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Abstract: We show by direct numerical simulations that

spatiotemporally localised waveforms, strongly reminis-

cent of the Peregrine rogue wave, can be excited by van-

ishing initial conditions for the periodically driven nonlin-

ear Schrödinger equation. The emergence of the Peregrine-

typewaveforms can be potentially justified, in terms of the

existence and modulational instability of spatially homo-

geneous solutions of themodel and the continuous depen-

dence of the localised initial data for small time intervals.

We also comment on the persistence of the above dynam-

ics, under the presence of small damping effects, and jus-

tify that this behaviour should be considered as far from

approximations of the corresponding integrable limit.

Keywords: Forced Nonlinear Schrödinger Equation; Mod-

ulational Instability; Peregrine Soliton; Time-Periodic

Driver; Vanishing Initial Conditions.

1 Introduction

A crucial and intriguing question in nonlinear dynamics

concerns the persistence of dynamical features of inte-

grable systems in the presence of perturbations. In the

context of the nonlinear Schrödinger (NLS) partial differ-

ential equations, and particularly for the integrable NLS

(with a focusing, cubic nonlinearity), one of these features

that is receiving tremendous interest concerns the emer-

gence of rogue waves: extreme wave events possessing

spatiotemporal localisation and large amplitude, which

are mathematically described by its class of rational solu-

tions. For the fundamental representatives of this class,

namely, the Peregrine roguewave (PRW), and the space- or
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time-periodic solutions as the Akhmediev and Kuznetsov–

Ma (KMb) breathers, respectively [1–4], their physical rele-

vance is justified by numerous episodes in the ocean [5–7]

and experimental observations in hydrodynamics [8–10],

nonlinear optics and lasers [11–13], superfluidity [14], and

plasma physics [15]. Such natural and experimental evi-

dences motivated recent advances on the predictability of

extreme wave events based on studies analysing the inter-

actions of energy localisation and strong local nonlinear-

ity [16, 17].

In the context of the aforementionedpersistence ques-

tion, the robustness of rational solutions and rogue wave

dynamics in the presence of perturbations has been iden-

tified for various special cases of extended NLS equations.

Representative key works refer to third-order (including

modified Hirota [18] and Dysthe [19] equations) [20–22]

as well as fourth- [23, 24] and fifth-order [25] models.

Important extensions to coupled equations and systems

include [26] for parity-time symmetric systems, [27] forNLS

systems with derivative nonlinearities, and [28] for Man-

akov systems (physically relevant in the context of Bose-

Einstein condensates). In a different perspective, results

on the spectral analysis of the PRW as a limiting case of

the KMb are presented in [29]. Furthermore, the findings

of [30] suggest that a suitably defineddispersion or nonlin-

earity management, if applied to a continuous wave (cw)

background, may effectively stabilise the supported PRW

and KMb waveforms.

In this spirit, and motivated by key works on the lin-

early forced/driven NLS equations in the context of rogue

waves and the robustness of localisedwaveforms in nearly

integrable systems [31–34], we consider, instead of the lin-

ear forcing, the action of an external, time-periodic driver.

The relevance of such a driving term, arising in a num-

ber of physical systems (as in the theory of charge-density

waves andplasmaphysics), has been extensively analysed

in [34]. Then, continuing along the lines of our recentwork

[35], we examine, starting herein numerically, the poten-

tial emergence of spatiotemporal algebraically decaying

waveforms in the dynamics of the associated, periodically

driven NLS model.

However, the approach we will follow regarding the

initial conditions differs drastically from investigations
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exciting PRWs, from initial data defined as interactions

between a pulse of small amplitude and a cw [35–38].

Instead of such initial conditions,we ask for the possibility

to excite PRWs from vanishing initial conditions, decaying

either at an algebraic or exponential rate.

The answer is positive: the main finding is that

extreme waveforms, strongly reminiscent to the PRW, can

be excited from the decaying initial data. Their profile and

statiotemporal decay rates are close to that of the ana-

lytical PRW solution. An important feature of this find-

ing is that these PRW-solitonic structures emerge on the

top of a finite background, which is formed at the early

stages of the evolution, although the initial condition

decays to zero. The birth of the PRW-type waveforms can

be potentially understood by a synergy of the modula-

tional instability (MI) of the cw solutions of the model

and the persistence of the localisation of the initial con-

dition on the top of the emerged unstable background. In

other words, for vanishing initial data, in the presence of

the periodic forcing, the system self-induces the effects of

the MI mechanism analysed in [35–38], for the excitation

of PRWs.

The article is structured as follows: In Section 2, we

report the results of the numerical simulations and ana-

lytical considerations on the stability of spatial homoge-

neous solutions.We also briefly comment on the dynamics

of the linearly damped and forced model, and of the inte-

grable NLS, initiated from the same, decaying initial con-

ditions. In Section 3, we summarise our results with an eye

towards future work.

2 Numerical Results

2.1 Brief Description of the Model

In this section, we report the results of direct numerical

simulations on the dynamics of the periodically driven,

NLS equation

iut +
ν

2
uxx + σ|u|2u = Γ exp(iΩt), ν > 0, σ > 0,

Γ ∈ C, Ω ∈ R. (1)

In (1), the parameter ν is the second-order (group

velocity) dispersion, and σ is the strength of the nonlinear-

ity. The parameters Γ and Ω correspond to the amplitude

and frequency of the driver, respectively. Let us recall that

under the change of variable u → u exp(iΩt) (1) is trans-

formed to the autonomous equation iut +
ν

2uxx + (σ|u|2 −

Ω)u = Γ. In what follows, we shall restrict to the case

Γ ≥ 0.¹

Equation (1) defines a nonintegrable perturbation of

the focusing integrable NLS, which corresponds to the

case Γ = 0. It is one of the fundamental partial differen-

tial equations exhibiting complex [39], even spatiotempo-

ral chaotic behaviour [40, 41], together with its dissipative

counterparts [42–44]. The impact of the breaking of the

hyperbolic structure of the integrable NLS, in the emer-

gence of complex dynamics for the damped and forced

models, has been rigorously analysed in [45–48]. For equa-

tions incorporating higher-order dissipation, we refer to

[34, 49] and references therein.

The numerical experiments will simulate the dynam-

ics of (1), excited by either the quadratically decaying

initial condition

u0(x) =
1

1 + x2
, (2)

or the exponentially decaying

u0(x) = αsech(βx), for some α, β > 0, (3)

which resembles the profile of a bright-soliton solution of

the integrable NLS. The model will be supplemented with

periodic boundary conditions

u(x + 2L, t) = u(x, t), for all t ≥ 0. (4)

2.2 Background

The system was integrated by using a pseudospectral

method for the spatial discretisation and an adaptive

step Runge–Kutta method for the time stepping. Concern-

ing the implementation of the periodic boundary condi-

tions, for cases (2) and (3) of the initial data, let us recall

the following: These conditions are strictly satisfied only

asymptotically, as L → ∞. For a finite length L, the initial

profiles, as well as their spatial derivatives, have jumps

across the end points of the interval [−L, L]. However,

these jumpshavenegligible effects in the observeddynam-

ics, as they are either of order 1/(1 + L2) or exp(−L).

More precisely, as the smallest value for L used herein is

L = 100, the effects are of orderO(10−4) or less. The char-

acterisation of the numerically observed spatiotemporal

1 For the generic case of Γ ∈ C, we remark that amplitude and phase

may seriously affect the dynamics that will be discussed herein. Rele-

vant investigations are in progress and will be considered elsewhere.



N.I. Karachalios et al.: Excitation of Peregrine-Type Waveforms from Vanishing Initial Conditions | 373

localised waveforms as extreme is made by a compari-

son [50] against time translations of the analytical PRW

solution of the integrable NLS:

uPS(x, t; P0) =

√︀

P0

⎡

⎣1 −
4
(︁

1 +
2it
Λ

)︁

1 +
4x2

K2
0

+
4t2

Λ2

⎤

⎦ exp

(︂

it

Λ

)︂

, (5)

where the parameters Λ =
1

σ P0
and K0 =

√
νΛ. Note that

the PRW solution decays algebraically both in time and

space, on the top of the continuous background of power

P0. We denote these translations as uPS(x, t − t∗; P0).

The time t∗ and power P0 are numerically detected, as

described below.

2.3 Results of the Direct Numerical

Simulations

Figure 1 shows snapshots of the evolution of the den-

sity |u(x, t)|2 of the numerical solution of the problem (1),

(2), (4), for ν = σ = 1, Γ = 0.5, and Ω = 1, for the alge-

braically decaying initial condition (2).Weobserve that the

initial datum evolves towards a localisedwaveform,which

is strongly reminiscent of a PRW. The numerical solution is

plotted by the continuous (blue) curve, against the dashed

(red) curve depicting the evolution of the PRW profile (5),

uPS(x, t − 2.415; 0.84). The maximum amplitude of the

event is attained at t∗ = 2.415. The time t∗ is used to

define the time translation of the analytical PRW solu-

tion of the integrable NLS. The power of its background

P0 = 0.84 is numerically detected, so that the amplitude

of the analytical PRW coincides with the maximum ampli-

tude of the numerical event. Note that for the above set of

parameters, we found that K0 = 1.54 and Λ = 1.19.

For t ∈ [1.3, 2.5], the centred localised waveform

exhibits an algebraic in time growth/decay rate, close to

that of the PRW soliton; notably, both the time-growing

and then time-decaying centred profiles appear to man-

ifest a locking to a PRW-type mode, as it is depicted in

the left panel (a) of the top row of Figure 2, showing the

time evolution of the density of the centre |u(0, t)|2, for
t ∈ [0, 3]. The middle panel (b) of the top row of Figure 2

shows a detail of the spatial profile of the maximum event

at t∗ = 2.415, close to the right of the two symmetric min-

ima of the exact PRW uPS(x, t − 2.415; 0.84). This detail

illustrates that the emerged extreme event preserves the

algebraic spatial decay of the PRW soliton.

The top right panel (c) of Figure 2 depicts a rescaled,

extended view of the maximum extreme event, plotted for

x ∈ [−L, L]. It reveals a remarkable feature of the dynam-

ics: the extreme event occurs on the top of a finite back-

ground of amplitude |h|2 ∼ 1.19, which is formed at the

early stages of the evolution of the vanishing initial con-

dition; on the one hand, we observed that the core of

the PRW-solitonic structure is proximal to the analytical

PRW of the integrable NLS with P0 = 0.84 (as numeri-

cally detected by the fitting argument of [50] discussed

above), and on the other hand, it does not tend to the back-

ground of unit amplitude as the PRWof the integrable NLS

when ν = σ = 1. This fact that the amplitude of the back-

ground of the PRW-type event differs from P0 = 0.84 or

P0 = 1 suggests that it may be determined by the driver, as

it will be analysed below. Note that the same effects were

observed for increased values of L.

The bottom row of Figure 2 depicts contour plots

of the spatiotemporal evolution of the density |u(x, t)|2.
The bottom left panel (d) portrays the evolution for

t ∈ [0, 10]. The PRW-type soliton discussed above is the

Figure 1: (Colour online) Snapshots of the evolution of the density |u(x, t)|2 [solid (blue) curves], for the initial condition (2). Parameters:

ν = 1, σ = 1, Γ = 0.5, Ω = 1, L = 100. The density of the numerical solution of (1) is compared against the density of the PRW of the

integrable NLS (5), uPS(x, t − 2.415; 0.84) [dashed (red) curves], with K0 = 1.54 and Λ = 1.19.
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Figure 2: (Colour online) Parameters: ν = 1, σ = 1, Γ = 0.5, Ω = 1, L = 100. Top left panel (a): evolution of the density of the centre,

|u(0, t)|2, for the initial condition (2), against the evolution of the density of the centre of the PRW (5), uPS(x, t−2.415; 0.84), with K0 = 1.54

and Λ = 1.19. Top middle panel (b): a detail of the spatial profile of the maximum event at t∗ = 2.415, close to the right of the two symmet-

ric minima of the exact PRW uPS(x, t − 2.415; 0.84). Top right panel (c): Another view of the numerical density, at time t∗ = 2.415, where

the extreme event attains its maximum amplitude, for x ∈ [−100, 100]. The PRW-type structure is formed on a finite background. Bottom

panels: Contour plots of the spatiotemporal evolution of the density, for the above evolution, for t ∈ [0, 10] (d), for t ∈ [10, 20] (e), and

t ∈ [20, 30] (f).

first extreme event (FE) corresponding to the spot marked

by the arrow.After its formation, the sustaining finite back-

ground exhibits MI dynamics, characterised by the emer-

gence of large-amplitude localised modes. A first inter-

esting effect is that the solution preserves at the early

stage of the evolution the even spatial symmetry u(x, t) =

u(−x, t). The even symmetry breaking due to the pres-

ence of the driver occurs for t & 14, as shown in the con-

tour plot of the bottom middle panel (e), which portrays

the dynamics for t ∈ [10, 20]. A second interesting effect

is that the later stages of MI are manifested by spatial

energy localisation (initiated prior to the even symmetry

breaking) and the formation of extreme amplitude solitary

modes. The survived solitary modes are dominating in the

dynamics, as shown in the right contour plot (f) (which

shows the relevant evolution for t ∈ [20, 30]), and their

amplitude is increasing.

Figure 3 is an attempt to shed light to the structure

of the above solitary modes. The left panel (a) depicts

the evolution of the density of the centre for t ∈ [0, 16],

showing that it undergoes chaotic oscillations. The oscil-

lations in the subinterval [10, 16] correspond to those of

the top of the solitary mode, which was depicted in the

contour plot of the evolution of the density of Figure 2e.

This is first evidence that the solitary mode possesses the

structure of a (large amplitude) “chaotic soliton” in the

sense of [42–44, 51] than a breather. A second evidence is

illustrated in the middle panel (b), showing a plot of the

evolution of the density of x = 0.33, i.e. |u(0.33, t)|2, for
t ∈ [28, 30]; it is actually a detail – in this time subinter-

val – of the evolution of the solitary mode depicted in the

contour plot of Figure 2e. The centred mode has slightly

slided at x = 0.33, and the oscillations of the mode are

reminiscent of those presented in [42, Fig. 1, p. 4]. We

may conjecture that the system, for the considered exam-

ple of parameters, is locked to a “chaotic” soliton and not

to a large-amplitude breathing mode. Nevertheless, vary-

ing the parameters of the driver, the appearance of more

breather-like waveforms may not be excluded (at least, at

the early stages of the evolution), as shown in Figure 4,

depicting the dynamics when Γ = 1 and Ω = 2.7. These

breather-like modes may evolve to the aforementioned

“chaotic” solitons at later stages of the dynamics.

The numerical results that follow come out from an

indicative study on the dependencies of the above dynam-

ics on the parameters of the driver. In Figures 5 and 6, we

fixed Γ = 0.5 and ν = σ = 1 as above, and we varied its

frequency Ω. The left panel (a) of Figure 5 depicts the con-

tour plot of the spatiotemporal evolution of the density

for Ω = 0.5 and the right panel (b) for Ω = 1.5. Despite

some changes in the patterns, the overall picture of the

dynamics observed in the case Ω = 1 (large-amplitude
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Figure 3: Parameters: ν = 1, σ = 1, Γ = 0.5, Ω = 1, L = 100. Left panel (a): Temporal evolution of the density of the centre |u(0, t)|2, for the
initial condition (2). Middle panel (b): A detail of the temporal evolution of the density at x = 0.33 (|u(0.33, t)|2), for t ∈ [28, 30].

Figure 4: Parameters: ν = 1, σ = 1, Γ = 1, Ω = 2.7, L = 100, and initial condition (2). Left panel (a): Contour plot of the spatiotemporal

evolution of the density for t ∈ [0, 20]. Right panel (b): Temporal evolution of the density of the centre |u(0, t)|2, for t ∈ [0, 14].

Figure 5: (Colour online) Parameters: ν = 1, σ = 1, Γ = 0.5, L = 100, and initial condition (2). Left panel (a): Contour plot of the spatiotem-

poral evolution of the density for t ∈ [0, 30], when Ω = 0.5. Left panel (b): as in panel (a), but for Ω = 1.5.

solitons, following after the emergence of extreme FE) per-

sists for both examples of Ω = 0.5 < 1 and Ω = 1.5 > 1,

respectively.

Drastic changes appear for larger values of the driver’s

frequency Ω. These changes are illustrated in columns

(a) to (c) of Figure 6. In each column, the upper panel

shows the temporal evolution of the density of the cen-

tre |u(0, t)|2 for t ∈ [0, 30], and the bottom panel shows

a contour plot of the spatiotemporal evolution of the den-

sity for x ∈ [−10, 10] and t ∈ [0, 30]. Column (a) depicts

the numerical results for Ω = 2, a value that in the

present study – for the considered set of parameters –

can be viewed as “critical”: The large-amplitude peak of

the density of the centre observed in the top panel (a)

corresponds to a PRW-type event – the spot of the bottom

panel (a). Remarkably, afterwards – in contrast with the

previous observations – we see that the large-amplitude,

“chaotic solitary” modes disappear; the later stages of

the dynamics are manifested by small amplitude chaotic

oscillations instead, as depicted in the inset of the top

panel (a).

Increasing thedriver’s frequency toΩ = 4,weobserve

in column (b) yet another remarkable effect: the disap-

pearance of the PRW-type events. The dynamics are locked

to a spatially localised mode whose top is oscillating

in time almost periodically with moderate amplitudes.

The frequency of the oscillations of the top of such

“quasiperiodic” solitary modes seems to be dictated by
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Figure 6: (Colour online) Parameters: ν = 1, σ = 1, Γ = 0.5, L = 100, and initial condition (2). Column (a): The upper panel (a) shows the

temporal evolution of the density of the centre |u(0, t)|2, for t ∈ [0, 30], when Ω = 2. The bottom panel (a) shows the contour plot of the

spatiotemporal evolution of the density for x ∈ [−10, 10] and t ∈ [0, 30], when Ω = 2. Column (b): Same as in column (a), but for Ω = 4.

Column (c). Same as in column (a), but for Ω = 6.

the frequency of the driver and increasing, as shown

in column (c), depicting the relevant evolution for the

increased value of Ω = 6. When Ω is further increased,

the frequency of the above oscillations is also increasing,

suggesting that the dynamics tend to lock to a stationary

soliton. This is expected, since in the limit of large Ω, as

the period of the oscillations is dictated by the frequency

of the driver, it should tend to zero.

Next, keeping the driver’s frequency fixed to Ω = 1, a

similar dynamical phenomenology to the one presented

in Figure 2 emerged for the reduced forcing amplitude

Γ = 0.25. The dynamics for this example are summarised

in Figure 7. In this case, the FE is found to be close to

the PRW-soliton uPS(x, t − 3.33; 1.06) of the integrable

limit, with K0 = 0.97 and Λ = 0.94. The presentation is

the same as in Figure 2. The top left panel (a) shows

the time evolution of the density of the centre, where

its time growth and time decay is still close to the PRW

for t ∈ [2, 3.5]. The top middle panel (b) illustrates that

the numerical solution, when the FE attains its maximum

density at t∗ = 3.33, yet captures the profile of the PRW

around its symmetric minima, even closer than the case

of Γ = 0.5. The whole profile of the FE at the time of

its maximum density is depicted in the top right panel

(c). As a result of the decreased forcing amplitude, the

amplitude of the finite background supporting the PRW

event is also decreased, i.e. |h|2 ∼ 0.34. Accordingly, the

emerging localised modes possess reduced amplitude.

Additionally, we observe a delay in the emergence of

the extreme amplitude solitary modes, as shown in the

panels (d) to (f) of the bottom row, portraying contour

plots of the spatiotemporal evolution of the density, for

t ∈ [0, 60].

Proceeding to a progressive decrease of Γ, we observe

a suppressionof the extremewavedynamics (similar to the

case of increasing Ω). These suppression effects are illus-

trated in Figure 8, where the presentation follows that of

Figure 6: for Γ = 0.1, we observe in column (a) that first

the large-amplitude solitary structures disappear while

the emergence of rogue waves still persists. This feature

is shown by the large-amplitude peaks of the density of

the centre shown in the top panel (a), which correspond

to the localised spots of the contour plot portrayed in the

bottom panel (a). Further suppression occurs for Γ = 0.05

as shown in column (b) (manifested by the decrease of

amplitude of the FE), while for Γ = 0.01, the dynamics

seems again to tend to lock to a stationary soliton.

A complete study of the bifurcations in the full param-

eter (Γ, Ω)-parametric space, apart from being essential,

might be a formidable task (as it may involve the nontriv-

ial analysis of resonances given in [39–41]) and is beyond

the scope of the present work. However, we may already

conjecture on the dependencies of the exhibited dynam-

ics on the amplitude Γ and the frequency Ω of the driver.

For instance, for fixed ν, σ, L, we may identify thresholds

Γthresh and Ωthresh such that for suitably fixed Ω (or Γ),

if Γ > Γthresh (or Ω < Ωthresh), extreme wave dynamics

emerge. The above numerical studies provided the follow-

ing examples for the thresholds:we found that for ν = σ =

1 and L = 100, when Ω = 1, Γthresh < 0.05, and when

Γ = 0.5, thenΩthresh > 2. Furthermore, in the suppression

regimes, in the limit of small Γ (for fixedΩ) or in the limit of

largeΩ (for fixed Γ), the dynamics tend to lock to a station-

ary soliton of the integrableNLS. This is expected, as in the

limit of small Γ, the system approximates the integrable

limit.
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Figure 7: (Colour Online) Dynamics of the initial condition (2), for forcing amplitude Γ = 0.25 and the rest of parameters fixed as in Fig. 2.

(a) Evolution of the density of the center, |u(0, t)|2, for the initial condition (2), against the evolution of the density of the center of the PRW
(5), uPS(x, t − 3.33; 1.06), with K0 = 0.97 and Λ = 0.94. (b) A detail of the spatial profile of the maximum event at t∗ = 3.33, close to the

right of the two symmetric minima of the exact PRW uPS(x, t − 3.33; 1.06). (c) Another view of the numerical density, at time t∗ = 3.33,

where the extreme event attains its maximum amplitude, for x ∈ [−20, 20]. The PRW-type structure is still formed on a finite background.

Bottom panels: Contour plots of the spatiotemporal evolution of the density, for the above evolution, for t ∈ [0, 20] (d), for t ∈ [20, 40] (e),

and t ∈ [40, 60] (f).

Figure 8: (Colour online) Parameters: ν = 1, σ = 1, Ω = 1, L = 100, and initial condition (2). Column (a): The upper panel (a) shows the

temporal evolution of the density of the centre |u(0, t)|2, for t ∈ [0, 30], when Γ = 0.1. The bottom panel (a) shows the contour plot of

the spatiotemporal evolution of the density for x ∈ [−10, 10] and t ∈ [0, 30], when Γ = 0.1. Column (b): Same as in column (a), but for

Γ = 0.05. Column (c): Same as in column (a), but for Γ = 0.01.

The above observations will be further under-

lined by the comments on the behaviour of the inte-

grable limit Γ = 0, for the same type of vanishing

conditions.

2.4 Effects from Continuous Wave Solutions

The existence and stability properties of cw solutions of

the forced NLS (1) should have an important role on the
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birth of the transient PRW-type dynamics. Inwhat follows,

we fix for simplicity ν = σ = 1 in (1), corresponding to the

presented results of the numerical simulations discussed

above. We consider spatially homogeneous solutions, of

the form

u(x, t) = heiΩt , h ∈ C. (6)

There exist for (1), under the dispersion relation

|h|2h = Γ + hΩ. (7)

For Γ > 0, the case we are restricted herein, (7) has

only real solutions for h: Indeed, let h = A + iB. Then, its

substitution to (7) is leading to the following equations for

A and B:

A(A2
+ B2) − ΩA = Γ,

B(A2
+ B2) − ΩB = 0.

From the second equation, we have that either B = 0,

or |h|2 = A2
+B2 = Ω. Inserting the latter to the first equa-

tion for A, we get that Γ = 0. Thus, for Γ > 0 (and generi-

cally, for Γ ∈ R), solutions (6) exist only with h ∈ R. Now,

consider a perturbation to the solution (6), of the form

u(x, t) = [h + εu1(x, t)]e
iΩt , (8)

for small ε > 0, which we insert into (1). By using the dis-

persion relation (7) and linearising the system, i.e. neglect-

ing terms of order ε2 and higher, we derive the equation

this small influence satisfies:

i∂tu1 +
1

2
∂2xu1 + 2h2u1 + h2u1 − Ωu1 = 0. (9)

To examine MI, we may assume that the perturbation

u1 is harmonic, i.e.

u1(x, t) = c1e
i(kx−ωt)

+ c2e
−i(kx−ωt), (10)

where k and ω denote the wavenumber and the frequency

of the perturbation, respectively. Next, substitution of the

expression (10) for u1 in the linearised (9) yields the follow-

ing algebraic system for c1 and c2:

(︂

− k2

2
+ ω − Ω + 2h2

)︂

c1 + h2c2 = 0,

h2c1 +

(︂

− k2

2
− ω − Ω + 2h2

)︂

c2 = 0.

Seeking for nontrivial solutions c1 and c2 of the above

system, we require the relevant determinant to be zero;

this way, we obtain the following dispersion relation:

ω2
=

k4

4
+ k2(Ω − 2h2) + (3h4 − 4Ωh2 + Ω2). (11)

The perturbation (8) suggests that solutions (6) are

modulationally unstable if ω is complex, i.e. when the

right-hand side of (11) is negative. Solving the equation

k4 + k2
(︁

4Ω − 8h2
)︁

+ 12h4 − 16Ωh2 + 4Ω2
= 0,

in terms of k, we find the following solutions:

k1,2 = ±
√
2
√︀

h2 − Ω, k3,4 = ±
√
2
√︀

3h2 − Ω. (12)

The roots (12) define the instability bands of the

cw solutions (6). There is not a loss of generality to

be restricted for k > 0. Then, the instability bands are

defined as follows:

1. Ia = [0, k3] = [0,
√
2
√
3h2 − Ω], if Ω

3 < h2 < Ω.

2. Ib = [k1, k3] = [
√
2
√
h2 − Ω,

√
2
√
3h2 − Ω], if

h2 > Ω.

Modulational instability has been proved an essential

mechanism for the emergence of rogue waves [31–33]. In

the light of theMI analysis recalled above, let us reconsider

the dynamics presented in the example of Figures 1 and 2.

When Ω = 1 and Γ = 0.5, (7) has one real root h1 = 1.19.

Thus, the corresponding cw solution (6), with h = h1,

exhibits its MI for wave numbers k ∈ Ib, as h
2
1 > Ω.

In this regard, wemay conjecture that the background

sustaining the PRW-type waveform shown in the snap-

shots of Figure 1 (and Fig. 2c) is self-induced as the system

tends transiently to lock its cw solution in the presence of

the forcing, e.g. the solution of amplitude |h1|2 in the con-
sidered example. However, this solution is modulation-

ally unstable. Then, as a transient “metastability effect,”

the emergence of the PRW-type waveform is a result of

the synergy of the preservation of the spatial localisation

of the initial condition (due to continuous dependence

on the initial data [35]) and of the MI of the sustaining

cw solution: at a fixed time (recall the snapshot at time

t = 2 in Fig. 1), a pulse on a finite background has formed,

although the evolution initiated by vanishing initial condi-

tions; the system has self-induced the universal effects of

the MI mechanism analysed in [36–38], which may lead to

the birth of a PRW-type mode. The same mechanism may

explain the dynamics portrayed in Figure 7.

We should remark that the above arguments are fur-

ther supported by the detailed analysis of [39], on the adi-

abatic excitation and control ofN-band solutions (N-phase

waves) for the forcedNLS. Particularly relevant is the anal-

ysis on the excitation of the spatially homogeneous (0-

band) solutions (6) from zero initial conditions, which are

continuously synchronised with the driver (despite the

variation of the driver’s frequency); in our case, the van-

ishing initial conditions define perturbations of the zero
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background (beingmodulationally stable in the case of the

integrable limit Γ = 0).

2.5 Comment on the Dynamics of the

Damped Counterpart

The effects of linear loss, solely influencing the evolu-

tion of Peregrine solitons in the 1D-focusing NLS, have

been analysed via nonlinear spectral analysis in [52]; the

unforced, damped NLS equation is physically significant

in hydrodynamics andnonlinear optics [32, 33, 53]. Numer-

ical and experimental studies [54] confirmed the observa-

tion of higher-order MI dynamics in water waves.

Here, we illustrate that dynamical behaviour of (1) dis-

cussed in the previous paragraphs seems to be robust for

small damping strengths in the presence of the periodic

forcing. For instance, this robustnesswas identified for the

linearly damped counterpart of (1):

iut +
ν

2
uxx + σ|u|2u + iγu = Γ exp(iΩt), γ > 0. (13)

Yet, thismodel is of particular interest in various phys-

ical contexts, as in plasma physics [34, 44] (governing the

dynamics of a collisional plasma driven by an external rf

field). The dynamics of (13) are captured by a finite dimen-

sional global attractor. For its existence and analyticity

properties, we refer to [55, 56].

Figure 9 depicts the results of the numerical study

for ν = 2, σ = 1, damping strength γ = 0.02, and Γ = 0.5.

This time, we have used the sech-profiled initial condition

(3), for α =
√
2 and β = 1 corresponding to an exact sta-

tionary pulse of the integrable NLS (see below). As before,

the left panel (a) shows the time evolution of the density

of the centre |u(0, t)|2, the middle panel (b) shows the

detail of the emerged PRW-type event around the right of

its minima, and the right panel (c) shows the profile of the

PRW-type event when its maximum density is attained at

time t∗ = 1.88. The comparison is against the analytical

PRW solution (5) uPS(x, t−1.88; 0.83)withK0 = 1.55 and

Λ = 1.20.Again, the excitationof thePRW-typewaveforms

can be explained as above, in terms of the modulation

instability of the cw solutions (6) of (13) [44]. Additionally,

it would be interesting to examine a potential stabilisation

of the solitary modes observed in Figure 2e and f, in the

presence of small damping, when possibly driven by two

frequencies, as proposed in [57].

2.6 Comment on the Dynamics of the

Integrable NLS Limit

It is important to note that the dynamics exhibited by the

integrable NLS assuming the initial condition (2) or (3)

totally differs from those of the forced (and damped) coun-

terpart discussed in the previous paragraphs, although

well understood. Figure 10 summarises the results of the

numerical study of (1), for Γ = 0.

The left column (a) depicts numerical results for the

evolution of the initial condition (2), when ν = σ = 1.

The upper panel (a) shows a snapshot of the density of

the numerical solution at time t = 90 [(blue) continu-

ous curve], against the density of a numerically detected

stationary pulse |Φ|2 ≈ 0.54 sech2(0.73x) (dashed red

curve). Let us recall the standard formula of the general

bright-soliton solution of the cubic integrable NLS:

u(x, t) =

√︃

2

⃒

⃒

⃒

⃒

θ − κ2ν/2

σ

⃒

⃒

⃒

⃒

sech

[︃
√︃

⃒

⃒

⃒

⃒

θ − κ2ν/2

ν/2

⃒

⃒

⃒

⃒

(x − 2θκt)
]︀

exp[i(κx − θt)]. (14)

When σ = ν = 1 and κ = 0, the corresponding sta-

tionary solution has density |u|2 = 2|θ|sech2
(︁

√︀

2|θ|x
)︁

.

Figure 9: (Colour Online) Dynamics of the initial condition (3) with α =

√
2 and β = 1, for the damped and forced NLS (13). Parameters:

ν = 2, σ = 1, γ = 0.02, Γ = 0.5, Ω = 1, L = 100. (a) Evolution of the density of the center, |u(0, t)|2, against the evolution of the density
of the center of the PRW (5), uPS(x, t − 1.88; 0.83), with K0 = 1.55 and Λ = 1.20. (b) A detail of the spatial profile of the maximum event at

t∗ = 1.88, close to the right of the two symmetric minima of the exact PRW uPS(x, t − 1.88; 0.83). (c) Another view of the numerical density,

at time t∗ = 1.88, where the extreme event attains its maximum amplitude, for x ∈ [−20, 20].



380 | N.I. Karachalios et al.: Excitation of Peregrine-Type Waveforms from Vanishing Initial Conditions

Figure 10: (Colour online) Left column (a): Parameters in (1), ν = σ = 1, Γ = 0. The top panel (a) shows a snapshot of the numerical

density of the solution with initial condition (2), at t = 90 [continuous (blue) curve], against the density of an exact stationary soliton

|Φ|2 ≈ 0.54 sech2(0.73x) [dashed (red) curve]. The bottom panel (a) shows a contour plot of the spatiotemporal evolution of the density,

for parameters and initial condition as in the top panel (a). Middle column (b): Parameters in (1), ν = 2, σ = 1, Γ = 0. The top panel (b)

shows a snapshot of the density of the numerical solution for the initial condition (2), at t = 20. The bottom panel (b) shows a contour plot

of the spatiotemporal evolution of the density, for parameters and initial condition as in the top panel (b). Right column (c): Parameters in

(1), ν = 2, σ = 1, Γ = 0. The top panel (c) shows a snapshot at t = 200 of the density of the numerical solution [continuous (blue) curve],

with initial condition (3) (α =

√
2, β = 1), against the density of the corresponding analytical stationary soliton [dashed (red) curve]. The

bottom panel (b) shows a contour plot of the spatiotemporal evolution of the density for parameters and initial condition as in the top panel

(c). In all studies, L = 100.

Setting 2|θ| = 0.54, we deduce that indeed the numeri-

cally detected |Φ|2 corresponds to the density of an exact

stationary pulse. The approaching of |Φ|2 is illustrated in
the contour plot of the spatiotemporal evolution of the

density, shown in the bottom left panel (a). We observe

the slight oscillations of the numerical solution around

Φ. This oscillatory motion is completely determined by

the well-known stability results of [58, Theorem 8.3.1] for

standing wave solutions, if applied in the case of the

cubic NLS: the requested distance between the initial

condition (2) and Φ is quantitatively significant in the

Sobolev norm H1(R), i.e. ||u0 −Φ||2 =
∫︀

∞

−∞
|u0 − Φ|2dx+

∫︀

∞

−∞
|∂xu0 − ∂xΦ|2dx ≈ 0.97. Due to this distance, the

excited numerical solution, although it seems to be almost

locked to Φ, exhibits the observed oscillatory behaviour.

The middle column (b) depicts the dynamics of the

initial condition (2), for ν = 2, σ = 1. The initial condi-

tion disperses, as shown in the snapshot of the density for

t = 20 of the upper panel (b), and the contour plot of its

spatiotemporal evolution, shown in the bottom panel (b).

Finally, column (c) depicts the dynamics of the ini-

tial condition (3), for α =
√
2 and β = 1, when ν = 2

and σ = 1. In this case, the initial condition u0(x) =√
2sech(x) corresponds to the exact stationary pulse (14)

at t = 0, for κ = 0, θ = 1, and the above values of ν and σ.

The snapshot of the numerical density [(blue) continuous

curve], at t = 200, shown in the upper right panel (c), fits

exactly to the density of the exact stationary solution [(red)

dashed curve]. The contour plot of the spatiotemporal

evolution of the density is an illustration of the well-

known stability of the exact soliton pulse.

It should be also highlighted that for the generalised

focusing Hamiltonian NLS

iut +
ν

2
uxx + σ|u|2δu = 0, δ ≥ 1,

(δ = 1 corresponds to the integrable NLS), rogue waves

can be still excited by spatially decaying initial conditions

as it was found in [50]. However, the observed extreme

waves therein (excited by generic Gaussian wave packets

as their width is varied) are decaying to zero. This is a vast

difference of the results of [50], with those presented in the

present article.

Summarising, comparing the dynamics of the inte-

grable NLS (Γ = 0) with those of the forced (Γ > 0) (1)

[and damped (γ > 0) (13)], it is clear that the birth of

extreme events for the latter, initiated by vanishing initial

conditions, is far from any integrable limit approximation,

[59, 60], and further justifies the potential existence of

thresholds for the driver’s amplitude and frequency, with

the properties described at the end of Section 2.3.
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3 Conclusions

In this work, direct numerical simulations revealed the

excitation of Peregrine-type solitonic waveforms, from

vanishing initial conditions (possessing an algebraic or

exponential spatial decaying rate), for the periodically

driven NLS equation. The PRW-type waveforms emerge

as first events of the evolution, on the top of a self-

induced finite background. This dynamical behaviour can

be understood in terms of the existence and modulation

instability of the cw solutions of the model and the preser-

vation of the spatial localisation of the initial condition at

the early stages of the evolution. Revisiting the dynamics

of the corresponding conservative NLS for the same type of

initial conditions, it was shown that the above dynamics

should be considered as far from approximations from the

integrable limit. We also commented that this behaviour

maypersist in the linearly dampedand forced counterpart,

at least under the presence of small damping strengths.

Importantly, it appears that the emergence of thePeregrine

soliton excited by decaying initial conditions as a univer-

sal, coherent structure in the dynamics of the 1D – inte-

grable NLS [61] – as studied therein, in its semiclassical

limit scenario [62, 63] – can be robust in the presence of

forcing and damping. Notably, for the persistence of semi-

classical type dynamics in the presence of a spatiotem-

porally localised driver (pending on the spatial/temporal

scales of the latter and the magnitude of the damping

strength), we refer to our recent work [64].

Future directions include further investigations on

forced and damped NLS models, which may be consid-

ered in 1D and higher dimensional setups, the consid-

eration of various types of forcing (as spatiotemporally

localised [64]), the presence of higher order effects, and

discrete [65], damped, and forced NLS counterparts. Rele-

vant investigations are in progress and will be considered

in future publications.

Acknowledgments: This research is co-financed by

Greece and the European Union (European Social Fund

– ESF) through the Operational Programme (Human

Resources Development, Education and Lifelong Learn-

ing 2014–2020) in the context of the project “Localized and

quasiperiodic solutions for partial differential equations:

Dynamical paths from mathematical ecology to nonlinear

physics” (MIS 5004244).

References

[1] D. H. Peregrine, J. Austral. Math. Soc. B 25, 16 (1983).

[2] E. A. Kuznetsov, Sov. Phys.-Dokl. 22, 507 (1977).

[3] Y. C. Ma, Stud. Appl. Math. 60, 43 (1979).

[4] N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, Theor.

Math. Phys. 72, 809 (1987).

[5] E. Pelinovsky and C. Kharif (Eds.), Extreme Ocean Waves,

Springer, New York 2008.

[6] C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves in the

Ocean, Springer, New York 2009.

[7] A. R. Osborne, Nonlinear Ocean Waves and the Inverse

Scattering Transform, Academic Press, Amsterdam 2010.

[8] M. Onorato, S. Residori, and F. Baronio, Rogue and Shock

Waves in Nonlinear Dispersive Media, Springer-Verlag,

Heidelberg 2016.

[9] A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, Phys. Rev.

Lett. 106, 1 (2011).

[10] A. Chabchoub, N. Hoffmann, M. Onorato, and N. Akhmediev,

Phys. Rev. X 2, 1 (2012).

[11] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Nature 450,

1054 (2007).

[12] B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, et al., Nat. Phys.

6, 790 (2010).

[13] C. Lecaplain, Ph. Grelu, J. M. Soto-Crespo, and N. Akhmediev,

Phys. Rev. Lett. 108, 1 (2012).

[14] A. N. Ganshin, V. B. Efimov, G. V. Kolmakov, L. P. Mezhov-

Deglin, and P. V. E. McClintock, Phys. Rev. Lett. 101, 1

(2008).

[15] H. Bailung, S. K. Sharma, and Y. Nakamura, Phys. Rev. Lett.

107, 1 (2011).

[16] W. Cousins and T. Sapsis, Phys. Rev. E 91, 1 (2015).

[17] W. Cousins and T. Sapsis, J. Fluid Mech. 790, 368 (2016).

[18] R. Hirota, J. Math. Phys. 14, 805 (1973).

[19] K. B. Dysthe and K. Trulsen, Phys. Scr. T82, 48 (1999).

[20] A. Ankiewicz, N. Devine, and N. Akhmediev, Phys. Lett. A 373,

3997 (2009).

[21] A. Calini and C. M. Schober, in: Extreme Ocean Waves

(Eds. E. Pelinovsky and C. Kharif), Springer, New York 2008,

p. 31.

[22] Y. Wang, L. Song, L. LI, and B. A. Malomed, J. Opt. Soc. Am. B

32, 2257 (2015).

[23] L. H. Wang, K. Porsezian, and J. S. He, Phys. Rev. E 87, 053202

(2013).

[24] A. Ankiewicz, Y. Wang, S. Wabnitz, and N. Akhmediev, Phys.

Rev. E 89, 012907 (2014).

[25] Y. Yang, Z. Yan, and B. A. Malomed, Chaos 25, 103112

(2015).

[26] Y. V. Bludov, R. Driben, V. V. Konotop, and B. A. Malomed, J.

Opt. 15, 064010 (2013).

[27] H. N. Chan, B. A. Malomed, K. W. Chow, and E. Ding, Phys. Rev.

E 93, 012217 (2016).

[28] W. P. Zhong, M. Belic’, and B. A. Malomed, Phys. Rev. E 92,

053201, 1 (2015).

[29] J. Cuevas Maraver, P. G. Kevrekidis, D. J. Frantzeskakis, N. I.

Karachalios, M. Haragus, et al., Phys. Rev. E 96, 012202

(2017).

[30] J. Cuevas-Maraver, B. A. Malomed, P. G. Kevrekidis, and

D. J. Frantzeskakis, Phys. Lett. A 382, 968 (2018).

[31] A. Slunyaev, A. Sergeeva, and E. Pelinovsky, Phys. D 303, 18

(2015).

[32] C. Kharif and J. Touboul, Eur. Phys. J. Special Topics 185, 159

(2010).



382 | N.I. Karachalios et al.: Excitation of Peregrine-Type Waveforms from Vanishing Initial Conditions

[33] C. Kharif, R. A. Kraenkel, M. A. Manna, and R. Thomas, J. Fluid

Mech. 664, 138 (2010).

[34] Y. Kivshar and B. Malomed, Rev. Mod. Phys. 61, 763 (1989).

[35] Z. A. Anastassi, G. Fotopoulos, D. J. Frantzeskakis, T. P. Horikis,

N. I. Karachalios, et al., Phys. D 355, 24 (2017).

[36] G. Biondini and D. Mantzavinos, Phys. Rev. Lett. 116, 043902

(2016).

[37] G. Yang, L. Li, and S. Jia, Phys. Rev. E 85, 046608 (2012).

[38] G. Yang, Y. Wang, Z. Qin, B. A. Malomed, D. Mihalache, et al.,

Phys. Rev. E 90, 062909 (2014).

[39] L. Friedland and A. G. Shagalov, Phys. Rev. E 71, 036206

(2005).

[40] E. Shlizerman and V. Rom-Kedar, Phys. Rev. Lett. 96, 024104

(2006).

[41] E. Shlizerman and V. Rom-Kedar, Phys. Rev. Lett. 102, 03390

(2009).

[42] K. Nozaki and N. Bekki, Phys. Rev. Lett. 50, 1226 (1983).

[43] K. Nozaki and N. Bekki, Phys. Lett. A 102, 383 (1984).

[44] K. Nozaki and N. Bekki, Phys. D 21, 381 (1986).

[45] Y. Li and D. W. McLaughlin, Comm. Math. Phys. 162, 175 (1994).

[46] G. Haller and S. Wiggins, Physica D 85, 311 (1995).

[47] D. Cai, D. W. McLaughlin, and J. Shatah, Phys. Lett. A 253, 280

(1999).

[48] D. Cai, D. W. McLaughlin and K. T. R. McLaughlin, The Nonlin-

ear Schrödinger Equation as Both a PDE and a Dynamical Sys-

tem, Handbook of dynamical systems, vol. 2, North-Holland,

Amsterdam 2002, p. 599.

[49] E. Shlizerman and V. Rom-Kedar, Chaos 15, 013107, 1 (2005).

[50] E. G. Charalampidis, J. Cuevas-Maraver, D. J. Frantzeskakis,

and P. G. Kevrekidis, Rom. Rep. Phys. 70, 504 (2018).

[51] J. Fujioka, E. Cortés, R. Pérez-Pascual, R. F. Rodrguez,

A. Espinosa, et al., Chaos 21, 033120 (2011).

[52] S. Randoux, P. Suret, A. Chabchoub, B. Kibler, and G. El, Phys.

Rev. E 98, 022219 (2018).

[53] O. Kimmoun, H. C. Hsu, B. Kibler, and A. Chabchoub, Phys.

Rev. E 96, 022219 (2017).

[54] S. Randoux, P. Suret, and Gennady, Sci. Rep. 6, 29238

(2016).

[55] J. M. Ghidaglia, Ann. Inst. Henri Poincaré 5, 365 (1988).

[56] O. Goubet, Appl. Anal. 60, 99 (1996).

[57] D. Cai, A. R. Bishop, N. G.-Jensen, and B. A. Malomed, Phys.

Rev. E 49, R1000 (R) (1994).

[58] T. Cazenave, Semilinear Schrödinger Equations, Courant

Lecture Notes 10 (American Mathematical Society, 2003).

[59] M. Onorato and D. Proment, Phys. Lett. A 376, 3057 (2012).

[60] M. Brunetti, N. Marchiando, N. Berti, and J. Kasparian, Phys.

Lett. A 378, 1025 (2014).

[61] A. Tikan, C. Billet, G. El, A. Tovbis, M. Bertola, et al., Phys. Rev.

Lett. 119, 033901 (2017).

[62] M. Bertola and A. Tovbis, Comm. Pure Appl. Math Comm. Pure

Appl. Math. 66, 678 (2009).

[63] R. H. J. Grimshaw and A. Tovbis, Proc. R. Soc. A 469, 20130094

(2013).

[64] G. Fotopoulos, D. J. Frantzeskakis, N. I. Karachalios, P. G.

Kevrekidis, V. Koukouloyannis, et al., Extreme Wave Events

for a Nonlinear Schrödinger Equation with Linear Damping and

Gaussian Driving, https://arxiv.org/abs/1812.05439.

[65] P. G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation:

Mathematical Analysis, Numerical Computations and Physical

Perspectives, Springer-Verlag, Berlin, Heidelberg 2009.

https://arxiv.org/abs/1812.05439

	Excitation of Peregrine-Type Waveforms from Vanishing Initial Conditions in the Presence of Periodic Forcing
	1 Introduction
	2 Numerical Results
	2.1 Brief Description of the Model
	2.2 Background
	2.3 Results of the Direct Numerical Simulations
	2.4 Effects from Continuous Wave Solutions
	2.5 Comment on the Dynamics of the Damped Counterpart
	2.6 Comment on the Dynamics of the Integrable NLS Limit

	3 Conclusions


