
.'_.4''()' PREPAREDFORTHE U.S.DEPARTMENTOF ENERGY,
UNDERCONTRACTDE-AC02-76-CHO-3073

PPPL-2852 PPPL-2852
UC-420,427

, EXCITATION OF HIGH-n TORO!DICITY-INDUCED SHEAR ALFVEN EIGENMODES
BY ENERGETIC PARTICLES AND FUSION ALPHA PARTICLES IN TOKAMAKS

i BY
l
I

G.Y. FU AND C,Z. CHENG
ni

!

July, 1992

I PI_ILNGI['TC_N

PL AI,MA I=$"1Y B ICIB

................. , LAB, ORATORY

qt

.... _ ,, ,, ......,,,,:..... . , ' _ ._ -'"-" .

_,',_1__
o ": , t ',_i_ i*'!' ',, !i'{LI,p_ !

l
i
!
,|



NOTICE ._

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof,
nor any of their employees, makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any specific commercial
produce, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the Unitea States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

,lP

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the:

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831;
Prices available from (615) 576.8401.

Available to the public from the:

National Technical Information Service

U.S. Department of Commerce
5285 Port,Royal Road

Springfiel.d,Virginia 22161
703-4.87-4650 ,,



Excitation of high-n toroidicity-induced shear Alfv4n

• eigenmodes by energetic particlesand fusion alpha
particlesin tokamaks

PPI_--2852
C,.Y. FU and C. Z. Cheng

Pplnaeton Plasrna Physics Laboratory DE92 016804
Princeton L'nirer._ity

Princet,)n. .V..]. 0S543

"[.'he stability of high-n toroidicity-induced shear Alfv6n eigenmodes (T..\EI in

the presence of fusion alpha particles or energetic ions in tokamaks is investi-

gated. Ihe T..-',Emodes are discrete in nature and th,ls can easily tap the fre,_

energy as,_ociated with energetic particle pressure gradient through wave particle

resonant interaction. A (t_ladratic form is derived for the high-n TAE modo,_ _s-

ing gyro-kinetic eq_lation. The kinetic effects of energelic particles are calc_llat_,.t

port_Jrbativelv _lsing the ideal ._[}{D solution as the lowest order eigenfun,:_ion.
The finite Larmor radius I FtR / effects and the finite drift orbit width (FD\\" I ef-

fects are ii_cluded for both circulating and trapped energetic particles. It is shown

" that. for circulating particles. VLR and FDW effects have two opposite influences

on the stability ,_f the hi_,h-n TAE modes. First, they have the usual stabiliz.

in_ ,_I['ect._ by reducine the way0 particle interaction strength. Second. they al_o

" }lave _testabilizin_ effects by allowing more particles to resonate with lho T.\E

tile,los. It is fo_n:t that tlm _rowth rate induced by the circulatin_ alpha particles

ill('r,,ase iinoariv with toroidal mo(tc n_lmbor ,_ for small k_fi.,, and decr,,a,o_ as

[ ;_ for 1,'.:/,, :> 1. The maximum _rowth rate is obtained at k,_p_ on t l_e order

c)f _lnitv and is nearly constant for the range of 0.7 < )'>,, )'._ < 2.5. On the (_thor

}land. tile trapped particle r,_sponse is dominated by the precessional drift ro,:o-

hence. [h(_' bo_lnce resonant contribution is negligible. The _rowth rate peaks

sharply at the vaJue of ;,'0p-, such that t.he precessional drift resonance occurs

for the most energetic trapped particles. The maximum growth rate due to the

o,,or,ro)ic trapped particles is comparable to that of circulatin_ particles. Finally.
Til,, ,,fleet of the two dimensional wave structure of TAK modes is considor0d bv-

_si_: the WKB method.
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I. INTRODUCTION

As we are closer to the realization of tokamak plasma, fusion ignition, it is extremely

important to understand th.e novel behaviors of burning plasma associated with fu-

sion product alpha particles. One subject, which has received increasing attentions

recently, is the alpha particle destabilization of shear Alfv&l waves. It has been

long recognized l'2 that shear Alfvc_n waves can. be excited by tapping the free energy, .,,

source associated with the energetic particle pressure gradient through parallel wave

particle interaction: One particular class of shear Alfv4n waves considered in this pa-

per is tile toroidicity-induced Alfve'n eigenmode 3'4 (TAE). Recently, interest in TAE

modes has surged following theoretical predictions 5-1° and subsequent experimental

evidences 11'12 of their excitation by super-Alfvc}nic energetic particles. The growtli

rate 7 of the TAE mode induced by energetic particles may be expressed in a generic
local formula.

*I = q_&( "2" 1)f,, *Y'_ (1)
,-_"T A E _.'T A E ,a-'T ,4E

where _'r.._s is the real part of the TAE eigenfrequency, :3_,is the energetic particle

(alpha particle) beta value, q is the tokamak safety factor, _,, is the diamagnetic

,trift frequency of energetic particle, f, is related to the fraction of the number of

resonant pa lticles, and finally, "/,_ is the damping rate of TAE mode due to core

plasma kinetic effects and Alfven continuum damping, ts-ts From this equation, it
a,

is clear that three conditions m_Lst be satisfied in order to destabilize T:\E monte.

"gl_ev are" 1) the energetic particle speed must be comparable to Alfvdn phase speed

,'._ in order to allow the parallel wave-particle resonance to occur: '2) the energotic -.

particle...... pressure gradient m._lst, be steep enough, so that inverse Landall dampin<

,)cqllrs. i,e., .-'./_;T..tE > 1" and :}) the net energetic partic]o ,]_'stabi]Jzing contriblltion

m_lst overcome the backgrolln(l damping of the "FAI:._ mode. Recent theory 5-1°'1:'

an,l ,'xperimental evidences 11'12 have shown that low-n T..\[ g modes can be excitt,_t

by neutral beam injected hot ions with large 3h of the energetic particles. In an

ignited tokamak plasma, the fusion product alpha particles have a birth velocity

comparable or larger than the e_Ifve'n phase velocity, and have a pressure profile

sharply peaked at the center of the plasma. Therefore, the first and the secon_l

condition for destabilization of the TAE mode can be easily met.. However. the third

conrtition is not a,s easily satisfied for low-n TAE modes since the alpha particle beta

valt_e ._¢.,is relatively low, on an order of one percent.

In this work. we consider the excitation of high-n TAE modes by energetic ions

or alpha particles. High-n TAE modes are expected to be more s,zsceptible to the

,.testabilization than the low-n modes. Note that, in Eq. (1). the energetic particle

,testabilizing term is proportional to ,,..,,which is. in turn. proportional to the toroidal
, O'
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mode number n, Furthermore, recent wo.rk1'1'15suggests that the Alfv_.n continuum

damping of the TAE modes tends to decrease with increasing mode number n. On

the other hand, the finite Larmor radius effects (FLR) and the finite drift orbit effects

• (FDW) are stabilizing, and are expected to increase with the mode number. Balance

of these competing effects yields sr,, intermediate mode number n for which the TAE

mode is most susceptible to the energetic particle destabilizat ion (or the smallest

critical beta).

_- The energetic/alpha particle effects on high-n TAE modes have been studied

previously, s'ls-21 Chen, s and also Biglari, Chen and Zones, is considered alpha particle

destabilization analytically for large aspect ratio low-beta model tokamak equilibria.

in the limit of zero orbit width. Sponget al. 19 studied the same problem for general

numerical equilibria, but for trapped particle only. The finite orbit width was also

neglected. Recently, Rewoldt 2° studied the alpha particle effect on high-n Alfv6n

modes by using a more comprehensive approach and found that an Alfve'n branch

can be destabilized by fllsion alpha particles for the BPX. The Alfvdn mode had

a real frequency _ _, uA/qR, and maybe related to the Ellipticity-induced Alfve'n

eigen modes. '_

()_lr formulation retains full FLR effects and the main FD\V effects by employing.,.,

the gyro-kinetic equation. 2a':_ \Ve derive a quadratic form for the high-n T..\E modes

from the parallel and perpendicular components of the Ampere's law and from the

. quasineutrality condition. We assllme that the TAE modes can be described by

the ideal XIHD equation and their wave structure is not effected bv the presence

of energetic particles. Thus, we treat energetic particle effects perturbatively. \\:e

" note that similar perturbative methods have been used previously s'l° in calculating
. _'.r ( :Jthe energetic particle effects on low-n TAE modes TheTAEelgenmot__ structure is

obtained via \VKB method. 14'1_The lowest order WKB solution represents the fast

radial x'ariation for each poloidal mode, whereas the higher order solution describes

the slow radial variation of the amplitude, which naturally includes the physics of

..\lfvdn continuum damping. 14'15 \Ve will first present the results in the local limit

using the lowest order WKB solution. The non-local effects on the energetic particle

destabilization will also be studied.

In Sec. II of the present paper, a perturbative formula, for the growth rate induced

by energetic particles is derived. Section III presents numerical and analytical results

for the destabilizing effects in the radially local limit due to fusion alpha particles as

° well as the background damping effects due to thermal species. The effects of the

• non-local radial structures of the high-n TAE mode are considered in Sec. IX', Finally

i - in See V, discussions and conclusions are given.

i" 3
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II. FORMULATION

Here we derive a quadratic form for the high-n TAE modes with kinetic effects

of energetic particle including fusion alpha particles, as well as background plasma

species. We start with the standard gyro-kinetic equation 2a,'2'| in terms of \VI(B-

ballooning formalism'

,#'

(a,,-wd + icTt,tlb. V),q _ = -qj-_(a; - a.'.)[,]0(¢ - c '411)+ viAa'/_]c + ,,(2(9j),(2)

where 9S is the non-adiabatic portion of the perturbed distribution function

fj = f: exp(iS - ia:t) (3)

and is given by

0fj 1 0 ) _ I
L- q3o(_- + --_ ?)t---[, c- O--f + g:exp(iL). (4)

In Eqs, (2)-(4), Jt = ,]t(IVS cj_/_) is the lth order Bessel function, S is the usual

eikonal that describes the fast variation of the perturbed q_lantities perpendicular to

the magnetic field line, and C is the gyro-averaged pitch angle scattering collision

operator 25 which is given in the guiding center limit by

c(y,)= (s)

: .Xlore definitions in Eqs. (2)-(4) are as follows. Ali and ,4a. is the parallel and per-

pendicular component of the perturbed magnetic vector potential, respectively, o is

tlle perturbed electrostatic potential, .., is the wave frequency, b is the unit vector of

the equilibrium magnetic field, the subscript j denotes the particle species, F'j is the

equilibrium particle distribution function, cs is the sign of the parallel velocity _'11,E

is _,he particle energy', lt = mv[/'2B is the magnetic moment, f_ is the cyclotron fre-

quency, c is the speed of light, L = b x VS. v/f] and u is particle collision frequency,

Finally. we list the definitions for the vector field A, the magnetic drift frequency ,._,_

and the diamagnetic drift frequency ..,.'

b :< VS

: A=.411b-i iV,ql ,4_. (6)

o.,_=-b x VS mVll2m +pUB• IT)
?TL_,

b × VS. VF
,.,,,.= ($

m f_OF/OE

4
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where _¢= b. Vb is the magnetic curvature. After substituting ,411= _b. V'_,

gj _ -qj_(1 - --)JoB_o + hj (9)
e,,

and t.he b "< V_q'component of the Ampm'e's law

47r

" Bii = _---B-Tbx VS VP- B_ (10)

into Eq. (2), we obtain a convenient form of the gyro-kinetic equation as follows:

Ob-) _,.
(w-_.',x + icrt'llb' V)h_ = -qsc-_(1- --)H'w (ll)

with H a being defined as

H" _-do(a.,_P + _.'_(I_)- J'a_-'p_- 2tic(do + ,]_)BI, (12) ,

where we have made tile following definitions:

_ =o-- <_ (13)

u4_
= U-._b × VS, V'P (14)_,,)p

_.'_= _'4- _.'p (15)

- B1 =4'--_a...qjS-" day (&+ J2)h:. (16)
C

3

We can now proceed to derive thesvstem ofeigenmode eqllations from Eq. (11).

the .*mpere's law, and the qllasineutrality condition. After multiplying Eq. (11) with

.]oqa on both sides, integrating over velocity space and summing over all species, we

obtain

B V I I'a njqj _[J
..... B. v_ +_ m,.,,,,(_- g)g L4;tw a a

zj' "" j=- t,q,_(1 ---)dott _'_+ _ d3t, qa(Jo_4 + ,c_t,llb. V,lo)h."a, (17)
3 .1

where we have used the parallel component of the Ampere's law

Z i't'_'_'_'"t"=-rs "b.v, (_st
i

• 4 _'
.1

=
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and the quasineutrality condition

/ "'%'*/ .]o)_--P,O. (19)E Joh,,=ET +E ' '.1 J J _l) , ,

We then expand the Bessel function .]0 in the second term of Eq. (17), bv assuming

small gyro-radius ordering for thermal ions. Equation (17) becomes

V" K7S2 .,2 8_"[b x K7.S'.VP][b × V'S. ,,]+
B. --BT-B. We + u-'_VS '2(([.)+ _P)- _-_

= E 4,,_.'/• c2 dat;qj(.]'o"k - J'2_ + icrt'llb'V,]o)h. _, (20)
3

Equations (11), (16), (18), (19) and (21)) constitute our system of eigenmode eqllations

• for four unknown fields h2, O, frj and Br.

\Ve now derive a quadratic form from this set of eigenmode equations in order to

facilitate our perturbative c,_lculat, ion of the TAE growth rate induced by energetic

2 - 9 2rf;., 2particles. To clo this, we m_li_il)ly Eq. (16) with _' B_/c 2, Eq. (1) with -irr,,' _.,'

and Eq. (20) with _*, add them together and integrate along the field line. After

integration by part, we obtain

j dl-_Q(¢, ,_,B, ) = o. (.21) .

w]l_t'e

s_-[b,v,_.rf"lib, v,.,,_ ,]¢1"Q(,_.,p.B,)= Iv,__''b. v,_l' +
o

-_.-_.1_1'2_ -_.,----=-(,D',[,+ ,I),_')+ -._ B,
_"_ l."_ c-

- E 4"c_--="- Iff_ + Et'z-fi J d'_t'q'(H_') ]'_' (°°1--
.1 TJr J

Our derivation is similar to that of Xu and Rosenbluth, '2_but with one important

i,),-,)difference that we retain full FLR effects. Note the first three terms in F q ,_

constitute the ideal NIHD equation without compression effect:, (i.e., gl term) anti

kinetic effects (i.e., the parallel electric field term _IJand the non adiabatic h j). Tile

growth rate due to kinetic effects can now be calculated perturbatively. Let, _,, =

-,'o + &,,', _ = (Po + 6_ and drop small • terms and B1 terms momentarily, where _-'o

and _0 denotes the ideal eigenfrequency arm eigenfunction, respectively: the 6 terms

are the corresponding kinetic corrections assumed to be small. Using this or(lerin,g.

6



the quadratic form can be expanded and the lowest order terms [the first three terms

in Eq. (22)] yields rue following ideal MHD equation for 00:

IIVS 2 w2 8_"

B.V_--B.VO0+--vVo c 2Oo- [bxVS.VP][bx VS,n]Oo=0. (2:3)

The next order equation determines 6w which is given by

- _ gj Nj
= 24)

W '

where

2rr

/,II/ I1")" '_,5,¥ _ - d3 ( Ib )
-- UOoC----_ _ vqj,

f dl V'SI 2_v= B _, Cg' %)

[{ere Nj represents the kinetic contribution due to particle :species j, which includes

energetic particle, as well as thermal electrons and ions. Note that the solution h_'

is still unknown at this point. We n 'v solve gq. (li) for h_. The soi_ttion for the

circulating particles is

_, i_)Fj _. [+_-"_ H_'(k)exp(ikO_ - io'[c(O))
hj = % Tfb--](l - _ ) I dk-

27)
• _' J -.,.-_o O"_"c -- _'

where

,, / + cx'o
= (._)IF'(k) dO,.exp(-ikO_ + io'I,:(O))H_'(O), '-'"

d _ '_D

fe j B
.. 0_,= _',. t ---dO. (29)

J o ell

foe ,]13
I_(0) = _,_--(:lO, (30)

t'll

and _,v. is the transit frequency of the circulating particles. The solt,tion for trapped

particles is

h;'= v;+(°_)+ v,;-(0.,)
2sin([b(O_)) exp[irT[b(O)]-i_,'7(0), (31)

wtlere

.'_'(0) = f;2 dO;If exp(-i_r([_' - ]-0)),_j
32

2

_ J--B-dO(_:- _-'d), :3ah(0)=, 0.. _'11

f[ JB_tO'0_= _.'b - -. 34
o,, i'll 2
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Here, a.'t, is the bounce frequency of the trapped particles, 0., is the poloidal angle

corresponding to the turning point of the banana orbit,, Obis the bounce angle and ,]

is the coodinate transform. Jacobian. Finally, we list a useful formula to be used ii:

calculating the resonant, contribution of the trapped particles'

[/ ]' I/Res <lOb(H")"h_ =--"cot(lb(0m))_b dOb[Hlcos([b(O))+ H2sin(f_(O)]

=-2i _ IH__6(_- _b -c..,d) (:_,_)
P

where Res denotes the resonant part of the contribution and

H_- J dOb[Ht(O)cos(pOb - Ib(O)) + H2(O)sin(pOb -- Ib(0))] (36)

1,,(0)= (,.,.,,_- c,.,_)JBcto. (37)
o,,, vii

Here the bounce integration for H£ is done at the lth trapped particle region, r:amelv

2,",'l - Om < 0 < 2,"rl + 0_.

After plugging ]z_ into Eq. (2-1) for both circulating particles and trapped particles.

the growth ra,t,e 7 = -i_5a,, can be determined straightforwardlv, and is _=ivon.by

,2_,:f ZJE(-,_OF/OE)(_,,./_o- :)(.v,u+ ,\,'J) :_S) -
7 _ _ ,-,,_c-'g'2a.,0f+&_ V,.q 'a_'_J/,.,i!,)dO°'20 )

where J is the coodinate transform Jacobian, ,'V_and :V_ represents the contribi:tion ,.

due to circulating particles and trapped particles, respectively, and

£,", /_+':° 1 12 1'2
\"= d.\ ,-IX:--(fl+(k/ + I(.H-(-/,,) )_5aw_-.c) (39/

" J ' ' '%';' _"_C '

.V'=, .,x,fa"d.\ ',_,=-,_+"____.,_lH', ",5(/v.'_ _r"_'_ '- ¢,.'). (-10)

It: Eq. (39) and (40), H±(:Fk) is the F'ourier transformation of H"(O) for circulating

particles, &.'4is the bounce averaged magnetic drift frequency, and .\ = ItBo/E is

the particle velocity pitch angle variable with .\1 corresponding to the trapped and

circulating boundary and ,\2 corresponding to the deeply trapped particles.

III. NUMERICAL AND ANALYTICAL RESULTS: LOCAL THEORY

In this section, we evaluate the growth rate of the high-n TAE mode :llle to energetic

particles and the damping due to thermal electrons and ions in the local limit. By
I
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the local limit, we mean that the eigenfunction • is approximated by the low,'st, order

WNB solution. In general, the WKB solution can be written as

. O= A(,')O(r,O)exp(i,_S) (41)

where S = ( - q(r)0 is the WKB eikonal, 0 and C is the poloidal and toroidal angle

, respectivelY, r is the magnetic flux variable and is a measure of the mean radius.

In Eq. (41), exp(inS) describes the fast variation of the TAE mode across the field

line, O(r,O) describes the slow variation along the field line and is determined by

the lowest order WKB equation; whereas ,4(:) describes the slow variation of the

radial envelope for these poloidal modes, and is determined bv the higher order \\"I,;B

equation. 1_ In the lowest order, ,4(r') is constant. In this section, we calc:llate the

growth rate according gq. (:)8) in this local limit. The results with correction due to

the.non-local higher order terms will be presented in the next section.

Although our formulation is valid for general non-circular tokamak eq::ilibria, \Ve

consider large aspect ratio, low-betamodelequilibria" with shifted circular magnetic

surfaces in order to simplify o:lr problem. For this model equilibrium, the i_leal SIt ID

ecH:ation Eq. (23) becomes the well known high-n ballooning mode ,_quat.ion '':r

0 0 a,

0-716'(o)[,: G(O)(:. 4eco,O)[i+ h (O)]O
• +.X.[cos 0 + h(0)sin 0]0 - 0, (42)

where h(0) = .s(0 .-0_)- _psin0, G(O) = 1 + 2_'co.s0, .s = qdq/q,lr, /xp _-

-" " " _\' r/1_., and- _.q'R(dP/dr)/B , is the radial derivative of the Shafranov shift, e -

& - _'/_,.._ with _'.._ - t,.._/qR being the Alfve'n frequency. Finally 0k is the ra(tial wave

number which _tescribes the slow radial variation. For o_:r local limit ass,,med here.

0:. is chosen to t)e zero.

In this work, we mainly consider fusion alpha particles. The particledistrib,ltion

function is described bv a slowing-down energy distrib_:tion with uniform pitch angle.

\Ve will consider the contributions from circulating particles and trapped particles

separately. The key parameters are t',,/v.4 (the ratio of alpha birth speed to Alfv&:

phase velocity) and ko#o (the finite orbit width parameter), where the Larmor radius

is defined with the birth alpha velocity. Finally, we model the alpha particle density

profile as 'no(r) = n.o(0)exp(-(r/L_,) _) where Lo is the density scale length. To

obtain the alpha particle-induced growth rate, we first obtain the numerical solutions

of Eq. (42) for • by shooting method. The boundary conditions are _(-+-__) = 0.

• After we obtain O, we plug it into Eq. (38) to calculate the growth rate perturbatively.

For circulating particle contribution, we perform numerical integration in 0,/,', and ,\:

the energy integration can be done analytically due to resonant 6 function. For the

9



' trapped particle contribution, we first carry out integration in 0_ ['or the /til trapped

region, then sum 1lp I and tile bounce harmonic p, and finally carry ()1lt tile pitch

angle integration.

In Subsection A, we will calculate the destabilizing contribution of tlie circ_llating

alpha particles, while in Subsection B, we will consider the destabilizing Contribution

of the trapped alpha particles. Subsection C is devoted to the clamping rates of the

TAG mode due to thermal particle species. Finally, in Subsection D, we evaluate

the critical beam beta value for the excitation of the TAE mode in the TF'FR NBI

experiment.li

A, Circulating Particle Contribution

We first consider the destabilizing contribution of circulating alpha particles. The

parameters of e = 0.!, q = 1.0, Lp/t{ = 0.[ and /3_(0) = 2% are chosen. Figure 1

shows the growth rates induced bv circulating alpha particles ,ts a function of I'c,/t,a

['or parameters of,s = 0.6 and /xp - 0.0 and k'op,._= 1.0. The dashed curve is obta, ined

in the limit of zero orbit width [i,e., the FLR and the FDW effects are tllrned off in

Eq. (39), btlt _'. ,x A'oP,:,is kept finite]. The solid cl.lrve corresl_onds to tile results

with finite orbit, width effects. Wesee that the finite orbit effects are stabilizing [.or

t,_-,/_.,.,,> 1,1 and de,s_ab'ili:ing for v_-,/_.,.._< 1.1. This exhibits two opposite influences

of finite orbit sizei On one hand, finite orbit width has a stabilizing .effect by reducing

the wave-particle interaction strength, on the other, this orbit wi(l_ll etfect has a

destabilizing effect by bringing more particles into resonance with tile waves. Figure

'2 shows function II+C/v) with and without orbit width effects at, the resonant energy.

Physically, H(/c) is related to the work done on the resonant particles by the perturbed

,electrical field, and /c is related to the radial variable rTq- rrt, for the poloidal mode

n_lrnber m. Thus, H(Ie) is a measure of the strength of the wave particle interaction

as a hlnction of the radius. Figure 2 shows that, in the limit of zero orbit wi_lth, H(A:)

peaks sharply at k = 1/2 and /,: = :1/'2, retlecting the fact that the TAg i-no(le peaks

at, nq - nz = -+-1/:2 magnetic surfaces with a radial localization width on the order of

er/n. However, with finite orbit width effects, H(k) is shown to have a mucll broader

peak with smaller anaplitude near ],' = 1/2 (Note that; an additional peak appears

at k = 5/'2 dee to the poloidal mode cotlpling induced by the magnetic drift orbit).

Physically, these broader peaks mean that part.icles away from where mode localizes

(:an still interact effectively' with the mode due to the finite orbit width effects. It is

clear that the destabilizing effect of the finite orbit width is a direct conseqllence of

the radially localized structure of tb_e TAE mode, ,,

We now study the variation of the growth rate as a function of L'op,_,,.It, is known

that without orbit width effects, the growth rate is a linear function of 1,'ep._-,.ltowever
.g
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this linear dependence is expected to be modified by the finite orbit width. Figure 3

shows the growth rate as a function of kep_ with orbit width effects for parameters

of _ = 0.6, Ap = 0 and t,_,/t,.! = 2.0. We observe that, as kepo, increases, the growth

• rate first increases linearly, t,hen saturates at /,'ePo = 0,8, and finally decreases for

/,'eoa > 1.0. Note t,hat the value of kep,:, which maximizes t.be growth rate is on an

order of unity. Naively, one would expect, that (k_p,:,),,=_, is on the order of unity

and (l,'epc,),.,,.,_.is on the order of e = r/R. We note that our numerical results differs

signitic_ntly from that of Ref. 21. First,, our results show that, the growth rate is

maximized at, l,'ep_, on an order of unity instead of kop,., << 1 a.s implied in Ref, 21.

Second. we have shown that the growth rate eventually decreases as a f_lnction of

],'ep,...,for /,'ep,, >> 1 whereas the results of Ref. '21 inlply' a constant growth rate

for ko,p__.,>> F. Next, we consider the variation of (/_'ep_,),,_,: and tee corresponding

(%/_,'_)m_wit_ v_.,/va, as shown in Fig. ,t, for parameters of,s = 0,6 and -$7, = G.

\Ve see that (.k_,p_,_),._o..,.decrease as u_/t,._, increases, and (%,/,..,,'.._),.,_ is nearly constant

in the range of 0.T < t,_,/1,._ < '2.0.

• tXl,, we st, l{dv t]le el]'ec_,s of tile magnetic shear ,_ an(l the curvat_lre.prossure-

,.,:radient para_neter .Sv on T..\E scabilitv. For s = 0.t; and .X_, = 0, the high-n

TAIE mode fr,,'¢tt,e'acy is al:_(.':lt, at the center of l:rt__ Alfv¢?n continuum gap.:" which

corresponds to the most global radial wave structure. ,-ks _ and -sp varies, the eigen,-

t'req_mnc'..' shifts towards either lhe bottom or the upper edge of the cent.indium gap
28

• and its eigen fllnction t)ecoln(.'s IIlore localized in the radial sl)ace (or more extended

in the Vo_lrier 0 space). [:ig_lre ,5 shows (koOc,,),,,_._and ' ,_:(%/_,._1 as a function of s

for ..X,_= (). F'irst., it, is evi<tent l.hat (],',_p,-,)_,_ is not sensitive to the magnelic shear.

" Second, {lne rnaxim_lm growth rate peaks at, s = 0.6. It has t)een shown :_for the

= _ _ ' " shear decreases (in'(.r___as"e_,.)from .s O.(i. !he mocte.Xr, l) case Ihal, as the ma_,nctl(. =

freq_mncy _tecreasos (increases) towards the bottom Itop) e_tge of the contin_1_lm gap

an,t _he eigc'n/'_lntioil 1)ecornes increasingly localized in the real space. Physically,

[:ig..'3 in,ticates lhat lhc growth raie t_ecomes smaller as the mode t:_ecomes more

localized. This 'tendency is confirmed by the reslllt of t:ig, (;, which plots (-;,:,/_.'_._)_,

and (/,'ep,,),_- as a function of .S_, at s = 0.6. We see that, t,he growth rate decreases

as ..Xpincreases, whereas (/,'oP_,),_ is nearly constant. This is related to the fact 2s

that the T..\E eigenfreq_mncy shifts downward to the bottom edge of the continuum

gap as _Sp increases. In particular, the '['..XE mode merges into the continuum and
.b) .":

t)ecomes singular when Ap > (-sp),:r_t -- 0..a-O. where (-sp),.:r_t iS the critical value for

the existence of discrete TAE mode, tt can be analytically shown that. the growth

rate tends to zero as -sp approaches (_S_,)_,_.

• The numerical results shown above for the circulating particles can be understood

analytically in certain asvmt)tot, ic limits. To simplify o_r analytic derivation, we
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normalize function H(0) into a dimensionless form such that

H(O) = qBRH(O). I4:3)
cEt'o

The function H(I,:) and H_ is normalized in the same way to/)(_) and/i';, respectively.

To make analytic progress, we consider the case of zero pitch angle. Also we use an ,.

asymptotic form a'_s to approximate the high-n T:\E solution:

cos(0/2) + ,\sin(O2)
_o(0) = exp(-FO), (-14)

V/11+ (.sO - c_sin 0) 2

where A = f_+/f__ --, O(1), F = _+f__ ,-- O(e), and li+ = :t:[&a(1 + _)- 1/.t] with

g = 2.5e in the low beta limit. We can then compute Ef(k) in the limit of zero orbit

size, and obtain

3 /,,.\I" a_ ! _ k -.\F + ,;-.
[-t(I,:) _ ' + " (_,5i

l _'t" F': :" )2 l-a'(_ - + t _ - t,: +

where we have made use of the fact that the secular term .st./makes a dorninating

contribution in the limit of F << 1. Note that /-t(k) peaks at k = 1/2 and ]c =3/2

with a narrow width of F "-00(e). This analytic result agrees with the ntl merical

result shown in F'ig. 2 (dashed curve). Using Eq. (.t:5), the growth rate can I)e "-2_

written into a sixni)le form as

• = -.7_q"3h---- (--)4@{1----)-+-( ) O(1-

g

i where 0 is the Heav'isi_le step function. This r'es_llt is similar to tile reslllls obtairled
(-,, Sby .hen and by Biglari, Chen and Zonca.. 1_

\\"e now consider the case with finite ort)it width effec*s. \\'e note that the gyro
I
| radius is zero for zero pitch angle assumed here, but the particles can (leviate from

magnetic field lines due to the finite radial magnetic drift. This drift effect is toni ained
i

• in the secular term of the drift pha.se /,.(0) in Eq. (30). To make analvlic progress.

we take the asymptotic limit 1 > l,,op,, _, F and ,_ << 1. In this limit, the secular

i term in ii(O) dominates the cont, ribution to the integral t}(I,). \Vr may then _ake the
9

• asymptotic form of L(O) for large 0 and expand in Bessel til.notions:

| exp(i.[_(0)) _ J0(aO) + '2_2-£(-i)_,It(-.:O)cos(lO), !..lT) .
t

i
I .,I
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where z = Oll/_'0p_,with vii = v'll/t'_ -< 1. By keeping only the principle resonance term

(i.e.. for/_: near 1/2), the integral H(/_'I then reduces to

= " +,\ 1 (48)

for, k'l < z where _: - 1/2 -la. and

ft(/,.)-- sigrT(k.) --- (- 1 (,19}

for ,{ii > " Equations (48) and (49) show that the peak of .f)'(k) at, k = 1/2 now

has a width on an order of kopo >> F. Thus the width of the peak is broaden bv

the finite orbit, width effects, This result agrees with the numerical result shown in

Fig. '3.. In th_e limit case of _ >> kop,_ :>> g. the k integration,, in Eq. (:38) can be

carried o_lt analy_:icallv and the resulting grow'cb rate is independent of t'ep,:, or the

mode number. However. for finite t,,op,-,on order of unity, the/_' integration has to be

<tone numerically due to. the energy dependence in z and H(/,'). Our numerical result

in Fig. 3 indicates that. as ._'ef,_._increases from zero. the growth rate first, incr<a..e.s"_'_'"

linearly as a function of Itep,:, for srnall ],'op(_,then it reaches its maximum at /_'epc,on

. the order of unity and finally decreases for/,'ep_-, > 1. The de..crease" in the growth rate

for kop,_ >> 1 can be understood analytically in t,t_efollowing way. After integrating in

energy, the growth ra.to given by Eq, (38)is proportional to the following ],' integral

" trope.,J;:_(k,,,/k)4(H(lc))_'d]c. Since H(k) scales a.s 1/L:op,:, in the limit of l,'_,p_ 2.> 1

due to the fast drift phase 1,.(0). the growth rate scales as I/l)op_._ asymptotically for
"'bl,'op,, .:> 1.

B. Trapped Particle CoE_tribution

}-lcre we consider the trapped energetic particle contribution to the growth rate of

the TA.E mode. As in the last subsection, we study the finite orbit width elt'ects

and the dependence of the growth rate on t'_,/v.4, l_'op,,, s and ...kT,. The same fixed

parameters of e, q, Lp/R and ,J_.,(0) are used. First, we demonstrate the finite orbit

; width effects. Figure 7 shows the growth rates a.s a function of c,_/t'A with or without

orbit, width effects, for _ = 0.6, .57, - 0 and l,:op,._= 1.0. In the limit of zero orbit

width,, we turn off the FLR term contained in the Bessel functions and the finite

, banana width term contained in the drift pha,se term Li(O) in Eq. (40). but we still

keep the ,,.:. and ,2,,_terms. \Ve see that the growth rate is always red,leed by finite

orbit width effect in contra.st with that of circulating parliclos. V_lrthermore, 'fhere is
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sharp transition in the growth rate at t,_,/t,.4 = 1.0. Physically, the transition occurs

at the precessional drift resonance g'a _ ,,a. Note that the precessional drift resonance

condition for deeply trapped particles is given by kop_,2E_ t'A/v_-,, where E' <_ 1 is the

particle energy normalized to the birth energy of the alpha particle. Thus, .for the

parameterz oi' Fig. 7, the precessional resonance can be satisfied for v_,/t,A >_ 1.0. We

also find that the bounce resonance contribution is much smaller than the precessional
_,,

resonance contribut, ion. This result has been confirmed for other parameters. It is

also borne out bF, the result of Fig. S, which shows the normalized growth rate as a

function of kop_:, for parameters of s = 0.6, A_, = 0 and G/v.a = 2.0. \Ve notice from

Fig. 8 that the sharp transition occurs at k,;p_ _ 0.5, precisely when the precessional

drift resonance begins to occur. \\:e also see that the growth rate then decreases

rapidly due to ,the finite orbit width effect. The maximum growth rate is comparable

to that of circulating particles a.s shown in Fig. 3, but the growth rate is much more

narrowly peaked at kep_ _ 0.6.

\\"e now study the dependence of t/,'op,_),_; and (%/_'.._),_,: on r,_/t,.._, as shown in

Fig. 9 obtained for parameters of s = 0.6 and _X_= O. \Ve observe that the maximum

growth rate increases with t,,:,/t,._ and the increase is rnore gradtlal for larger values

of t'<,/'_'..,. ()n the other hand, (#oo:_),:_. decreases with l',-,/ra, which agrees with

our analytic result, of(/,'0p_,)_, = t'.4/t'_,. Finally, their dependence on the magnetic

shear sand the curvat.ure-pressure.-gradient parameter__ are shown in Figs. 10 and

11. Overall resttlts are similar to those for circulating particles.

N-_. derive analytic results for trapped particle contribtltion, we will ,[C'nlOll, t: xr. we

str'ate that the bounce resonance contribution of the t rappe,t alpha particles is much
o

snlaller than lhc precession resonance contribution. \Ve first consider the limit of zero

orbit width F'or _. :n. _,,'e l)ounce harmonic p (including p = 0). we obtain

.f)_ _. cos(_t_l, dOz.(cos0 + (,sO - n. si_L0 ! ,-osit,O_ (.50!

• = fl 0f-tl,;=°_.\exp(-2xFl)cost:_p) _ dOhsin 0., n :'5' (51/

while for order p, we obt.ain /_o = 0 and

- le() 2:r in(_p) d&.sin 0cos - s.in([_',_ . (52)Hp _exp(-- F l)s '2 "

It is then straightforward to demonstrate that (f-1°)_ _, '2Y_z(ft_,o)" (i.e.. the pre-

cessional drift resonance contribution is much greater than the bounce contribution)

for the deeply trapped part, icles. For finite pitch angle and very small V. the bounce

contribution may be comparabh. _ to that of precessional ,]rift rosonance. I t_._wever.

11



the bounce contribution can be dramatically reduced by the effect of finite banana

width. Therefore, the precession resonance dominates for all pitch angle.

We now consider the case with finite orbit width effect,. To make analytic progress.

• we examine the limit of deeply trapped particles. In this limit, we have shown that

/-}'o° >> [I_o#°, thus we may keep only the contribution from the I = 0 trapped particle

_. region. After some algebra, we obtain

,,., 3 --,'o "" 2 q'3_ fo__de(1 + h_(O))Og ([[o)2 (5:])

for £4,,, >_ xe, where &4m is the maximum precessional drift frequency. D'o° can be

straightforwardly calculated to obtain

_'0
/:[0 Jo( =-- ), (,5,i1

'._',fm

After calculating the 0 integration in tlm denominator by _lsing the asymptotic form

for the eigenfunction 'be, E(t. (5:])becomes

3v 2"-7 ., ( ' )'_ (/,'op_:,'".LZ_ 7 '=(7 :r',t" .'_-_(r/[., )2 .lo'(VI(kop.:_I l,',_p_) "_'_" (.55 t-.'0 ,.(, ,_.,) . ,,,,x /,'ep_

where i/,':_p,_),,,_,,._ _'._/'qt':, and (7(&)= {1 4-,\a)/(.tel')_-, O(1). This analytic result

for' the trapped particle <-ontrib_tion agrees very well with our numerical reslllts [,e.g..

[-ig. (S)].
@

C. Damping Due To Thermal Particle Species

Here we con lcr the stabilizing effects due to thermal particle species. \\'o first

,:onsi_ler the da_z,t)ing rate ,tue to thermal ions. \Ve noto that thetllormalspeod t', is

in general much smaller than i'._. thus the t'll= _'A/'3 sideband resonance is (tominat.-

ing over the principle resonaace. :\Iso the finite orbit effects may be neglecte,t since

/cop, _. 1. l'sing the results of Eq. (.t.5). the damping rate can then be sl raight for-

wardlv derived to obtain

""_. _ v'_q23,( 1 + z '2)x 3exp(-.r 2] (.56)

where .r = t'A/3v,. Note that we have used the Nlaxwellian distr'ibution for ions. This

analytical expression agrees very well with our numerical ros_llts. \\'o obsor\'e that

, the damping rate increases rapidly with ion beta due to the exponential depen_tence.

For q = l. we find =,,/_-'0 >_ 1% for 3, > 2%. Therefore. the ion damping co_lld be

substantial for moderately high ion beta value.
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Next, we consider the damping rate of high-n TAE mode due to thermal electrons,

It ha,s been shown that the usual electron Landau damping is very small since thermal

electron velocity is much larger than the Alfv_.n velocity for typical tokamak param-

eters. Gorelenkov and Sharapov 29 showed that the dominating damping mechanism

due to thermal electrons is the collisionality of trapped particles. Here, we derive

the damping rate of the high-n ZAE mode induced by the collisionality of trapped

electrons. We start from Eq. (11) for electrons. After neglecting small electron gyro-

radius and substituting _ in terms of • using the quasineutrality condition, Eq. (li)

becomes

F,
(_, - iO'Vllb. V' -iC)h_ = q_.-_.._H_ (.57)

with

( .... )H_ -.'.,V51 rn,. .= - :7d-5-_, T_.+ _,,_- _'k ¢' (58)

where £t. is the electron c_lrvature drift frequency averaged over Xlaxwellian ,tis.tri-

bution fllnction. Note that. in t!'q. (5S), the thermal ion [:LR effect is kept to include.

l .ctrlcthe finite parallel ,' e" ' field. To solve Eq (.57), we expand h_ in terms of small

parameter _,/_'_ << 1. The zeroth order equation reads b. V'h_0 = 0, which implies

that h,0 is constant along the field lines, whereas the next; order terms yield

F,.
(,.--i< C >)h._o = q_-_- < H_ > i,.')!))• lD

where°<> _tep.otes the a.verage over the banaIl_a orbit and < C > is the I)o_lnce

averaged colli:<ional operator gix'en bv 2'_

< (L.'>: 2i; " Zo.,y 4- I](E/T,,) 8 , 0
, . J dO/ v"'l - ._,B i-)._,\ . ,I0v'l - ._,/3i).-_ {(_01

with the function I-I(-) being defined as

.... "_t-I(.:)= 47,:ze +(:-..-/2_.if) (61/

where i) is a normalized electron collision freqllency and is given by # =

.trrn_e_ln.X/(m_t,_). Following Rosenbluth e.t al., 2s we solve Eq. (59) in the limit

of/'/_' << 1 and obtain an approximate solution given bv

F,_ e:,.,/_,:)
h,o-_, (1_ (1-- < ff, > (d2)
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with

D = i _,e,'r ( __7_) 3/_ 12F,&---7 Z_:: + I-I(E/T_) (63)
,w

where _ = (A- 1+e)/2e is the normalized pitch angle variable and £'b is the normalized

bounce frequency such that d.'b = 1 at _¢= 1. Plugging Eq. (62) into Eq, (24), we
'w

obtain the frequency shift due to the non-adiabatic response of trapped electrons with

collision:

_Sw 16rra 2,2 F, e,,/-_eeq_tAElf -.-EdEd_(1- )(< l-I, >l)
--- = _ (64.)

where subscrit 1 denotes lth trapped region in the infinite Fourier 0 space. After

evMuating < H_ >l using the analytic solution given by Eq. (62), summing over l,

integrating over _ and E and taking the imaginary part of &o, we finally obtain an

explicit forn>lla for l}le damping rate >. induced t)3, trapped electrons'

- 1+ -r-- " he'.3.. T )

where [1 and [_ are two energy integration factors defined as follows'
ii

[1 = dz777_ :_:: + l-I(z) (66)

,,>0 _, -- Z
• [_ d:7i7_(:_ .))2 /Z_ + II('-). /67}

It is instructive t.o note that. the first, term in Eq. (6.5) comes from the parallel

•2 whereas the second term comes fromelectrical field and is proportional to (l,'ep,_ , .

the curvature drift of trapped electrons and is independent of the mode number. This
' "'q {"adamping rate ,given by Eq. (6,5) is similar to that of Rosenblllth 3° and also (:orel ,nkov

and Sharapov. -'9 However, the logarithm scaling is different from that of Ref. 29. The

difference comes from how the bounce average term < He(O) > is calculated. Our

--3/2 scaling is obtained by noting that < H:(O) >_< H_(O) - H:(,'r) >>> H(,'r) for

the TAE mode in the limit of _ << 1.

D. Application to the TFTR NBI Experiment

, Here we apply our formulation to the TFTR experiment by Wong et al. 1l t'arame-

ters for this experiment are ,i2 = 240cm. a - 75cm, /3 = 1.0T and injected beam par-

ticle energy E_ = llOke't,. We consider the stability of the TAE modes at r = 30cre,
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where q = 1 32, s = 048 n_ = 2.7 × 10lacrn -3 .T_ = I lket,, 3_ = .3i = l')c_

Z,j.j -- '2..5, beam density scale length Lb -" 18cre and t'b/V A "-- 1.1. For the beam par-

ticle distribution, we take a slowing, down energy distribution with zero pitch angle.

Thus, only circulating energetic particles are considered.

Figure 12 shows the critical beam beta values versus kop_ for two values of &p.

The results are obtained by balancing the growth rate induced by beam particles

with sum of ion Landau damping and collisional trapped electron damping. The

continuum damping is assumed to be negligible. We find that the collisional trapped

electron damping dominates over the ion Landau damping due to relatively small ion

beta and large electron collisional frequency. The ion damping rate is calculated to be

",.',/,,, = 0.1%. while the electron damping rate is 7_/_' = [3.9(kop_) _"+ 1...151%where we

have converted kop, into koPb, for 5_, = 0. This collisional electron damping is much

larger than the usual collisionless electron damping of 7,./",' = q_3,u.4/v_ = 0.27%.

\Ve note that the electron dampinK increases quadratically as a function of the mode

number. On the other hand. the beam-induced growth rate increases initially for

small /,'0p_, b_It saturates at finite value of /,'0Ph-- 1.0. Thus. the critical beam beta

increases as a fllnction of mode number for finite value of /,',_p_. In particlllar, for a

toroidal mo,le number n = "2which corresponds to k0p_ = 0.6. the critical beta is

0.11%. The effect of finite pressure gradient (,..Xp- 0.07) increases the critical beta

to 0.2%. This range of the critical beta value is consistent with the experimental

estimate of ._.: _ 0.5,c,.

IV. NON-LOCAL THEORY
tP

Here. we consider tbr_ energetic particle effects in the non-local limit and take into

acco_lnt the slow variation of the envelope function .4(r). \\:e start from a ,l_ladratic

form expressed in the real space. Eqtlation (11) becomes, in the real O space,

f JdOdodtf
= .,, ((_.S )

.., .,c _ J,ldOdOdtlV.tOo 2/_,i_

Where'denotes functions in the real space and t = nq is the radial variable. Note that =

in the real space the integration domain in 0 is 2z. Following Zonca and Chen. 16 we :_

write _ -- _j 6_j(t)exp(ino-ijO)and assume the poloidal harmonics 6;(I_,(t)to have

the form 6+_(t) = A(t)6_(t,t - j), where +(t,t - j) is a function of a fast variable

t - j and a slow variable t. while A(t) is an envelope function of the slow variable

only. In the spirit, of ballooning representation, the fast varying function d,_(t, t -j)

is writt, en in terrns of its Fourier tratlsform • °

6,_(t t - j) = dO'e-'(t-J)°'c_(t.O'). (69'
'_ ,."K_

?
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After summing over j, we obtain an alternative expression for _ given by

= _ 2rreme_-i(°+2_P)A(t)_(t,O + 2rtp), (70)
P

where p is an integer to be summed from -¢_ to +_o. After plugging Eq. (70) into

,, Eq. (68) and summing over p, we obtain a formula for the non-local growth rate "_

induced by ,:nergetic particles'

a/_2% = j_t_lA(t) 2dtN_,(t, Ok) (71)
f,? A(t) dtW(t,Ok)'

where No, and W are given in Eqs. (25) and (26). Note that in Eq. (71) the integration

domain in 0 is infinite due to the summer, ion of p, and Ok is a function of t to be

determined. To solve A(t), we express A(t) in the eikonal form A(t) = exp(i f Okdt).

Zonca and Chen 1_found tha, t the zeroth order Ok satisfies the local dispersion relation

as follows

F(&, Ok,.S,-Xp) - O. 72)

whereas the next order of 0k determines A(t) to be

(/1 , _ ,)
sin 0k(_',t dr' + 7 73)1

• A(t)= v_F/O0 k

where tl is one ot the two turning pointsof the local dispersion, lt is instr_lctive to

make Eq. (59) more transparent by exploiting the relation IV(t,0t.) :x OF/O5, '2, Eq.

(,59) then becomes

lr0"},_ _ - dO_%(t.O_) (74)
,v

where %(t,O_) is the local growth rate given by Eq. (2.1). Note that we have con-

sidered the sin 2 term in Eq. (71) has fast variation in Ok as compared with that of

%(t, Ok) in the limit of n_ >> 1, so that the sin 2 can be effectively replaced by 1./2.

From Eq. (74), we see that the non-local growth rate equals the local growth rate

averaged over Ok. Numerically, we find that the non-local growth rate induced by

fusion alpha particles is smaller than the local growth rate evaluated at Ok = 0.

V. DISCUSSIONS AND CONCLUSIONS
s

\Ve have developed a perturbative formulation for the stability of high-n TAE mode

in the presence of ..klfv_}nicenergetic particles and fusion alpha particles in tokamak

19



plasmas. Our formulation includes the destabilizing effects of energetic particles and

stabilizing effects of thermal electron collisional damping and thermal ion Landau

damping. The continuum damping can also be self-consistently included by taking

into account the two dimensional wave structure of the TAE mode. For energetic par-

ticles, full finite [,armor radius effects and main drift orbit width efl'ect,s are retained

by employing gyro-kinetic equation, whereas for thermal ions, the lowest order FLR

terms are kept in the calculation of the parallel electrical field that is important for the

collisional electron damping. The continuum damping can also be self-consistently

included by taking into account the two dimensional wave structure of the TAE mode.

\Ve have studied extensively the parameter dependence of the growth rate of the

TAE mode induced by fusion alpha particles in the local limit (i.e, in the limit of

translational invariance in the ballooning representation). In this local limit, the

growth rate induced by circulating alpha particles is found to increase linear'ly with the

toroidal mode number _7for small teop_ << l, and decrease as 1/n for large k0_% >> I.

The maximum growth rate occurs at kop_ on an order of unity and is nearly constant
'

for the range of 0.'7 < L,¢_/_'4< 2.5. The value of the maximum growth rate due
"1 !

to the circulating alpha particles is approximately given by (',,',._/_'/_,_ -_ -3q"r3_,

where the prime denotes the derivative with respect to the plasma racli_is r. On the

other hand. the trapped alpha particle cont, ribution to the growth rate is dominated

by the precessional drift resonance. The bounce resonance contrib_ltion is negligible,

The growth rate induced by the trapped ali)ha particles peaks sharply at /,'0p,_ _

/.'.4/qt',_ where the precessional drift resonance occurs for the most energetic particles.

The maxirnum growth rate due to the trapped particles is given t)3' (5'_-,/_')_ _ ,,
2 ( / ).

The effects of the finite plasma beta are considered. \\"e finst that the alpha particle

destabilizing contribution is reduced bv the effects of finite pressure gradient. In par-

ti_ular, the growt.h rate induced by alpha particles vanishes as the pressl_re gradient

parameter __p approaches the critical value (.Xp),:_,t, where the T..\F_ mode begins to

merge into the Alfv6n continuum.

The global wave structure is taken into account. In the global theory, the growth

rate induced by alpha particles equals the 0k-averaged local growth rate and is usually

smaller than the local growth rate evaluated at Ok =0. Furthermore. the continuum

clamping can be included in the global theory.

In order to drive the TAE modes unstable, the destabilizing contribution oi' energetic

particles must overcome the thermal ion Landau damping, the electron collisional

damping and the continuum damping. As an example, we consi_ler the critical alpha

beta for ITER 31 parameters, taking ali the damping mechanisms into accollnt. We

take the parameters of B = 4.85T, R = 600eta, and a, = 21,5cm and consider following
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local values: r = 60cre, q = 1.0, a = 0.6, n_ = 1014crn-a, T_ = i0ket,, T, = 10/ct, e,

Z, yy = 1.0, and the alpha particle density profile is no(r) = n_(O)exp[-(r/Lo,) a]

with the scale length L_, = 90cre. Using Eq. (56), we find the ion Landau dampipg

" due to deuteriums and tritiums is 7;/,0 = 0.71%. The electron collisional damping

is evaluated using Eq. (65) and is %/_.,'(%) = 0.33(kop,_) 2 + 0.23, where we have

assumed zero pressure gradient. In the local limit, we ritad the critical alpha beta for
'u

excitation of the high-n TAE mode is 3_,c(0) = 0.5%, and the most probable mode

number to be excited is n _ 6. In the non-local theory, the critical ))eta value is

increased to 3_,c(0) = 1.0% for the local parameters used here. The critical beta value

wil be further increased due to the finite pressure gradient effect and the continuum

dam pi ng.

In conclusion, we have presented a comprehensive formulation for the stability of

highn TAE modes by taking into account the destabilizing effects of energetic parti-

cles or fusion alph,_ particles and the stabilizing effects of thermal ion Landau damp-

ing, electron collisional damping and the continuum damping. The alpha particle

contribution to the growth rate as a function of l,'op_ has a maximum at /,'e/'z_on an

order of 11nitv. [:'or ITER-like parameters, the critical alpha beta 3c,c(0) is on an order

of 1%. The detailed parameter stlldies of the rAE stability for the planned TF,TR

D-T experiment 3'2and for the ITER will be the subject, of a future paper.
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, FIGURE CAPTIONS

Figure 1. Growth rates induced by circulating alpha particles as a function of v_/r,A

for s = 0.6, -kv = 0 and l,:ep_,= 1.0.

Figure 2. Function H(k) for s = 0,6, _p = 0, t,_/t,A = 1.0 and l,:op_ = 1,0,

Figure 3 Growth rate induced bv circulating alpha particles as a function of _'eP_ for _'_i' _ / _ -,{

s 0.6 _p 0 and t,_/vA = 9.0. '_ / _!i!'_'

Figure 4. The maximized growth rate induced by circulating alpha particles and the

corresponding kep_, as a function of W/vA for s = 0.6 and 5p = 0.

Figu"e ,5. The maximized growth rate induced by circulating alpha particles and the

corresponding _:opo as a function of magnetic shear s for .Xp = 0.0 and _.,..,/_.,,_="2,

Figure 6. The maximized growth rate indt:ced bv circulat, ing alpha particles and the

corresponding _t,_, as a function of" the pressl:re gradient parameter ._Xpfor .s = 0.6 _

and t,o/vA -----2.

, 7

Figure 7. Growth rates induced bv trapped alpha particles as a function of t',,/_.'A for

.s = 0.6, _Xp= 0 and a'opo = 1.0.
B L-

FigureS. Growth rate induced by trapped alpha particles as a function of /,'0p:, for

.s = 0.6, _Xr,- 0 and _.,,_/1.,A= 2.0.

trigure 9. The maximized growth rate induced bv trapped alpha particles an,t the

,:orresponding l,'op,.,as a function of t.,o/vA for s = 0.6 and _X_,= 0.

Figure 10. The maximized growth rate induced by trapped alpha particles and the "=-

corresponding kop_ as a function of magnetic shear s for _Xp = 0.0 and t'o/t'l = '2.

Figure 11. The maximized growth rate induced by trapped alpha particles and the

corresponding kop_, as a function of the pressure gradient parameter _Xp for .s = 0.6

and :,,_/t'A = '2. =
i

Figure 12. The critical beam beta value versus t,:oPbfor two values of _Xpat r = 30cre

for the TFTR TAE experiment.
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