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ABSTRACT 

Energetic trapped particles are shown to have a destabilizing effect on 

the internal kink mode in tokamaks. The plasma pressure threshold for the 

mode is lowered by the particles. The growth rate is near the ideal 

magnetohydrodynamic value, but the frequency is comparable to the trapped 

particle precession frequency. A model for the instability cycle gives 

stability properties, associated particle losses, and neutron emissivity 

consistent with the "fishbone" events observed in PDX. 
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In recent poloidal divertor experiments (PDX) with high-power nearly 

perpendicular beam injection, bursts of large-amplitude magnetohydrodynamic 

(MHD) fluctuations, dubbed "fishbones" from the characteristic signature on 
1 2 the Mirnov coils, have been observed. ' These "fishbone" bursts are found to 

be correlated with significant losses of energetic beam ions and thus have 

serious implications for the beam-heating efficiencies and the achievable g 

values in tokamaks. 

Detailed experimental measurements have identified the mode structure of 

the "fishbone" as an m = 1, n = 1 mode with additional m > 2 components, 

supposedly due to the finite e& D toroidal-coupling effects. (Here m and n 

are, respectively, poloidal and toroidal mode numbers, e = a/R is the inverse 

aspect ratio, and g is the poloidal beta.) The plasma pressure threshold for 

the mode is consistent with that of the internal kink mode. The most crucial 

feature is that all components rotate toroidally with a frequency comparable 

to the precession frequency of the trapped beam ions. This resonance feature 

indicates that proper understand!*, j of both the stability and the beam loss 

mechanisms require a kinetic treatment of the plasma dynamics. 

In this Letter, we employ a gyrokinetic description ' for the trapped 

beam ions and demonstrate that the internal kink mode can be excited at a 

lower threshold than that of the ideal HHD prediction, with a frequency given 

by the precession frequency. A model for the "fishbone" cycle gives MHD 

amplitudes, particle losses, and neutron emissivity in close agreement with 

those observed in PDX. 

We consider a large-aspect-ratio tokamak plasma consisting of core (c) 

and hot (h) components. For the purpose of formal orderings, we use 

e = a/R << 1 as the small parameter. Since we are interested in the parameter 

range of the first stability boundary of the internal kink mode, we order 
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B » 0(1) and, for simplicity, Li, ~ 0(e). Temperatures are ordered as 

Tc<-1 keV)/Th(~50 keV) - 0( e
2), which implies t>h/nc <- 0(e3) and, hence, 

overall charge neutrality may be assumed. We also have, for PDX parameters, 

u) ~ u d h - 6 x 10 4 >> <,j,c, m d c,w A = vft/qR ~ 2 x 10 6 and thus 
— 2 5 

I(J]/OIAI ~ 1 u>(ih/u)AI - Die >J similar to the usual internal kink ordering. Here 

u d h is the toroidal precession frequency of the trapped hot particles, and u» 

and U>J denote, respectively, diamagnetic and magnetic drift frequencies. 

Consistent with the above orderings,. we adopt the ideal MHD description 

for the core plasma. For the hot component, however, we employ the 

gyrokinetic description, neglecting the finite Iarraor radius correction. Tu 

derive the corresponding normal mode equation, we first sum up the 

collisionless equations of motion for each species and obtain 

fl2p«§ = c 1*3 x 5 + i * 53J " ? s p

c " 1 • «&, - ( 1 > 

where £ is the usual fluid displacement vector. In Bq. (1), noting that 
n

n / n
0 ~ 0(e ), wo have p = n-jm.. In addition, the following ideal MHD 

relations hold: SP„ = -[£ . VP„ + YP„(V • ?)], $E, = iujF x B/c, 5E„ = 0, 
55 = !? x '£ x 5*' , l l d &J = c^ * fif/'iir- The perturbed distribution of the hot 

component, 6Fft, is given by ' 

e 3 u SB 8 

and 

lVB fe" l l - - « d h J J « H h = i m f i «* ' ( 3 ) 
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2 2 
where E = v / 2 , u = v / 2 B , w 0 i s the cyc lotron frequency, %/%% s e • y , 

Si|> = 5* - V ^ / c + v ^ B j ^ ^ c , a = (ua/3E + u , h ) F Q h ; u . h 5 - ( i / i n j l ^ 

x VHnF . )«V, u),. = -iv,.»V, v_ is the magnetic drift velocity, and 54 and ~ on » an ^ an ** ^ an T 

6A|I are related to J by cy5ij> = - iwg x B and <D6A./C = - i35(|>/ai. Noting that 

the frequencies are nuch smaller than the hot-particle transit and bounce 

frequencies, Eq. (3) can be solved readily for both trapped (t> and untrapped 

(u) particles. We find that 6H. = -ey^/ram and fiH. = -e25<j>/mu) + 6G n t , 

where 6 ^ ^ = 2QBJ/(OJ - u d h ) . A s <$Adi/|v | )/<^di/|v | ) denotes bounce 

averaging, and J = (oB/2)V • E, - (1 - 3aB/2) r. • te# with a = u/E and 

(J = 3ej|/3£. Substituting SH into Eq. (2), we have 6g n given by 

«S h = "5i ' *l pi 5 + l p, " p J e , S,Jh
 + 5 P i I + t«*i " 5 Pi)S, e „ ' w h e r e 

5E -1 — S 5 
1 7 / 2 B . » 5/2 _ 2(1-aB) 

{ | = 2 ' TimhB J dad - aB) ' J dE — ^ J | ( (4) 
SP, B"1 ° """dh 1 

H max 
correspond to kinetic contributions due to the trapped energetic particles. 

Substituting 6P. into Eq. (1), we have a complete normal mode equation in 

terms of jr. 

To analyze the stability properties, we shall derive a dispersion 

relation variationally. First, we obtain the following dispersion functional 
3 * by performing Jd x £• on Eq. 11) and assuming a fixed conducting boundary, 

DliJ = ^ M H O * 5 w
k
 + 5 I ' "here, with P = P c + CPi + P„)h/2, 

MHD 6W„..„ = g jd x | — j * [^x x S j j . SBi - 2[&l . VPJIC^ • K) 

+ s 2i? * h + 2 S i • Jfl 2 + V P C I V - £ l 2 } -

B" 1 

7/2 2 nun » _ , _ 
6Wfc = - 2 ' it n^jRHrdrJ daj dE E ' K Ĵ — = — j f 

B* 1 6 """dh 
max 

(5) 

(6> 
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K t = 6<dfl/2iO<1 - a B ) ~ 1 / ' 2

! and Si = - 4 t/ld2x p | g | 2 i s the i n e r t i a l 

term. Note that in the h i g h - and low-frequency l i m i t s (with re spec t t o u ^ 

and M ) , {Wv reduces , r e s p e c t i v e l y , t o that of the c o l l i s i o n l e s s ' and the dh K 

low-frequency k i n e t i c energy p r i n c i p l e s a s i t should. To apply the 

v a r i a t i o n a l method, we have, for the present o r d e r i n g s , SW£ ~ 

[ P h t / E ) [ B 2 | | / R | 2 v J ~ E 2 [ B 2 | | / R | 2 V J - 5 I ( 2 ) . Here, V i s the volume, 

superscr ip t s denote the order ings , and we have noted, in ordering fil the 
2 

existence of an i.nertial singular layer with a width A - (u)/oR'a "• £ a at 
q(r ) ; rB /FIB = 1. The variational scheme then is to find a trial s t p 

3 function, E » which minimizes D to 0(e ) or smaller. Since both 5W,,™ and 51 

[assuming ]Imu I /1 Reoj I - 0(e) i.e., near marginal stability m the present 

case] are variational, this minimizing procedure is identical to that of ideal 

MHD. Let D(£t) be D g + D R where D e and D s are the contributions from outside 

and inside the singular layer, respectively. For the case of circular cross 

sections, we have, for |r - r | >> A, i.e., outside the singular layer, we have 

i|° as given by Bussac et_ a±. We then obtain D e = n[|^] as 

D e = 6 W ™ D L ^ J + 5 W K 2 > H t J + 0 ( E 4 ) ' w h e « ' Cor n - 1, 

6W t 2 ) r 2 r B 2 

o R o 
o 

with 6W given in Ref. 5 and, t o 0 ( e 3 ) , 

i ^ - ^ ' V ^ 2 ~ / o r d r ) , ^ « B ) j d E E / — [ - J * -
o R 1-r/R o ^D M - u 

o an 

o 

-1 /2 
K2 = ^i(d6/2ir)cose<1 - aB) , (1 ,1) r e f e r s t o m = 1, n - 1. B = 

B 0 (1 - rcoGB/R)/ and Aq = 1 - q{0) ~ 0 (e ) i s assumed. Note t h a t , assuming a 
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parabolic q profile,5 we have 5w = 3Traqr (13/144 - B ) / R with ft = 

-<R 0/r^) 2 J S r 2
&'dr. 

o 
Near the singular q = 1 surface, we have |x| = |r - r | ~ |A AI and the 

Euler equation for |* ia 

here, |k'| = q'/R . This equation can be solved readily and E, matched to 

5 using the causality condition. It is then straightforward to show 

» . - < C ' £ + « , a , < £ + »< ' 4 ' 
2,rRo(Bors/2Ro)Z|r.ro|2<- W l f t ) + 0( E

4) , (10) 

-. 1 /2 * * with ui = V./13 R s) and s = r q". Combining D„ and D„ i-.hen yields the A A o s s = e s ' 
following dispersion relation: 

- i(D/u>A + 6W f + 6W K = 0 (11) 

Here we emphasize that the terms in Bq. (11) are all formally of the same 

order. 

Some qualitative features of Eq. (11) are worth noting. First, without 

the trapped-particle term, 6W , we recover the ideal MHD results which predict 

instability for fiW < 0. Marginal stability occurs at oi = 0- Within the 

present orderings, the inclusion of 6W has little effect on the marginal 

stability condition at OJ = 0, but it has the most interesting effect of 

introducing an additional branch of solutions to the dispersion relation. In 

contrast Lo the ideal-HHD branch, this trapped-particle -'duced branch can 
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become unstable at D = iur aiid 6W_ > 0. This point can easily be seen by 

substituting into SW a mono-energetic, single magnetic moment distribution 

F . . We then find a thresholdless unstable solution with in = ai,. and u^ 

increasing with <f!h t> (the average trar.ped-particle 0 within the q = 1 

surface) and oi#. /u^. > (>• One physical explanation of this new instability 

mechanism is that, for the internal kink mode with to = u < "ah' *'5e c o c e ~ 

plasma MHD mode is positively dissipated due to the fllfven resonance at the 

uir o k.v, singular surface. The hot trapped particles, however, have a 

precession mode which is, in character, either negative-energy or negat.'.ve-

dissipation due to the wave-particle resonance. The instability is thus the 

result of coupling between these two modes. The threshold condition then 

corresponds to the nature of the precession mode. 

In order to make detailed comparisons with the PDX experiments, in 

principle, Eq. (11) should be solved numerically, employing realistic 

equilibria, 5W f and F^. Many interesting features, however, can be derived by 

assuming the following model distribution function for the slowing-down beam 
-3/2 ions; F o h =- c QE 6(a - a Q) for 0 < E ( Ê ,, where cQ(r) = Pn<r) 

Bb/(iT K^ m-B 2"- E ), K. = K^(a = cu), and 9^ is the magnetic turning point. 

The corresponding dispersion relation is then given by 

- iRIu^/^) + «W f c + <6 h tI0>£lJn(1 - 1/JJ) = 0 , (12) 

2 rs where a, = w-tE = E ), £j = w/w. , <y> = (2/r )f rdr(y), dm dn n dm s ' o 

io - IMttyx^naJ'^l * K^)^/^] , (13) 

2 
ltd ) = (K^/K )(a = a ) = C2R /r) 1 / 2£2E(k 2) - K(k2)] M ( k 2 ] , (14) 



K b Q = ( 2 R 0 / r ) 1 / 2 K ( k ^ ) A , k2

o = (1 + r /R o - e ^ B ^ R ^ r , E(fc|), and K(k|) being 

the complete e l l i p t i c in t eg ra l s , lû  = (dinP^ t / d r ) / r « i c , c i ^ = - l2Elk o >/Klk 0 ) 

- iJ/rRsa , and (Mf- corresponds to 5W* with only the core-plasma pressure 

contribution. Simple analysis of Eq. 0 2 ) then reveals that, even for 5W, > 
re 

0, the internal kink mode is destabilised if flh t exceeds a critical value, 

< f !h,tV > «W.Vcrit = »*S*\ ' < 1 S J 

Noting that I ~ 0(1/e)> we then have <&, > . - 0<6M J, /U )• Near marginal o n,t crit dm A 
stability, we have ft = 1/2 and fl = 1 for, respectively, trw oW^ /ui, << 1 and r r A fc dm 
>> 1, with the maximum growth rate occurring at ft = 1/2. On the other hand, 

below the critical value instabilities occur for fiW_ < 0 i.e., the ideal MHE> 
re 

s t a b i l i t y condition. For a typ ica l PDX operating regime, we have 6W > 0 and 

thus only the t rapped-part ic le induced in te rna l kink modes are predicted to be 

unstable for <g > > <p > which i s typ ica l ly <0(10~2) and i s consis tent 
1 2 —1 

with the observations. Furthermore, taking 1 - q(0) = 0(10 J, we find 
7r6Wfc(oA/ii) < 0(1 i and, hence, u > <a.V2, and the growth r a t e 

to, = '(i a(ir 2/4)(<e. . 1 > - <6, j > ..) (16) 
I wfl "h , t o h , t o crxt 

tends to be of the game order as the usual ideal MHD growth rate. Note that 

the theoretically predicted WAJ. > in- > 5w/? is also consistent witn, the 

experimental observations. 

The beam loss process due to the beam-ion induced internal kink mode has 

already been considered. ' The perturbed radial motion of the resonant trapped 

particles is secular and leads to efficient particle ejection in a toroidally 

beacon-like ejection pattern for particles with Z&. « w • Thua th<-. energy 

range of the ejected particles is expected to be between E i n i/2 and E i n^. 
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We can nc/w model the full "fishbone" cycle. Neglecting variations of the 

core plasma component/ the internal kink mode is destabilized by the trapped 

particles within the q = 1 surface with growth rate given by Eq. (16). 

Assuming the trapped particles to be uniformly distributed within the q = 1 

surface, we then have, for the amplitude of the kink mode (A = 6B r/B), 

f = w ^ h - e o r i t J <"> 

~ 2 * with r = ai (it /4XI >. This equation for the mode has been used in Monte 

Carlo simulations using the Hamiltonian formalism of Ref. 11. These 

simulations will be reported in a future publication, but the essential results 

can be reproduced by replacing the particle lose mechanism with a simple model 

equation. Beam loss is linearly proportional to the mode amplitude h and takes 

the form of secular outward drift of those trapped particles in resonance with 

the mode. Noting the loss occurs on a time scale much shorter than the beam 

deposition time, the rate of particle loss through the q = 1 surface is 

approximately constant until a significant fraction of the particles are 

lost. Thus 

d S h 
dT = D " * Z«W 9l»h " < W ) ' <18> 

where D is the net deposition rate of trapped particles within the q = 1 

surface, and Z is a measure of the particle loss rate. The Heaviside 6 

function reflects the fact that only a certain fraction f of the trapped 

particles can be ejected. The simulation results support this model. The 

fraction f is typically less than 50%, because the n = 1 character of the mode 

implies that only half of the resonant (Q. > u ) particles are toroidally 
dh r 

distributed so that the mode produces outward motion. An examination of Eqs. 
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(17), (18) in the <gn, A) plane, and in particular the symmetry of these 

equations about 8 c ri t» leads to the result that the motion is periodic with 

Umax = Scrit^ 1 ~ "2>' a n d <Wn = " ' « 8 m W 
We illustrate the solution of Eqs. (17) and (18) for a PDX case with B = 

10 kG, r s = a/2, and 4 MW of near perpendicular 50 kev neutral beam 

injection. This gives D » 2 sec . The beam ejection efficiency has been 

obtained for this case with Monte Carlo simulations, giving z = 2.5 x 10 

sec" and f = 0.4. For these parameters we have oiA " 1-2 x 10 see . Using 
n 13 2 

the expression for 1 following Eq. (13), n = 5 x 10 , 6^ = n/4 and k£ = 

sin2t8b/2) << 1 we find £ • 1, and thus r « 2.8 x 10 6 sec - 1, and from Kj. (15) 

B r r j f r o 0.0 1. The solution to Eqs. 117) and (18) for these parameters is shown 

in Fig. 1, to be compared with Fig. 1 of Kef. 1. We have multiplied A(t) by 

the factor cosdLj.t) to produce the Mirnov signal which would be given by the 

rotating mode. The function flntt) gives the magnitude of the neutron 

emission. The fishbone perio'I is dominated by the relatively long period of 

increasing fJh, with negligible kink mode amplitude. Thus, Tfb « Af5n/D = f 

fScrit/D( 1-(f/2)] , which is about 2.5 msec in this case. The ~30% variation of 

fi, , determined by the beam loss, and its time dependence are in good agreement 

with the observed variation of neutron emissivity. The maximum value of A is 

consistent with the typical observed values of the Mirnov loop signals. Near 

A = A m a x the behavior of A is given by A u \ ^ x exp (- r B^^K hmax t2/2) and 

^max2 'Vex = r t8max " 0crit ) 2 / 2 E O t h e width of the "fishbone" burst is At = 

4/rfSmax ~ "exit'' a b o u t h a l f a millisecond in this case, also in agreement 

with the experimental results. The form of the solution depends only weakly on 

r, Z, and 0 o r i t as long as r„ z ?•> D. 

In summary, we have shown that energetic trapped particles can destabilize 

the internal kink mode at a plasma pressure threshold lower than that predicted 

by the ideal MHD theory. This trapped-partlcle induced instability has a real 
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frequency comparable to the trapped-partiole toroidal preceaaion frequency and 

a growth rate of thu order of the ideal HHD value. Beam particles are 

efficiently ejected in a toroidal beacon-like pattern. A simple m >del for the 

coupled kink mode and trapped particle system produces a time dependence for 

these quantities in good agreement with experimental results. A Monte Carlo 

simulation of the trapped partice population interacting with a kink mode 

governed by Bq. (17) produces similar results, and will be reported in a future 

publication. Finally, we remark that since the instability mechanism is of 

sufficiently general nature, it may be desirable to extend our theoretical 

calculations to other i jgimes such as 0 ~ 0(e~ ), radio-frequency r.eated 

plasmas, alpha- article effects, and so on. In this respect, we note thai the 

ballooning-mode analogue has been discussed by Rosenbluth ^t^ al. 

ACKNOWLEDGMENTS 

The authors would like to acknowledge useful discussions with H. L. Perk, 

J. W. Van Dam, and many members of the Plasma Physics Laboratory, in 

particular, R. Goldston, K. McGuire, R. M. Kulsrud, J. Manickam, D. A 

Monticello, C. R. Oberman, P. W. Perkins Jr., and P. H. Rutherford. 

This work was supported by U.S. Department of Energy Contract No. DE-AC02-

76-CHO-3073 and DE-FG05-80ET-53088. 



-12 

REFERENCES 

1K. HcGuire et al., Phys. Rev. Lett. SO, 891 (1983). 
ZD. Johnson _et al^,, in Proceedings of the Ninth International Conference on 

Plasma Physics and Controlled Nuclear Fusion Research (Baltimore, 1982). 
3T. H. flntonsen, Jr. and B. Lane, Phys. Fluids 23, 1205 (1980). 
4P. J. Catto, W. M. Tang, and D. E. Baldwin, Plasma Phys. _23_, 639 (1981). 

M. N. Bussac, R. Pellat, D. Edery, and J. L. Soule, Phys. Rev. Lett. 35, 

1638 (1975). 
6M. D. Kruskal and C. R. Oberman, Phys. Fluids J., 275 (1958). 
7M. N. Rosenbluth and N. Rostoker, Phys. Fluids _2_, 23 (1959). 
SJ. W. Van Dam, M. N. Rosenbluth, and If. C. Lee, Phys. Fluids _2_5, 1349 

{1982). 
9T. M, flntonsen, Jr., B. Lane, and J. J. Ramos, Phys. Fluids .24, 1465 (1981), 

1 0 T . M. Antonsen, Jr. and Y. C. Lee, Phys. Fluids 25_, 132 (1982). 
1 1R. B. White _e£_alv Phys. Fluids, October 1983. 
1 2M„ N. Rosenbluth, S. T. Tsai, J. W. Van Dam, and M. G. Engquist, IFSR ft 98, 

University of Texas at Austin, Phys. Rev. Lett, (to be published). 



-13-

FIGUKE CAPTION 

FIG. 1. The kink mode amplitude, A(t) eoaliivâ t) and the beam particle beta, 

$ h(t), vs time as obtained from Eq». (17) and (18), for PDX 

parameters-
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