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Excitation of Alfven Waves by High-Energy Ions in a TokamakT
M. N. Rosenbluth® and P. H. Rutherford
Plasma Physics Laboratory, Princeton University,.

Princeton, New Jersey 08540

ABSTRACT
It is ‘shown tha-t shear Alfven waves can be
destabilized by resonance with high-energy ''beam"
ions near the magnetic .axis‘in a tokamak, if the l'beam

is radially non-uniform.

In a plasma heated by high-energy neutral-beam injectionl’ 2 ‘the
non-equilibrium plasma stability properties must be examined,,caréfully. .
Previous work has indicated that the distributions that are likely to arise
from injection should be stable to velocity-space instabilities in a.uniform
medium. 3 In particular, for isotropic injection f:}1e beam slowing-down dis-
tribution is monotonically decreasing in energy, and thus stable to all such
modes. More detailed study indicates that, even with paxfallel injection,
distributions gn/stable to uniform-medium modes are-unlikely to arise. Heﬂce,
it becomes of interest to look at-the modes associated with non-uniform
beams énd plasmas. In this letter, we examine the possibility of beam
éxcitation of the shear Alfven waves. In projected experiments, beam
velocities lie just below the Alfvéﬁ speed Vo and hence might be in the

proper range for resonant excitation.
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I
As is well known, the dispersion relation for shear Alfven waves is
given by w=k v, = w, . In tokamak geometry, complications arise in

n-A A

describing the radial eigenmodes since k”' is a ‘function of radius. Thus,
for a mode like exp (-imé +in§ )s where @ is the poloidal angle and { the
toroidal angle, we have k” (r) = (nq- m )/qR where q(r)= ch/RBe ; for
positive m .and n, k”(r) is an increasing function of r when the current
density is centrally peaked. In the MHD approximation, the elgenmodes fur

the fluid displacement £(r) are singular at a radius where w=w,(r). To

A
resolve this singularity, it is necessary to include fini’ce gyroradius effects
ouiitside the MHD approximation. We will see that these effects alsu iulruduce
damping of the waves by means of electron dissipation, especially collisions
of.n'nagnetically trapped electrons. We will also see that the high-energy
beam ions can interact respnantly with the waves by means of their VB
drifts; for non-uniform beams this inte.raction is destabilizing wheneve#t
where W

w < is the diamagnetic frequency of the beam.

Wb ? *b
It is clearly neces_.sary to adopt a microscopic picture to evaluate

these effects. ‘W'here w =mv2/2 +ed is the particle energy, and p =vi/ZB

the invariant magnetic. monent, the guiding center drift equation for

£( W..p, ,ic) is

of/ot + v, o SVi +'v-[(vE+ vt v, ) £ ]+(dW/dt ) 8f/aW = 0 (1)

v

where n = B/B. To an adequate approximation, we have
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A

_m [ v) dw_e(ag Y n)

Xp‘Bz(+4plat’ dt - 8t ~ "Il ot
e

with p = mvl/éB, the gyroradius. Here, v_ is the polarization drift
including finite gyroradius effects. For our purposes, it is more convenient

2 . . .
to transform to variables € = v /2., u, x, in which case by straightforward

manipulation we obtain

8f/8t+v”n- Vi+(v_+wv

vptyp) Vit Y‘(X’pf)

+ (e/m)(v”E“+vD-E) 9f/0 € = Cf

where we have also introduced a collision operator C. For shear Alfven waves

in a low-f plasma, we can represent the perturbation electric field by

E =-V,0; E =-V,¢- aA“/at (4)

with ¢,A“ ~ exp (-iwt-im@ + inf) . In this limit, the magnitude B and v
are unaffected by the perturbation. We linearize Eq. (3) about an axisymmetric
equilibrium. If we iﬁte‘grate the linearized version of Eq. (3) over all velocities

3 ' :
using d v=27B dude/v“ » multiply by the charge e, and sum over all species

making use of the quasi neutrality condition, we obtain a moment equation for j”:

won,m, 3 2_2\_2 .
2o VIntRr Vit Z Sd Vip’ Y.fl—-—?_ (1+Zpivl)vl¢’ (3)

. 1/2. ' .
where ;= (mi Ti) / /eB. In obtaining Eq. (5), we have made use of
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Ze SXE'ond3" + Z (e /m)S.XD.E 5t [oed” v =0,

_ which is a consequence of the quasi neutrality of the equilibrium,

Ultimately, we will combine Eq. (5) with the Maxwell equation VZA -41rj”1

-
to yield one relation between ¢ and A” . This moment equation procedure
make use of the quasi neutr.‘ality condition to high order; accordingly relatively
small effects, such as the beam contribution to the third term on the left and
the fourth derivative term, must be retained in Eq. (5). We must proceed to

linearize Eq. (3) to obtain the f{/, for use both in Eq. (5) and in the lowest-order

1
quasineutrality condition. We must include a perturbation in the unit vector n ,

arising from the magnetic perturbation given by

-1w§1 YX(X 'XP)-VX(EHB)“(P Z)XE+nXV | .(6)

where we have made use of the fact that the magnitude B of the unperturbed
field is approximately uniform. The linearized version of Eq. (3) can then be

put in the form

+ + - (f, - . i
(-iw v B - V+v_ -V -C)f Ve Vfo/lw)

iwmf - of
.Y glyE : o
T 2 V19 m VB yp V) 5
eB
{(7)
T
o LB BXYE Vi - vy Vv Vi) T

Here, we have omitted the fourth derivative term and have made use of the fact
that the collision operator acting on v _.- Vfo vanishes, at least in the absence

of temperature gradients. The procedure from this point is to solve Eq. (7)
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o
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for the distribution functions of the varioﬁs species. These are §ubstituted
into the lowest-order quasi neutralityicondition to yield a relation between
¢ and EII (or A”).

In the case of the electrons, we have w< k v . Thus, the terms

in E" dominate on the right in Eq. (7), and to lowest order we have

E Vfo e 8f0 ||
£ "—‘——"‘——)=-— 24+ 2 aXVE 'Vf . 8
nV( F T m iEBe T iwB 2 YE Y (8)

The second term on the right in Eq. (8) can be written as —w*e/w times the

first term on the right, and may thus be neglected since w > C for the

Alfvén waves of interest. The solution becomes

v o VE BT _ .
f1+T :gez-; x 5 E”dﬂ +ge (“-:6) " (9)

Proceeding to next order in w/k"v , we must include the terms in vy on the

1] ) -

right in Eq. (7). Again the term in V{_can be written as -w, /w times the term
"o ke
in Bfo/ae, and may be neglected. In this order we obtain a solubility condition

which determines Ee(u, €), namely

of
ae . . & _0o dg :
S‘ v (-1w+XD'Z_C)ge_ m O€ 5 o’ Vo - (10)

For untrapped particles all inhomogeneous terms averége to zero (k”¢ 0), and
we conclude that Ee = 0. For trapped particles, writing Cg = - vfog and

assuming w>» v_+V , we obtain

o

-T e afo
B, * = B¢ <S‘Ed2> . (11)

w+1v

whei-_e (AY= ( _[Ad:ﬂ/v” )Y/ fd4 /v” . This procedure, of course, assumes



trapped-electron collisions to be the dominant electron dissipation mechanism;

electron Landau damping is small since Va < Ve

In the case of background ions, we have w> k”v” and w> vy and the

solution of Eq. (7) is

vAE- v fo mfo > ie afo
i - 0 = - . —_— (12
Y e 87 52 Vit oo Yo' Y9 T (12)

The last term in Eq., (12) is smallelr than the second term on the left by a
factor r/R and moreover, being proportional to cosf , tends to average out;
accordingly, we will omit it.s

Finally, we turn to the perturbed distribution function for the high-
energy beam ions. For these ions, collisions may be neglected. Moreover,
we are interested primarily in the pvossibility of mode excitation by beam
resonances, where the operator on the left of Eq..(7) effecti';rely vanishes;
accordingly, we will keep only these terms. For simplicity we will take the

beam distribution also to be Maxwellian, with Tb>> T .. For a Fourier mode
c,i

like exp (in¥ - im§ ) the right-hand side of Eq. (7) may be simplified, and the
equation written

(iwtvn eV +v,e V) gy = (ef/T)0-w,/wiv E v, . V), (13)

llom

where w - (me/eBr) dfnn_ /dr . In tokamak geometry, the particle drift

Hl

has (r,0 ) components given by M [m Ze-p,B)/eBR] (sinf, cosf ). Also,

D b(

E is small and resonance is only possible for w~k v

I ~k v >k v, , so

1D A II"b
we will neglect the E“ term on the right of Eq. (13).

Our philosophy in evaluating the beam resonance contributions is as

follows. When we treat the eigenmodes in a sheared field, we will see that

L e
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the beam resonance is only important in the region w = kII v > k”vb. The

angular dependence of v gives rise to terms like exp[inf-i(m+1)§]. Beam
resonances can then occur where w = (nqg - m+1)v“ /qR for positive m and n.
The usual case of interest will be where .k”(r) is an increasing function of r,

since then there will be relatively undamped Alfven waves occurring between

r=0 and r =r0 where w =k||(ro)VA . Where vy now denotes the maximum

beam velocity (i.e., the injection speed), the condition for resonance to occur

will be Yb/VA > [nq(ro)-m]/'[ nq(ro)- m +1]. Noting that g(ro) > q(0) and
nq(0) > m '(or else there would be strong electron damping at the radius where
kII = 0), this condition on vb/vA i; not too restrictive especially for n =1,
and we will assume in what follows that it is satisfied. In this approximation,
the 'resonant beam term from Eq. (13) is

ﬂifomb(z € -uB) W (nq -m+1)v .

&p ~ 2BRT, (1' _:E)b (w' T”)'. 'f (grqé +'%> . a9

Next we apply the calculated distribution functions to the macroscopic
equations. We first substitute the electroﬁ and background ion distributions
given in Egs. (9), (11), and (12) into the lowest-order quasineutrality condition,
the beam contribution_being negligible to this order. In Eq. (9), we write
_[2 E”dﬂ =E”/ik“ . In the case of interest, we will typically have (nq-m)emaxi, 1,
where emax is the turning point of a‘typical trapped particle. Accordingly,
as a rough average, we may write <fﬂ E”d£> = E“ /ik” in Eq. (11) provided

/2

. 1
we introduce a factor (r/R) to take into account the number of trapped

particles. Quasi neutrality then gives



E” = _ik”[1+(r/R) 1/2 w/(w+iv f.f)]pie

2 2
v (15)

1/2 . )
where pie= (miTe) / /eB, and E = -1k“¢ +iwA

Finally, we combine Eq. (5) and VZA“ = -41rj i The beam contributes

to the third term on the left in Eq. (5); we obtain

. +1)
S vaE (520) (- 22)0% [ eune (o) o
(16)
" Tp “iby 2
~-—5 (1-g) vy

Using Eq. (6), and noting that 9j ”o/dr = - (B/41rmr2)(8/8r)(r38k”/8r) ,  the
first two terms in Eq.(5) may be combined and written as (-i/41rr2){(8/8r) X
[ki|;3(a/8r)(All/rk'|)] - (mz-l) k”A”'} . We are now in a position to write down

Eq. (5) as a relation between A and ¢, and to substitute for A” in terms

I
of ¢ uya(g Eg. (15). Changing from ¢ to a fluid displacement variable

=.m@¢/rB, we obtain

\ |
227 . NOE .1 8 32 2
w Py (4‘15) L * 38 T [w (1“’7)""A]
(17)
2. o
[ e, 21,
-m2 lw (1+17’)~Q)A] g =0 ,
i} ,

1 e _ 1/2  eff 2 eff 2
where wA(r) —k”(l)VA, 6=(r/R) wv_ /(W +ue ), and
2.2
n :,(anb/nimiw R )(l-w*b/w) . In obtaining Eq. (17), we have kept only

4 4 4. .
the term 8 f£/8r  outof V ¢, and have put wz =wi and T =T, in the .
A e i

coefficient of this term.

Ry



A complete solution of Eq. (17) is evidently difficult. We observe

that away from the singular layer around w=w (ro), the solution will

A
consist of slowly verying solutions § s and fast varying (evanescent or
oscillatory) solutions ‘Ef . We are interested in the case illustrated in Fig. 1,
where the fast varying solution is evanescent for r> T, and oscillatory

within 0< r<r . Considering the solution only near the singular layer, we
. o .

may neglect the last term in Eq. (17), and integrate once to obtain an equation

for y = g', ﬁamely pi2 (7/4-i8)y'" + (1+ipg - wi/wz )y = const. The solutions .

that decay for r > T involve fast varying oscillatory solutions for 0 < r< ro .
The condition at r =0 in the present slab-like approximation will be ¢ =¢'"'=0
(physically, gr .=' Br = 0). The condition g" = 0 will apply to the f;st-varying
oscillatory part of the solution; considering only thiscpart, we have a WKB

condition

r
o
(7/4 - iG)-I/ZS‘ (1+in- wi/wz )1/2 dr = n'n'pi . (18)
0

Marginal stability will occur when the imaginiry part of Eq. (18) is satisfied

_ 2 2 22,2 .
for w real. We write N =wA(U)+r a(wA )'/8r” . The marginal stability

' 2 2
condition is then (26r0/7 )oin (wi)/ar +1 =0. Evidently, for w< Wy there

must always be unstable modes for small enough r . Writing 94n ((4)1)/81“Z =
. . : o .

. ' e -2 2, 2 .
[‘Zm/(nq - m)] Blnq/ar , and nb(r) =(l-r /Zr'b)nb(O), the condition w< w*b

becomes

TSN TAN ,
Ya xp Palr)em z (19)
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1/2 A . . . 2 '
where pb = (mbTb) / /eB . Parenthetically, wg note that if be/av” >0

then the condition w<w,, is no longer required for instability. A

b
In the limit w <K w, the condition for instability becomes (in the

eff
case wW>y )
e

b

2 2
Yo <Bbvbpb (_r)l/z (8£nq )_1 q(ro) ©(20)
2 4 R . 2 nq(r )-m ‘
T vV r or o

b e b

where Bb = 8w anb/BZ . lIn applying Eqgs. (19) and (20), we note that nq (ro)-m :
may be small, although a singular suirface where nq(r)=m must not occur.
Thus, the worst situation would be where nq (0) =m in which case ngq (ro) -m=
mri 9 in q/arz; this case is assumed in the discussion below.

As typical parameters of a large tokamak with intense high-energy ' (XS

-3 -1

14
injection,‘2 we take B=50kG, n=100  cm =, T=5keV, ye=104 sec ,

»
V= 3.1‘08 cm/sec (for 100 keV injection), VA=109 cm/sec, pb= 0.5 cm,

| R =300 c¢m, r, =50 cm, and (3 lnq/arz)‘1= 10% cm®. The instability condition
(19) then requires’ ro< 15 ¢cm, and for Bb=0.01 the condition (20) requires
ro< 30 cm. Thus, the beam may be unstable, and anomalously flattened in

radial profile, over the innermost 15 cm. For narrower beams (smaller rb)

the region of instability would be somewhat larg-er. In the case of a-particles

-3

in a reactor, we might have B=50 kG, n=1014 cm , T=15keV, v =2.103 sec_l,
e

vy = 109 cm/sec (fo; 3.5 MeV), v, = 109 cm/sec, pb= 3 ‘cm, R=600 cm,

A
2-1_ 4. 2 .
r, = 100 cm, and (8fnq/dr” ) =4.10" ¢cm” . In this case the instability

condition (19) requires ro< 80 cm, and for Ba = 0.01 the condition (20) is

then also satisfied; this represents a fairly severe condition,



b
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Finite Larmor radius corrections to the expression given in Eq. (2)

for vE have the effect of multiplying the right-hand side of Eq. (5) by the

o
.

factor 1- w-"fi/w . These corrections are unimportant in the present calculation
since our modes have w> Wy b if required, the corrections can be obtained by

introducing the usual factor Ji (klp) multiplying Vo

Again, finite Larmor radius corrections to Vi would result in a

factor 1- w*i/w multiplying the first termm on the right.

ff

6 . eff 2.3/2
Replacing Ve by V: (ZTe/mev ) / and computing the indicated

velocity integrals, or using a simple Fokker-Planck model, agrees to within
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a factor 2 with the simple form given here, if we use u:ff = (R/r)ue with

1/2
v, = 2m ne4£nA/me/ (ZTe)3/2 . (W. Tang private communication). 5

7 . A
. In the more general case where the correction factors 1 - w,. Jw
“i, e

are retained, Eq. (17) is modified as follows: the dispersion function in the
square brackets becomes [ w (w - w*i) +iw2 n - wi] , and the coefficient of
a'4g/ar4 becomes [3w (w-w )/4+k2 VZ T(l-1d)w-w,.)/( )A] 2 ith
| *i TN Bt U el T

T = Te/Ti .
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Fig. 1. Illustration of shear Alfvén waves eigenmodes in a
tokamak; w, (r):= k!|(r) v, ; £ _ are slowly varying MHD-like solutions;
gf are fas% varying evanescent or oscillatory solutions.
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