
Nonlinearity12 (1999) 673–691. Printed in the UK PII: S0951-7715(99)95040-5

Excitation thresholds for nonlinear localized modes on lattices

M I Weinstein
Department of Mathematics, University of Michigan, Ann Arbor, MI and Mathematical Sciences
Research, Bell Laboratories-Lucent Technologies, Murray Hill, NJ, USA

Received 1 June 1998
Recommended by V F Lazutkin

Abstract. We consider spatially localized and time periodic solutions to discrete extended
Hamiltonian dynamical systems (coupled systems of infinitely many ‘oscillators’ which conserve
total energy). These play a central role as carriers of energy in models of a variety of physical
phenomena. Such phenomena include nonlinear waves in crystals, biological molecules and arrays
of coupled optical waveguides. In this paper we studyexcitation thresholdsfor (nonlinearly
dynamically stable) ground state localized modes, sometimes referred to as ‘breathers’, for
networks of coupled nonlinear oscillators and wave equations of nonlinear Schrödinger (NLS)
type. Excitation thresholds are rigorously characterized by variational methods. The excitation
threshold is related to the optimal (best) constant in a class of discrete interpolation inequalities
related to the Hamiltonian energy. We establish a precise connection amongd, the dimensionality
of the lattice, 2σ + 1, the degree of the nonlinearity and the existence of an excitation threshold
for discrete nonlinear Schrödinger systems (DNLS). We prove that ifσ > 2

d
, then ground state

standing waves exist if, and only if, thetotal poweris larger than some strictly positive threshold,
νthresh(σ, d). This proves a conjecture of Flachet al (1997 Energy thresholds for discrete breathers
in one-, two-, and three-dimensional latticesPhys. Rev. Lett.781207–10) in the context of DNLS.
We also discuss upper and lower bounds for excitation thresholds for ground states of coupled
systems of NLS equations, which arise in the modelling of pulse propagation in coupled arrays of
optical fibres.

AMS classification scheme numbers: 35Q55, 35Q51, 78A40

1. Introduction

This paper concerns threshold behaviour of certain time-reversible, energy preserving nonlinear
dynamical systems. Consider an infinite-dimensional Hamiltonian system (wave equation or
network of discrete oscillators) defined on an infinite spatial domain. If the system is translation
invariant (e.g., not having any localized potential wells), one expects that ‘small-amplitude’ or
‘low-energy’ solutions will disperse to zero; see, for example, [24]. If the system is nonlinear
and having anattractivenonlinear potential, one can expect that sufficiently large ‘amplitude’
initial data will lead to an evolution consisting of a non-decaying ‘bound state’ component
plus a dispersive component (radiation), which tends (weakly) to zero with increasing time.
In this latter scenario, we think of permanent non-decaying structures as having been excited
by the initial condition; a deep enough self-consistent potential well has been initialized in
which one can sustain a permanent structure. Since the systems we are discussing are infinite
dimensional, the sense in which one measures amplitude is crucial. In systems of physical
interest, there is often a natural measure of a solution’s size. Roughly speaking, if there is a
critical size,νthresh> 0, such that there are permanent (non-decaying in time) states of sizeν
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if and only if ν > νthresh, then we refer toνthreshas anexcitation threshold. In this paper, we
investigate the existence and nonexistence of excitation thresholds for a class of time-periodic
and spatially localized standing wave states for two classes of dynamical systems. In certain
models, these states have been called ‘breathers’. See section 3 for a precise definition of
and discussion concerning excitation thresholds. The dynamical systems we consider are:
(1) the discrete nonlinear Schrödinger equation (1.1), and (2) a system of coupled nonlinear
Schr̈odinger equations (1.7); see also (6.1).

Mathematical models which support discrete breathers are of interest in the study of
vibrations in, for example, localized crystals and biological molecules [9, 14]. Recently,
experimental observations of such discrete nonlinear localized modes have been made in
coupled systems of optical waveguides [10]. With a view toward study of such structures
in experiment it is of interest to understand under what circumstances a discrete breather is
excited.

In [23] a formal variational argument is given suggesting the existence of such energy
thresholds for the one-dimensional discrete nonlinear Schrödinger (DNLS) equation (also
known as the discrete self-trapping equation [9]). For the related system of nearest neighbour
coupled nonlinear Schrödinger equations, (1.7), such thresholds were rigorously demonstrated
to exist [27].

In the recent paper of Flachet al [13], heuristic scaling arguments and numerical studies
are presented which suggest that for a large class of Hamiltonian dynamical systems defined
on one-, two- and three-dimensional lattices, there is a lower bound on the energy of a breather
if the lattice dimension is greater than or equal to a certain critical value.

Theorem 3.1 resolves this conjecture for ground state breathers of thed-dimensional
discrete nonlinear Schrödinger equation (DNLS):

i∂tψl = −κ(δ2 Eψ)l − |ψl|2σψl, κ > 0 (1.1)

Here, Eψ = {ψl(t)}, l ∈ Zd , t ∈ R, δ2 denotes thed-dimensional discrete Laplacian onZd
given by:

(δ2 Eψ)l =
∑
m∈Nl

ψm − 2dψl, (1.2)

whereNl denotes the set of 2d nearest neighbours of the point inZd with labell. The parameter
κ can be interpreted as a discretization parameter,κ ∼ h−2, whereh is the lattice spacing and
ψl = ψ(hl), l ∈ Zd . The parameterσ > 0 is a measure of the degree of nonlinearity.

Theorem 3.1 states that there is a ground statel2-excitation threshold if and only ifσ > 2
d
.

Forσ < 2
d

breathers of arbitrarily smalll2 norm exist. See [11–13] for a study of the bifurcation
of small amplitude states from the edge of the plane-wave spectrum. In contrast, the continuum
limit nonlinear Schr̈odinger equation, (3.1), has anL2 threshold only in the case of critical
nonlinearity,σ = 2

d
. This is a manifestation of the role of discreteness, which breaks the

dilation invariance of the continuum case; see the discussion and analysis of sections 3 and 4.
Theorem 2.2 states that ground states are nonlinearly dynamically stable in an orbital sense;
see also [19].

In section 5 we consider the limiting behaviour of ground states oftotal power: ‖ Eψ‖2
l2
= ν,

asν tends to infinity. Such ground states are found to have large amplitude. Asν is increased
they are increasingly concentrated about one lattice site. A phenomenon of this type has been
observed for the systems (1.7), (6.1), and analytically studied in [27,30]. The relation of this
result to the numerical work of [4] and to the work on theanti-integrable limit[3, 21] is also
discussed.

Studies of discrete breathers originated in the context of classical nonlinear wave equations.
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An example is the one-dimensional Klein–Gordon equation:

∂2
t un = D(un+1− 2un + un−1)−�2

0un + u3
n. (1.3)

The techniques of this paper do not directly apply to give rigorous thresholds for discrete
nonlinear Klein–Gordon equation localized states. However, our results concerning DNLS
are related, through a multiple scale approximation, appropriate to the limit of large lattice
spacing,h. Specifically, leth = κ− 1

2 ε−1, and thereforeD = ε2κ. Then, seeking a solution of
the form:

un = ε9n + ε28n + ε3 χn + · · · (1.4)

we find an approximate solution which is valid for times,t , of orderε−2 with

9n = 9n(t, T ) = e−i�otψn(T ) + ei�otψn(T ), T = 1
2ε

2t (1.5)

whereψn(T ) satisfies the discrete nonlinear Schrödinger equation (1.1). In particular, this
yields, using the results of this paper on DNLS approximate solutions of the form:

uεn(t;ω) = 2ε cos([�0 + ε2ω]t + γ )gn +O(ε2) (1.6)

whereω < 0 andEg = Egω = {gn}n∈Z ∈ l2(Z).
Finally, in section 6 we discuss and extend results on excitation thresholds for ground states

of a class of coupled systems of nonlinear Schrödinger equations (CNLS), which arises in the
modelling of pulse propagation through a coupled network of optical fibres [1,2,6,20,27,30]:

i∂tψl + ∂2
xψl + κ(δ2 Eψ)l + 2|ψl|2ψl = 0,

Eψ = {ψl(t, x)}l∈Zd , (t, x) ∈ R2.
(1.7)

The cases of physical interest ared = 1, 2. Here,ψl denotes the slowly varying envelope
of the highly oscillatory electric field in the fibre with positionl in the lattice. We consider
the case wherel varies overZd , with

∑
l ‖ψl‖2L2(R) <∞. For the caseσ = d = 1, we obtain

numerical upper and lower bounds (6.23) for the excitation thresholdsνc†. Other boundary
conditions are discussed in [27, 30]. In particular, a result of the analysis is that there are no
excitation thresholds in the case when the system is periodic in the discrete variable,l; ground
states of arbitrary positive total powerν =∑l ‖ψl‖22 exist.

In this paper, we use observations about the scaling structure of variational problems
together with compactness methods in the calculus of variations; see e.g. [5, 22]. Thresholds
for the excitation of breathers or nonlinear bound states are characterized in terms of the optimal
(best) constant of discrete interpolation inequalities for elements ofl2(Zd) in the case of (1.1)
and for elements ofl2(Zd;H 1(R)) in the case of (1.7). This is related to the approach taken
in [28,29] on a sharp criterion on initial conditions for global existence (no finite time blow-up)
of solutions to the continuum nonlinear Schrödinger equation onRd , (3.1), with critical power
nonlinearity. Results on excitation thresholds, stability, and other issues for the semi-discrete
class of nonlinear Schrödinger equations were obtained by Yeary and this author [27,30]. This
paper is a detailed account with extensions of the work on excitation thresholds.

2. DNLS and a variational characterization of its ground state

By standard methods, one can check that for anyEψ(t = 0) ∈ l2(Zd), there is a unique global
solution Eψ ∈ C1(R; l2(Zd)) of DNLS, (1.1), and for which the following two quantities are

† An error in these bounds due to faulty algebra appeared in [27] and is corrected here.
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independent of time:

HD[ Eψ ] = −κ(δ2 Eψ, Eψ)− 1

σ + 1

∑
l∈Zd
|ψl|2σ+2, (2.1)

ND[ Eψ ] =
∑
l∈Zd
|ψl|2. (2.2)

The subscript, ‘D’, is used to indicate a quantity associated with the discrete equation (1.1).
HD is a Hamiltonian for (1.1), which can be written as:

i∂t Eψ = δHD
δ Eψ∗ . (2.3)

In various applications the invariantN has the interpretation oftotal poweror of particle
number. The term,(−δ2 Eψ, Eψ), may be written out explicitly as:

(−δ2 Eψ, Eψ) =
d∑
r=1

∑
l∈Zd
|ψl − ψτr l|2, (2.4)

whereτr denotes translation by one lattice unit in therth coordinate direction.
Of particular interest are spatially localized and time-periodic solutions. We seek them in

the form:

ψl(t) = e−iωtgl, l ∈ Zd , t ∈ R,
ψl(t) ∈ l2(Zd). (2.5)

whereω is real. A solution of this type is frequently called a nonlinearbound state, standing
waveor stationary state. The termdiscrete breatheris also used but is sometimes reserved for
a localized state whose modulus oscillates.

Substitution of (2.5) into (1.1) yields the system of algebraic equations plus the ‘boundary
condition at infinity’:

ωgl = −κ(δ2g)l − |gl|2σ gl. (2.6)

Eg = {gl}l∈Zd ∈ l2(Zd). (2.7)

We construct a ground state by variational methods. To motivate our approach, we consider
the quantum mechanical problem:

H9 = Eψ, (2.8)

whereH = −1 + V (x) for a bound state,9 ∈ L2 with ‖9‖2 = 1. We assumeV (x)
is a sufficiently smooth and rapidly decaying ‘potential well’. Consider the constrained
minimization problem:

I = inf {(Hf, f ) : ‖f ‖2 = 1}. (2.9)

If I < 0, thenEg ≡ I is the ground state (lowest) eigenvalue and there exists a ground state
eigenstate9g(x) such that

H9g = Eg9g, ‖9g‖2 = 1. (2.10)

The time-periodicbreatheror standing wave,9g(x)e−iEgt , is a dynamically stable solution of
the time-dependent Schrödinger equation

i∂t9 = H9. (2.11)

We shall characterize the ground state of (1.1) using a nonlinear analogue of (2.9).

Definition. Let

Iν = inf {HD[ Ef ] : ND[ Ef ] = ν}. (2.12)
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A minimizer of the variational problem (2.12) is called aground state.

Clearly,Iν is bounded below: for,

HD[ Ef ] > − 1

σ + 1

∑
l

|fl|2σ+2 > − 1

σ + 1
‖ Ef ‖2σ∞‖ Ef ‖22 > −

1

σ + 1
νσ+1. (2.13)

Theorem 2.1. (a) If −∞ < Iν < 0, then the minimum in (2.12) is attained.
(b) Every minimizing sequence associated with the variational problem (2.12) is precompact

modulo phase translations, i.e. for any minimizing sequence{Eg(k)}, there is a subsequence
{Eg(nk)} and a sequence{γnk }, and translations,τ(lk) (whereτ(lk)Eg(k) = {g(nk)

j+lk }j∈Zd ), such

that τ(lk)Eg(nk)eiγnk converges inl2(Zd) to a minimizer.
(c) If Eg = {gl}l∈Zd is a minimizer for the variational problem (2.12), then there exists

ω = ω(ν) < 0 such that the Euler–Lagrange equation:

ω(ν)gl = −κ
(
δ2g

)
l
− |gl|2σ gl, l ∈ Zd (2.14)

holds, together with theL2 constraint:

ND[ Eg] =
∑
l

|gl|2 = ν. (2.15)

This theorem can be proved by a standard application of concentration compactness ideas
in the discrete context [22]; see [30]. An outline of the proof is presented in the appendix.

2.1. Dynamical stability

Before stating a precise result, we first introduce some terminology and notation.

Definitions.

(1) LetGν denote the set of all solutions of the minimization from (2.12), i.e. the set of ground
states withN = ν.

(2) Given a particular ground stateEg, we define itsorbit to be the set:

O(Eg) = {eiγ Eg : γ ∈ [0, 2π)}. (2.16)

(3) Thedistanceρ
(
Eψ,Gν

)
fromψ ∈ l2 to the set of ground states,Gν is given by:

ρ( Eψ,Gν) ≡ inf
Eg∈Gν
‖ Eψ − Eg‖l2(Zd ). (2.17)

Remark. We conjecture that the ground state withN = ν is essentially unique, i.e. ifEg is any
ground state withN [ Eg] = ν, thenGν = O(Eg).

A consequence of part (b) of theorem 2.1 is the following [7, 26]:

Theorem 2.2.Ground states of (1.1) areorbitally Lyapunov stablein the sense that: given
anyε > 0, there is aδ > 0 such that if the initial dataEψ(t = 0) = Eψ0 satisfies

ρ( Eψ0,Gν) < δ, (2.18)

then for allt 6= 0

ρ( Eψ(t),Gν) < ε. (2.19)
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3. Excitation thresholds for DNLS

For a fixed lattice dimension,d, we consider the family of equations (1.1) parametrized byσ .
Theorem 2.1 gives a criterion for the existence of a ground state.

Definition. If for any ν > 0 the variational problem (2.12) has a strictly negative infimum,
Iν < 0 then, by theorem 2.1, a ground state exists for anyν > 0. In this case we say that there
is no excitation threshold. However, if there is a strictly positive constantνDthresh (which may
depend ond andσ ) such thatIν < 0 if and only ifν > νDthresh, then we callνDthreshanexcitation
thresholdor L2 excitation thresholdfor a ground state.

The main result concerning DNLS is the following:

Theorem 3.1. (1) Let0 < σ < 2
d
. Then,Iν < 0 for all ν > 0. Therefore, the variational

problem (2.12) has a solution for allν > 0 and there is no excitation threshold.
(2) Letσ > 2

d
. Then, there exists a ground state excitation threshold,νDthresh> 0.

Remark on DNLS versus NLS.Here we contrast the discrete equation, DNLS, and its
continuum limit. In particular, we comment on some consequences of the breaking of various
symmetries in passing from NLS to DNLS.

(1) The continuum limit of (1.1) (κ = h−2, h = lattice spacing, andh → 0) is thed-
dimensional nonlinear Schrödinger equation:

i∂tφ = −1φ − |φ|2σφ. (3.1)

For initial dataφ(t = 0, x) ∈ H 1(Rd), it has been shown that there exists a local solution
which is continuous in time with values inH 1(Rd) and which satisfies the analogous
conservation laws [16,18]. Ifσ < 2

d
solutions are always global in time, while forσ > 2

d
,

finite energy initial data may give rise to a solution which leaves the spaceH 1(Rd) after
a finite time [17,25,28]. In contrast, the evolution for (1.1) is globally defined in time.

(2) Solitary standing waves can be found by methods analogous to those used in section 2.
An excitation threshold for standing waves, in terms of the naturalL2 invariant:

NNLS[φ] =
∫
Rd
|φ(x)|2 dx (3.2)

can exist only in the caseσ = 2
d
. This follows because under the scaling:

φ(x, t) 7→ φρ(x, t) ≡ ρ 1
σ φ(ρx, ρ2t), (3.3)

we find

N [φρ ] = ρ 2
σ
−dN [φ]. (3.4)

Thus, given that a single standing wave exists, ifσ 6= 2
d
, scaling can be used to find one

of arbitrarily small total power,NNLS. In contrast, the dilation symmetry is broken in the
discrete case.

(3) Letσ = 2
d
, and letR denote the ground state standing wave. That is,R is anH 1 solution

of1R−R +R
4
d

+1 = 0 of minimal powerNNLS ≡ Nthresh. In [28,29] it was proved that if

N [φ0] < Nthresh (3.5)

then the solution exists for all time and disperses to zero in the sense that‖φ(t)‖Lp → 0,
as|t | → ∞, for p > 2 if d = 1, 2 and 2< p < 2d/(d − 2) if d > 3.
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Conjecture. If N [ Eψ0] < νDthresh, then the solution of DNLS disperses to zero in the sense that
for anyp ∈ (2,∞]:

‖ Eψ(t)‖lp(Zd )→ 0, as |t | → ∞. (3.6)

Proofs of the assertions in (3) are given in [28, 29] and rely on the pseudo-conformal
symmetry of the continuum limit NLS, a symmetry which is absent in DNLS.

Theorem 3.1 is a consequence of propositions 4.1 and 4.2 of section 4. We begin by
investigating the conditions onσ, d, andν under whichIν < 0.

Proposition 3.1. Iν > 0 if and only if ν is such that the following inequality holds for all
Eu ∈ l2(Zd): ∑

l∈Zd
|ul|2σ+2 6 (σ + 1)κν−σ

(∑
l∈Zd
|ul|2

)σ
(−δ2Eu, Eu). (3.7)

To prove proposition 3.1, we observe thatIν > 0 if, and only if, for all Eu ∈ l2(Zd), with
‖Eu‖2

l2
= ν

(σ + 1)−1
∑
l∈Zd
|ul|2σ+2 6 κ(−δ2Eu, Eu). (3.8)

Let E0 6= Ev ∈ l2 be arbitrary. Then, ifEu defined by:

Eu ≡ √ν‖Ev‖−1
l2
Ev (3.9)

satisfies the inequality (3.8), which after some algebra yields (3.7). Finally, ifIν > 0 we
have thatIν = 0. This is seen by simply taking a sequence whoseN th element is a constant
(depending onν) on the set of sites satisfying|l| 6 N and zero otherwise. Along such a
sequence we haveN = ν andH tending to zero. Therefore,Iν = 0.

Strategy of the proof of theorem 3.1.Clearly, if the inequality (3.7) holds for someν1 then
it holds for allν 6 ν1. We shall prove in proposition 4.2(d) that a ground state does not exist
for any 06 ν 6 ν1. We are interested in characterizingνthreshdefined by:

νDthresh≡ sup{ν : inequality(3.7) holds}. (3.10)

In the following section we relate this threshold value to the optimal (best) constant in an
interpolation estimate related to the Hamiltonian energy,H. If a finite positiveνDthresh exists,
then for anyν > νDthreshand element ofl2(Zd), Eu∗, can be found which violates the inequality
(3.7). This choice ofEu∗ shows thatIν < 0, and by theorem 2.1 there is a ground state. If,
however, for any choice ofν > 0 one can construct an element ofl2 for which the inequality
(3.7) is violated, theorems 3.3 and 2.1 imply that a ground state exists for anyν > 0, i.e. there
is no excitation threshold. The strategy used to prove theorem 3.1 is to show that if 0< σ < 2

d
,

then there is no value ofν for which the inequality (3.7) holds for arbitraryEu ∈ l2. However,
if σ > 2

d
we show it holds if and only ifν 6 νDthresh, for someνDthresh> 0.

4. Best constants and excitation thresholds for DNLS

In this section we relate the problem of characterizing excitation thresholds to the problem of
finding the optimal or best constant in discrete interpolation inequalities of Sobolev–Nirenberg–
Gagliardo type.

The discussion concluding section 3 motivates the following question, answered in
theorem 4.1 below.
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When does there exist a constantC > 0 such that for allEu = {ul} ∈ l2(Zd):∑
l∈Zd
|ul|2σ+2 6 C

(∑
l∈Zd
|ul|2

)σ
(−δ2Eu, Eu)? (4.1)

If (4.1) holds for someC > 0 andC∗ is the infimum over all such constants, thenνDthresh
defined by

(σ + 1)κ(νDthresh)
−σ ≡ C∗ (4.2)

is a ground state excitation threshold. Therefore, we seek to characterize the optimal constant,
C∗. If there is a strictly positive and finiteC∗, then

1

C∗
= J σ,d ≡ inf

(
∑

l∈Zd |ul|2)σ (−δ2Eu, Eu)∑
l∈Zd |ul|2σ+2

(4.3)

and we have:

νDthresh= ((σ + 1)κJ σ,d)
1
σ . (4.4)

Remark. If J σ,d > 0, then by proposition 4.2 below, there exists a strictly positive lower
bound on the energy,N , of a ground state.

Note that (4.4) is consistent with the simple observation that for the case of uncoupled
lattice sites,κ = 0, there is no excitation threshold. For example, in this case the solution

ψ0(t) = ν 1
2 ei|ν|σ t

ψl(t) = 0, l 6= 0,
(4.5)

is a l2(Zd) solution of (1.1) withN = ν. This limit is also called theanti-integrable
limit [3, 21]. In section 5 we shall relate the anti-integrable limit to the large amplitude limit
of our variationally constructed ground states.

Proposition 4.1. If σ < 2
d
, thenJ σ,d = 0. Therefore, forσ < 2

d
, and there is no ground state

excitation threshold (νDthresh= 0). In other words, ground states of arbitrary energy,N , exist.

Proof of proposition 4.1. Consider the one parameter family of trial functions,Eu(α) defined
by:

ul(α) = e−α|l|, (4.6)

wherel = (l1, . . . , ld) ∈ Zd , |l| = |l1| + . . . + |ld | andα > 0. Evaluation of the terms of the
quotient in (4.3) yields, forα ↓ 0:∑

l∈Zd
|ul|2 ∼ α−d , (−δ2Eu, Eu) ∼ α2−d ,

∑
l∈Zd
|ul|2σ+2 ∼ α−d . (4.7)

Therefore, the quotient in (4.3) is of orderα2−dσ , which tends to zero asα tends to zero if
σ < 2

d
. This proves the proposition 4.1.

�
Proposition 4.2. Letσ > 2

d
. Then,

(a) J σ,d > 0.
(b) If ‖ Eψ‖2

l2
= ν, then

HD[ Eψ ] > κ(−δ2 Eψ, Eψ)
[
1−

(
ν

νDthresh

)σ]
, (4.8)

whereνDthresh> 0 is given by (4.4). Forσ > 2
d
, νDthresh(σ, d) is an excitation threshold, i.e.
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(c) if ν > νDthresh(σ, d) thenIν < 0 and a ground state exists, and
(d) if ν < νDthresh(σ, d), thenIν = 0 and there is no ground state minimizer of (2.12).

Proof of proposition 4.2. To prove part (a), it suffices to show that the inequality (4.1) holds
for somepositive constant,C. Then part (c) follows from the discussion at the end of section 3.
We proceed as follows. For functionsf ∈ H 1(Rn), one has the Sobolev–Nirenberg–Gagliardo
inequality [15]:

‖f ‖2σ+2
2σ+2 6 C‖∇f ‖σn2 ‖f ‖2+σ(2−n)

2 , (4.9)

whereσ is restricted to satisfy:

0< σ <∞, n = 1, 2
0< σ < 2(n− 2)−1, n > 3.

(4.10)

The proof of (4.9) can be followed closely to yield, under the same restrictions onσ , the
following estimate in the discrete case forEu ∈ l2(Zd):∑

l∈Zd
|ul|2σ+2 6 C

(∑
l∈Zd
|ul|2

)1+σ2 (d−2)

(−δ2Eu, Eu) σd2 . (4.11)

To give the idea, we present the proof of (4.11) in the cased = 2. We writeul = uab, (a, b) ∈
Z2. Without loss of generality we can takeuab > 0. Note that

uσ+1
ab =

a∑
α=−∞

(uσ+1
αb − uσ+1

α−1,b). (4.12)

By the fundamental theorem of calculus,

uσ+1
αb − uσ+1

α−1,b =
∫ 1

0

d

ds
[suαb + (1− s)uα−1,b]

σ+1 ds

= (σ + 1)
∫ 1

0
[suαb + (1− s)uα−1,b]

σ ds(uαb − uα−1,b).

Therefore, (using the convention that sums without specified upper and lower limits are
understood to be taken over allZ)

|uσ+1
αb − uσ+1

α−1,b| 6 |σ + 1|
∑
α

max(|uαb|σ , |uα−1,b|σ )|uαb − uα−1,b|. (4.13)

It follows by summing overα and applying the Cauchy–Schwarz inequality, that∑
α

|uσ+1
αb − uσ+1

α−1,b| 6 2
1
2 |σ + 1|

(∑
α

|uαb|2σ
)1

2
(∑

α

|uαb − uα−1,b|2
)1

2

. (4.14)

The analogous computation can be performed by summing on the second index, to get:∑
β

|uσ+1
aβ − uσ+1

a,β−1| 6 2
1
2 |σ + 1|

(∑
β

|uaβ |2σ
)1

2
(∑

β

|uaβ − ua,β−1|2
)1

2

. (4.15)

The product of the last two estimates yields:

|uab|2σ+2 6 2|σ + 1|2
(∑

α

|uαb|2σ
)1

2
(∑

α

|uαb − uα−1,b|2
)1

2
(∑

β

|uaβ |2σ
)1

2

×
(∑

β

|uaβ − ua,β−1|2
)1

2

.
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Summing ona and applying the Cauchy–Schwarz inequality gives:∑
a

|uab|2σ+2 6 2|σ + 1|2
(∑

α

|uαb|2σ
)1

2
(∑

α

|uαb − uα−1,b|2
)1

2
(∑

a,β

|uaβ |2σ
)1

2

×
(∑

a,β

|uaβ − ua,β−1|2
)1

2

.

Finally, summing this result onb and applying the Cauchy–Schwarz inequality gives (4.11)
for the cased = 2 and arbitraryσ > 0.

To complete the proof of proposition 4.2, we write estimate (4.11) as:∑
l∈Zd
|ul|2σ+2 6 C

(∑
l∈Zd
|ul|2

)σ
(−δ2Eu, Eu)

(
(−δ2Eu, Eu)∑
l∈Zd |ul|2

)σd
2 −1

(4.16)

The last factor in (4.16) is bounded by a constant forσ > 2
d
; the discrete Laplacian is a

bounded operator. Therefore, if in addition to (4.10), we haveσ > 2
d
, then the estimate (4.1)

holds.
Finally, we want to show that ford > 3 we can relax the constraint 0< 2− σ(d − 2).

Supposed > 3 and takeσ in the range for which we know the estimate (4.1) to hold. This
estimate is equivalent to:∑

l∈Zd
|ul|2σ+2 6 C(−δ2Eu, Eu) (4.17)

subject whereEu satisfies the constraint∑
l∈Zd
|ul|2 = 1. (4.18)

The constraint (4.18) implies that for alll ∈ Zd , |ul| 6 1 and therefore ifσ1, is anynumber
satisfyingσ1 > σ > 2

d
, then the estimate (4.17) holds withσ replaced byσ1. This implies the

following result which completes the proof of part (a) of proposition 4.2:

Theorem 4.1.For σ > 2
d
, the interpolation inequality (4.1) holds.

Remark. Note that there is no upper restriction forn > 3 onσ as in the continuum case (4.9).
Through (4.16), the boundedness of the discrete Laplacian,−δ2, on l2(Zd) plays a key role.

Part (b) of proposition 4.2 follows from the definition ofHD and the inequality (3.7) with
optimal choiceν = νDthreshgiven by (4.2).

Finally, we prove part (d) of proposition 4.2. Supposeν < νDthresh. Then, by part (b),
Iν > 0. On the other hand, as at the end of the proof of proposition 3.1, we have thatIν 6 0.
It follows thatIν = 0 for anyν < νDthresh. If the minimum is attained at a stateEψ , then

κ(−δ2 Eψ, Eψ) = 1

σ + 1

∑
l

|ψl|2σ+2

∑
l

|ψl|2 = ν.

Sinceσ > 2
d
, νDthreshdefined by (4.4) is strictly positive and by (3.7), with the optimal choice

ν = νDthresh, we have

κ(−δ2 Eψ, Eψ) 6 κ
(

ν

νDthresh

)σ
(−δ2 Eψ Eψ) < κ(−δ2 Eψ, Eψ), (4.19)
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a contradiction.

�
Theorem 3.1 now follows from propositions 4.1 and 4.2.

5. Large amplitude and the anti-integrable limit

5.1. Largeν limit of ground states

As discussed in [21], breather solutions of DNLS can also be constructed perturbatively in
the limit of zero coupling,κ ≡ 0, also called theanti-integrable limit; see also [3]. In [21],
as an explanation for the numerical studies in [4], it is conjectured that the large amplitude
anti-integrable limit breathersplay an important role in the dynamics of DNLS. We now
give evidence of this, by showing the connection between the nonlinearly stable ground state
breathers constructed by variational methods and the large amplitudeanti-integrable breathers.
We also prove that asν increases, ground state breathers of ‘total power’ν grow in amplitude
and become increasingly concentrated about one lattice site. This property of ground states
and their nonlinear stability (theorem 2.2) elucidate the numerical simulations in [4].

We begin by considering a scaled version of the variational problem (2.12), for the DNLS
ground state:

Iν = inf

{
− κ(δ2 Ef , Ef )− 1

σ + 1

∑
l

|fl|2σ+2 :
∑
l

|fl|2 = ν
}
. (5.1)

In anticipation of our takingν ↑ ∞, we set

fl = ν 1
2Fl,

∑
l

|Fl|2 = 1. (5.2)

and introduce the parameter

α = α(ν, κ; σ) ≡ κ

νσ
, (5.3)

which tends to zero asν tends to infinity. The variational problem, (5.1), is then equivalent to:

K(α) = inf

{
α(−δ2 EF, EF)− 1

σ + 1

∑
l

|Fl|2σ+2 :
∑
l

|Fl|2 = 1

}
. (5.4)

By theorem 3.1, ifν > νDthresh> 0, then there is a ground state breather:

EG = EG(α) = {Gl(α)}l∈Zd , (5.5)

satisfying the Euler–Lagrange equation:

−α(δ2G)l − |Gl|2σGl = λαGl, (5.6)

whereλα is a Lagrange multiplier. By (5.2), this gives rise to a ground state family of solutions
of (5.1):

Eψg(t) = ν 1
2 EG(α)e−iλανσ teiγ , γ ∈ [0, 2π). (5.7)

By theorem 2.2, the ground state family is nonlinearly orbitally stable, and is therefore expected
to participate in the dynamics.

What is the structure of ground states for largeν? We next show that asν →∞, ground
states become concentrated on the lattice about a single site.

To see this, we first observe that by the methods of the appendix (see also [8, 27]):
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(a) Asα tends to zero (ν ↑ ∞) through a sequence,{ EG(α)}, is a minimizing sequence for the
limit variational problem:

K∞ = inf

{
− 1

σ + 1

∑
l

|Gl|2σ+2 :
∑
l

|Gl|2 = 1

}
. (5.8)

(b) A subsequence can be extracted, which (modulo phase adjustments) converges to a
minimizer, EG∞. EG∞, which satisfies the Euler–Lagrange equation associated with the
limit problem (5.8):

−|G∞l |2σG∞l = λ0G
∞
l ,∑

l

|G∞l |2 = 1. (5.9)

Thus, for eachl ∈ Zd , G∞l ∈ {0} ∪ {(−λ)
1

2σ eiγ : γ ∈ [0, 2π)}. Since‖ EG∞‖l2(Zd ) = 1,
G∞l can be nonzero only at a finite number of sites,N > 1. Therefore,

‖ EG∞‖l2(Zd ) = 1 implies − λ = N−σ

− 1

σ + 1

∑
l

|G∞l |2σ+2 = − N
−σ

σ + 1
.

The minimum is therefore attained forN = 1 and we have:EG∞l = ±δl,l0 for somel0 ∈ Zd ,
andλ0 = −1.

Therefore, asν →∞, a subsequence of ground states converges, to a limiting state:

Gl(α)→ G∞l ≡ δl,l0, in l2(Zd) (5.10)

for somel0 ∈ Zd . Therefore the largeν (α small) limit of ground states behaves as a large
amplitudeone-site breather:

ψl(t) ∼ ±ν 1
2 δl,l0e

−iνσ t , for ν large. (5.11)

5.2. Connection with the anti-integrable limit

For smallα, equation (5.6) is the anti-integrable limit studied in [21]. The approach taken
in [3,21] is to first observe that forα = 0 each lattice site evolves independently and that (5.6)
has solutions9l(t), where for eachl ∈ Zd ,9l satisfies the equation:

i∂t9(t) = −|9(t)|2σ9(t). (5.12)

The solutions of (5.12) are:

9(t) = ωei|ω|2σ teiγ , (5.13)

with ω, γ ∈ R. Fix a solution which is supported at lattice sitesq ∈ I ⊂ Zd , whereI is finite
or infinite and such that at each site the evolution is an oscillation of the form

9q(t) = ωqei|ωq |2σ teiγq , q ∈ I (5.14)

and such that the frequenciesωq are all commensurate. The implicit function theorem implies
that these solutions have a continuation forα sufficiently small in the space of time-periodic
solutions. These range in spatial complexity from those that are small perturbations of the
simplestα = 0 breather, consisting of a solution of the form (4.5), to those which are small
perturbations of anα = 0 ‘spatially chaotic’ configuration of oscillators.

Consider the continuation from the anti-integrable limit of one-site breathers. These are
solutions of the form:

9l(t, α, µ) = Al(α, µ)e−iµt , l ∈ Zd (5.15)
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where

µAl = α(δ2A)l − |Al|2σAl,
Al(α = 0, µ) = (−µ) 1

2σ δl,l0, for some l0 ∈ Zd .
(5.16)

We wish to relate the two-parameter familyEA(α,µ) to the family of scaled ground statesEG(α),
for smallα. Note that EA(0,−1) is such that‖ EA(0,−1)‖l2(Zd ) = 1. It is easy to check, by the
implicit function theorem that a locally unique solution(α, µ(α)) defined in a neighbourhood
of α = 0 exists such that

‖ EA(α,µ(α))‖l2(Zd ) = 1,

µ(0) = −1.

Therefore, by our variational arguments and local uniqueness:

EG(α) = EA(α,µ(α)). (5.17)

6. Thresholds for coupled systems of nonlinear Schrödinger equations

In this section we discuss results for systems of coupled on nonlinear Schrödinger equations
(CNLS) (1.7):

i∂tψl + ∂2
xψl + κ(δ2 Eψ)l + (σ + 1)|ψl|2σψl = 0,

Eψ = {ψl(t, x)}l∈Zd , d = 1, 2, (t, x) ∈ R2.
(6.1)

CNLS has been introduced as a model governing the propagation of light pulses in a coupled
d = 1 or d = 2 dimensional array of optical fibres. We consider the case where the discrete
variable varies overZd , and such thatψl(t, x) decays asl andx tend to infinity. Other boundary
conditions (e.g. periodic) are considered in [6,30]. We follow a similar outline for the CNLS
as that followed in our analysis of DNLS. Certain details are omitted and for them we refer
to [27,30].

Given initial dataEψ0(x) for CNLS satisfying∑
l∈Zd
‖ψ0l‖2H 1 <∞, (6.2)

there is a unique solutiont 7→ Eψ(t, x)which is continuous int with values inl2(Zd)×H 1(R).
The following two functionals, evaluated on solutions, are independent in time:

H[ Eψ ] =
∫
R
(−δ2 Eψ(x), Eψ(x)) +

∑
l∈Zd

∫
R
|∂xψl(x)|2 dx −

∫
R
|ψ(x)|2σ+2 dx

N [ Eψ ] =
∑
l

∫
R
|ψl|2 dx.

H is a Hamiltonian energy of the CNLS in the sense that CNLS can be expressed as:

i∂t Eψ = δH
δ Eψ∗ . (6.3)

The functionalN corresponds to thetotal input powerin the system.
Of interest are nonlinear bound states of CNLS. These are solutions of the form:

Eψ = eiλ2t Eg(x; λ), (6.4)

for which the invariantsH andN are finite. The components ofEψ satisfy the coupled system
of equations:

−λ2ψl + ∂2
xψl + κ(δ2 Eψ)l + (σ + 1)|ψl|2σψ = 0, l ∈ Zd . (6.5)
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In analogy with the discrete case, we seek to characterize the ground state of the system
by variational methods.

Definition. Let

Jν = inf {H[ Ef ] : H[ Ef ] = ν}. (6.6)

Because of the similarity of the arguments to those in the previous sections and the more
detailed treatment in [27,30] we provide a summary.

(1) If 0 < σ < 2, thenJν > −∞ for anyν > 0.
(2) In analogy with theorem 2.1, we can show the following theorem.

Theorem 6.1.The infimum in (6.6) is attained if and only ifJν < 0. Moreover, any minimizing
sequence has a subsequence which converges strongly inl2

(
Zd;H 1(R)

)
modulo translations

in space and phase. Furthermore, any minimizer satisfies the equation (6.5).

In view of this result, we study the question: for whichσ, d andν do we haveJν < 0?

(3) Proposition 6.1.Jν = 0 if, and only if, for anyEψ ∈ l2 (Zd;H 1(R)
)

we have the estimate:

‖ Eψ‖2σ+2
2σ+2 6 ν−σ a

σ
2−1
σ ‖ Eψ‖2σ2 〈−δ2 Eψ, Eψ〉1− σ

2 ‖ ∂x Eψ‖σ2 , (6.7)

whereaσ = ( σ2 )
σ

2−σ − ( σ2 )
2

2−σ .

Here,‖ Ef ‖pp = (
∑

i ‖fi‖pLp(R))
1
p .

Proposition 6.1 is proved by a simple scaling argument. For anyEψ , such that‖ Eψ‖22 = ν,
we define the scalingEψr(x) = r

1
2 Eψ(rx), which preserves theL2 norm. Evaluation of the

Hamiltonian onEψr and minimization overr > 0 gives:

H[ Eψr ] > H[ Eψrmin ] = 〈−δ2 Eψ, Eψ〉 − aσ ‖ Eψ‖
4(1+σ)
2−σ

2σ+2 ‖∂x Eψ‖
− 2σ

2−σ
2 . (6.8)

We can pass to an expression for arbitraryEψ by replacingEψ byν
1
2‖ Eψ‖−1

2
Eψ in (6.8). This gives

for any Eψ ∈ l2 (Zd;H 1(R)
)
:

H[ Eψrmin ] =
(

ν

‖ Eψ‖22

)
〈−δ2 Eψ, Eψ〉 − aσ

(
ν

‖ Eψ‖22

) 2+σ
2−σ

‖ Eψ‖
4(1+σ)
2−σ

2σ+2 ‖∂x Eψ‖
− 2σ

2−σ
2 . (6.9)

It follows that Jν can be realized as the infinimum of the expression in (6.9) over all
Eψ ∈ l2(Zd;H 1(R)). ThusJν > 0 if and only if (6.7) holds for allEψ ∈ l2(Zd;H 1(R)).
As in the discrete case, it is simple to construct a sequence along which theL2 constraint is
satisfied and the Hamiltonian tends to zero.

(4) Suppose an estimate of the type (6.7) holds. In particular, we letC∗ denote the smallest
constant for which this estimate holds. That is,

‖ Eψ‖2σ+2
2σ+2 6 C∗‖ Eψ‖2σ2 〈−δ2 Eψ, Eψ〉1− σ

2 ‖∂x Eψ‖σ2 , (6.10)

where

C−1
∗ = Kσ,d ≡ inf

‖ Eψ‖2σ2 〈−δ2 Eψ, Eψ〉1− σ
2 ‖∂x Eψ‖σ2

‖ Eψ‖2σ+2
2σ+2

. (6.11)
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There are two possibilities. First, ifKσ,d = C−1
∗ = 0, then for anyν > 0, there is a choice

of Eψ which makes the Hamiltonian negative. In this case, by assertion (2), a ground state of
any prescribedL2 norm exists; there is noL2-excitation threshold. The second possibility is

that 0< C−1
∗ = Kσ,d < ∞. In this case, we have thatJν > 0 if and only ifC∗ 6 ν−σ a

σ
2−1
σ .

Therefore, we can define thethreshold power, νc = νc(σ, d) by:

νc = a
1
2− 1

σ
σ C

− 1
σ∗ = a

1
2− 1

σ
σ (Kσ,d)

1
σ . (6.12)

By use of the estimate (6.7) with the optimal choiceν = νc, we obtain the sharp lower
bound for the Hamiltonian, in analogy with the discrete case (cf (4.8)):

H[ Eψ ] > 〈−δ2 Eψ, Eψ〉
(

1−
(
ν

νc

)σ)
(6.13)

for any Eψ with ‖ Eψ‖22 = ν.
(5) The question of when anL2 threshold exists is reduced to the determination of the range

of values ofσ andd for whichKσ,d > 0. Formula (6.12) then gives an expression for the
threshold. To determine whenKσ,d is strictly positive amounts to determining when one
can prove an inequality of type (6.10) for some (not necessarily optimal) choice ofC∗.
This is addressed in [27, 30]. Ranges ofσ, d for which this inequality fails to hold are
determined by scaling arguments, while a proof of such inequalities for certainσ, d can be
obtained following the strategy used in the fully discrete case, where we mimic the proof of
continuum interpolation estimates (e.g. see the proof of proposition 4.2) or alternatively
by applying the continuum interpolation estimates to functions ofd + 1 variables and
where the functions are taken to be piecewise linear in the variable corresponding to the
d discrete variables; see [27,30]. The results obtained are thatKσ,d > 0 for all σ ∈ [1, 2)
and for allσ ∈ ( 2

d+1,
2
d−1). In summary we have the following theorem.

Theorem 6.2.Letσ ∈ [1, 2) or σ ∈ ( 2
d+1,

2
d−1). Then, there exists anL2 excitation threshold

given byνc in (6.12).

6.1. Estimates onνc for σ = 1, andd = 1

We now consider the caseσ = 1 andd = 1, an infinite one-dimensional array:

i∂tψn + ∂2
xψn + κ(ψn−1− 2ψn +ψn+1) + 2|ψn|2ψn = 0, n ∈ Z. (6.14)

We show how to get upper and lower estimates for the threshold power. A sketch was given
in [27], where an error appears in the displayed upper and lower bounds (due to an error in
algebra).

By the above discussion, we know that there is anL2 excitation threshold. That is, there

is a constantνc > 0 such that there are no ground states ofL2 norm less thanν
1
2
c and there are

ground states ofL2 normν
1
2 for anyν > νc. By (6.12) (using that we must replaceδ2 by κδ2)

we have

νc(1, 1; κ) = 2κ
1
2K1,1 = 2κ

1
2 inf
‖ Eψ‖22〈−δ2 Eψ, Eψ〉 1

2‖∂x Eψ‖2
‖ Eψ‖44

. (6.15)

Upper estimate onνc(1, 1; κ): An upper estimate is obtained by evaluation of the functional
in (6.15) on anyEψ 6= 0. In particular, if we use as a trial function the exactone-soliton
supported on one site of the lattice,ψj(x) = sech(x)δj0, we obtain the upper bound

νc(1, 1; κ) 6 κ 1
2 2
√

6∼ κ 1
2 4.89. . . . (6.16)
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Lower estimate onνc(1, 1; κ): To obtain a lower bound we follow the strategy in [27]. First
note that for arbitrary functionsψ ∈ H 1(R2),

‖ψ‖44 6 CSNG(‖∂xψ‖22 + ‖∂yψ‖22)‖ψ‖22. (6.17)

By scaling iny, ψ(x, y) 7→ ψ(x, ry), we have from (6.17) the estimate:

‖ψ‖44 6 2CSNG‖∂xψ‖2‖∂yψ‖2‖ψ‖32. (6.18)

In [28] the best constant in (6.17) is calculated and was found to be:

CSNG= (π × 1.862 25. . .)−1 (6.19)

By (6.15), to obtain a lower bound forνc it sufficies to obtain an lower bound forK1,1 or
equivalently an upper bound forC∗.

We next relateC∗ toCSNG. This can be done by considering (6.17) for the restricted class
of functions,ψ(x, y), which are smooth inx and piecewise linear iny with jumps in∂yψ(x, y)
at the integers. In particular, let

ψ(x, y) = (1− θ)ψn(x) + θψn+1(x),

y = n + θ, 06 θ 6 1.

Direct calculation gives:

2
5

∑
n

∫
|ψn(x)|4 dx 6

∫
|ψ(x, y)|4 dx dy

∑
n

∫
|ψn(x)|2 dx >

∫
|ψ(x, y)|2 dx dy

∑
n

∫
|∂xψn(x)|2 dx >

∫
|∂xψ(x, y)|2 dx dy

∑
n

∫
|ψn+1(x)− ψn(x)|2 dx =

∫
|∂yψ(x, y)|2 dx dy. (6.20)

This, together with (6.18) yields:

‖ Eψ‖44 6 5CSNG‖ Eψ‖22〈 Eψ, Eψ〉
1
2‖ Eψ‖2. (6.21)

with a non-optimal constant,̃C = 5CSNG which is anupperbound forC∗. Thus,

νc(1, 1, ; κ) > 2κ
1
2C−1
∗ > 2κ

1
2 (5CSNG)

−1

= κ 1
2
2

5
π × 1.862 25. . . > κ 1

2 2.3402. . . . (6.22)

Combining (6.16) and (6.22) we obtain:

κ
1
2 2.34. . . 6 νc(1, 1, ; κ) 6 κ 1

2 4.89. . . . (6.23)

A careful numerical simulation [30] indicatesκ−
1
2 νc(1, 1; κ) ∼ 4.08.
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Appendix. Concentration compactness methods for DNLS

Theorem 2.1 can be proved using the concentration compactness principle; see, for example,
[22]. Since arguments follow, quite closely, those for the continuum case (see [22, 30] for a
detailed implementation), we present here an outline of the ideas.

Let Eu(k) = {u(k)l }, denote a sequence inl2(Zd), and such that∑
l

|u(k)l |2 = ν. (7.1)

LetBt(m) denote{l ∈ Zd : |l −m| < t}, and the norm|l −m| = max16i6d |li −mi |.
Theorem 7.1.(Concentration compactness principle.)

There exists a subsequenceEu(nk) satisfying one of the following three scenarios:

(1) Compactness (the ‘mass’ of the sequence concentrates). There existsmk ∈ Zd such that
for everyε > 0, there exists a real positive numberRε (independent ofk), such that∑

l∈BRε (mk)
|u(nk)l |2 > ν − ε. (7.2)

(2) Vanishing (the sequence spreads its mass over larger and larger sets and tends to zero).
For all R <∞,

lim
k→∞

sup
m∈Zd

∑
l∈BR(m)

|u(nk)l |2 = 0. (7.3)

(3) Dichotomy (the sequence concentrates its mass in at least two regions which become
increasingly distant). There existsα ∈ (0, ν) such that , for allε > 0, there existk0 > 1
and disjointly supported sequencesEa(k), Eb(k) in l2(Zd) satisfying for allk > k0:

‖Eu(nk) − (Ea(k) + Eb(k))‖l2(Zd ) 6 ε
|‖Ea(k)‖2l2(Zd ) − α| 6 ε
|‖Eb(k)‖2l2(Zd ) − (ν − α)| 6 ε
distance(supp(a(k), supp(b(k))→∞

ask→∞.

To prove this result, we introduce the sequence ofconcentration functions:

Q(k)(t) = sup
m∈Zd

∑
l∈Bt (m)

|u(k)l |2. (7.4)

By following the arguments in [22] it can be shown that:

(1) Along a subsequencenk → ∞, Qnk (t) converges to a nondecreasing and nonnegative
function,Q(t) with limit:

lim
t→∞Q(t) = α ∈ (0, ν). (7.5)

(2) The casesα = 0,α = ν and 0< α < ν correspond, respectively, to the above scenarios:
vanishing, compactnessanddichotomy.

To prove theorem 2.1 we must rule out the vanishing and dichotomy scenarios.
Vanishing is ruled out as follows. LetEuk denote a minimizing sequence. Then,

H[ Euk] = Iν + εk, whereεk ↓ 0 ask → ∞. From the definition ofH and the hypotheses
Iν < 0 we have

Iν + εk = H[ Eu(k)]
= 〈−δ2Eu(k), Eu(k)〉 − (σ + 1)−1

∑
l∈Zd
|u(k)l |2σ+2

> −(σ + 1)−1
∑
l∈Zd
|u(k)l |2σ+2,
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and therefore
(σ + 1)

2
|Iν | 6 ν‖Eu(k)‖l∞ . (7.6)

Since vanishing implies‖Euk‖l∞ → 0 ask→∞, the lower bound (7.6) precludes vanishing.
Dichotomy is ruled out, as in the continuum case [22], using the strict subadditivity of the

functionalIν , i.e. if 0< α < ν, then

Iν < Iα + Iν−α. (7.7)

The idea is as follows. If dichotomy occurs (see (3) above) then ask → ∞ andε → 0 we
have

Iν = H[ Eu(k)] + o(1) = H[Ea(k)] + H[ Eb(k)] + o(1), (7.8)

where we have used thatEa(k) andEb(k) have disjoint supports. Furthermore,

H[Ea(k)] > Iα+o(ε) and H[ Eb(k)] > Iν−α+o(ε), (7.9)

by definition ofIθ Therefore, takingk→∞ andε→ 0 we get

Iν > Iα + Iν−α. (7.10)

This contradicts (7.7).
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