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Excitation of ~ l f v d n  Waves by High-Energy Ions in a Tokamak 
t 
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Plasma Physics  Laboratory,  Princeton .Univ.er s i ty , .  

Princeton, .New J e r s e y  08540 

ABSTRACT 

It i s  shown that shear  ~ l f v d n  waves can be 

destabilized by resonance .. . with high-energy "beam" 

ions near  the magnetic axis  in a tokamak, i f  the beam 

i s  radially non-uniform. 

In a plasma heated by high-energy neutral-beam injection t h e  

non-equilibrium plasma stability propert ies  must  be examined carefully.  

Preirious work has indicated that the distributions that a r e  likely to a r i s e  

f rom injection should be stable to velocity-space instabilities, in  a .uni form 

3 
medium. In particular ,. for  isotropic injection the beam slowing-down dis  - 

tribution i s  monotonically decreasing in energy, and thus ,s table  to  a l l  such 

modes. More detailed study indicates that, even with para l le l  injection, 

dis.tributions unstable to uniform-medium modes.are.unlike1y to a r i s e .  Hence, 

i t  becomes of in te res t ' to  look a t  .the modes associated with non-uniform : 

beams and plasmas.  In this le t te r ,  we examine the possibility of beam 
. . 

excitation of the shear  . . Alfvin waves. In projected experiments ,  beam 

velocities l ie just  below the ~ l f v i r i  speed v and hkice  might be in the 
A' 

proper  range for  resonant excitation. 
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As i s  well known, .the dispersion relation for shear Alfven waves i s  

given by w = k v - 
I 1  A = w~ 

. In tokamak geometry, complications a r i s e  in 

describing the radial eigenmodes since k i s  a,function of radius. Thus, 
I I .  

for a mode like exp (- im6 t i n  b ), where 13 i s  the poloidal angle and < the 

toroidal angle, we have k l l  ( r )  =. (nq - m ) / q ~  where q( r )  = r B  /RB for c 0 '  

positive m and n ,  k l l ( r )  i s  a n  increasing function of r when the current  

density i s  centrally peaked. In the MHB approximation, the eigenmodes fur 
. . 

thc fluid displacement 5 (r)  are singular a t  a radius where w = w (r) .  To 
A 

resolve this singularity, it i s  necessary to include finite gyroradius effects 

outside the MHD approximation. we  will see that these effects alsu i~llrucluct~ 

damping of the waves by means of electron dissipation, especially collisions 
. . 

of magnetically trapped electrons. We will also see that the high- energy 

beam ions can interact resonantly with the waves b y  means of thcir V B 

drifts;  for non-uniform beams this interaction is  destabilizing whenever 

w < w , ~ ,  where uab i s  the diamagnetic f r eque~~cy  ul the beam. 

I t  i s  clearly necessary to adopt a microscopic picture to evaluate 

2 2 
these effects. Where W = m v  /2 t e e  i s  the particle energy, and p = V , / Z B  

the invariant magnetic monent, the guiding center drift  equation for 

af/at + v n o ' v f  t ' v - [ ( v  t v + v ) f ] + ( d w / d t  )af/aw = o 
I I -  - - -E - D  -p  

where n = B/B. To an adequate approximation, we have .." 



2 
E X B  - - m ( p B + v  1 

V '  = - .  , v = 
, E - D 2 

I 1  n x ,V B 

B2 
- 1. 

eB 

with p = m v  / e ~ ,  the gyroradius . Here ,  v is the polarization dr if t  
1 -P 

including finite gyroradius ,effects. F o r  our purposes,  it i s  m o r e  convenient 

2 
to t ransform to variables  E = v / 2 ,  p ,  x , ,in which case  by straightforward 

, 

manipulation we obtain , . . . 

where we have a l s o  introduced a collision operator  C. F o r  shear  ~ l f v g n  waves 

in a low-p plasma,  we can represent  the perturbation e lec t r ic  field by 

with $, A -- exp ( -  i o t  - im9 + in p ) . In this l imit ,  the magnitude B and v 
II - D  

a r e  unaffected. by the perturbation. We l inearize .Eq. (3)  about a n  ax isymmetr ic  

equilibrium. If we i n t ~ ~ r a t e  the l inearized version of Eq. ( 3 )  over a l l  velocities 

3 
using d v =  2nB d p  d ~ / v  multiply by the charge e ,  and s u m  over a l l  spec ies  

I 1  ' 

making use  of the quasi neutrali ty condition, we obtain a moment equation for  j 
11: 

1/2. 
where p = (mi Ti) /eB . In obtaining Eq. (5), we have made u s e o f  

i 



. which i s  a consequence of the quasi neutrality of the equilibrium, 
4 

2 
Ultimately, we will combine Eq. (5) with the Maxwell equation V A = -4rrj 

II II 1 

to yield one relation between @ and A . This moment equation procedure 
I I 

make use of the quasi neutrality condition to high order; accordingly relatively 

smal l  effects, such a s  the beam contribution to the third t e rm  on the left and 

the fourth derivative term,  must be retained in Eq. (5). We must proceed to 

linearize Eq. ( 3 )  to obtain the f ' for use both in Eq. (5) and in the lowest-order 
1 ' 

quasineutrality condition. We must include a perturbation in the unit vector n , - 
ar is ing from the magnetic perturbation given by 

where we have made use of the fact that the magnitude B of the unperturbed 

field i s  approximately uniform. The linearized version of Eq. (3) can then be 

put in the form 

- - 
1 

v " n XVE Vfo - 
( _ v ~  +=[x - - II - Ifo ) I  

Here,  we have omitted the fourth derivative t e rm and have made use of the fact 

that the collision operator acting on v Vf vanishes, a t  least in the absence 
-E - 0  

of temperature gradients. The procedure from this point is to solve Eq. (7) 



for  the distribution functions of the various species .  These a r e  substituted 

into the lowest-order quasi neutrali ty condition to yield a relation between 

@ and E (or  A l l ) .  
I 1  

In the case  of the electrons,  we have o << k v . Thus, the t e r m s  
I I  I 1  

in E dominate on the right in Eq. (7), and to lowest o r d e r  we have 
I t  

The second t e r m  on the right in  Eq. (8) can be wri t ten a s  -w*, /w t imes  the 

f i r s t  t e r m  on the right, and may  thus be neglected since o >> o, for  the 
C 

, 
Alfven waves of interest .  The solution becomes 

Proceeding to next o rde r  in w/k v , we must  include the t e r m s  i n  v on the 
I 1  I 1  - D  

right in  Eq. (7).  Again the t e r m  i n  V f can be  wri t ten a s  -w,,/w t imes  the t e r m  - 0 

in af /a€ ,  and may be neglected. In this order  we obtain a solubility condition 
0 

- 
which determines g ( p ,  6 ), namely 

e 

F o r  untrapped part ic les  a l l  inhomogeneous t e r m s  average to ze ro  (k # O ) ,  and 
I I  

eff 
we conclude that g = 0. F o r  trapped part ic les ,  writ ing Cg = 

- v e  g and 
e 

assuming w>> v V , we obtain 
- D  - 

where ( A ) .  ( $ ~ d e / v ~ ~ ) /  $ d ~ / v  . This procedure,  of course ,  a s s u m e s  
I I 



trapped-electron collisions to be the dominant electron dis'sipation mechanism; 

electron Landau damping i s  smal l  since v << v . A Te 

In the case of background ions, we have o >> k v and w >> u . ,  and the 
I I  I 1  1 

solution of Eq. (7) i s  

The 1a.st t e rm  in Eg, (12) i s  smaller than the second te rm on the left by a 

factor  r / ~  and moreover, being proportional to cose , tends to average out; 

accordingly, we will omit it. 
5 

Finally, W P  t i ~ r n  tn the perturbed distribution function for the high- 

energy beam ions. Fo r  these ions, collisions may be neglected. Moreover, 

we a r e  interested primari ly in the possibility of mode excitation by beam 

resonances, where the operator on the left of Eq. (7) effectively vanishes; 

accordingly, we will keep only these terms.  For simplicity we will take the 

beam distribution a lso  to be Maxwellian, with T > T 
b 

For  a Fourier mode 
c ,  i' 

like exp ( in(  - im8 ) the right-hand side of Eq. (7) m a y  be simplified, and the 

equation written 

( - i w t v n * V + v  I - -D  * V ) g b  - = ( e f o / ~ ) ( l - w , b / w ) ( v  E - v  . V $ ) ,  
I I  I I  -D m. 

(13 

where w*,, = - ( m ~ ~ / e ~ r )  dQn nh /dr . In tbkamak geometry, the particle drift  

has ( r , 0  ) components given by v = [mb(2€ - p B ) / ~ B R ]  ( s ine ,  cos0 ). Also, - D 

E l l  i s  small  and resonance i s  only possible for w ~k v -k v >> k v 
I D  IIA I I  b '  

S O  

we will neglect the E t e rm on the right of Eq. (13). 
I 1  

Our philosophy in evaluating the beam resonance contributions i s  a s  

follows. When we t reat  the eigenmodes in a sheared field, we will see that . 



the beam resonance i s  only important in the region w z k v >> k v The 
I I  A I I  b' 

i,, 
angular dependence of v gives r i s e  to t e r m s  like exp [in [ - i ( m  * 1) 0 ] . Beam 

- D  

resonances can then oc'cur where o = (nq - m + l ) v  / q ~  for  positive m and n. 
I I  

The usual case  of in te res t  will be where k ( r )  i s  an increasing function of r ,  
I I  

since then the re  will be relatively undamped ~ l f v g n  waves occurr ing between 

r = 0 and r = r where w = k ( r  )v. . Wher.e' v now denotes the maximum . 
o I I  o A b 

beam velocity ( i . e . ,  the injection speed),  the condition for  resonance to occur 

will be vb/vA 2 [ n q ( r o ) - m  ] / [nq ( rO) -  m + 11. Noting that q ( r  0. ) > q(0) and 

nq(0) > m (or  e l se  there would be s t rong electron damping at the radius  wh.ere 

k = 0),  this condition on v /v i s  not too res t r ic t ive  es.pecially for  n =1, 
I I  b A 

and we will a s sume  in what follows that i t  i s .  satisfied. .In this approximation, 

the resonant beam t e r m  f rom Eq. (13) i s  

srif m (2E - p B )  "j*b (nq - rn tl) v 
- o b  

gb - 2BRTb ( I -  w ) 6  ( W -  ¶R 
"):  eie (* r + a r  ) . '(14) 

Next we apply the calculated distribution functions- to the macroscopic 

equations. We f i r s t  substitute the electron and background ion distributions 

given in Eqs . (9) ,  ( l l ) ,  and (12) into the lowest-order quasineutrali ty condition, 

the beam contribution being negligible to this o rde r .  In Eq. (9) ,  we wr i te  

f ElIda  = E /ik . In the case  of in te res t ,  we will  typically have (nq-rn) 8 5 1, I I  I I  max . 

where 8 i s  the turning point of a r typica l  trapped part ic le .  Accordingly, 
max 

Q 
as a rough average ,  we may  wri te  ( $ E dQ)  = E /ik in Eq. (11) provided 

I I  I I  I 1  

we introduce a factor ( r 2  to take into account the number of trapped 

part ic les .  Quasi neutrali ty then gives 6 



eff 2 2 
E = - ik [l + I r / ~  )'I2 W/(W + i v e  )]pie V1 0 

I I I 1  

where p = (m .T  )1/2/eB, and E = - i k  $ t i w A  . 
ie  1 e I I I I  I I 

2 
Finally, we combine Eq. (5) and V A = -4nj . The beam contributes 

I I  I 1  1 

to the third t e rm  on the left in Eq. (5); we obtain 

3 
2 W, (nq-mt l )  v 

IT 
e l d  V_V., - y g b  = -- (&) (.1-$b)V:9-S'fo(2e - p ~ ) 2 6 , ( w -  

qR 
' I )  d3v 

Tb 

2 3 
Using Eq. ( 6 ) ,  and noting that a j  /dr = - (~/4.rrmr ) ( a / a r ) ( r  ak / a r )  , the 

. , Ilo I I 

2 
f i r s t  two te rms  in Eq. (5)  may be combined and written a s  (-i/4ar ){(a/ar) X 

2 
r ( / ) ( ~ ~ ~ / k ~ ~ ) ]  - ( m  -1) k A ) .  We a r e  now in  a position to write down 

I I  I I  

Eq. (5) a s  a relation between A and $, and to substitute for A in t e rms  
I I I I  

of Q, u&g Eq. (15). Changing from $I to a fluid displacement variable 

5 = . . , r n$ / r~  , w e  obtain 

where w ( r )  = k ( r ) v  
2 eff 2 

A I 1  A '  
6 = ( r / ~ )  'I2 wvef f  / ( w  t v 

e e 
1 Y and 

2 2 
q = (n,,Th/n.m. I 1. w R . - W ~ W  . In obtaining Eq. (17), we have kept only 

4 4 4 .  2 2 
the t e rm  a 5 /ar out of V 5 , and have put w - 

-OA 
and T = T. in the 

e 1 

coefficient of this term.  
7 



A complete solution of Eq. (17) i s  evidently difficult. We observe  

that away f rom the singular layer  around w = w ( r  ), the solution will  
A 0 

consis t  of slowly verying solutions 5 and fa s t  varying (evanescent o r  
s 

oscil latory) solutions 5 . We a r e  interested in the case  i l lustrated in Fig. 1, 
f 

where the f a s t  varying solution i s  evanescent for  r > r and osci l la tory 
0 

within 0 < r < r . Considering the solution only nea r  the singular l aye r ,  we 
0 

may neglect the l a s t  t e r m  in Eq. (17), and integrate once to obtain an equation 

2 2 2 
f o r  y = 5 ' , namely pi  ( 7/4 - i6) Y" + ( 1  + iq - w / w  ) y = const.  The solutions 

A 

that decay for '  r > r involve f a s t  varying oscil latory solutions for  0 < r < r . 
0 0 

The condition a t  r = 0 in  the present  slab- like approximation will  be 5 = 5 "= 0 

(physically, 5 = B = 0).  The condition c l =  0 will  apply to the fast-varying 
r r 

oscil latory p a r t  of the solution; considering only t h i ~ ~ p a r t ,  we have a WKB 

condition 

Marginal stability will occur when the imagin r y  p a r t  of Eq. (18) i s  satisfied 

2 7. Z 2 2 
a 

f o r  o real .  We wri te  o = o (U) + r 8 (W ) ' /dr . 'l'he margina l  stabili ty 
A A A 

2 2 2 
condition i s  then ( 26r0/7 ) 8 h (wA)/ar  + q = 0. Evidently, for w < w, ,  t he re  .- b 

2 2 
must  always be unstable modes for smal l  enough r . Writing Dln (wA)/8r = 

0 

c1 2 2 2 
[ 2m/(nq - m)] 8 in  q/ar  , and n ( r )  = (1  - r /2r  ) n (U) ,  the condition w < w, 

b b b  1-b 

becomes 



2 
where p = (mbTb)1/2 /eB . Parenthetically, wg note that i f  af /av > 0 

b b II 

then the condition w <  w i s  no longer required for  instability. 
*b 

In the limit o << w the condition for instability .becomes (in the 
*b 

eff 
case  w>> v ) 

e 

2 ' 

where 0 = 8 r  n T /B . In applying Eqs. (19) and (20), we note that nq (r ) - m  
b b b  0 

may be small ,  although a singular surface where nq(r)  = m must  not occur.  

Thus, the wors t  situation would be where nq (0) = m in which case  nq ( r  ) - m = 
0 

2 
m r 2  8 lnq /a r  ; this case  i s  assumed in the discussion below. 

0 

As typical parameters  of a large tokamak with intense high-energy 

2 14 -3  4 - 1 
injection, w e t ak e  B = 5 0 k C ,  n=10  c m  , T = S k e V ,  v =10  sec  , 

e 

' 8  9 
v = 3.10 cm/sec (for 100 keV injection), v = 10 cm/sec, p = 0.5 cm,  
b A b 

2 - 1  4 2 
R = 300 cm,  r = 50 cm,  and (a  lnq /a r  ) = 10 crn . The instability condition 

b 

(19) then requires '  r < 15 cm,  and for P = 0.01 the condition (20) requires 
0 b 

r < 30 cm. Thus, the beam may be unstable, and anomalously flattened in 
0 

radial  profile, over the innermost 15 cm. Fo r  narrower beams (smaller  r ) 
b 

the region of instability would be somewhat l a rge r .  In the case  of a -pa r t i c les  

14 -3  3 -1 
in  a reactor ,  we might have B = 50 kG, n = 10 cm , T = 15 keV, v = 2.10 sec  , 

e 
9 9 

v = 10 cm/sec (for 3.5 MeV), v = 10 cm/sec, p = 3 c m ,  R =6OO cm,  
b A b 

2 -1 4 .  2 
r = 100 cm,  and ( a  lnq /a r  ) =4.10. c m  . In this case  the instability 

b 

condition (19)' requires r < 80 cm,  and fo r  P = 0.01 the condition (20) i s  
o a 

then a l so  satisfied; this represents  a fair ly severe  condition. 
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4 
Finite La rmor  radius correct ions to the expression given i n  Eq. (2)  

for  v have the effect of multiplying the right-hand side of Eq. (5)  by the 
WE 

fac tor  1 - w , ~ / w .  These correct ions a r e  unimportant in the p resen t  calculation 

since our modes have w>> w , ~ ;  i f  required,  the cor rec t ions  can be obtained by 

2 
introducing the usual factor J (k p )  multiplying v . 

0 I: , E 

5 
Again, finite L a r m o r  radius correct ions to v would r e su l t  in  a 

, E 

factor  1 - U:;<~/W multiplying the f i r s t  t e r m  on the right.  

6 eff eff 2 3/2 
Replacing v by v e  ( 2 ~ ~ / m ~ v  ) and computing the indicated 

e 

velocity integrals ,  o r  using a simple ~ o k k e r - P l a n c k  model, a g r e e s  to within 



eff 
a factor  2 with the s imple f o r m  given he re ,  i f  we use  v = ( ~ / r ) ~  with 

e e 

4 

'e 
= 2n ne f n  A /m1l2 (2T )3/2 . (W. Tang private communication). 

e e 

7 
. In the more  genera l  case  where the correct ion factors  1 - o /o *:i, e 

a r e  retained, Eq. (17) i s  modified a s  follows: the dispersion function in the 

2 2 
square  brackets  be'comes [ w (w  - w .) + iw r)  - w 1 ,  and the coefficient of * 1 A 

2 2 2 
a4 [ /a r4  becomes [3w ( W  - w . )/4 + k v 7 ( 1 - i6)(w - wli) / ( W  - w+,)Ipi 

*l 
with 

II A 

T = T , / T ~ .  
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Fig. 1. Illustration of shear .~lfv&n waves eigenmodes in a 
tokamak; w (r)z k l l  (r) vA ; Ss are slowly varying MHD-like solutions; 

are fasa varying evanescent or oscillatory solutions. 
5f \ 
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