the experimental data compiled by Cibor et al. [33] are also
displayed. It is seen that the plateau of the caloric curve
shows little sensitivity to the asymmetry of the nucleus; this is
consistent with the recent calculations of Hoel et al. [34].

The mass dependence of the effective symmetry energy
Csym(E∗/A) is displayed in the bottom panel of Fig. 3. The
calculations are done for 150Sm and 40S, both having nearly
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FIG. 3. Same as in Fig. 2 for the systems 40S and 150Sm to show
the mass dependence.
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the same asymmetry. The reduction in Csym for 40S can be
understood from the role played by the surface asymmetry
as given by Eq. (10). For completeness, the equilibrium
central densities and temperatures as a function of E∗/A
are also shown in the middle and top panels of the figure,
respectively.

To conclude, calculations on the density and excitation
energy dependence of the symmetry energy of finite nuclei
have been reported in this communication in a microscopic
formulation within the microcanonical framework. It has
been stressed in a recent calculation [13] that the surface
diffuseness of the expanded mononuclear system plays a key
role in making the system softer toward instability, limiting
the maximum excitation energy a mononucleus can hold to
∼5 MeV/nucleon with free variation of the surface diffuseness.
Our model calculation does not leave any room for free
variation of the surface diffuseness. It is determined in two
stages: the increased diffuseness of the base density profile
of the hot nucleus over that of the ground state and then its
subsequent stretching from the self-similar expansion. The

surface diffuseness so obtained is found to be somewhat less
than that reported in Refs. [13,34]. Exploring the weakening
of the symmetry energy with excitation using free variation
of the surface diffuseness would be interesting to look into.
In the present calculation, the density dependence of Csym(ρ)
of infinite nuclear matter is found out to be ∼(ρ/ρ0)γ with
γ = 0.65, very close to the recently extracted experimental
value of γ � 0.69 [10]. At constant density, Csym(E∗) of
infinite nuclear matter is practically constant. For finite nuclei,
however, density changes with excitation; their excitation
energy dependence can be well represented by Csym(E∗) �
Csym(E∗ = 0)(1 − αE∗) with α � 0.06. These are in good
consonance with the experimental data obtained from nuclear
multifragmentation.

S.K.S. and J.N.D. acknowledge the financial support from
CSIR and DST, Government of India, respectively. M.C. and
X.V. acknowledge financial support from grant nos. FIS2005-
03142 from MEC (Spain) and FEDER and no. 2005SGR-
00343 from Generalitat de Catalunya.

[1] E. Baron, J. Cooperstein, and S. Kahana, Phys. Rev. Lett. 55,
126 (1985).

[2] J. M. Lattimer, C. J. Pethick, M. Prakash, and P. Haensel, Phys.
Rev. Lett. 66, 2701 (1991).

[3] B. A. Brown, Phys. Rev. Lett. 85, 5296 (2000).
[4] M. Baldo, C. Maieron, P. Schuck, and X. Viñas, Nucl. Phys.
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