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By making use of the expressions for 0_;, and g, obtained in the preceding paper, the
interaction Hamiltonian among the excitations described by the operators &; and bz* is
derived up to the order of N~ It is shown that all interaction terms have convergent
forms and they always give finite corrections to all physical quantities.

§ 1. Introduction

In the preceding paper” (which is hereafter referred to as A), the operators
0-r and g have been written in terms of the operators &, and &,* up to order of
N7% by taking account of the A-l-type nature of the density-fluctuation operator
and the momentum-density operator. The results are expressed in the following
way. The density-fluctuation operator p_, is written as
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Excitation-Modes and Their Interactions 1013

Q e
Vil (p; @)= 360.k+p+q‘/)‘k}‘plqy (k,p,q).

The momentum-density operator ¢, is represented as
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1014 S. Yamasaki, T. Kebukawa and S. Sunakawa

492 (p, q) =%ao,k+,,+qﬁ;;z.,<py (D) +ay(@). (1-4)

If one makes use of (2-13) in A and the expressions (2:16), (2:22) and
(2-23) in A, one can write the velocity operator v, in terms of the operators b,
and 0,*. The result is given by
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The functions ¥ and x in the above expressions are defined by

220z ¥snBny /1 uo Jasn sansnr Jo Juswpedaq ‘S'N Ad ¥0ZE L6 L/ZL0L/b/19/o10ne/did/wod dnooiwspese)/:sdjy Wwolj papeojumoq



Excitation-Modes and Their Interactions 1015
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(85D, A1) =TssptUssgtlssy and 7,=2,—1. (1-8)

One should note here that the velocity operator in (1-6) does not have the A-1-
type structure in contrast to the operators p_; and g, in (1-1) and (1-3).

The main purpose of the present paper is to derive the interaction Hamiltonian
among the excitations described by the mode-operators b, and 4;* up to order of
N2, and to show that the interaction terms have convergent forms and always
give finite corrections to all physical quantities in the perturbation theoretical calcu-
lations. Before the derivation of the interaction Hamiltonian, we discuss in § 2 the
relation between the old methods in the previous papers? (referred to as I, IT and
III, respectively) to derive the transformations (1-1) and (1-3) up to order of
N~! and clarify the reason why the interaction terms have convergent forms.

§ 2. Density correlations

The working hypothesis in the previous paper II to determine the coefficients
in the expansion of p_, and g, in terms of the operators b, and 5,* was to take
notice of the asymptotic conditions like (2-19) in A. In this section, we show that
the asymptotic conditions are also satisfied by the expression determined as (1-1)
and (1-3), and that the procedure to determine the unknown coefficients in the
preceding paper is a sort of extension of the previous working hypothesis.

When we take the expectation values of the operators Or0p0q and p,0_,, one
has (2-20) and (2:-21) of A in the crudest approximation. If one takes account
of the new higher-order corrections of 0, in the expectation values, one has a new
contribution (2/2) 0o, 1+ p+qhrdphey (k. p,q) to (2-20) in A and no higher-order
correction for (2-21) in A. Since the function y (k, p, ¢) givenin (1-8) vanishes
whenever any one of the arguments goes to infinity, we see that the asymptotic
condition below (2:21) in A still remains valid.

As will be seen from the condition (2-19) in A written in the first quantized
form, however, the conditions should be satisfied irrespective of the states by
which expectation values are taken. This means that the asymptotic conditions
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1016 S. Yamasaki, T. Kebukawa and S. Sunakawa

should hold as operator relations in the sense of weak convergence. Therefore,
our next task is to demonstrate that the operator 0r expressed in terms of &, and
b, satisfies the asymptotic conditions.

This problem can be analysed more extensively by investigating the operator
Upygin (2:9) of A. We consider first the operator Uy ;= 0,0,—p0r+;. When one
writes 0,0, and U, in terms of the operators a,; and «,*, one has

0r0;=2. fl;+kﬂpa:1k+zflq (2-1)
P q
and
Uk.l:Z a;;+kﬂ:1k+zﬂqﬂp, (2-2)
a

respectively.  Both operators (2-1) and (2-2) forbid that the transferred momen-
tum £k (or 1) is divided into large pieces and is imparted to more than two atoms.
In the case of (2-2), however, the momenta % and Il are always transferred inde-
pendently to two atoms. On the other hand, in (2-1), the momenta are not
necessarily shared with two atoms, but the sum k+1 may be transferred to a
single atom, since the terms like a;:._Hkaq,, 1a5a; are involved in the sum over
p and they transfer k-1 to a single atom. This is an essential difference between
two operators in (2-1) and (2-2). This fact indicates that the operator Uy,
expressed in terms of 5, and 5,* also has property similar to (2-2), and that such
an operator can be called an asymptotic two momentum-transfer operator (hereafter,
referred to as an A-2-type operator). The A-2-type operator is defined more preci-
sely in the following way. Consider an operator like
p§,,,f’°'l<p’ q, - u, w, "')bp*bq*"'b—wb—u"' (23)
Fiag
with some coefficient f,,, When we group the momenta appearing in (2-3) so as
to contain at most one momentum from each of three sets {k, 1}, {p,q,-} and
{u,w, ---}, one has a partition like [k, p), (I,w), (q,u),--]. When the coeffi-
cient f , vanishes whenever the sum of the momenta belonging to any group for
the fixed partition tends to infinity, the operator (2-3) is called an A-2-type opera-
tor. The sum of A-2-type operators for various partitions is also an A-2-type
operator Oy ;. Since the momenta k and I are not involved simultaneously in one
group in any partition, the A-2-type operator inhibits a coalescence of large momen-
tum-transfer as (k+1) to a single excitation and the “transferred” large momenta
are always carried by two excitations. This structure of the A-2-type operator
requires the following asymptotic conditions. When one takes an arbitrary matrix-
element of the operator, the momenta (P, q, ~-;u,w, -++) attached to every operator
in (2-3) are fixed by those in the state-vector. In this situation, the A-2-type
operator O, ,; satisfies the condition that all coefficients J#.q involved in the operator
vanish for large k (or I); ie.,
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Excitation-Modes and Their Interactions 1017

1i1n Ok,lzo or llm Ok,l=0 (2'4)

k- 1>

in the sense of weak convergence, by which we mean that every matrix-element
vanishes in these limits.

We now investigate the operator Uy, expressed in terms of &, and by
Introducing (1-1) and (1-2) into Uy ,=0p0,— 0+, one can write a complicated

expression as

N N o . R .
U_j,1=N0Oo s+ > PRV ht (00, e+ 00,0+ 00, 000,219) [0g*00* +0_40_4
ar
+2b,*b_,]
' Oogrreq Aude—1) V2 [05% +b_,]

2
q
+ \/Nq;sao,k+l+q+r+s‘/2‘;1)‘1'7;(;~k60,l+q+ Al6o,k+q) [bq*br*b-s + bs*b—rb—q]
N 1
-+ Z 00,k+l+q-':-r?ikll\/;‘q)‘r’/]lJrq [bq*br* + b—rb—q]
@
+ qu Ookrrt g ibntt(Terq T Thrq) + 2kt (Audy—1)} \/)‘q)‘rbq*b—r

o 1 : o N
"i“q ;g tOO,k+l+q+r+s~: vy \/]‘q}\r}‘s;‘t (200,04 g+ 2400, 1+ @) N5+ [0 g 00* 0™ 0,
+0.2b_b_,b_4]

N
+ 20 0
q 7 st

Etltqr Ts+t—\/) A she[{22(00 142+ 0 arq) T 200 ks T 00,104 )} st
+ 200,11 qrstuhi) g0, 0 b,

)

1 N 1 R
+ ;/N » :L] s toﬂ,kv!—l+p+q4'1'+s+t§\/}‘p’]‘qlr}‘slt{]‘koo,pi—l(*r (q, r; k’ S, t)

+Z,C(S, t; k, q, r)) +)“l60,p+k<x(q, r; l: S, t) +x(s, t; l> q, r))
2Bz pott Ooer e} [Bp g b Do yb ot 57D, *D_ Db,

\/N qu(?o E+l+q+rs sl V2, ahr 2, {2)k7‘l<x(k Lgr)+xklr,s)

+ @lys— Dz, 1; @) + 240y —1D x(s5 9, 1)
+200,1:q22 1Y (K, 7, 8) + 200,34 8%y A, 7, 8) }
X [bg%0,%b_s+b*b_,b_g]

:/ ;60 k+l+q—\/;‘ Ak (k1 q) [b *+b—q] (2-5)

where

x(k, l; q, r) Eﬂk+q77l+r + 77k+r771+q and x<s; q, r) Eﬂs+q + Ns+a »
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1018 S. Yamasaki, T. Kebukawa and S. Sunakawa

By a detailed inspection of the rather complicated expression (2-5), one can con-
clude that the operator Uy, in (2-5) has the structure as an A-2-type operator,
that is, the large momenta k and I are not divided into more than two excitations
and the sum k+1 is not carried by a single excitation. This latter property comes
from the subtraction of p_,_, in U_, ;. From (2-5), one can readily see that

lim U_p ;= lim [0 30 3—0_4-4]=0 (2-6)

Ek (or)—o Ek (or I)—»>w

in the sense of the limit in (2-4). From (2-6), we see that the asymptotic con-

dition (2-19) in A is satisfied as an operator relation, since lim O-p-q0p=0-¢-

The generalized asymptotic condition like e
lim pqpr' : 'ppp—p—q—r--- = pqpr' : 'p—q-—r--- (2 : 7)
pooo

is also satisfied in the sense of weak convergence.

Before closing this section, let us discuss the convergence properties of W (o)
in (2-9) of A. Since all terms in W (p) are expressed in terms of the operators
U multiplied by the factor p® and have sums over the relevant momenta, some
amount of worry is caused about the convergence of the sums. We may argue,
however, that the sums can give convergent results on account of the condition
(2:6). The first term on the right-hand side of (2-8) in A will converge thanks
to the condition (2-6). The operator Upvq’r in the second term can be written as

U

praw=0pU

= prU

Up+q:r_ U‘1v7'+P: qurxp_ Uq+r:p_ U"’P+‘1

U U pgin- (2-8)

Qr

pq Y ripg

If one takes the limit r—>oco (or P>, q—0c0) in the first expression (or in the
second and third expressions), we see that

U g g =i U g =lim U g = 0. (2-9)

In virtue of these conditions, the second term of W (p) gives convergent result.
We note here that the operator U, ,.»
that the division of momenta p, ¢ and r as well as the coalescence of these mo-
menta is prohibited. This is seen from (2-8). Namely, although the operator
Ug» in (2-8) is certainly the A-2-type operator, the operator 0pUgq.» may produce
coalescence of momenta p and g (or r). But these terms are subtracted by the

second and third terms in (2-8), and the operator Up.gr

is the A-3-type operator, by which we mean

does not produce coale-
scence of the momenta.

The same line of arguments makes one conclude that the U-operator with M
indices p, g, --- and w is an A-M type operator, since this operator can be rewritten
as

Upgirow=0pU givie = U prgumerio—U q,prmenw =" —U g prw »  (2:10)
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Excitation-Modes and Their Interactions 1019

The A-M type structure of this operator is responsible for the convergence of
higher order contributions to W (p).
The closed expression of Uy, 4., in terms of the ¢’s is given by

U g = (=D DAL= (1= DB™) 50 qrseb s s s (241D

where (p’,¢q’, -, w’) represents a permutation of (p,q,---,w) and m, is the
number of factors p whose indices are written as sums of n letters out of p,q, -
and w. Moreover, Y .m implies the sum of different products of p that results from
possible permutations (p’,q’, -, w’) of (p,q, -, w), and I, indicates summa-
tion over all sets [m,] of non-negative integers m, satisfying > o_inm,=DM.

§ 3. Hamiltonian for elementary excitations

The elementary excitations in a Bose system can be described in an appropriate
way by the operators b, and b,*. Introducing (1-1), (1-3) and (1-5) into (2-6)
and (2-10) in A, one obtains after a straightforward and lengthy calculation the

following expression for the Hamiltonian up to order of N~ %%:

H=H,+H,+ H,+Hy+ -, (3-1)

where the first three terms were already given in 1II; i.e.,

N* K
Hy=2v(©0) =3 27 g, 4+ 3 By by,
0 2‘9 ( ) IZC Snllszik % p Pp Op
1 Jay
HI:zzx/N 1)§r00,1,4_q+,.17§2'1> (P, ;1) [0,%0,%0_,+0,%b_4b_ ]
1 JaY
Y 4, [ b

and
1 1 n, 1 e,
HL[: NFS} 0 +N ; r](ll D (P) bp*bp‘l‘éN ; Fl(f 0 (_p> [bp*bfp—l' b_PbP]

1

TN 2 Ouprgrrssl 87 (P @37, )5y 0000y
1 N 3,
- 3IN pyq'zri'soo'l’+q+r+stf "(p,a,r;s) [bp*bq*bf'*b—s+bs*b*rb—qb—z’]’

(3-2)
where the coefficients F' in (3-2) are given by (see (3-25) in II)

n’ 1

FeO(p q;r) =" _ @) ), Qo+ 1
PV (p,q;r) i «/zplqzr[(p @) 20 p0q+ (q-1) 2574 (A4 1)

+ (P ) A1, A+ 1)1,
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1020 S. Yamasaki, T. Kebukawa and S. Sunakawa

! 7t 1
F&o (p, q, r)—;l T lr[(p @) 40 p1g+ (1) 2040+ (P1) g7 7],
Fpo= Z 0o, krzemb TR0 m »
16m kT
2
Fgo(p)=F{"(p) = “ghn; tZ 60,p+l+1n (P +V4+m) 70, (3-3)

-2 R
F2(pgsr, s) = %n—{(zrq) + )}V A phgdyls (Dprs+ T psr)

[ D S>N/l S, {(ip;s 1) (]\p+s—1) +]\P}‘$<7]p+r+77q+s> —77177/3}

+ (three terms obtained by exchanging variables as (p<>q), (r<>s)

and <p<—>q>]
ros
and

Pt )= g [ 170 ol Ayt L)
+(pe9),/ ’tq’“swp (Ipsq+ *op+r)}

+ {two terms obtained by cyclic exchange of p, g and r}:l

The interaction Hamiltonian Hj in the new higher-order term obtained in the
present paper is given by

1

n= 2 Ooprgirsssel
4'N3/2pqrst pPtq+tr+s

(p,q,r,s;8) [0,%0,50,%b%b_,
L o*b_ b b gb )]

1
T e Z 60,p+q+r+s+tF(3’2) (p, q,r;s, t)

312! N*2 p.q.ms.t
X [17 #bg*b wFO_sb_y+0F0F0 b b_pl

1
+3'N3/2 Z 60 p+q+rF(3 v (.py qa r) [b *5q*br* +b_rb—qb—p]

+2' Ns/g 2 60 1:a+q+rI_‘(2 = (p’ q’ r) [b *b *b—r+br*b_qb_},]. (34)

The coefficients in (5-3) are expressed as

FyP(p, q,r,s; t) :211_1[5_7 G (p, q, 7, s; t) + (symmetrized terms concerning

(p,g,7, 9],
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Excitation-Modes and Their Interactions 1021

F§® r;s t)=-—-[F&?(p, q,r;s,t)+ (symmetrized terms concerning
-p’ q’ b 3' 2’ ) B

(p,q,r) and (s,8)],

F&O(p, q,r) = _[g(? "(p, g, 7) + (symmetrized terms concerning (p, ¢, r)]
and

g (p,qir) = 2 [F 80 (b, air) + T (g, i), 8-5)
where

3 2 e 2
Ef(ll?,l) <.p’ q,r, s; t) = Zzl_'\/lp;‘q]‘1-]‘s/‘t7/s+t|:ﬂp+q{ /]p (p q> ()‘ _1)}

2, Apg
/1" 1, 77;»77 ] (3-6a)
3 ey t 2p’
g%{i,?) (.p, q, r; s, t) = ';i;;l‘\/;‘plqlrlsltvr+s[77q+t {2<q —_l—t) * <t+ %1‘> + XI;A

_p2~4(q+t>2} Vp{(P‘|“1) 0p+q+ } lpi—qvp??q}, (36b)
A /1, Iphq
Feo SN 2 (r-p)
" (p,qr) = 1 L phate | 22(p, q, r)+—p y(p, q,r)+27,~~—2y(p)|,
6m 3 2
(3-60¢)

P B [ 1 { 1 }
2,1 . = — 2.2 — 1~ - —_
T4 (p, a3 1) =10V LA, | =202 (0) = 20+ (31pp -+ (14 3 )r y ()

r

5 1
—Ez(p, q,r) —E(pﬂ]) z(p, q, 1)

2
+{E = Liaopr+ 200+ 175 (p, 0, . (3-6d)
1, 36

The functions y are given in (1-8) and the new functions z are defined by

2
=) =27 21+ 2) i,

. 2
=(p,q, —p—0) =2 D1~ 0 pnimee, 3:7)

3

and
=(p,q, ~p—0) =27 D=L Y i,

where 2 (p, q¢,7) and z(p, ¢, r) are defined only for the case p+¢+r=0 on account
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1022 S. Yamasaki, T. Kebukawa and S. Sunakawa

of the existence of the deltafunction in (3-4).

We now inspect more closely the properties of the interaction terms in (3-4)
by taking account of the rapid convergence of the factor 7 for large momentum
k. Firstly the coefficient &V in (3-6a) does vanish whenever any one of the
four momenta p, q,r and s+t becomes large, where one should take notice of the
delta-function in (3-4). Thus, the first term in the interaction Hamiltonjan Hy
can be regarded as an asymptotic zero-momentum transfer operator (referred to as
an A-O-type operator) concerning the partition L), (@, @), (s,0)]. By the A-
O-type operator, we mean here of course that any momentum-“transfer” produced
by the operators & and &* is effectively within the critical momentum %, Other
terms in the first term of (3-4) which come from the symmetrized terms in (3-5)
are also A-O-type operators concerning their corresponding partitions. In a similar
way, the coefficient & §® in (3-6-b) vanishes whenever any one of P p+q and
r+s becomes large. This indicates that the second term of the interaction (3-4)
with the coefficient & $® is also an A-O-type operator corresponding to the parti-
tion [(p), (q,t), (r,s)]. Other symmetrized terms are also A-O-type operators for
their corresponding partitions. The interaction terms which have the coefficients
IE® and FGP are A-O-type ones concerning the partitions [ (p), (q), (r)]
and [(p), (¢,7)], respectively. Therefore, we can conclude that the interaction
Hamiltonian Hy is an A-O-type operator.

If one inspects the interaction Hamiltonians H; and Hy; in (3-2) and (3-3)
from the present point of view, one can readily see that these interactions are also
A-O-type operators. In virtue of the fact that the momentum-“transfer” in any
A-O-type operator is restricted to smaller value than k., the A-O-type structure of
the interactions described by the operators by and b, * assures to give convergent
results for the perturbation-theoretical treatment of the interactions, since the mo-
menta in intermediate states are limited so as to give finite results. This structure
of the interactions among excitation modes indicates that the excitation modes de-
scribed by the operators b, and b,* are adequate to the collective description of
an interacting boson system. The number of the convergence factor 7, to be
attached to an A-O-type operator must be at least 7—1, where 7 stands for the
larger of the number of creation operators and that of annihilation operators. From
this fact we see that the Hamiltonian (3-1) is not only a simple expansion in
powers of N7'2 but also an expansion concerning the number of the convergence
factor 7. Finally, we give a notice to the last two terms in (3-4). The coeffici-
ents in these interaction terms involve one more factor 75/ N than the corresponding
terms in I}, and thus these terms are regarded as corrections for H,.
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