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ABSTRACT

Higher-order modes are controllably excited in water-filled kagomé-, bandgap-style, and simplified hollow-core
photonic crystal fibers (HC-PCF). A spatial light modulator is used to create amplitude and phase distributions that
closely match those of the fiber modes, resulting in typical launch efficiencies of 10-20% into the liquid-filled core.
Modes, excited across the visible wavelength range, closely resemble those observed in air-filled kagomé HC-PCF and
match numerical simulations. These results provide a framework for spatially-resolved sensing in HC-PCF microreactors
and fiber-based optical manipulation.
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1. INTRODUCTION

The controlled excitation of higher-order fiber modes has become an essential part in photonics research with a range of
interdisciplinary applications. For example, spatial light modulator (SLM)-based wavefront shaping techniques [1] have
enabled the controlled excitation of coherent mode superpositions in multimode fibers [2], with novel applications in
lensless endoscopic imaging [2]-[4] and fiber-based optical trapping [5]. In fiber communication systems, mode-division
multiplexing has been used to improve data transfer rates [6]-[9].

All this previous work aims to control the light field at the end-face of glass-core fibers. In hollow waveguides, on the
other hand, well-defined modal intensity distributions can be used to study light-matter interactions within the core. In
particular, hollow-core photonic crystal fiber (HC-PCF) has enabled the stable and low-loss transmission of modes along
microchannels [10]. The main classes of HC-PCF include bandgap-type HC-PCFs, in which a narrow transmission
window is supported by the formation of photonic bandgaps in the microstructured cladding, and kagomé- and simplified
HC-PCFs [11], whose broadband guidance mechanism relies on anti-resonant reflection. It has previously been shown
that spatial light modulators (SLM) can be used to dynamically change between different modes in air-filled hollow-core
photonic crystal fibers (HC-PCFs) [12], with applications in optical trapping [13], Raman amplification [14], telecoms
[15], and quantum optics [16].

Here we extend this work to liquid-filled HC-PCFs, where guidance properties are preserved by infiltrating both the core
and cladding channels [17]-[18]. Control over modal fields within these optofluidic waveguides would enable new fiber-
based sensing and optical manipulation approaches.
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We employ a method based on a spatial light modulation scheme recently presented by Flamm et al. [18] to controllably
excite higher order modes into the liquid-filled hollow-core photonic crystal fibers (HC-PCFs). This is achieved by
creating an intensity and phase distribution [20] that matches the HC-PCF mode and projecting it onto the fiber’s end
face. In Section A of Figure 2, light from a supercontinuum laser (NKT SuperK Compact, 450-2400 nm) is passed
through a variable bandpass filter (NKT SuperK Varia, 400-840 nm), expanded and linearly polarized. A 30 cm long
HC-PCF is mounted between two custom-made pressure cells (PCs), that are fitted with sapphire windows allowing for
unobstructed optical access (Section C). A phase-only SLM (Meadowlark P512-480-850-DVI-C512x512) with
broadband mirror coating shapes the beam and projects it in a 4-f configuration onto the fiber (Section B). Cam 2
measures the back-reflected light to help with the alignment process. With a microscope objective the transmitted mode
is imaged onto Cam 3 (Section C). Caml, in Section D, is used to verify the SLM generated intensity profiles, see

examples in Figure 3.
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2. EXPERIMENTAL SETUP
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Figure 1. Setup schematic. Section A: filtering, expansion, and polarization of the input beam. Section B: modulation
by phase-only SLM and projection onto the input-face of an HC-PCF. Section C: imaging of the end-face of the liquid-
filled HC-PCF, enclosed by two pressure cells (PC). Section D: verification of the intensity distribution projected onto
the HC-PCF. BE, beam expander; BS, beam splitter; Cam, camera; FM, flip mirror; Apert., aperture; P, polarizer; W,
waste. Figure reproduced from [21].
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3. MODE EXCITATION

Efficient mode excitation was achieved with Laguerre-Gaussian beams (LG g)). The electric field distribution in the
focus of an LG beam is given by [22]:

1] 2\ .
L 2 2 2| (2
ES(r, ¢)~e 7 (2) 1 (25) e, (1)

where ¢ and p denote the azimuthal and radial order of the modes respectively, Lg”) are the generalized Laguerre

polynomials,  and ¢ are polar coordinates in the focal plane and w is the beam waist. To excite a specific mode, pairs of
LG beams with an appropriate relative phase were chosen. For example, the predicted LP 3; mode (Fig. 2a) is well
approximated by a superposition of LG 5)3) and LG 3_3) beams (Fig. 2b). Mode-excitation experiments were performed in
three different water-filled HC-PCFs including the bandgap HC-PCF, the kagomé HC-PCF, and the simplified HC-PCF.
Figure 3 shows the measured intensity distribution of an LP;; mode excitation in each one of these fibers. Additional
excited modes and a more detailed analysis can be found in [21].
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Figure 2. Mode excitation example: (a) Simulated intensity profile of a LP31 core mode in the kagomé PCF. (b)
Measured

3 -3
intensity of an LG( ) + LG( ) beam profile. (c) Measured intensity profile of the excited LP3; fiber mode. Radial- (d)

and azimuthal (e) sections along the dashed curves in (a—c). Figure reproduced from [21].
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Photonic bandgap HC-PCF = Kagome HC-PCF Simplified HC-PCF

Figure 3. Mode excitation in fibre: Measured intensity profile of a LP| core mode (d)-(f) in the photonic bandgap HC-
PCF, kagomé HC-PCF and simplified HC-PCF (a)-(c).

4. CONCLUSION AND OUTLOOK

We demonstrate a spatial light modulation setup that can be used to efficiently excite higher-order modes in liquid-filled
HC-PCFs. The setup was tested on three different types of water-filled HC-PCFs (bandgap, kagomé, and simplified).
While the observed modes were relatively pure and launch efficiencies high (10-20%), further improvements could be
made by correcting for aberrations in the optical system and using a more robust hologram optimization routine.

The results provide a framework for new spatially-resolved sensing and optical manipulation experiments in liquid-filled
hollow-core PCF. Measurements using different spatial modes would enable the probing of chemicals at varying
distances from the core wall and thus provide a direct measurement of surface effects and microscale diffusive transport,
both of which are rate-limiting factors in HC-PCF microreactors [23] and flow-chemistry in general. In optical
manipulation studies, superpositions of higher-order modes can be used to create reconfigurable 3-D intensity patterns
within the hollow core [13] that could be used to trap, transport, and separate micro- and nanoparticles along the fluid
channel.
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