
PHYSICAL REVIEW B 1 NOVEMBER 2000-IIVOLUME 62, NUMBER 18
Excitation spectrum of mesoscopic proximity structures
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1Departement Physik und Astronomie, Universita¨t Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
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~Received 31 May 2000!

We investigate one aspect of the proximity effect, viz., the local density of states of a superconductor-normal
metal sandwich. In contrast to earlier work, we allow for the presence of an arbitrary elastic mean free path in
the structure. The superconductor induces a gap in the normal-metal spectrum that is proportional to the inverse
of the elastic mean free pathl N for rather clean systems. For a mean free path much shorter than the thickness
of the normal metal, we find a gap size proportional tol N that approaches the behavior predicted by the Usadel
equation~diffusive limit!. We also discuss the influence of interface and surface roughness, the consequences
of a nonideal transmittivity of the interface, and the dependence of our results on the choice of the model of
impurity scattering.
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I. INTRODUCTION

A normal metal in good metallic contact to a superco
ductor acquires superconducting properties such as infi
conductance and the Meissner effect~see Ref. 1, and refer
ences therein!. This so-calledproximity effecthas been ex-
tensively studied in the past decade mainly in the two lim
ing cases of fully ballistic propagation and diffusive motio
Whereas the first may be realized experimentally in tw
dimensional electron gases, the latter is realized in the m
common samples made of semiconducting or structured
tallic films.

Although the ballistic and the diffusive cases provide u
ful bounds, real-world mesoscopic samples are often in
intermediate regime. For instance, the diamagnetic resp
of mesoscopic proximity cylinders~superconducting wires
covered by a normal metal! has attracted a lot o
experimental2–4 and theoretical5–8 interest. It turned out tha
the experimental results could only be understood by con
ering intermediate mean free paths4. Previous theoretica
analyses in the clean limit6 and the dirty limit5,7 were not
able to explain the experimental results quantitatively. O
recently was it shown that a qualitative different behav
emerges in the regime of intermediate mean free path.8 With
the help of this calculation a quantitative agreement with
experimental results could be obtained4 and it was possible
to determine the mean free pathl N .

The precise determination of the degree of disorde
relevant for a characterization of the samples. It may serv
a basis for the understanding of the experimental observa
of a low-temperature paramagnetic reentrance effect.2,3 This
has already stimulated theoretical suggestions that or
currents might lead to a paramagnetic contribution.9,10 These
currents depend on the degree of disorder in the nor
metal and further investigations are necessary to quantify
influence of disorder.

In the present work, we want to focus on another aspec
the proximity effect, viz., on the change of the excitati
spectrum of a normal metal connected to a supercondu
In particular, we are interested in the changes of the sp
trum due to disorder.
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In this paper, we report on a comprehensive study on
density of states in a moderately dirty proximity sample. T
paper is organized as follows. In the next section we int
duce the geometry and the parameters of our model. In
III we present results for the density of states for interme
ate mean free paths and different models of disorder. Fina
we discuss the effect of rough surfaces and rough interfa
in Sec. IV.

II. GEOMETRY AND MODEL

The sample geometry that we have in mind is shown
Fig. 1: we consider a slab geometry in which a normal-me
layer of thicknessd is connected by an ideal interface to
superconductor. The outer surface of the sandwich is s
posed to be specularly reflecting. In the following, we w
discuss the local density of states~LDOS! N(E,x) of this
structure for a variety of physical situations. The quasicl
sical formulation of superconductivity is most suitable to c
culate the LDOS. To this end we have solved the real-ti
version of the Eilenberger equation11,12

2vF¹ĝ~vF ,r ,E!5@2 iE t̂31D~r !t̂11ŝ~r ,E!,ĝ~vF ,r ,E!#
~1!

FIG. 1. Geometry of the SN interface.l N( l S) is the elastic mean
free path of the normal~superconducting! part. In the first part of
the paper, the interface is supposed to be ideal and the su
specularly reflecting.
12 462 ©2000 The American Physical Society



ils

ed
u

e-
ac

f-

r

u-
al
th

so

im
g
re

ve
g

p
e

e
us

fr

.
ti

ra
y

th
n
d

the
rgy

the

ion
is
jec-
er-
ec-

ole

n-
an

of

of

ob-

t is

al-

eld-
to

l-
or-
c-

ach
tor.

to a

rcon-
rgy.

PRB 62 12 463EXCITATION SPECTRUM OF MESOSCOPIC PROXIMITY . . .
for the quasiclassical 232 matrix Green’s functionĝ nu-
merically ~see Ref. 1 and Appendix A for additional deta
of this method!. Here and in the following,\ is set to one
except for the final results. In Eq.~1!, D is the pair potential
and ŝ the impurity self-energy which has to be determin
self-consistently by a scattering matrix equation. The Pa
matricest̂ i are used as a basis for the 232 matrix equation,
vF is an arbitrarily oriented unit vector times the Fermi v
locity. The quasiclassical Green’s function is normalized
cording to

ĝ2~vF ,r ,E!51. ~2!

In principle, the pair potentialD has to be determined sel
consistently in the superconductor, whereas it vanishes
definition in the normal metal. Since we are mainly inte
ested in the properties of the normal metal in the limitd
@j0, wherej0[\vF /D is the coherence length of the s
perconductor, the spatial dependence of the pair potenti
the superconductor plays no role. Thus, we approximate
pair potential by a step functionD(r )5Du(2x).

The effect of impurities give rise to the self-energyŝ(r ).
In general the impurity self-energy can be found from a
lution of a t-matrix equation.13 In our particular case this
equation can be solved and presented as

ŝ~r ,E!5
nimp~r !v2~r !N0^ĝ~r ,E!&

11v2~r !N0
2^ĝ~r ,E!&2

. ~3!

This impurity self-energy contains two parameters, the
purity concentrationnimp and the strength of the scatterin
potentialv(r ) ~that may be spatially dependent if there a
different impurities in different parts of the sample!. Addi-
tionally, the normal-metal density of states at the Fermi le
N0 enters into Eq.~3!. Angular brackets denote averagin
over the Fermi surface.

In the rest of the paper we will mostly use the Born a
proximation valid in the limit of weak scattering, where th
denominator in Eq.~3! can be neglected:

ŝ~r ,E!5
1

2t imp~r !
^ĝ~r ,E!&. ~4!

Here, we have introduced the elastic scattering timet imp
5@2nimp(r )v2(r )N0#21 which is related to the mean fre
path l 5vFt imp . Since we will also consider inhomogeneo
impurity distributions~on a mean level!, we still allow for a
spatial dependence of elastic scattering time and mean
path.

The set of equations~1!–~4! has been solved numerically
The integration of Eq.~1! was performed using the Ricca
parametrization14 ~see Appendix A1!. The self-energies had
to be determined self-consistently for all energies in an ite
tive scheme. Finally, the local density of states is given b

N~E,r !5N0ReK 1

2
Trt̂3ĝ~r ,E!L . ~5!

Before we discuss our results, let us briefly summarize
known spectral properties in the limiting cases of clean a
dirty limit. The case of a clean normal metal was alrea
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discussed in the 1960’s: the LDOS is independent of
location in the normal metal, vanishes at the Fermi ene
and rises linearly close to it.15,16 Its peculiar zig-zag from is
shown in Fig. 2. The characteristic energy determining
jumps in the spectrum is the Andreev energyEA . This char-
acteristic energy follows from a semiclassical quantizat
condition for the Andreev bound states. According to th
rule we have to add the phases accumulated along a tra
tory burying a bound electron-hole state. This phase diff
ence is given by twice the phase shift of an Andreev refl
tion at the superconductor, which atE!D is given byp/2.
On the path through the normal metal both electron and h
accumulate an additional shift of 232Ed/vF , proportional
to twice the time spent in the normal metal. Adding all co
tributions to the semiclassical phase and requiring it to be
integer multiple of 2p leads to the characteristic energy
the lowest level

EA5
\pvF

4d
. ~6!

The subsequent levels are~approximately! equidistant with
level spacing 2EA as can be seen from Fig. 2~the deviations
from the ideal level spacing are caused by the finite value
D'5EA).

Another well-known result on the spectrum has been
tained in the dirty~diffusive! limit.17,18 In this case, the
LDOS is characterized by a minigap in the spectrum tha
of the order of the Thouless energyETh5\D/d2, hereD is
the diffusion constant of the normal metal andd its thick-
ness. The LDOS of a mesoscopic superconductor–norm
metal sample was determined experimentally19 in the pres-
ence of a magnetic field, and our theory18 led to a
satisfactory understanding of those experimental results.

The induced minigap has also been discussed by fi
theoretic means, see Ref. 20. The relation of this gap
quantum chaos is discussed in Ref. 21.

A qualitative picture of the formation of the minigap fo
lows from considering the Andreev bound states in the n
mal layer. An electron and hole traversing a diffusive traje
tory in the time reversed direction are transformed into e
other by Andreev reflection when hitting the superconduc

FIG. 2. Density of states of a clean normal metal connected
superconductor. In the clean case,N(E,x)5N(E), i.e., there is no
dependence on the spatial coordinate. The coupling to the supe
ductor leads to a linear suppression of the DOS at the Fermi ene
Here, we choseD55EA .
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The coherent superposition of two subsequent reflections
sult in a bound state. The phase shift due to Andreev refl
tion is similar as in the clean limit discussed above. Dur
the motion the two quasiparticle gain an additional ph
shift 2Edt, wheredt is the time spent in the normal met
region and 2E is the energy difference of electron and ho
In a diffusive system the typical time spent in the norm
metal is;2d2/D, i.e., twice the time to diffuse a distanced.
This time results in a typical lower bound to the ener
;pD/4d2 above which constructive interference is possib
The minigap is thus expected to be approximatelyEg
'p\D/4d250.785\D/d2. The numerically exact expres
sion for the minigap in the dirty case is given byEg
50.780\D/d2, where the numerical factor is the solution
a transcendental equation~see Appendix B!. This result is in
very good agreement with the estimate given before corro
rating the simple picture of Andreev bound states.

III. BULK DISORDER IN N

How is the linear rise of the LDOS for the clean syste
transformed into the minigap in the diffusive system as
function of mean free path? To answer this question,
have solved the real-time Eilenberger equation including
impurity self-energy of the formŝ5^ĝ&/2t imp ~Born ap-
proximation!. The impurity self-energy was determined in
self-consistent way.

We find22,23 that a gap forms at arbitrarily small impurit
concentrations. This is shown in Fig. 3: even for values
the elastic mean free pathl N that are 30 times larger than th
normal-layer thickness, the formation of the low-energy g
is clearly visible. The gap increases with 1/l N , saturates for
l N;d, and then decreases again as expected from the d
limit theory sinceD;vFl N , see Fig. 4. The gap does n
depend on the location in the normal metal as can be see
Fig. 3, i.e., it is a global feature. The shape of the LDOS, i

FIG. 3. LDOSN(E,x) for different ratios of mean free pathl N

to normal-layer thicknessd. The minigap is constant throughout th
normal metal, but the energy dependence of the LDOS chan
with location.
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its dependence on energy, however, varies on traversing
normal layer.

The existence of a minigap is in line with qualitative co
siderations given by McMillan.16 He argued that—quite
generally—the density of states should show a gap of or
of the inverse of the escape time, i.e., the time an elec
spends in the normal layer before being Andreev-reflected
we replace the escape time by the scattering time in the~al-
most! clean system and by the diffusive escape time in
dirty system, we obtain the nonmonotonous behavior sho
in Fig. 4.

We have also replaced the Born model for impurity sc
tering by the unitary limit which follows from thet-matrix
approximation fors-wave scattering Eq.~3! in the limit
vN0@1. To facilitate a comparison we used for the para
eter ni /N0, characterizing the strength of the impurity se
energy in the unitary limit, the value of 1/2t imp from the
Born approximation. Figure 5 shows the minigap for bo
the Born and the unitary approximation. The minigap
slightly reduced in the unitary limit, but its functional depe
dence on the mean free path is practically unchanged.

IV. INTERFACE AND SURFACE ROUGHNESS

Real-life interfaces and surfaces of typical proximi
samples are rough~for an example, see the photograph in t

es

FIG. 4. Size of the minigap obtained by numerically solving t
Eilenberger equation.

FIG. 5. Dependence of the induced minigap on bulk disorder
two models of impurity scattering, viz., Born andt-matrix approxi-
mation. The differences are insignificant, i.e., the minigap is sta
and is not dependent on the choice of the Born approximation.
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second paper of Ref. 2!. In the quasiclassical language such
roughness will lead to a mixture of different trajectories, th
smearing out the singular Andreev bound states on a g
path. A convenient way to include this effect in the qua
classical formalism is to model the rough surface by a t
dirty layer which covers the inner side of the surface, s
Fig. 6. The thicknessd of the layer should be taken to b
much smaller than all characteristic lengths of the rest of
system~in our case these are the thickness of the nor
metald and its mean free pathl N). The disorder in the laye
is included by an impurity self-energy with a mean free p
l layer. At the outer surface inside the dirty layer specu
reflection is assumed and the Green’s functions in the d
layer are continuously connected to the ones in the nor
metal. Under these conditions the ratiol layer/d is the only
parameter measuring the roughness of the real-life interf

Similarly the interface roughness between the norm
metal and the superconductor is modeled by a thin dirty la
residing now at the interface. The layer is characterized
the same parameters as before. Now we have continuit
the Green’s function on both sides of the dirty layer.

It is clear that this model for roughness should be tak
with care, since it is by no means microscopically justifie
The parameters characterizing the dirty layer are not rela
to the real parameters of the interface. It is, however, c
that this model covers the essential properties of a real
rough surface, i.e., it couples classical trajectories wh
would be uncoupled for a specular interface. Thus it lead
an averaging over spectral quantities from different regi
of the system in the same way as a realistic system doe
average. One should, however, keep in mind, that we
only determine averages over many characteristic length
the roughness in this way. For example, in small cavit
with a characteristic length of roughness which is com
rable to the size of the system, such an averaging is
appropriate and fluctuations may become important.

A. Surface disorder

The result of a calculation for a rough outer surface
shown in the left plot of Fig. 7. We have kept the roughne
of the surface fixed in this plot and varied the bulk disord
Only the LDOS at the outer surface is plotted. In our e
ample, the roughness parameter is such that there ar
average two scattering events in the dirty layer, i.e., the o

FIG. 6. We model a rough surface~or interface! by replacing it
by a thin dirty layer. The scattering timet in this layer and its
thickness are chosen such as to lead to the proper scattering
acteristics of a rough surface.
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surface is definitely nonspecular. The induced minigap is
very susceptible to the presence of the surface roughnes
follows from a comparison with Fig. 3. Using McMillan’s
argument that the minigap should be inversely proportio
to the escape time, we can qualitatively understand this
havior. The effect of the scattering by the rough surface le
to a reduction of the number of the shorter trajectories,
the length of the shortest trajectory itself is not changed. T
can be most clearly seen for an intermediate bulk disor
l'3d, where the sharp increase at the minigap for the spe
lar surface is nearly absent. The rough surface also leads
change in the spatial form of the density of states, which
not shown in the plot.

We remark in passing that surface roughnesswithoutbulk
disorder will not lead to the formation of a minigap, sinc
there will be no upper cutoff for the trajectory lengths in th
case. Nevertheless it influences the energy dependence o
LDOS, by virtue of a similar effect as mentioned previous
Due to the reduction of the number of the longer trajector
spectral weight is shifted to higher energies. This can alre
be seen from the solid curve in the left plot Fig. 7, where
linear energy dependence in the case of specular reflec
has turned into some weaker energy dependence.

B. Interface disorder

In many experimental situations the interface betwee
normal metal and a superconductor will be nonideal in
sense that either transport through the interface is not a
classical trajectories or the electrons are partially reflec
This can be due to either an oxide layer or an alloy in
interface region, and/or due to differences in effecti
masses or Fermi velocities between the superconductor
the normal metal. The generic properties of these disorde
interfaces can be included in the quasiclassical formalism
a thin dirty layer located at the interface. This model w

ar-

FIG. 7. LDOS at the outer surface (x5d) under the influence of
surface disorder~left plot! or interface disorder between superco
ductor and normal metal~right plot!. The thickness of the layer is
chosen to bed51025d and the mean free path in the layer
l layer5d/2. The different curves in each plot are for different d
grees of disorder in the normal metal as indicated in the right p
A comparison with Fig. 3 shows that the size of the minigap
practically conserved in the left plot, whereas the non-ideal in
face leads to a decreased minigap in the right plot.
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also include the effect of a finite reflection at the interfa
Since it is a well known universal property of disorder
conductors to have a bimodal distribution of transmiss
eigenvalues~see, e.g., Ref. 24!, we believe that the model o
such an disordered layer will cover most of the characte
tics of rough contacts.

In the right plot of Fig. 7 we show the effect of a thi
dirty layer at the interface between superconductor and
mal metal. The interface is chosen to have a mean free
l layer5d/2, similar to the previous case of the rough surfa
This is supposed to mimic a rough interface between
metals with equal Fermi velocities. We find a significant
duction of the minigap. This is clearly seen from comparis
with the left plot of Fig. 7 and shown as a function of th
interface roughness parameter in Fig. 8. For roughness
rametersd/ l layer smaller than'1 the reduction of the mini-
gap is weak. If this parameter is of the order of or larger th
1 the minigap is strongly decreased.

This behavior can be understood by looking at the refl
tion properties of the rough interface. If the roughness
rameter is smaller than 1 the reflectivity will be rough
given byR'd/ l layer, i.e., the probability for a particle to b
reflected is given by the ratio of the mean time spent in
layer to the scattering time. As a rough estimate of the ef
of the finite reflectivityR.0 for the minigap, we use the fac
that the mean time that an electron spends in the nor
metal will be increased by a factor 11R1R21•••51/T,
where T is the transmission eigenvalue of the interfac
Hence, the minigap will be reduced by a factorT'(1
2d/ l layer). The influence of finite reflection coefficients i
the clean system was also discussed in Ref. 25.

If the interface is strongly disordered, i.e., the roughn
parameter is larger than 1, it behaves more similar to a
ordered metal, having a bimodal distribution of transmiss
eigenvalues. Most of the transmission eigenvalues are c
to zero and a few are close to unity allowing for Andre
reflection. The ratio of the number of closed to the numbe
open trajectories is roughly given byd/ l layer. Thus, an elec-

FIG. 8. Influence of interface roughness~parametrized by
d/ l layer) on the induced minigap in the normal layer. In contrast
surface roughness, interface roughness leads to a pronounced
pression of the minigap. In particular roughness parameters la
than 1 lead to a strong suppression of the minigap.
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tron typically is normally reflected by the dirty layer man
times until it has the chance to be Andreev reflected. T
strongly enhances the length of the trajectories and there
reduces the minigap roughly by a factorl layer/d. This ex-
plains the strong suppression of the minigap that sets in
values of the roughness parameter larger than 1 as show
Fig. 8.

Similar arguments may be used to discuss the effec
impurities in the superconductor, which was so far assum
to be in the clean limit (l S@j0). A reduction of the minigap
appears in the same manner as described above, if the s
conductor is dirty, i.e., has an elastic mean free pathl S
shorter than the coherence lengthj05vF /DS . The disorder
close to the interface acts similarly as the dirty layer at
interface. The role of the ‘‘roughness’’ parameter is no
taken over byj0 / l S , since Andreev reflection occurs in th
layer of the superconductor. Again the effective length of
trajectory in the normal layer is enhanced by normal refl
tion at the impurities in the superconductor. Thus, we exp
a qualitative similar behavior that the minigap will be r
duced by an increase of the disorder in the superconduc

V. CONCLUDING REMARKS

In conclusion, we have studied the local density of sta
of a proximity sandwich for a variety of situations. At arb
trarily small impurity concentration, a gap opens at the Fe
energy; it is maximal if the elastic mean free path is of t
order of the normal-layer thickness. We have numerica
calculated this gap and its dependence on surface and i
face roughness. Whereas the gap is relatively stable to
face roughness, it is strongly suppressed by interface rou
ness. We have also investigated the effect of a nonide
transmitting interface. Lastly, we have investigated the infl
ence of different models of impurity scattering~Born vs uni-
tary limit! and shown that the two models lead to a quali
tively similar behavior.
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APPENDIX A: NUMERICAL CALCULATIONS

For our calculations we use the Riccati parametrization
the Eilenberger equations~see Ref. 14!. We represent the
Green’s function on a trajectory in the form

ĝ5
1

11aa† S 12aa† 2a

2a† aa†21D . ~A1!

We have introduced the Andreev amplitudesa anda†, which
depend on the variables asĝ. From the Eilenberger equatio
~1! one derives two decoupled numerically stable equati
of the Riccati type

2vF¹a52ṽa1D̃* a22D̃,

vF¹a†52ṽa†1D̃a†22D̃* . ~A2!

up-
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Here, the impurity self-energy is included inṽ and D̃:

ṽ52 iE1s11~r !,

D̃5D~r !1s12~r !. ~A3!

We note that the first equation is stable in an integrat
in positive direction along the trajectory, whereas the sec
equation is stable for integration in the opposite direction
the stable direction the differential equation~A2! is conve-
niently integrated by a discretization which leads to the v
accurate expression

an115
@D̃2~Ṽ1ṽ !an#e22Ṽh/vF2D̃2~Ṽ2ṽ !an

@D̃an2Ṽ1ṽ#e22Ṽh/vF2D̃an2Ṽ2ṽ
.

~A4!

Here,Ṽ5(D̃21ṽ2)1/2, andh is the step size.

APPENDIX B: MINIGAP IN THE DIRTY LIMIT

In this case, it is sufficient to use the Usadel equation26

D

2

d2

dx2
Q5v sinQ2D cosQ, ~B1!
a

.

n
d

n

y

the dirty-limit expansion of the Eilenberger equation.11,12 It
contains only one energy scale, the Thouless energyETh
5\D/d2 ~apart from the pair potentialD). The minigap that
emerges on this scale can be explained by the following
gument. The LDOS is given by the real part ofg5cosQ. If
it vanishes, we may write cosQ52i sinhq whereq is real,
and the Usadel equation in the normal metal reduces to

d2q

dj2
5

2Ed2

D
coshq ~B2!

~here,j5x/d). This differential equation is of elliptic type
and can be integrated twice. Next, we apply the bound
conditionsq(j50)50 and (d/dj)q(j51)50. The latter
accounts for the symmetry of the reflecting surface. The fi
condition approximatesq by its value in the bulk supercon
ductor at low energies which is justified, ifD is sufficiently
large. We find that Eq.~B2! is only solvable, if

E,0.780\D/d2. ~B3!

The minigap of the dirty limit is set by this restriction.
t,
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