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Excitation spectrum of mesoscopic proximity structures
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We investigate one aspect of the proximity effect, viz., the local density of states of a superconductor-normal
metal sandwich. In contrast to earlier work, we allow for the presence of an arbitrary elastic mean free path in
the structure. The superconductor induces a gap in the normal-metal spectrum that is proportional to the inverse
of the elastic mean free palf for rather clean systems. For a mean free path much shorter than the thickness
of the normal metal, we find a gap size proportiondlj¢hat approaches the behavior predicted by the Usadel
equation(diffusive limit). We also discuss the influence of interface and surface roughness, the consequences
of a nonideal transmittivity of the interface, and the dependence of our results on the choice of the model of
impurity scattering.

I. INTRODUCTION In this paper, we report on a comprehensive study on the
density of states in a moderately dirty proximity sample. The
A normal metal in good metallic contact to a supercon-paper is organized as follows. In the next section we intro-
ductor acquires superconducting properties such as infinitduce the geometry and the parameters of our model. In Sec.
conductance and the Meissner effémte Ref. 1, and refer- Il we present results for the density of states for intermedi-
ences therein This so-calledproximity effecthas been ex- ate mean free paths and different models of disorder. Finally,
tensively studied in the past decade mainly in the two limit-we discuss the effect of rough surfaces and rough interfaces
ing cases of fully ballistic propagation and diffusive motion. in Sec. IV.
Whereas the first may be realized experimentally in two-
dimensional electron gases, the latter is realized in the most Il. GEOMETRY AND MODEL
common samples made of semiconducting or structured me-
tallic films.
Although the ballistic and the diffusive cases provide use

The sample geometry that we have in mind is shown in
Fig. 1: we consider a slab geometry in which a normal-metal

Tayer of thicknessd is connected by an ideal interface to a

ful bounc_is, real—yvorld mesoscopic samples are qften In th§uperconductor. The outer surface of the sandwich is sup-
intermediate regime. For instance, the dlamagngtlc reSPONHysed to be specularly reflecting. In the following, we will
of mesoscopic proximity cylindergsuperconducting wires discuss the local density of statdsDOS) N(E,x) of this
cover_ed bté_‘la r;otrrr]nal tm?ra; .h?S a:trle:ctted g I(:tthm; structure for a variety of physical situations. The quasiclas-
experimental “and theoretical “interest. it turned outthal g4 formylation of superconductivity is most suitable to cal-

the experimental results could only be understood by consi Sulate the LDOS. To this end we have solved the real-time
ering intermediate mean free path$revious theoretical version of the Eilénberger equatidrt?

analyses in the clean linfliand the dirty limi"’” were not
able to explain the experimental results quantitatively. Only —VEVQ(Ve, I E)=[—iE T3+ A(r) 71+ o(r,E),g(Ve,1,E)]

recently was it shown that a qualitative different behavior (1)
emerges in the regime of intermediate mean free Paitith
the help of this calculation a quantitative agreement with thex}  ideally transmitting specularly reflecting
experimental results could be obtaifiethd it was possible interface \ / surface
to determine the mean free pdtj. -

The precise determination of the degree of disorder is . O O L g
relevant for a characterization of the samples. It may serve a: | | e I |

. . . . . normal metal N ]

a basis for the understanding of the experimental observatiol
of a low-temperature paramagnetic reentrance effé@his superconductor OO0 Is O
has already stimulated theoretical suggestions that orbita A>0 O o
currents might lead to a paramagnetic contributidfiThese o) o © ° 5
currents depend on the degree of disorder in the norma ©) o) o)
metal and further investigations are necessary to quantify the \ o
influence of disorder. ! non-magnetic impurities I

In the present work, we want to focus on another aspect ot
the proximity effect, viz., on the change of the excitation F|G. 1. Geometry of the SN interfack(l<) is the elastic mean
spectrum of a normal metal connected to a superconductofiee path of the normalsuperconductingpart. In the first part of
In particular, we are interested in the changes of the speghe paper, the interface is supposed to be ideal and the surface
trum due to disorder. specularly reflecting.
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for the quasiclassical 22 matrix Green’s functiorg nu- . . — 5/d=025

rr}(irr:c_:ally (fr(]ae Rﬁf. 1 aniij Ap?r?n?l)l(lA for ad_dltlo?atll details ciean SN density of states (DOS)

of this me od._ ere and in the following# is set to one — __ bulk normal metal DOS

except for the final results. In E¢L), A is the pair potential —-— bulk superconductor DOS

and & the impurity self-energy which has to be determined o2 [ N |
A

self-consistently by a scattering matrix equation. The PauIiE

matricesr; are used as a basis for the2 matrix equation, =
Vg is an arbitrarily oriented unit vector times the Fermi ve-
locity. The quasiclassical Green’s function is normalized ac-
cording to

(=]
F

0°(ve.1E)=1. @ ° 2 E/E,

In principle, the pair potentiah has to be determined self- )
consistently in the superconductor, whereas it vanishes by FIG. 2. Density of states of a clean normal metal connected to a

definition in the normal metal. Since we are mainly inter- SuPerconductor. In the clean cad§(E,x) =N(E), i.e., there is no
ested in the properties of the normal metal in the liahit dependence on the spatial coordinate. The coupling to the supercon-

> &,, where £,=fv/A is the coherence length of the su- ductor leads to a linear suppression of the DOS at the Fermi energy.

perconductor, the spatial dependence of the pair potential i'ﬁ'ere’ we chosé=5E, .

thg supercpnductor plays no.role. Thus, we approximate thSiscussed in the 1960’s: the LDOS is independent of the
pair potential by.a ste.p. func.t|om.(r)=A0(—x). R location in the normal metal, vanishes at the Fermi energy
The effect of impurities give rise to the self-ener@{r).  and rises linearly close to 1:* Its peculiar zig-zag from is
In general the impurity self-energy can be found from a soshown in Fig. 2. The characteristic energy determining the
lution of a t-matrix equatiort® In our particular case this jumps in the spectrum is the Andreev eneEy. This char-
equation can be solved and presented as acteristic energy follows from a semiclassical quantization
) R condition for the Andreev bound states. According to this
Nimp(F)v (1) No(g(r,E)) rule we have to add the phases accumulated along a trajec-
1+0%(r)Ng(g(r.E))?

o(r,E)= ©))

tory burying a bound electron-hole state. This phase differ-
ence is given by twice the phase shift of an Andreev reflec-
This impurity self-energy contains two parameters, the im+ion at the superconductor, which Bt<A is given by /2.
purity concentratiom;,, and the strength of the scattering On the path through the normal metal both electron and hole
potentialv(r) (that may be spatially dependent if there areaccumulate an additional shift of<22Ed/vg, proportional
different impurities in different parts of the samplé\ddi-  to twice the time spent in the normal metal. Adding all con-
tionally, the normal-metal density of states at the Fermi levetributions to the semiclassical phase and requiring it to be an
No enters into Eq(3). Angular brackets denote averaging integer multiple of 2r leads to the characteristic energy of

over the Fermi surface. the lowest level
In the rest of the paper we will mostly use the Born ap-
proximation valid in the limit of weak scattering, where the himug
denominator in Eq(3) can be neglected: AT 4d ©®

R 1 R The subsequent levels atapproximately equidistant with
o(r,E)= 27__—m<9(f,E)>- (4)  level spacing E, as can be seen from Fig.(the deviations
'mp from the ideal level spacing are caused by the finite value of

Here, we have introduced the elastic scattering timg, ~ A~5E,).
=[2nimp(r)v2(r)No]‘1 which is related to the mean free  Another well-known result on the spectrum has been ob-
pathl =v 7y, Since we will also consider inhomogeneoustained in the dirty (diffusive) limit.*”*® In this case, the
impurity distributions(on a mean level we still allow fora  LDOS is characterized by a minigap in the spectrum that is
spatial dependence of elastic scattering time and mean fre#f the order of the Thouless ener@,=#%D/d?, hereD is
path. the diffusion constant of the normal metal addts thick-

The set of equation&l)—(4) has been solved numerically. ness. The LDOS of a mesoscopic superconductor—normal-
The integration of Eq(1) was performed using the Riccati metal sample was determined experimentalin the pres-
parametrizatiolf (see Appendix Al The self-energies had ence of a magnetic field, and our thelryled to a
to be determined self-consistently for all energies in an iterasatisfactory understanding of those experimental results.
tive scheme. Finally, the local density of states is given by  The induced minigap has also been discussed by field-

L theoretic means, see Ref. 20. The relation of this gap to
~a quantum chaos is discussed in Ref. 21.
N(E.r)= NORe< ETrT3g(r’E)>' 5) A qualitative picture of the formation of the minigap fol-
lows from considering the Andreev bound states in the nor-

Before we discuss our results, let us briefly summarize thenal layer. An electron and hole traversing a diffusive trajec-
known spectral properties in the limiting cases of clean andory in the time reversed direction are transformed into each
dirty limit. The case of a clean normal metal was alreadyother by Andreev reflection when hitting the superconductor.
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E/ EA FIG. 4. Size of the minigap obtained by numerically solving the

) ) Eilenberger equation.
FIG. 3. LDOSN(E,x) for different ratios of mean free path

to normal-layer thickness. The minigap is constant throughout the jtg dependence on energy, however, varies on traversing the
normal metal, but the energy dependence of the LDOS Changeﬁormal layer.

with location. The existence of a minigap is in line with qualitative con-

siderations given by McMillat® He argued that—quite
The coherent superposition of two subsequent reflections rejenerally—the density of states should show a gap of order
sult in a bound state. The phase shift due to Andreev reflemf the inverse of the escape time, i.e., the time an electron
tion is similar as in the clean limit discussed above. Duringspends in the normal layer before being Andreev-reflected. If
the motion the two quasiparticle gain an additional phaseve replace the escape time by the scattering time indhe
shift 2E6t, where 6t is the time spent in the normal metal mos) clean system and by the diffusive escape time in the
region and E is the energy difference of electron and hole. dirty system, we obtain the nonmonotonous behavior shown
In a diffusive system the typical time spent in the normalin Fig. 4.
metal is~2d?/D, i.e., twice the time to diffuse a distande We have also replaced the Born model for impurity scat-
This time results in a typical lower bound to the energytering by the unitary limit which follows from thé&matrix
~ mD/4d? above which constructive interference is possible.approximation forswave scattering Eq(3) in the limit
The minigap is thus expected to be approximat@®ly vNy>1. To facilitate a comparison we used for the param-
~mhD/4d?*=0.785D/d?. The numerically exact expres- etern;/No, characterizing the strength of the impurity self-
sion for the minigap in the dirty case is given Wy;  energy in the unitary limit, the value of /g, from the
=0.780:D/d?, where the numerical factor is the solution of Born approximation. Figure 5 shows the minigap for both
a transcendental equati¢see Appendix B This resultisin  the Born and the unitary approximation. The minigap is
very good agreement with the estimate given before corrobaslightly reduced in the unitary limit, but its functional depen-
rating the simple picture of Andreev bound states. dence on the mean free path is practically unchanged.

IV. INTERFACE AND SURFACE ROUGHNESS
Ill. BULK DISORDER IN N

Real-life interfaces and surfaces of typical proximity

How is the linear rise of the LDOS for the clean systemgymples are rougtior an example, see the photograph in the
transformed into the minigap in the diffusive system as a

function of mean free path? To answer this question, we ' ' ' ' -

have solved the real-time Eilenberger equation including an 01| —— Unitary Limit |
. . ~ ~ ——- Born Limit
impurity self-energy of the formr=(g)/27,, (Born ap- <

proximation. The impurity self-energy was determined in a E

self-consistent way. g 0.05

We find**3that a gap forms at arbitrarily small impurity ,{
concentrations. This is shown in Fig. 3: even for values of
the elastic mean free patf that are 30 times larger than the 0 ] p p
normal-layer thickness, the formation of the low-energy gap d/!
is clearly visible. The gap increases with 1/ saturates for N
In~d, and then decreases again as expected from the dirty- F|G. 5. Dependence of the induced minigap on bulk disorder for
limit theory sinceD~vely, see Fig. 4. The gap does not two models of impurity scattering, viz., Born atdatrix approxi-
depend on the location in the normal metal as can be seen iation. The differences are insignificant, i.e., the minigap is stable
Fig. 3, i.e., itis a global feature. The shape of the LDOS, i.e.and is not dependent on the choice of the Born approximation.
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FIG. 6. We model a rough surfacer interface by replacing it : '
by a thin dirty layer. The scattering time in this layer and its : :
thickness are chosen such as to lead to the proper scattering cha 9 o1
acteristics of a rough surface. EE,

. . FIG. 7. LDOS at the outer surfac&< d) under the influence of
second paper of Ref)2n the quasiclassical language such asurface disorde(left plot) or interface disorder between supercon-

roughness will lead to a mixture of different trajectories, thusductor and normal metatight plof. The thickness of the layer is
smearing out th_e singular Andreev b(_)und stat_es on a giv.egnosen to bes=10°d and the rﬁean free path in the layer is
path..A Conven!ent yvay to include this effect in the quas_"hayer: 8/2. The different curves in each plot are for different de-
c!aSSICaI form‘:il'sm Is to mod_eI the r_OUQh surface by a thlr]grees of disorder in the normal metal as indicated in the right plot.
dirty layer which covers the inner side of the surface, e comparison with Fig. 3 shows that the size of the minigap is
Fig. 6. The thickness of the layer should be taken to be practically conserved in the left plot, whereas the non-ideal inter-
much smaller than all characteristic lengths of the rest of the;ce |eads to a decreased minigap in the right plot.
system(in our case these are the thickness of the normal
metald and its mean free pail). The disorder in the layer gyrface is definitely nonspecular. The induced minigap is not
is included by an impurity self-energy with a mean free pathyery susceptible to the presence of the surface roughness as
llayer- At the outer surface inside the dirty layer specularfoliows from a comparison with Fig. 3. Using McMillan’s
reflection is as_,sumed and the Green’s functlon_s in the dlrt)érgument that the minigap should be inversely proportional
layer are continuously connected to the ones in the normg}, the escape time, we can qualitatively understand this be-
metal. Under these conditions the ratige/5 is the only  hayvior. The effect of the scattering by the rough surface leads
parameter measuring the roughness of the real-life interfacgy g reduction of the number of the shorter trajectories, but
Similarly the interface roughness between the normathe |ength of the shortest trajectory itself is not changed. This
metal and the superconductor is modeled by a thin dirty layegan pe most clearly seen for an intermediate bulk disorder
residing now at the interface. The layer is characterjze_d bYy~3d, where the sharp increase at the minigap for the specu-
the same parameters as before. Now we have continuity qfr surface is nearly absent. The rough surface also leads to a
the Green’s function on both sides of the dirty layer. change in the spatial form of the density of states, which is
It is clear that this model for roughness should be takerhot shown in the plot.
with care, since it is by no means microscopically justified. \ye remark in passing that surface roughneihoutbulk
The parameters characterizing the dirty layer are not relategisorder will not lead to the formation of a minigap, since
to the real parameters of the interface. It is, however, cleaghere will be no upper cutoff for the trajectory lengths in this
that this model covers the essential properties of a realistigase. Nevertheless it influences the energy dependence of the
rough surface, i.e., it couples classical trajectories which pos, by virtue of a similar effect as mentioned previously.
would be uncoupled for a specular interface. Thus it leads t@ye to the reduction of the number of the longer trajectories
an averaging over spectral quantities from different regiongpectral weight is shifted to higher energies. This can already
of the system in the same way as a realistic system does q§k seen from the solid curve in the left plot Fig. 7, where the
average. One should, however, keep in mind, that we cafinear energy dependence in the case of specular reflection
only determine averages over many characteristic lengths ofzs turned into some weaker energy dependence.
the roughness in this way. For example, in small cavities
with a characteristic length of roughness which is compa-
rable to the size of the system, such an averaging is not
appropriate and fluctuations may become important. In many experimental situations the interface between a
normal metal and a superconductor will be nonideal in the

. sense that either transport through the interface is not along
A. Surface disorder classical trajectories or the electrons are partially reflected.
The result of a calculation for a rough outer surface isThis can be due to either an oxide layer or an alloy in the
shown in the left plot of Fig. 7. We have kept the roughnessnterface region, and/or due to differences in effective
of the surface fixed in this plot and varied the bulk disorder.masses or Fermi velocities between the superconductor and
Only the LDOS at the outer surface is plotted. In our ex-the normal metal. The generic properties of these disordered
ample, the roughness parameter is such that there are amerfaces can be included in the quasiclassical formalism by
average two scattering events in the dirty layer, i.e., the outea thin dirty layer located at the interface. This model will

B. Interface disorder
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' ' ' tron typically is normally reflected by the dirty layer many
times until it has the chance to be Andreev reflected. This

041t — gﬁ“"’fg'ggg . strongly enhances the length of the trajectories and therefore

—_—— 5,,?”’;0:020 reduces the minigap roughly by a factiqg/d. This ex-
——- 8/].,=0.080 plains the strong suppression of the minigap that sets in for
i g;uyeﬁg-ggg values of the roughness parameter larger than 1 as shown in

mh e Sllpa=2.000 Fig. 8. .

-~ ---- 8ll,,,=8.000 Similar arguments may be used to discuss the effect of

&o0s impurities in the superconductor, which was so far assumed
L

to be in the clean limitlig>&;). A reduction of the minigap
appears in the same manner as described above, if the super-
conductor is dirty, i.e., has an elastic mean free path
o shorter than the coherence leng§=vr/Ag. The disorder
-------------------------------- close to the interface acts similarly as the dirty layer at the
0 . . . interface. The role of the “roughness” parameter is now
d/1 taken over by¢,/l g, since Andreev reflection occurs in this
N layer of the superconductor. Again the effective length of the
FIG. 8. Influence of interface roughnegparametrized by trajectory i,n the .n.ormal layer is enhanced by normal reflec-
8ll\aye) ON the induced minigap in the normal layer. In contrast to IO at the impurities in the superconductor. Thus, we expect
surface roughness, interface roughness leads to a pronounced sﬁa-qua“tat've similar behavior that the minigap will be re-
pression of the minigap. In particular roughness parameters largéfuced by an increase of the disorder in the superconductor.

than 1 lead to a strong suppression of the minigap.

V. CONCLUDING REMARKS

also include the effect of a finite reflection at the interface. . . .
Since it is a well known universal property of disordered In conclusion, we have studied the local density of states

conductors to have a bimodal distribution of transmissiorf @ Proximity sandwich for a variety of situations. At arbi-
eigenvaluegsee, e.g., Ref. 24we believe that the model of trarily small impurity concentration, a gap opens at the Fermi

such an disordered layer will cover most of the characteris€"€rgy: it is maximal if the elastic mean free path is of the
tics of rough contacts. order of the normal-layer thickness. We have numerically

In the right plot of Fig. 7 we show the effect of a thin calculated this gap and its dependence on surface and inter-

dirty layer at the interface between superconductor and noff@ce roughness. Whereas the gap is relatively stable to sur-

mal metal. The interface is chosen to have a mean free paffic€ roughness, it is strongly suppressed by interface rough-

|iayer= 812, similar to the previous case of the rough surfaceness. We have also investigated the effect of a nonideally

This is supposed to mimic a rough interface between thdransmitting interface. Lastly, we have investigated the influ-

metals with equal Fermi velocities. We find a significant re-€nce of different models of impurity scatteriforn vs uni-

duction of the minigap. This is clearly seen from comparisonf@' limit) and shown that the two models lead to a qualita-

with the left plot of Fig. 7 and shown as a function of the tvely similar behavior.

interface roughness parameter in Fig. 8. For roughness pa-

rameterss/| e Smaller than~1 the reduction of the mini- ACKNOWLEDGMENTS
gap is weak. If this parameter is of the order of or larger than
1 t?ﬁ_mtl)mgap_ IS Stl’OT)g|y dgcreaseéj.b look he refl teel Onderzoek der MateriefFOM) and the “Alexander
. IS behavior can be understood by looking at the reflecy,, , Humboldt-Stiftung” for financial support.

tion properties of the rough interface. If the roughness pa-
rameter is smaller than 1 the reflectivity will be roughly
given byR~ d/l,¢, i.€., the probability for a particle to be

reflected is given by the ratio of the mean time spent in the Eor our calculations we use the Riccati parametrization of

layer to the scattering time. As a rough estimate of the effecihe Ejlenberger equationsee Ref. 1% We represent the
of the finite refleCtiVityR>0 for the minigap, we use the fact Green’s function on a trajectory in the form

that the mean time that an electron spends in the normal

W.B. would like to thank the “Stichting voor Fundamen-

APPENDIX A: NUMERICAL CALCULATIONS

metal will be increased by a factor+lR+R?*+ - .- =1/T, R 1 1-aa' 2a
where T is the transmission eigenvalue of the interface. g= Pl ogt t_q] (A1)
Hence, the minigap will be reduced by a factdr(1 l+aa’lsa aa

— 6lljaye). The influence of finite reflection coefficients in

the clean system was also discussed in Ref. 25. . A . .

If the interface is strongly disordered, i.e., the roughnes&€Pend on the variables gs From the Eilenberger equation
parameter is larger than 1, it behaves more similar to a digd) one @nv_es two decoupled numerically stable equations
ordered metal, having a bimodal distribution of transmissior®f te Riccati type
eigenvalues. Most of the transmission eigenvalues are close ~ ma o
to zero and a few are close to unity allowing for Andreev —VeVa=2wat+A*a’—A,
reflection. The ratio of the number of closed to the number of

open trajectories is roughly given b/l ,.. Thus, an elec- veVa'=2wa'+Aat?—A*, (A2)

We have introduced the Andreev amplitudeanda’, which
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the dirty-limit expansion of the Eilenberger equatidr? It
contains only one energy scale, the Thouless ené&rgy
=#D/d? (apart from the pair potential). The minigap that
emerges on this scale can be explained by the following ar-
gument. The LDOS is given by the real partgf cos®. If
it vanishes, we may write c@=—i sinhd whered is real,

We note that the first equation is stable in an integratiorand the Usadel equation in the normal metal reduces to
in positive direction along the trajectory, whereas the second
equation is stable for integration in the opposite direction. In

Here, the impurity self-energy is included i andA:
Z)=—iE+0'11(I’),

A=A(r)+o,(r). (A3)

the stable direction the differential equatioh2) is conve-

niently integrated by a discretization which leads to the very

accurate expression

[R—(D+o)a,le 2K — (- w)a,

a +1: ~ oy ~ = ~ ~ ~
" [Aa,~ O+ wle 22r-Ra —0—w

(Ad)

Here, Q= (A%+ »?)Y2 andh is the step size.

APPENDIX B: MINIGAP IN THE DIRTY LIMIT

In this case, it is sufficient to use the Usadel equéfion

D d? ,
— 0O =wsin®—A cosO,

> e (B1)

d?9 2Ed?

d_gzz D coshd

(B2)

(here,£=x/d). This differential equation is of elliptic type
and can be integrated twice. Next, we apply the boundary
conditions 9(£=0)=0 and @/d&)3(£=1)=0. The latter
accounts for the symmetry of the reflecting surface. The first
condition approximates# by its value in the bulk supercon-
ductor at low energies which is justified, & is sufficiently
large. We find that Eq(B2) is only solvable, if

E<0.780:D/d?. (B3)

The minigap of the dirty limit is set by this restriction.
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