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Abstract. We consider spatially localized and time periodic solutions to discrete extended
Hamiltonian dynamical systems (coupled systems of infinitely many ‘oscillators’ which conserve
total energy). These play a central role as carriers of energy in models of a variety of physical
phenomena. Such phenomena include nonlinear waves in crystals, biological molecules and arrays
of coupled optical waveguides. In this paper we steagitation threshold$or (nonlinearly
dynamically stable) ground state localized modes, sometimes referred to as ‘breathers’, for
networks of coupled nonlinear oscillators and wave equations of nonlineaddseger (NLS)

type. Excitation thresholds are rigorously characterized by variational methods. The excitation
threshold is related to the optimal (best) constant in a class of discrete interpolation inequalities
related to the Hamiltonian energy. We establish a precise connection amthregdimensionality

of the lattice, & + 1, the degree of the nonlinearity and the existence of an excitation threshold
for discrete nonlinear Scodinger systems (DNLS). We prove thabif > % then ground state
standing waves exist if, and only if, thetal poweris larger than some strictly positive threshold,
vihresHo, d). This proves a conjecture of Flaehal (1997 Energy thresholds for discrete breathers

in one-, two-, and three-dimensional latti¢dsys. Rev. Lettr81207-10) in the context of DNLS.

We also discuss upper and lower bounds for excitation thresholds for ground states of coupled
systems of NLS equations, which arise in the modelling of pulse propagation in coupled arrays of
optical fibres.

AMS classification scheme numbers: 35Q55, 35Q51, 78A40

1. Introduction

This paper concernsthreshold behaviour of certain time-reversible, energy preserving nonlinear
dynamical systems. Consider an infinite-dimensional Hamiltonian system (wave equation or
network of discrete oscillators) defined on an infinite spatial domain. If the systemis translation
invariant (e.g., not having any localized potential wells), one expects that ‘small-amplitude’ or
‘low-energy’ solutions will disperse to zero; see, for example, [24]. If the system is nonlinear
and having amttractivenonlinear potential, one can expect that sufficiently large ‘amplitude’
initial data will lead to an evolution consisting of a non-decaying ‘bound state’ component
plus a dispersive componemagiation), which tends (weakly) to zero with increasing time.

In this latter scenario, we think of permanent non-decaying structures as having been excited
by the initial condition; a deep enough self-consistent potential well has been initialized in
which one can sustain a permanent structure. Since the systems we are discussing are infinite
dimensional, the sense in which one measures amplitude is crucial. In systems of physical
interest, there is often a natural measure of a solution’s size. Roughly speaking, if there is a
critical size,vnresh > 0, such that there are permanent (non-decaying in time) states of size
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if and only if v > vresn then we refer tayeshas anexcitation threshold In this paper, we
investigate the existence and nonexistence of excitation thresholds for a class of time-periodic
and spatially localized standing wave states for two classes of dynamical systems. In certain
models, these states have been called ‘breathers’. See section 3 for a precise definition of
and discussion concerning excitation thresholds. The dynamical systems we consider are:
(1) the discrete nonlinear Sditinger equation (1.1), and (2) a system of coupled nonlinear
Schiddinger equations (1.7); see also (6.1).

Mathematical models which support discrete breathers are of interest in the study of
vibrations in, for example, localized crystals and biological molecules [9, 14]. Recently,
experimental observations of such discrete nonlinear localized modes have been made in
coupled systems of optical waveguides [10]. With a view toward study of such structures
in experiment it is of interest to understand under what circumstances a discrete breather is
excited.

In [23] a formal variational argument is given suggesting the existence of such energy
thresholds for the one-dimensional discrete nonlinear &tithger (DNLS) equation (also
known as the discrete self-trapping equation [9]). For the related system of nearest neighbour
coupled nonlinear Scidinger equations, (1.7), such thresholds were rigorously demonstrated
to exist [27].

In the recent paper of FlaceH al [13], heuristic scaling arguments and numerical studies
are presented which suggest that for a large class of Hamiltonian dynamical systems defined
on one-, two- and three-dimensional lattices, there is a lower bound on the energy of a breather
if the lattice dimension is greater than or equal to a certain critical value.

Theorem 3.1 resolves this conjecture for ground state breathers afdimaensional
discrete nonlinear Scbdinger equation (DNLS):

i0,91 = —k (829 — Wil v, K >0 (1.1)

Here,fﬁ = {y,(0)}, ] € Z%, t € R, §2 denotes the/-dimensional discrete Laplacian &{
given by:

2Py =Y Ym — 2dYn, (1.2)

meN,

whereN, denotes the set ofZhearest neighbours of the pointid with labell. The parameter
« can be interpreted as a discretization parameter,z—2, whereh is the lattice spacing and
Y, = ¥ (hl), 1 € Z¢. The parametes > 0 is a measure of the degree of nonlinearity.

Theorem 3.1 states that there is a ground gtagscitation threshold if and only i > [—5.
Foro < 5—21 breathers of arbitrarily smaf norm exist. See [11-13]for a study of the bifurcation
of small amplitude states from the edge of the plane-wave spectrum. In contrast, the continuum
limit nonlinear Schodinger equation, (3.1), has drf threshold only in the case of critical
nonlinearity,c = § This is a manifestation of the role of discreteness, which breaks the
dilation invariance of the continuum case; see the discussion and analysis of sections 3 and 4.
Theorem 2.2 states that ground states are nonlinearly dynamically stable in an orbital sense;
see also [19].

In section 5 we consider the limiting behaviour of ground statéstaf power ||1Z ||,22 =,
asv tends to infinity. Such ground states are found to have large amplitudeisAscreased
they are increasingly concentrated about one lattice site. A phenomenon of this type has been
observed for the systems (1.7), (6.1), and analytically studied in [27, 30]. The relation of this
result to the numerical work of [4] and to the work on #mati-integrable limit[3, 21] is also
discussed.

Studies of discrete breathers originated in the context of classical nonlinear wave equations.
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An example is the one-dimensional Klein—Gordon equation:

Btzu,, = D(Up+1 — 2, Y Uuy_q) — qun + u,‘:’. (1.3)

The techniques of this paper do not directly apply to give rigorous thresholds for discrete
nonlinear Klein—Gordon equation localized states. However, our results concerning DNLS
are related, through a multiple scale approximation, appropriate to the limit of large lattice
spacing/. Specifically, leth = x~2¢~1, and therefored = 2. Then, seeking a solution of

the form:

u, = e, +2d, +¢° Xntoo- (1.4)
we find an approximate solution which is valid for timesof ordere =2 with
W, =W, (t,T) =e "y, (T) + %y, (T), T =3 (1.5)

where, (T) satisfies the discrete nonlinear Satlinger equation (1.1). In particular, this
yields, using the results of this paper on DNLS approximate solutions of the form:

Ut (t; ) = 2¢ Co[Qo + %w]t + y)g, + O(e?) (1.6)

wherew < 0 andg = g, = {gulnez € [2(Z).
Finally, in section 6 we discuss and extend results on excitation thresholds for ground states
of a class of coupled systems of nonlinear ®dimger equations (CNLS), which arises in the
modelling of pulse propagation through a coupled network of optical fibres [1, 2,6, 20,27, 30]:
0,1 + 929 + k(829 + 2y "y = O

¥ = (Yt 0)ens, (1, x) € R%,

The cases of physical interest are- 1, 2. Here,; denotes the slowly varying envelope
of the highly oscillatory electric field in the fibre with positiénn the lattice. We consider
the case wherkvaries ovetZ?, with )", ||w,||§2(R) < oo. For the case = d = 1, we obtain
numerical upper and lower bounds (6.23) for the excitation threshpfdsOther boundary
conditions are discussed in [27,30]. In particular, a result of the analysis is that there are no
excitation thresholds in the case when the system is periodic in the discrete vdrigiiend
states of arbitrary positive total power= ), [y, ||§ exist.

In this paper, we use observations about the scaling structure of variational problems
together with compactness methods in the calculus of variations; see e.g. [5,22]. Thresholds
for the excitation of breathers or nonlinear bound states are characterized in terms of the optimal
(best) constant of discrete interpolation inequalities for elemenfgst) in the case of (1.1)
and for elements af(Z¢; H(R)) in the case of (1.7). This is related to the approach taken
in [28,29] on a sharp criterion on initial conditions for global existence (no finite time blow-up)
of solutions to the continuum nonlinear Setinger equation oR?, (3.1), with critical power
nonlinearity. Results on excitation thresholds, stability, and other issues for the semi-discrete
class of nonlinear Schdinger equations were obtained by Yeary and this author [27,30]. This
paper is a detailed account with extensions of the work on excitation thresholds.

(1.7)

2. DNLS and a variational characterization of its ground state

By standgrd methods, one can check that for&(ny: 0) € 12(Z%), there is a unique global
solutiony € CY(R; [?(Z4)) of DNLS, (1.1), and for which the following two quantities are

T An error in these bounds due to faulty algebra appeared in [27] and is corrected here.
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independent of time:

- - 1
Hpl¥] = —k (%Y, ) —

20+2
— 2wl (2.2)
leZd
Nyl =D lynl® (2.2)
lezd

The subscript, D’, is used to indicate a quantity associated with the discrete equation (1.1).
Hp is a Hamiltonian for (1.1), which can be written as:

.- O0H

0,0 = —=2.

Sy

In various applications the invariat’ has the interpretation dbtal poweror of particle
number The term(—82y, ), may be written out explicitly as:

(2.3)

d
(=82, 9) =D > I — Yl (2.4)
r=1le74
wherer, denotes translation by one lattice unit in ttik coordinate direction.
Of particular interest are spatially localized and time-periodic solutions. We seek them in
the form:

w =g,  1eZ',  teR,
vi(e) € (2.
wherew is real. A solution of this type is frequently called a nonlinbaund state, standing
waveor stationary state The termdiscrete breatheis also used but is sometimes reserved for
a localized state whose modulus oscillates.
Substitution of (2.5) into (1.1) yields the system of algebraic equations plus the ‘boundary
condition at infinity":
wg = —Kk(8°) — |&11” g1- (2.6)
g = {gihiems € IP7(Z%). (2.7)
We construct a ground state by variational methods. To motivate our approach, we consider
the quantum mechanical problem:

HV = Evy, (2.8)

where H = —A + V(x) for a bound stateW e L? with |[¥], = 1. We assumé/ (x)
is a sufficiently smooth and rapidly decaying ‘potential well’. Consider the constrained
minimization problem:

Z=inf{(Hf, /) I fll2=1}. (2.9)
If T < 0, thenE, = T is the ground state (lowest) eigenvalue and there exists a ground state
eigenstatel, (x) such that

HW, = E,V,, 1Well2 = 1. (2.10)

The time-periodidreatheror standing wavey, (x)e"'E is a dynamically stable solution of
the time-dependent Saidinger equation

0,V =HW. (2.11)
We shall characterize the ground state of (1.1) using a nonlinear analogue of (2.9).

(2.5)

Definition. Let
T, = inf{Hp[f]: Nl f] = v}. (2.12)
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A minimizer of the variational problem (2.12) is calledjeound state.

Clearly,Z, is bounded below: for,

1

i = 1
2042 5 _ 20 2> _ a+1' ]
+1;|fl| > ——IAIZIFIE > - —7v (2.13)

Hplf] = —

o

Theorem 2.1. (a) If —oo < Z, < 0, then the minimum in (2.12) is attained.

(b) Every minimizing sequence associated with the variational problem (2.12) is precompact
modulo phase translations, i.e. for any minimizing sequ¢a¢g, there is a subsequence
{g"} and a sequencg,, }, and translationsy (I¥) (wherer (1)g® = {g;’iﬂ}jezd), such
that t (I;)g "€+ converges ii?(Z%) to a minimizer.

(©) If g = {g}eze is a minimizer for the variational problem (2.12), then there exists
o = w(v) < 0such that the Euler-Lagrange equation:

w()g = —k (82g)l —a1® g, lez! (2.14)
holds, together with th&? constraint:
Nplgl =) laf® =v. (2.15)
1

This theorem can be proved by a standard application of concentration compactness ideas
in the discrete context [22]; see [30]. An outline of the proof is presented in the appendix.
2.1. Dynamical stability
Before stating a precise result, we first introduce some terminology and notation.

Definitions.

(1) Letg, denote the set of all solutions of the minimization from (2.12), i.e. the set of ground
states with\V = v.

(2) Given a particular ground statg, we define it®rbit to be the set:
0@E) ={€"g .y €0, 2m)}. (2.16)
(3) Thedistancep (@ %) from ¢ € [? to the set of ground states, is given by:

p(F, G = inf 1Y — &l (2.17)
g€gy

Remark. We conjecture that the ground state with= v is essentially unique, i.e. is any
ground state withV[g] = v, theng, = O(g).

A consequence of parb) of theorem 2.1 is the following [7, 26]:

Theorem 2.2. Ground states of (1.1) arerbitally Lyapunov stablén the sense that: given
anye > 0, there is a5 > 0 such that if the initial datay (r = 0) = o satisfies

p(lzo, G, <34, (2.18)
then for allz # 0

P (1), G,) < e. (2.19)
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3. Excitation thresholds for DNLS

For a fixed lattice dimensio@, we consider the family of equations (1.1) parametrized by
Theorem 2.1 gives a criterion for the existence of a ground state.

Definition. If for any v > 0 the variational problem (2.12) has a strictly negative infimum,
Z, < Othen, by theorem 2.1, a ground state exists foramy0. In this case we say that there
is no excitation thresholdHowever, if there is a strictly positive constar,.,, (which may
depend o/ ando) such thatZ, < Oif and only ifv > v, then we calb . ,anexcitation
thresholdor L? excitation thresholdor a ground state.

The main result concerning DNLS is the following:

Theorem 3.1. (1) Let0 < 0 < 5. Then,Z, < Ofor all v > 0. Therefore, the variational
problem (2.12) has a solution for all > 0 and there is no excitation threshold.
(2) Leto > 2. Then, there exists a ground state excitation threshefif, > 0.

Remark on DNLS versus NLS.Here we contrast the discrete equation, DNLS, and its
continuum limit. In particular, we comment on some consequences of the breaking of various
symmetries in passing from NLS to DNLS.

(1) The continuum limit of (1.1) = A2, h = lattice spacing, an@ — 0) is thed-
dimensional nonlinear Sobdinger equation:

i8¢ = —Ap — |91 . (3.1)

For initial datag (r = 0, x) € HYX(R?), it has been shown that there exists a local solution
which is continuous in time with values iH*(R?) and which satisfies the analogous
conservation laws [16,18]. & < § solutions are always global in time, while for> §
finite energy initial data may give rise to a solution which leaves the spa¢R?) after
a finite time [17, 25, 28]. In contrast, the evolution for (1.1) is globally defined in time.

(2) Solitary standing waves can be found by methods analogous to those used in section 2.
An excitation threshold for standing waves, in terms of the natLfahvariant:

Nuste] = [ 16 ds 32)
can exist only in the case = ;2,. This follows because under the scaling:

$x, 1) > B, (x,1) = pr p(px, p71), (3.3)
we find

Nyl = p7 Ng]. (3.4)

Thus, given that a single standing wave exists; i 5, scaling can be used to find one
of arbitrarily small total powetNy.s. In contrast, the dilation symmetry is broken in the
discrete case.

(3) Leto = § and letR denote the ground state standing wave. ThaRis, anH* solution

of AR — R+ Ri*Y = 0 of minimal powetVnLs = MNiresh 1N [28,29] it was proved that if
N[¢0] < Miresh (3-5)

then the solution exists for all time and disperses to zero in the senggptagt,» — O,
as|t| > oo, forp > 2ifd=1,2and2< p < 2d/(d —2)ifd > 3.
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Conjecture. If Nyg] < v .o, then the solution of DNLS disperses to zero in the sense that
foranyp € (2, o]:

19 () lir zay — O, as |t| — oo. (3.6)

Proofs of the assertions in (3) are given in [28, 29] and rely on the pseudo-conformal
symmetry of the continuum limit NLS, a symmetry which is absent in DNLS.

Theorem 3.1 is a consequence of propositions 4.1 and 4.2 of section 4. We begin by
investigating the conditions an d, andv under whichz, < O.

Proposition 3.1.Z, > 0if and only ifv is such that the following inequality holds for all
u € 1%(Z%:
Dl < (o + 1>Kv"<Z |u1|2> (—8%, ). 3.7)
le74 le74

To prove proposition 3.1, we observe that> 0 if, and only if, for allu e 12(Z4), with
IIiiIIlZz =V

@+ DY w777 < e (—8%, i) (3.8)
lezd
LetO = ¥ € 2 be arbitrary. Then, ifi defined by:
i = /vl (3.9)

satisfies the inequality (3.8), which after some algebra yields (3.7). Finally, i 0 we
have thatZ, = 0. This is seen by simply taking a sequence whi#ie element is a constant
(depending orv) on the set of sites satisfying] < N and zero otherwise. Along such a
sequence we havwe = v and’H tending to zero. Therefor&, = 0.

Strategy of the proof of theorem 3.1.Clearly, if the inequality (3.7) holds for some then
it holds for allv < v1. We shall prove in proposition 4.2(d) that a ground state does not exist
forany 0< v < v1. We are interested in characterizingeshdefined by:

Vi esn= SUpv : inequality3.7) holds. (3.10)

In the following section we relate this threshold value to the optimal (best) constant in an
interpolation estimate related to the Hamiltonian enetgy,If a finite positivev) .., exists,
then for any > v . and element of*(Z?), ii,, can be found which violates the inequality
(3.7). This choice ofi, shows thatZ, < 0, and by theorem 2.1 there is a ground state. If,
however, for any choice af > 0 one can construct an element/dfor which the inequality
(3.7) is violated, theorems 3.3 and 2.1 imply that a ground state exists forargy, i.e. there
is no excitation threshold. The strategy used to prove theorem 3.1 is to show thabif @ 2,
then there is no value of for which the inequality (3.7) holds for arbitrafiye 2. However,
if o > 2 we show it holds if and only i < v.g, for somevp g, > 0.

4. Best constants and excitation thresholds for DNLS

In this section we relate the problem of characterizing excitation thresholds to the problem of
finding the optimal or best constant in discrete interpolation inequalities of Sobolev—Nirenberg—
Gagliardo type.

The discussion concluding section 3 motivates the following question, answered in
theorem 4.1 below.
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When does there exist a constaht- 0 such that for alli = {u;} € 12(Z¢):
> < c (Z |ul|2) (=82, 1)? (4.1)
lezd lezd

If (4.1) holds for someC > 0 andC, is the infimum over all such constants, theft),,
defined by

(0 + (i p ™ =C. (4.2)

is a ground state excitation threshold. Therefore, we seek to characterize the optimal constant,
C.. If there is a strictly positive and finit€,, then

1 y 2\o 82
— 794 —inf (ieze lwil*)7 (=8%u, u) 4.3)
C. D ez w2
and we have:
Vresn= (0 + Dieg 77 (4.4)

Remark. If 7°¢ > 0, then by proposition 4.2 below, there exists a strictly positive lower
bound on the energyy, of a ground state.

Note that (4.4) is consistent with the simple observation that for the case of uncoupled
lattice sitesg = 0, there is no excitation threshold. For example, in this case the solution
Yo(t) = vl
Yi(1) =0, I #0,
is al?(Z%) solution of (1.1) withA/ = v. This limit is also called theanti-integrable

limit [3,21]. In section 5 we shall relate the anti-integrable limit to the large amplitude limit
of our variationally constructed ground states.

(4.5)

Proposition 4.1.If ¢ < 2, then7%¢ = 0. Therefore, for < 5, and there is no ground state
excitation thresholdy(},.,= 0). In other words, ground states of arbitrary energy, exist.

Proof of proposition 4.1. Consider the one parameter family of trial functioigy) defined
by:
u(e) = e, (4.6)

wherel = (I, ..., 1) € Z¢, || = |l1| + ...+ |l;] anda > 0. Evaluation of the terms of the
quotient in (4.3) yields, fow | O:

D P~ (—8%, i) ~ o™, Dol (47)

lezd lezd

Therefore the quotient in (4.3) is of ordef“°, which tends to zero as tends to zero if
o < <. This proves the proposition 4.1.

O
Proposition 4.2. Leto > 2. Then,

€) ‘7"*“;> 0.
(b) If ¥ [|% = v, then

Hold] > k(=820 3 [1 ( ) ] @.8)
vthresh
g
= d

v s, d) is an excitation threshold, i.e.

wherevp ., > Ois given by (4.4). For >
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(c) if v > vl o, d) thenZ, < 0and a ground state exists, and
(d) if v < vPes0. d), thenl, = 0 and there is no ground state minimizer of (2.12).

Proof of proposition 4.2. To prove part4), it suffices to show that the inequality (4.1) holds
for somepositive constantC. Then part€) follows from the discussion at the end of section 3.
We proceed as follows. For functiofise H'(R"), one has the Sobolev—Nirenberg—Gagliardo
inequality [15]:

IFIZ33 < CUV LI 11575, (4.9)
whereo is restricted to satisfy:

0O<o < o0, n=12

0<a<2(n—2)_1, n>3

The proof of (4.9) can be followed closely to yield, under the same restrictions, dine
following estimate in the discrete case foe 12(Z%):

142(d-2)
S k) s (4.11)

1=/ lezZd

To give the idea, we present the proof of (4.11) in the ease2. We writeu; = u,y,, (a, b) €
Z2. Without loss of generality we can takg, > 0. Note that

(4.10)

ugpt = Z gt — ulty ). (4.12)

a=—00

By the fundamental theorem of calculus,

1
+1 +1 +1
Uy, —Ugq, = / a[suab +(1—$uq—1]7""ds

0

1
=(+1 / [star + (1 — utg—15]" ds Uap — Ua—15)-
0

Therefore, (using the convention that sums without specified upper and lower limits are
understood to be taken over &)

1 1
gyt = ugt, <o+ 11> max(ua|®. [ua—1°) tap — ta—14].  (4.13)

o

It follows by summing ovetr and applying the Cauchy—Schwarz inequality, that

Du“” ugg 0 < 22|o+1|<2|uab|2“) (Duah—ua m) (4.14)

The analogous computation can be performed by summing on the second index, to get:

1
2
D gt —ugth 1 < 250 +1] <Z |ua,g|2“> (Z litap — ua,ﬁ1|2> . (4.15)
B B

The product of the last two estimates yields:

1
2
a2 < 2|a+1|2<2|uab|20> <Z|uah_ua lh|) <Z|”aﬂ|20>
B
2 5
X(ZWaﬂ _ua,ﬁ—l| ) .
B
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Summing oru and applying the Cauchy—Schwarz inequality gives:

1 1
2

2
D luasl % < 2|o+1|2(2|ua,,|2") (Duab —ua_l,bF) (Zwm%)
a o o a,f
1
2 2
X(Z |Ma/3 - Ma,ﬁ—l| ) .
a,p

Finally, summing this result oh and applying the Cauchy—Schwarz inequality gives (4.11)
for the casel = 2 and arbitrarys > 0.
To complete the proof of proposition 4.2, we write estimate (4.11) as:

od _
St <o (L) ($> 1 (4.16)
ZZEZd Juaz |2

le74 lezd

1
2

The last factor in (4.16) is bounded by a constantsfoe %; the discrete Laplacian is a
bounded operator. Therefore, if in addition to (4.10), we have dg, then the estimate (4.1)
holds.

Finally, we want to show that faf > 3 we can relax the constraint® 2 — o (d — 2).
Suppose! > 3 and taker in the range for which we know the estimate (4.1) to hold. This
estimate is equivalent to:

D w7 < C(—8%i, i) (4.17)
leZd

subject where: satisfies the constraint
> =1 (4.18)
=/

The constraint (4.18) implies that for dlle Z¢, |u;| < 1 and therefore if;, is any number
satisfyingoy > o > 5, then the estimate (4.17) holds withreplaced by;. This implies the
following result which completes the proof of paa) ©f proposition 4.2:

Theorem 4.1.Foro > 5 the interpolation inequality (4.1) holds.

Remark. Note that there is no upper restriction foz= 3 ono as in the continuum case (4.9).
Through (4.16), the boundedness of the discrete Laplaciéf,on/?(Z%) plays a key role.

Part ) of proposition 4.2 follows from the definition @{, and the inequality (3.7) with
optimal choicev = vl . given by (4.2).

Finally, we prove partd) of proposition 4.2. Suppose < v, Then, by partl),
Z, > 0. On the other hand, as at the end of the proof of proposition 3.1, we havg tia.
It follows thatZ, = 0 for anyv < v . If the minimum is attained at a statg then

- - 1
(=82, ¥) = > Iyl >
1

o+1
>l =v.
!

Sinceo > dg, vimesndefined by (4.4) is strictly positive and by (3.7), with the optimal choice
v = vy We have

x(—aZ&,%gx( - ) (=82 ) < k(=829 ). (4.19)

Vinresh




Excitation thresholds for localized modes on lattices 683

a contradiction.

Theorem 3.1 now follows from propositions 4.1 and 4.2.

5. Large amplitude and the anti-integrable limit

5.1. Largev limit of ground states

As discussed in [21], breather solutions of DNLS can also be constructed perturbatively in
the limit of zero couplingx = 0, also called thanti-integrable limit see also [3]. In [21],
as an explanation for the numerical studies in [4], it is conjectured that the large amplitude
anti-integrable limit breathergplay an important role in the dynamics of DNLS. We now
give evidence of this, by showing the connection between the nonlinearly stable ground state
breathers constructed by variational methods and the large amittidategrable breathers
We also prove that asincreases, ground state breathers of ‘total powerow in amplitude
and become increasingly concentrated about one lattice site. This property of ground states
and their nonlinear stability (theorem 2.2) elucidate the numerical simulations in [4].

We begin by considering a scaled version of the variational problem (2.12), for the DNLS
ground state:

7, = inf { —k@f. )=~ i 1 ; |fil27*2 ; 1fil? = v}. (5.1)
In anticipation of our taking 1 oo, we set

fi=viF, Y IRP=1 (5.2)

!

and introduce the parameter

a=a,k;0) = :—0, (5.3)
which tends to zero astends to infinity. The variational problem, (5.1), is then equivalent to:

K(a) = inf {a(—azﬁ, F)— 0_11 Zl: |F[2*2 Zl: |F|2 = 1}. (5.4)
By theorem 3.1, i > v}, > 0, then there is a ground state breather:

G = G(a) = {Gi(@)}ez, (5.5)
satisfying the Euler—Lagrange equation:

—a(8%G) — 1GI1¥ G = 1. Gy, (5.6)

wherel,, is a Lagrange multiplier. By (5.2), this gives rise to a ground state family of solutions
of (5.1):

Ve(t) = v2G () *"e? v € [0, 27). (5.7)

By theorem 2.2, the ground state family is nonlinearly orbitally stable, and is therefore expected
to participate in the dynamics.

What is the structure of ground states for lange We next show that as— oo, ground
states become concentrated on the lattice about a single site.

To see this, we first observe that by the methods of the appendix (see also [8, 27]):
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(a) Asa tends to zeroy t oo) through a sequenc{f;(oa)}, is a minimizing sequence for the
limit variational problem:

H 1 20+2 . 2
ICOO=|nf{—U+1Z|Gl| .Z|Gl| =1}. (5.8)

(b) A subsequence can be extracted, which (modulo phase adjustments) converges to a
minimizer, G*. G, which satisfies the Euler—Lagrange equation associated with the
limit problem (5.8):

—IG*1* G = MGP,
YIGrEE=1 (5.9)
1

Thus, for eacli € Z4¢, G° € {0} U {(=V)z € 1y €0, 2m))}. Since||éw||,z(zd) =1,
G7° can be nonzero only at a finite number of sit¥s> 1. Therefore,

1G® |2y = 1 implies W =N
-
o+l4 ! o+1

The minimum is therefore attained fof = 1 and we have@,OO = +§,,, for somelp € Z4,
andip = —1.
Therefore, a® — oo, a subsequence of ground states converges, to a limiting state:

Gi(@) = G =84, in 1224 (5.10)

for somely € Z¢. Therefore the large (o« small) limit of ground states behaves as a large
amplitudeone-site breather

Ui(t) ~ £v2s eV, for v large 5.11
st0

5.2. Connection with the anti-integrable limit

For smalle, equation (5.6) is the anti-integrable limit studied in [21]. The approach taken
in [3,21] is to first observe that far = 0 each lattice site evolves independently and that (5.6)
has solutionsy, (t), where for eacth € Z¢, ¥, satisfies the equation:

10,W (1) = —|W()|> V(). (5.12)
The solutions of (5.12) are:
W(t) = wdldy, (5.13)

with w, y € R. Fix a solution which is supported at lattice sites I C Z¢, wherel is finite
or infinite and such that at each site the evolution is an oscillation of the form

W, (1) = w, & e, gel (5.14)

and such that the frequencieg are all commensurate. The implicit function theorem implies
that these solutions have a continuationdasufficiently small in the space of time-periodic
solutions. These range in spatial complexity from those that are small perturbations of the
simpleste = 0 breather, consisting of a solution of the form (4.5), to those which are small
perturbations of an = 0 ‘spatially chaotic’ configuration of oscillators.

Consider the continuation from the anti-integrable limit of one-site breathers. These are
solutions of the form:

U (t, o, ) = Ay, e, lez? (5.15)
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where
pA; = a(8%A) — |Al% Ay,

5.16
Al =0, p) = (—M)%S,,,O, for some [y € Z°. (5-16)

We wish to relate the two-parameter famﬂy(ai w) to the family of scaled ground statésga),
for smalle. Note thatA (0, —1) is such thaf| A(0, —1)||;2z«) = 1. Itis easy to check, by the
implicit function theorem that a locally unique soluti@n «(«)) defined in a neighbourhood
of o = 0 exists such that

IAer, (@) ez = 1,

n(0) = -1
Therefore, by our variational arguments and local uniqueness:
G(a) = Aa, n(@)). (5.17)

6. Thresholds for coupled systems of nonlinear Sclidinger equations

In this section we discuss results for systems of coupled on nonlineabddeer equations
(CNLS) (1.7):

13,91+ 9291 + k(8P + (@ + DY ¥ = 0,
v =t Dheze,  d=12, (1,x) € R%

CNLS has been introduced as a model governing the propagation of light pulses in a coupled
d = 1 ord = 2 dimensional array of optical fibres. We consider the case where the discrete
variable varies ovef?, and such that, (¢, x) decays asandx tend to infinity. Other boundary
conditions (e.g. periodic) are considered in [6, 30]. We follow a similar outline for the CNLS
as that followed in our analysis of DNLS. Certain details are omitted and for them we refer
to [27, 30].

Given initial datay(x) for CNLS satisfying

> Ivaliz < oo, (6.2)

leZd

(6.1)

there is a unique solutian— (¢, x) which is continuous im with values in2(Z%) x H(R).
The following two functionals, evaluated on solutions, are independent in time:

H[ Y] =/R(—521/7(XL1/7(x))+Z/R|8xwl(x)|2dx — /l;|1//(x)|2“+2dx

=/
NI = ;/szﬁdx.

H is a Hamiltonian energy of the CNLS in the sense that CNLS can be expressed as:
.- O0H
10,y = —
Syr*
The functional\ corresponds to thiotal input powerin the system.
Of interest are nonlinear bound states of CNLS. These are solutions of the form:
¥ =¥z (x; ), (6.4)
for which the invariant${ and A are finite. The components &fsatisfy the coupled system
of equations:

=22+ 02y + k(%) + (0 + DY F Y =0, 1ez (6.5)

: (6.3)
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In analogy with the discrete case, we seek to characterize the ground state of the system
by variational methods.

Definition. Let
Ty = inf{H[f]: H[f] = v}. (6.6)

Because of the similarity of the arguments to those in the previous sections and the more
detailed treatment in [27, 30] we provide a summary.

(1) If0 <o < 2,then’, > —oo for anyv > 0.
(2) In analogy with theorem 2.1, we can show the following theorem.

Theorem 6.1. The infimumn (6.6) is attained if and onlyjif < 0. Moreover, any minimizing
sequence has a subsequence which converges stroriglfZify #*(R)) modulo translations
in space and phase. Furthermore, any minimizer satisfies the equation (6.5).

In view of this result, we study the question: for whiehd andv do we have7, < 0?

(3) Proposition 6.1.7, = 0if, and only if, for any € 12 (Z¢; HY(R)) we have the estimate:

- o

o 51,7120
1113535 < v=ag Y115 (=82,
wherea, = (3)z7 — (%)E.
z 1
Here, |l FII5 = (i 1filll gy 7 -
Proposition 6.1 is proved by a simple scaling argument. Forarsuch that|y[|3 = v,

we define the sﬁcalind}’(x) = r%lz‘(rx), which preserves th&? norm. Evaluation of the
Hamiltonian ony” and minimization over > 0 gives:

Rtd RIS (6.7)

4(1+0)

HIPY > HP] = (~820 . §) — a0 1T 1525 13T 11,77 (6.8)

We can pass to an expression for arbitr&rby replacingtp by V2 IW ||g w in (6.8). This gives
foranyy € 1? (Z4; H'(R)):

4( 1+cr>

- V - - v Zl

H[Y"" ) = | —=— | (=8%. ¥) —a, | = 191125 8 ;7. (6.9)
(nwn%) 1913 iz |0Vl

It follows that 7, can be realized as the infinimum of the expression in (6.9) over all

¥ e 1%(Z% HX(R)). Thus7, > 0 if and only if (6.7) holds for alky € I1?(Z%; H'(R)).

As in the discrete case, it is simple to construct a sequence along whidif tenstraint is

satisfied and the Hamiltonian tends to zero.

(4) Suppose an estimate of the type (6.7) holds. In particular, we,leenote the smallest
constant for which this estimate holds. That is,

V1272 < CllP 1% (=82, )2 10,9113, (6.10)
where
o WIB° =82, )2 1o, i3

- (6.11)
113243

Cl=K" =i



Excitation thresholds for localized modes on lattices 687

_There are two possibilities. First,Af*¢ = C;1 =0, thenforany > 0, there is a choice
of ¥ which makes the Hamiltonian negative. In this case, by assertion (2), a ground state of
any prescribed.? norm exists; there is nfi%-excitation threshold. The second possibility is

that 0< C;1 = K¢ < oo. In this case, we have thdt > 0 if and only if C, < voa2 !
Therefore, we can define tliereshold powerv,. = v (o, d) by:

1_1 1 1_1

ve=al 7C,7 =a2 " (K"%)e. (6.12)
By use of the estimate (6.7) with the optimal choice- v., we obtain the sharp lower
bound for the Hamiltonian, in analogy with the discrete case (cf (4.8)):

HIP] > (—620., ) (1— (1>) (6.13)

Ve
for anyy with [|]|2 = v.

(5) The question of when ab? threshold exists is reduced to the determination of the range
of values ofo andd for which ¢ > 0. Formula (6.12) then gives an expression for the
threshold. To determine wheer-< is strictly positive amounts to determining when one
can prove an inequality of type (6.10) for some (not necessarily optimal) choi€g. of
This is addressed in [27, 30]. Rangesootl for which this inequality fails to hold are
determined by scaling arguments, while a proof of such inequalities for cettadican be
obtained following the strategy used in the fully discrete case, where we mimic the proof of
continuum interpolation estimates (e.g. see the proof of proposition 4.2) or alternatively
by applying the continuum interpolation estimates to functiond ef1 variables and
where the functions are taken to be piecewise linear in the variable corresponding to the
d discrete variables; see [27,30]. The results obtained aréCtttat- 0 for allo € [1, 2)

and for allo € (5%, -%;). In summary we have the following theorem.

Theorem 6.2.Leto € [1,2) or o € (%4, 72). Then, there exists ab? excitation threshold
given byv, in (6.12).

6.1. Estimateson, foro = 1,andd =1

We now consider the case= 1 andd = 1, an infinite one-dimensional array:

10, + 929 + K (Y1 — 29 + Yine1) + 209 ¥ = 0, nel. (6.14)
We show how to get upper and lower estimates for the threshold power. A sketch was given
in [27], where an error appears in the displayed upper and lower bounds (due to an error in
algebra).
By the above discussion, we know that there id drexcitation threshold. That is, there
1
is a constant, > 0 such that there are no ground stategdhorm less tham? and there are

ground states af2 normv? for anyv > v.. By (6.12) (using that we must replag&by «§2)
we have

19 13(—829, 1/7>%||ax12||2.

ve(L, 1 k) = 22 KLY = 22 inf -
1l

(6.15)

Upper estimate on. (1, 1; ¥):  An upper estimate is obtained by evaluation of the functional
in (6.15) on anyyr # 0. In particular, if we use as a trial function the exacke-soliton
supported on one site of the lattiag; (x) = sech(x)§;o, we obtain the upper bound

V(1,1 k) < K226~ Kk24.89. ... (6.16)
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Lower estimate om.(1, 1; «): To obtain a lower bound we follow the strategy in [27]. First
note that for arbitrary functiong € H*(R?),

W13 < Cona(Iax v 15+ 13, W 1D 1¥ 13- (6.17)
By scaling iny, ¥ (x, y) — ¥ (x, ry), we have from (6.17) the estimate:
911 < 2Csnall ¥ ll2110, ¥ N2l 113 (6.18)
In [28] the best constant in (6.17) is calculated and was found to be:
Csng = (1 x 1.86225.. )71 (6.19)

By (6.15), to obtain a lower bound far. it sufficies to obtain an lower bound fag'! or
equivalently an upper bound fdt,.

We next relate”, to Csye. This can be done by considering (6.17) for the restricted class
of functions,y (x, y), which are smooth im and piecewise linear inwith jumps ind, ¥ (x, y)
at the integers. In particular, let

Yx,y) = (1= 0)Pu(x) +0Yn(x),
y=n+0, 0o <L

Direct calculation gives:

§2/|m(x>|4dx <f|w<x,y)|“dxdy

> [ o> [ e Pdedy
Z[wm(xnzdx >/|8xw(x,y>|2dx dy

> / [Y1(x) = Y (O dx = / |0, (x, y)I? dx dy. (6.20)

This, together with (6.18) yields:
197113 < SCsnall ¥ I3(0, )2 19 l2. (6.21)
with a non-optimal constan€ = 5Csng Which is anupperbound forC,. Thus,
ve(L 15 k) > 2201 > 262 (5Csne)
- K%gn x 1.86225... > x22.3402. . .. (6.22)
Combining (6.16) and (6.22) we obtain:
k22.34... <v (L1 k) <k24.89. ... (6.23)

A careful numerical simulation [30] indicates > v.(1, 1; k) ~ 4.08.
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Appendix. Concentration compactness methods for DNLS

Theorem 2.1 can be proved using the concentration compactness principle; see, for example,
[22]. Since arguments follow, quite closely, those for the continuum case (see [22, 30] for a
detailed implementation), we present here an outline of the ideas.

Leti® = (u}, denote a sequencei(Z?), and such that

Z uf?12 = v. (7.1)

Let B, (m) denote{l € Z% 1|l —m| < t}, and the norml — m| = maxg;<q lli — m;|.
Theorem 7.1.(Concentration compactness principle.)

There exists a subsequent®’ satisfying one of the following three scenarios:
(1) Compactnessife ‘mass’ of the sequence concentrat@ere existsr, € Z¢ such that

for everye > 0, there exists a real positive numbgy (independent of), such that

Z ™2 > v —e. (7.2)
leBg, (my)

(2) Vanishing the sequence spreads its mass over larger and larger sets and tend$. to zero

For all R < oo,

I|m sup Z ™% = (7.3)

k=00 74 leBg(m)

(3) Dichotomy the sequence concentrates its mass in at least two regions which become
increasingly distant) There existe € 0, v) such that , for alle > 0, there exiskg > 1
and disjointly supported sequencg¥ , b© in 1?(Z4) satisfying for allk > ko:

@™ — @® +p* ))”lz(Zf’) <e
Na® 1%z, — ol <
|115% ||,z(Zd) —(v-a)<e
distanceésuppga®, suppp®) — oo
ask — oo.
To prove this result, we introduce the sequenceasfcentration functions
0% = sup Y |u)2 (7.4)
meZ! | B, (m)
By following the arguments in [22] it can be shown that:

(1) Along a subsequenag — oo, Q"(t) converges to a nondecreasing and nonnegative
function, Q(¢) with limit:

llim @) =a € (0,v). (7.5)
(2) The casea = 0, = v and O< « < v correspond, respectively, to the above scenarios:
vanishing, compactnessmddichotomy

To prove theorem 2.1 we must rule out the vanishing and dichotomy scenarios.
Vanishing is ruled out as follows. Le&i;, denote a minimizing sequence. Then,
H[ur] = I, + &, wheree;, | 0 ask — oo. From the definition of# and the hypotheses
Z, < 0 we have
I, e = H[ﬁ(k)]
= (—=8%® G®y — (o + 1)L Z |ul(k)|2cr+2
=/
> (0 +1)7L Z |u](k)|20+2’

leZd
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and therefore
+1
DT <ol e 76)
Since vanishing impliegii;||;» — 0 ask — oo, the lower bound (7.6) precludes vanishing.

Dichotomy is ruled out, as in the continuum case [22], using the strict subadditivity of the
functionalZ,, i.e. if 0 < « < v, then

T, <Ty+7T) . (7.7)

The idea is as follows. If dichotomy occurs (see (3) above) thén-as co ande — 0 we
have

7, = H[i®] +0(1) = H[a®]+ H[6®]+0(1), (7.8)
where we have used that andb® have disjoint supports. Furthermore,

H[a®] > Tosoqe) and  H[BP] > T, _geoe), (7.9)
by definition ofZ, Therefore, taking — oo ande — 0 we get

Ty 2Ty +Ty_q. (7.10)

This contradicts (7.7).
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