
 
 
1 

 
2 

 
3 

 

Excitation Transfer Engineering in Ce-Doped 
Oxide Crystalline Scintillators by Codoping with 
Alkali-Earth Ions 

 

4 Etiennette Auffray, Ramunas Augulis, Andrei Fedorov, Georgy Dosovitskiy, 
 

5 Larisa Grigorjeva, Vidmantas Gulbinas, Merry Koschan, Marco Lucchini, 
 

6 Charles Melcher, Saulius Nargelas, Gintautas Tamulaitis, Augustas Vaitkevicius, 
 

7 Aleksejs Zolotarjovs, and Mikhail Korzhik*  
 
 
 
       
 
 
 
 
 

 
 
 

1. Introduction 1 

Aliovalent  codoping  has  been  recently 2 

demonstrated to be a productive approach 3 

to improve the scintillation properties of 4 

bulk Ce-doped scintillators with different 5 

host  structures.  Codoping  of  Ce-doped 6 

gadolinium gallium  aluminum  garnet 7 

Gd3Al2Ga3O12 (GAGG) single crystals with 8 

the divalent cation Mg2   is highly promis- 9 

ing for applications of this scintillator in 10 

the  new  generation  of  PET  (positron 11 

emission tomography) scanners.[1,2]  This 12 

scintillator  is  a  product  of  purposeful 13 

engineering of the band gap and the energy 14 

position  of the  activator  levels  in  the 15 

gap.[3,4]  The crystal exhibits a high light 16 

yield of up to   70 000 phot/MeV,[5]  has 17 

luminescence  decay  time  shorter  than 18 

100 ns, and its emission band peaks at  520 nm which perfectly 19 

matches  the  sensitivity  spectrum  of  conventional  Silicon 20 

Photomultipliers (SiPMs). Thus, the crystal might compete 21 

with Lu2SiO5:Ce (LSO:Ce) and (Lu1  x-Yx)2SiO5:Ce (LYSO:Ce) in 22 

Time-of-Flight  Positron  Emission  Tomography  (TOF-PET) 23 

applications. Moreover, GAGG:Ce might become the scintillator 24 

of  choice  in  high-resolution  γ-radiation  spectrometry  and 25 
compete with the halide scintillators recently developed for this 26 

purpose.[6–8] Finally, natural gadolinium is a mixture of six stable 27 

isotopes, 154Gd (2.18%), 155Gd (14.8%), 156Gd (20.5%), 157Gd 28 

(15.7%), 158Gd (24.8%), and 160Gd (21.9%), two of which, 155Gd 29 

and 157Gd, have the highest neutron capture cross section 30 

among all known stable isotopes, 61 000 and 254 000 barns, 31 

respectively. The capture of neutrons is accompanied by the 32 

emission of γ-quanta with a total energy of about 8 MeV: 33 

n   155Gd ! 156Gd  γ (8.5 MeV) and n   157Gd ! 158Gd  γ 34 

(7.9 MeV).  35 

This energy release, as well as individual γ-quanta, can be 36 

detected by the same crystal in which the interaction takes place. 37 

However,  the  outstanding  characteristics  of  GAGG:Ce 38 

detectors are accompanied by certain shortcomings, hindering 39 

extensive application of the material in radiation detection. 40 

Particularly, the material exhibits strong phosphorescence, both 41 

under photoexcitation and excitation by ionizing radiation. It has 42 

 
 



 
1 been demonstrated that the phosphorescence might be dimin-  

2 ished in the crystal and ceramics by codoping with Mg.[9,10] 

3 Unfortunately, the codoping of GGAG:Ce by Mg results in a  
4 lower scintillation light yield (LY) at room temperature (RT),  
5 contrary to the codoping of LSO:Ce and LYSO:Ce by divalent Ca  

6 or Mg.[11,12] Recently, we demonstrated that the luminescence  
7 build up after short-pulse excitation becomes significantly faster, 

8 when GAGG:Ce crystal is codoped by Mg.[13] This observation of  
9 the shortening of the luminescence rise time is in line with the  
10 previous results on the coincidence time resolution, where  
11 substantial improvement of the response time in Mg-codoped  
12 GAGG:Ce crystals is observed at certain decrease of the light  

13 yield.[14] At a small energy release, using 511 keV gamma-rays  
14 from 22Na source, the Coincidence Resolving Time (CTR) with 

15 full width at half maximum (FWHM) of 540 and 233 ps was  
16 measured  in  GAGG:Ce  without  and  with  Mg  codoping,  
17 respectively. At high energy deposit, when high-energy charged  
18 particles have been used to excite the crystal, the Mg-codoped  
19 sample yielded a better single device time resolution of 30.5 ps  

20 sigma than that in Mg-free sample (36.2 ps sigma).[15] Finally, a  
21 significant improvement of GAGG:Ce,Mg light yield without  
22 changes in scintillation kinetics was observed, when the crystal 

23 temperature was progressively decreased down to 45 C,[16] 

24 what was not detected in the crystals doped solely with Ce.[17]
 

25 These features make GAGG:Ce,Mg the scintillator of choice to  
26 operate with SiPM readout at reduced temperatures.  
27 In spite of the spectacular progress in the improvement of the  
28 performance parameters of oxide crystalline scintillators with  
29 aliovalent co-doping, the mechanism of the improvement is still  
30 not fully understood.  
31 This aliovalent doping, in which a trivalent ion is substituted  
32 by a divalent second group cation in the host matrix, results in  
33 the formation of anionic vacancies that compensate for the  
34 resulting charge. The formation of a hole-type defect including  

35 Mg2   and O  in close proximity is also quite probable.[18,19] 

36 Moreover, the codoping of Ce-activated crystals by divalent ions  
37 (even at the level of less than 1 at.%) causes oxidation of part of  

38 the Ce3   ions to Ce4  . Both cerium ions are involved in the  
39 scintillation process.[12,20,21] Codoping by Ca2   or Mg2   of oxide  
40 material crystallized at high temperature seems to introduce  
41 similar defects in the matrix due to similarity of the cation  
42 properties in the same host, though different dependence of the  

43 light yield on their concentration was observed in GAGG:Ce.[9]
  

44 It has also been demonstrated that codoping of Y2SiO5:Ce, 

45 LYSO:Ce, LaBr3:Ce, and CeBr3  with divalent alkali-earth ions 

46 results in enhancement of scintillation light yield and improve-  
47 ment of the energy resolution of the detectors based on these  

48 materials.[12,22–25] Moreover, it was recently demonstrated that  
49 aliovalent co-doping by Sr2   of the most widely used NaI(Tl) 

50 scintillation crystals also improves their energy resolution.[26]
 

51 This  is  an  indication  that  the  defect  associated  with  the 

52 alivovalent codoping (Mg2  , Ca2  , Sr2  ) is most likely a matrix  
53 host defect. 

54 The  cerium-doped  lutetium  oxyorthosilicate  Lu2SiO5:Ce 

55 attracted our attention because of its extensive exploitation as  
56 scintillator in medical imaging devices. Codoping with divalent  
57 Ca  results  in  substantial  improvement  of  the  scintillation  
58 properties of this crystal. Contrary to codoped GAGG:Ce, the  
59 light yield of aliovalently codoped LSO:Ce increases by 10–20%, 

 
 

the scintillation decay becomes faster, and the phosphorescence 1 

is  significantly  suppressed.[12,27]   These  improvements  are 2 

primarily caused by suppression of free carrier trapping by 3 

deep intrinsic traps. Nevertheless, the negative influence of Ca- 4 

codoping on formation of nonradiative recombination centers in 5 

LSO scintillators is still under study. 6 

The current paper is aimed at revealing the mechanisms 7 

through which codoping of Ce-doped scintillation single crystals 8 

by divalent alkali-earth ions influences the luminescence and 9 

scintillation  properties  of  these  materials.  Our  study  was 10 

primarily focused on the investigation of GAGG:Ce, which is 11 

a complicated system in view of the excitation transfer processes. 12 

The generalization of the mechanisms is based on comparison 13 

of  the  results  obtained  for  GAGG:Ce  and  LSO:Ce,  two 14 

scintillators with substantially different crystal fields, which 15 

turned out to be of importance for the competition of excitation 16 

transfer in crystals codoped with divalent ions. We exploited 17 

steady-state, quasi-steady-state and time-resolved photolumines- 18 

cence spectroscopy and pump-and-probe techniques to study the 19 

dynamics of nonequilibrium carriers. The thermally stimulated 20 

emission technique was used to characterize the energy levels of 21 

the traps in the band gap. This study enabled us to construct 22 

simple schematic energy-level diagrams, which allow explaining 23 

the main routes of excitation transfer and the influence of the 24 

aliovalent codoping. 25 

 

 

2. Experimental Section 26

The GAGG:Ce samples used in this study were grown by the 27

Czochralski technique from iridium crucibles. The samples, in 28

the shape of a 3  3  5 mm3 block, were cut from single crystal 29

boules  and  subsequently  polished.  The  key  scintillation 30

parameters of the samples are presented in Table 1. 31

Samples A1 and A2 were fabricated at the Institute of Physics, 32

Czech  Academy  of  Sciences.  The  crystals  were  grown  in 33

nominally identical conditions and with nominally the same 34

cerium content of 0.5 at.%. In addition, A2 was codoped with 35

magnesium at 0.1 at.%. 36

The set of GAGG:Ce samples labeled hereafter B1, B2, and B3 37

was prepared at the National Research Center “Kurchatov 38

Institute” in Moscow, Russia, to investigate the influence of 39

gallium evaporation on the crystal properties. These three 40

samples, shaped as 10  10  7 mm3  blocks, were produced 41

using sintered raw materials. Sample B1 was grown from the 42

melt  with  stoichiometric  composition.  To  compensate  for 43

gallium volatilization from the melt during growth, sample 44

B2 was grown with excess Ga2O3  added to the melt in the 45

crucible. To further compensate for the volatilization of Ga and to 46

inhibit the formation of oxygen vacancies more efficiently, 47

codoping with tetravalent ions was exploited in sample B3 which 48

was grown with 0.01 at.% of zirconium, in addition to the excess 49

Ga2O3 added as was done during the growth of sample B2. 50

Two types of oxyorthosilicates, Lu2SiO5  and Y2SiO5, solely 51

doped with Ce and codoped by Ca, both at 0.1 at.% in the melt, 52

were labeled as L1 and L2 and measured to compare the change 53 
of the optical transmission spectra due to aliovalent codoping. 54  
The oxyorthosilicate boules, nominally 32 mm in diameter, were 55

grown in inductively heated iridium crucibles by the Czochralski 56

 
 



 
Table 1. Scintillation parameters of GAGG samples under study.  

 
   Luminescence decay times ns (%)   
        

Sample Composition  Fast Intermediate Slow Phosphorescence level, arb. u. Light yield, ph/MeV 
       

A1 Gd3Ga3Al2O12:Ce 52(23) 130(68) 230(9) 80 35 000 

A2 Gd3Ga3Al2O12:Ce, Mg 56(40) 100(60) – – 27 000 

B1 Gd3Ga3Al2O12:Ce 52(22) 150(67) 700(10) 100 26 000 

B2 Gd3Ga3Al2O12:Ce excess Ga 51(10) 150(39) 2125(51) 335 31 000 

B3 Gd3Ga3Al2O12:Ce excess Ga  0.001 at.% Zr 63(27) 150(73) – 700 21 000 
        

 

 
1 method (see Ref. [23] for more detail). Uncodoped LSO:Ce  
2 crystal was studied in detail to reveal the energy transfer  
3 processes. The sample (L3) had dimensions 10  10  2 mm.  
4 The scintillation kinetics was measured by the start-stop  
5 method. The luminescence decay of the samples was character-  
6 ized using a fit by three exponential components. The light yield  
7 was measured by photomultiplier tube XP2020 calibrated using  
8 1  inch  CsI(Tl)  reference  crystal  produced  by  Institute  of  
9 Scintillation Materials (ISMA), Kharkov, Ukraine. The light  
10 yield  provided  in  Table  1  was  measured  in  the  samples  
11 unannealed after crystal growth. These samples were used in  
12 all our experiments. The phosphorescence level was estimated at  

13 the background plateau measured simultaneously with the  
14 scintillation kinetics by the start-stop method. The scintillation  
15 properties of the samples were evaluated at room temperature.  
16 In thermally stimulated luminescence (TSL) experiments, the  

17 thermal activation energy of the traps ETA has been determined 

18 by the fractional glow method.[28] The TSL peaks were measured  
19 in the luminescence spectral range from 300 to 800 nm at the  
20 heating rate of 6 K min 1. The samples were activated for 30 min  
21 using an X-ray tube (30 kV, 15 mA) at 7 K.  
22 The time-resolved photoluminescence (TRPL) study has been  
23 performed using a Hamamatsu streak camera. In synchroscan  
24 detection  mode,  the  time  resolution  was  limited  by  the  
25 instrumental response function with full-width at half maxi-  
26 mum (FWHM) of 2.95 ps. To study the PL kinetics in the  
27 samples with long decay components, the camera could be  
28 operated only in a single sweep mode with considerably poorer  
29 time  resolution.  A  femtosecond  Yb:KGW  oscillator  (Light  
30 Conversion Ltd.) emitting at 1030 nm and producing 80 fs  
31 pulses at 76 MHz repetition rate was used as a primary excitation  
32 source. The third 3.64 eV (343 nm) and fourth 4.9 eV (254 nm)  
33 harmonics of the oscillator emission have been produced by a  
34 harmonics generator (HIRO, Light Conversion Ltd.) to ensure  
35 selective photoexcitation.  
36 For GAGG:Ce crystals, the 3.6 eV (343 nm) emission 

37 resonantly excites Ce3    ions into the lowest excited energy 

38 level.  Meanwhile, the  photon  energy of  4.9 eV (254 nm) 

39 corresponds to 8S!6D7/2,9/2 transition of Gd3   ions and also 

40 is sufficient to cause transitions to the long-wavelength wing of 

41 the band due to excitation into the third component of Ce3 

42 electronic configuration 4f05d1. For the LSO:Ce crystal, the 

43 4.9 eV photons excite Ce3   ions into the third component as well. 
44 The dynamics of free nonequilibrium carriers was investi-  
45 gated using free carrier absorption (FCA), which was measured  
46 using a pump and probe technique. The free carriers were 

 

 
 

generated by short light pulses (200 fs) at 4.9 eV (254 nm). A part 1 

of the fundamental harmonic of the Yb:KGW laser described 2 

above was frequency-quadrupled using β-barium borate crystals 3 

and used for this purpose. The optical absorption of the samples 4 

was probed with a variable delay at different fixed wavelengths by 5 

using the output of a parametric generator in the infrared range 6 

900–1700 nm  (1.38–0.73 eV).  The  difference  in  the  optical 7 

absorption with and without the pump (differential absorption, 8 

DA) was measured as a function of the delay between the pump 9 

and probe pulses. The DA in this spectral region is caused by the 10 

induced absorption, which is proportional to free carrier density. 11 

 

 

3. Results 12

3.1. Photoluminescence and Free Carrier Absorption in 13

GAGG:Ce and GAGG:Ce,Mg 14

The codoping of GAGG:Ce with magnesium introduces a broad 15

absorption band that peaks at 4.7 eV (265 nm), which is not 16

observed in the crystal without codoping. The spectrum of the 17

difference in absorption coefficients measured in samples A1 18 
(GAGG:Ce) and A2 (GAGG:Ce, Mg) is presented in Figure 1. 19 

Both samples are grown in nominally the same conditions and 20  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Spectrum of the difference in absorption coefficient of GAGG:  
Ce with and without magnesium codoping. 

 
 



 

1 contain nominally the same concentration of Ce3   ions. Thus,  
2 the change in absorption is caused by Mg codoping. However, no 

3 difference of the absorption intensity of the Ce3   bands due to 

4 transfer  to  the  first  Stark  component  of  Ce3 electronic 

5 configuration 4f05d1 was observed in the samples. It indicates 

6 that conversion of Ce3   ions into the Ce4   state at such a low Mg 

7 concentration does not affect Ce3   concentration significantly. 
8 This absorption band is most probably caused by charge transfer  
9 (CT) transition from the valence band to the defect stabilized by  

10 Mg2  , one of which may be a Ce4   ion. 
11 The photoluminescence response of GAGG:Ce after a short  
12 pulse excitation at 4.9 and 3.6 eV is shown in Figure 2. The decay  
13 at delays longer than  30 ns proceeds at approximately the same  
14 rate at both excitation photon energies, while the contribution of  
15 the fast decay component is considerably more pronounced at  
16 3.6 eV excitation. The initial part of the PL response to short-  
17 pulse excitation for both GAGG:Ce and GAGG:Ce,Mg (samples  
18 A1 and A2) is presented in Figure 2. The instrumental response  
19 function is also depicted there. Due to the presence of long PL  
20 decay components, the FWHM of the instrumental function was  
21 100 ps in these experiments. For clarity, only the fits to the  
22 experimental decay data are presented in Figure 2. The fit is  
23 illustrated in the inset of Figure 2. The major part of the GAGG:  
24 Ce luminescence grows instantaneously within the experimental  
25 response  time,  however,  a  slower  rise  component  is  also  

26 observed. Thus, the PL response was fitted as f(t)  [A1   A2 

27 exp( t/τr)]exp(  t/τd), where A1 and A2 are amplitudes of the fast

28 and slow  growth  components,  while  τr  and  τd  are  the
29 luminescence growth and decay times. This fluorescence profile 

30 was  further  convoluted  with  the  experimentally  obtained 

31 response function. At the excitation of Ce3    luminescence 
32 through the matrix (at 4.9 eV), the time constant of the slow rise 

33 τr   8 ns. At 3.6 eV, corresponding to the resonant excitation to 

34 absorption band of Ce3   ions, the time constant of the slow rise 

35 component τr   2.5 ns is shorter but still considerably longer 

36 than the instrumental response function. As reported before,[13]
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The initial part of PL response to a short excitation pulse 

at 343 nm of GAGG:Ce, sample A1 (green) and Mg codoped 

sample A2 (blue). Instrumental response function is also presented. 

 

                             

the slow rise component disappears in GAGG:Ce,Mg, and 1 

luminescence rise proceeds in subpicosecond time range. 2 

Mg-codoping  also  influences  the  luminescence  kinetics. 3 

Scintillation kinetics with characteristic time constants of 60 4 

and  54 ns  are  observed  in  GAGG:Ce  at  254  and  343 nm 5 

excitation,  respectively.  The  difference  between  the  time 6 

constants  disappears  in  the  Mg-codoped  crystal;  for  both 7 

excitation wavelengths was found to be 51 ns.   8 

Free carrier absorption in GAGG:Ce with and without Mg- 9 

codoping was studied in pump and probe configuration. The 10 

difference between the absorption after excitation by a short 11 

pulse (pulse energy 0.48 mJ cm 2) at 4.9 eV and the absorption 12 

without excitation was probed as a function of delay between 13 

pump and probe pulses at different probe wavelengths: 905 nm 14 

(1.38 eV),  1041 nm  (1.2 eV), 1213 nm  (1.03 eV), 1404 nm 15 

(0.89 eV), and 1712 nm (0.73 eV) both for GAGG:Ce (sample 16 

A1) and GAGG:Ce,Mg (A2). The decay of the normalized 17 

differential absorption signals of probing radiation at three 18 

typical probe wavelengths are presented in Figure 3.   19 

For the probe photon energy down to  1 eV, the decay kinetics 20 

exhibit minor dependence on the probe photon energy. Both for 21 

GAGG:Ce and GAGG:Ce,Mg, the decay consists of a fast decay 22 

component and the decay proceeding at a slower rate, with the 23 

decay  time  of  40–50 ns  for  both  crystals.  The  fast  decay 24 

component is considerably more pronounced in GAGG:Ce, 25 

Mg. For probe photon energy of below 1 eV, the slow decay 26 

component becomes faster in GAGG:Ce, while the fast decay 27 

component becomes more pronounced in both crystals. 28 

                                 
                                 
                                 

                                 

                                 

                                 
                                 
                                 

                                 
                                 

                                 

                                 

                                 

                                 
                                 
                                 

                                 
                                 
                                 

                                 

                                 

                                 
                                 
                                 

                                  
 
 
 
Figure 3. Normalized differential absorption signals at different probe 

photon energies (indicated) in nano- (left panel) and picosecond (right 

panel) domains of GAGG:Ce (red) and GAGG:Ce,Mg (blue). 

 
 



The eighth coordinate sites (dodecahedral, 24c sites) accommo- 1 

date rare earth ion or yttrium. In a disordered GAGG crystal, 2 

60% of Ga3   ions occupy the tetrahedral sites, whereas 40% 3 

octahedral sites. The formation of cation vacancies due to the 4 

gallium evaporation inevitably leads to the formation of anionic 5 

vacancies in octahedrons and tetrahedrons and, as a conse- 6 

quence, of trapping centers based on such vacancies. 7 

The use of the Al–Ga mixture to make crystal introduces two 8 

side effects: i) site occupancy disorder and ii) formation of 9 

additional defects that act as trapping centers for nonequilib- 10 

rium carriers. The ratio of the ionic radii of Al and Ga is 0.83 and 11 

0.85 in the oxygen tetrahedral and octahedral positions.[32] 
12 

Therefore, even a random distribution of Al and Ga ions in the 13 

lattice results in considerable distortion of the lattice. Due to this 14 

reason the multicomponent gadolinium garnets containing 15 

gallium and aluminum should contain more structural defects 16 

than the binary garnet crystals do. Moreover, gallium and 17 

aluminum  ions  located  in  close  proximity  also  result  in 18 

considerable lattice strain, lead to distortion of the polyhedra, 19 

and,  as  a  consequence,  result  in  formation  of  numerous 20 

characteristic shallow trapping centers. The samples without 21 

codoping exhibit room temperature phosphorescence at photo- 22 

excitation in the absorption bands of both Ce3   and Gd3  . Worth 23 
to note, the spectra of the TSL glow creation, absorption spectra 24 

of  Ce3    ions  and  spectra  of  phosphorescence  creation 25 

coincide.[33] 
26 

Figure 5 shows the TSL curves and the thermal activation 27 

energy ETA  of the traps corresponding to the glow peaks 28 

measured in the samples B1–B3. Similar to the data presented in 29 

Refs. [17,34,35], strong TSL peaks of complex structure have 30 

been detected in GAGG crystal in the temperature range 31 

25–100 K. In TSL of all the samples, Ce3   luminescence is 32 

observed and the TSL spectra also exhibit a glow peak above RT 33 

near 395 K, as reported in Ref. [33]. The shallow traps are better 34 

resolved in sample B1 (with stoichiometric melt composition) 35 

than in samples B2 and B3 (nonstoichiometric). We observed 36 

that the amount of the groups of the shallow traps having ETA 37 

within the range 0.02–0.2 eV does not change drastically from 38 

sample to sample. However, the intensities of the corresponding 39 

TSL peaks are affected by the addition of excess Ga and Zr- 40 

codoping. 41 

The comparison of TSL spectra in samples B1–B3 shows that 42 

the introduction of excess Ga increases the intensity of the TSL 43 

bands in the range 150–300 K. On the contrary, the codoping 44 

with Zr4    reduces the intensity of the TSL bands in this 45 

temperature range but gives the rise to the band above 350 K. 46 

However,  both  additional  Ga  or  Zr  ions  do  not  change 47 

significantly the group of TSL peaks bellow 150 K. Thus, we 48 

suggest that shallow traps with ETA smaller than 0.1 eV most 49 

probably are caused by distortions of the polyhedra, as it was 50 

noted above, whereas the traps with larger ETA correspond to 51 

structural point defects, most probably anion vacancies, the 52 

concentration of which is affected by applied codopings. It is 53 

worth noting that the activation energies of the deepest traps we 54 

observe by applying the TSL technique to the samples under 55 

study are smaller than   0.2 eV. This is consistent with the 56 

results presented in Ref. [36], where the deepest trapping levels 57 

are reported at   0.3 eV below the bottom of the conduction 58 

band. 59  
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Figure 5. TSL curve (red) and ETA of the traps (points) observed in 
samples B1, B2, and B3 (from top to bottom).  

 
1 3.3. Luminescence Build Up in LSO:Ce Crystals 

 

2 The excitation transfer in GAGG is strongly influenced by Gd3  .  
3 The transfer is expected to be simpler in oxyorthosilicate crystal 

4 Lu2SiO5 (LSO). Similarly to GAGG, aliovalent codoping 

5 introduces an additional absorption band in UV range. To  
6 reveal the general features of the codoping effect, we compared  
7 the differential absorption spectra of solely doped with Ce and  

8 codoped with Ca2   crystals of Lu2SiO5  (L1) and isostructural  
9 Y2SiO5 (L2), see Figure 6. In oxyorthosilicate structure, calcium 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Spectra of difference in absorption coefficients with and 

without calcium codoping in LSO:Ce (a) and YSO:Ce (b). The 

dashed line represents the best fit by two Gaussian-shaped 

components (dotted lines). 

 
ions substitute lutetium ions, which have two inequivalent 1 

positions with six and seven oxygen neighbors. The introduction 2 

of divalent ions into the oxyorthosilicate single crystal results in a 3 

broad absorption band consisting of two strongly overlapping 4 

bands. The calcium-induced absorption spectrum can be well 5 

fitted by two Gaussian-shaped bands (dotted lines in Figure 6; 6 

Pearson’s chi-square test value χ2   4  10 3  for LSO:Ce and 7 

10 3 for LYSO:Ce). The two components have peaks at 270 and 8 

235 nm in LSO:Ce and 275 and 240 in YSO:Ce. The two bands in 9 

the absorption spectrum of oxyorthosilicates are consistent with 10 

two possible Ca2   ion positions of localization in the host matrix, 11 

6(O) and 7(O), instead of a single position 8(O) in scintillators 12 

with a garnet structure. Obviously, a similar two-component 13 

absorption band should be formed in mixed crystal LYSO. 14 

To get information on excitation transfer in LSO:Ce (a) and 15 

YSO:Ce, the nonlinear optical absorption induced by a short 16 

pulse of UV photons was studied. 200-fs-long pulses at 4.9 eV 17 

(254 nm) were used for excitation. The excitation photon energy 18 

is lower than the band gap of both LSO (6.4 eV) and YSO but is 19 

sufficient to excite cerium ions into the first and second excited 20 

state. The spectrum of the transient differential absorption (DA) 21 

of LSO:Ce (sample L3) contains one wide band overlapping the 22 

range 460–730 nm and peaked at 580 nm. 23 

The initial part of the kinetics of the spectrally integrated DA 24 

signal is presented in Figure 7. The signal appears simulta- 25 

neously with the leading edge of the pump pulse. The decay of 26 

the DA proceeds on a nanosecond time scale (see inset in 27 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Kinetics of differential absorption in LSO:Ce, sample L3, 

in picosecond and nanosecond (inset) domains probed at 650 nm 

after 200-fs-pulse excitation at 254 nm. 

 
1 Figure 7) and has two components. The fast component has the  
2 time constant of  200 ps and its time-integrated weight is small  
3 in comparison with that of the slow component decaying with  

4 the time constant of  27 ns. This time constant is close to the

5 decay time of excitation at Ce3   radiating level. This is an
6 indication that the observed transient absorption is predomi- 

7 nantly caused by electrons populating the Ce3   radiating level.  
8 The fast decay component of the differential absorption can be  
9 reasonably explained by capturing of the photoexcited electrons  

10 from Ce3   excited state by traps. The small relative weight of this  
11 component indicates low concentration of the trapping centers  
12 and, consequently, high structural perfection of the crystal. 
 

 

13 4. Discussion 
 

14 4.1. Excitation Transfer in GAGG:Ce and GAGG:Ce,Mg  
15 Crystals 

 

16 The photon energy of 3.6 eV (343 nm) is well below the band gap  

17 of GAGG. Thus, such photons predominantly excite Ce3  ions in  
18 GAGG crystal. Nevertheless, GAGG:Ce at such photoexcitation 

19 exhibits strong phosphorescence,[37] which could be explained by  
20 the transfer of photoexcited electrons from the first excited state 

21 of Ce3   to the conduction band, their trapping at shallow defect-  
22 related levels, thermally induced detrapping and return back to 

23 Ce3   ions to recombine radiatively and cause the phosphores-  
24 cence. For the efficient transfer of photoexcited electrons from 

25 Ce3   ions to the conduction band, the first Stark component of  
26 the 5d1f0 configuration Ce3   should be close to the bottom of the 

27 conduction band.  
28 The photon energy of 4.9 eV (254 nm), which was also used for  

29 excitation in our experiments, is sufficient to excite not only Ce3
 

30 ions, as at 3.6 eV excitation, but also Gd3 ions via the 8S! 

31 
6D7/2,9/2 transitions. Thus, the photons with energy of 4.9 eV 

32 generate free electrons via absorption by Ce3   and subsequent 
33 transfer of the electrons to the conduction band and free holes 

34 via excitation of gadolinium ions. The concentration of Ce3  ions  
35 at the doping level of 0.5 at.% is substantially lower than the 

 

 

concentration of crystal-building Gd ions, therefore, the density 1 

of free electrons at this excitation is considerably smaller than 2 

that of free holes, in contrast to the excitation at 3.6 eV generating 3 

no free holes. As pointed out in our previous paper,[38] the PL 4 
kinetics is consistent with the assumption that the ground 5 

8S level of Gd3   is in the valence band. The current results on the 6 
differential absorption (see Figure 4) enables us to define the 7 

position of the Gd3   ground state in the valence band. The 8 

differential absorption caused by free holes in the valence band 9 

should  have  a  smooth  proportionality  of  the  absorption 10 

coefficient on the wavelength squared. Instead, we observe a 11 

structured increase with the photon energy. This dependence 12 

should be explained by the influence of the resonant energy 13 

levels in the valence band. Thus, the hump in the DA spectrum 14 

peaked at 1.05 eV has to be attributed to the position of the Gd 15 

ground state, i.e., the state is  1 eV below the top of the valence 16 

band. 17 

Furthermore, the excitations at 3.6 and 4.9 eV enables us to 18 

study the transfer  of nonequilibrium  electrons and holes, 19 

respectively, by comparing the PL kinetics of GAGG:Ce. The PL 20 

rise time in GAGG:Ce after direct excitation of Ce3   at 3.64 eV is 21 

2 ns. As suggested in Ref. [38], this substantial delay in reaching 22 

the peak PL intensity is caused by the time necessary for 23 

establishing the equilibrium between trapping and detrapping of 24 

the free electrons, which are released into the conduction band 25 

from  the  Ce3    excited  level.  The  PL  rise  time  after  the 26 

predominant Gd3   excitation at 4.9 eV is by a factor of three 27 
longer than that after the direct excitation. Thus, the excitation 28 

transfer from the gadolinium sublattice to the radiative Ce3
29 

sites takes a few nanoseconds, what is caused by a relatively slow 30 

migration of excitations along the Gd sublattice.[39] 
31 

The presence of a distinct absorption band in the instanta- 32 

neous DA spectrum correlates with the qualitative transforma- 33 

tion of the DA kinetics (see Figure 3). The DA signal rises with 34 

characteristic time constant of 1.5 ps. The rise exhibits no 35 

significant dependence on the probe energy and, most probably, 36 

is predominantly determined by the relaxation of holes from the 37 

Gd3   ground level toward the top of the valence band. The decay 38 

kinetics shows that the DA has two decay components. The 39 

response is dominated by a component with the characteristic 40 

decay time of 40–50 ns. In addition, a fast decaying component is 41 

observed at the initial part of the DA decay. The fast component 42 

might be attributed to absorption by free electrons. The time- 43 

integrated contribution of this component is approximately by 44 

three orders of magnitude  smaller than that of the  slow 45 

component caused by free hole absorption. Note that the fast 46 

component is more pronounced for the probe photon energy 47 

below  1 eV. At larger probe photon energies, when the free hole 48 

absorption is enhanced due to the optical transitions of free holes 49 

to the ground state of Gd ions, the relative contribution of the fast 50 

component becomes less pronounced. 51 

The rising part in the DA response of the Mg-codoped crystal 52 

becomes considerably faster (see Figure 3) due to contribution of 53 

Mg2  -based defect centers in the generation of free holes at the 54 

top of valence band by absorbing 4.9 eV pump light. The defect 55 

centers cause additional nonradiative recombination. As a result, 56 

the DA signal decay is faster in the codoped crystal. 57 

Thus, the slow rise component with characteristic time of a 58 

few nanoseconds in the GAGG:Ce luminescence response after 59  
 
 



 
1 short-pulse excitation is caused by trapping and detrapping of  
2 nonequilibrium electrons. In Mg-codoped crystals, the trapped  
3 electrons predominantly relax to the energy levels introduced by  
4 Mg-doping and recombine nonradiatively or are transferred to  

5 Ce3  . As a result, the luminescence response to a short-pulse  
6 excitation becomes shorter, but the light yield decreases.  
7 To clarify the energy transfer processes in GAGG, we sketched  

8 a simple energy level diagram of all the main structural units  
9 involved in the excitation transfer process (see Figure 8a). This  
10 diagram does not include configuration potential curves for  
11 d-type states, which are usually considered for the transitions  
12 with a large Stokes shift. For simplicity, we considered just the  
13 positions of zero-phonon states of the Stark components of  
14 d-states. The energy diagrams in Gd-based crystals have been  

15 discussed in Refs. [40–42]. The energy-level diagram for Ce3   in  
16 GAGG has been already described in Ref. [43], where the band  
17 gap of 6.8 eV was used. Different band gap values are also  
18 reported in Ref. [44]. The energy differences between Ce3   levels  
19 used in this paper are based on the positions of the absorption  
20 and luminescence bands reported in Ref. [38]. Taking into  

21 account that the lowest zero-phonon radiating level of Ce3   is  
22 located by 0.3 eV below the bottom of the conduction band,[33] we 

23 conclude that the center of gravity of the f1-state is 2.6 eV below 

24 the radiating level. Thus, the f1-level is  3.35 eV above the top of 
25 the valence band.  
26 Our DA study described above shows that the position of the  

27 gadolinium 8S level is by  1 eV lower than the top of the valence  
28 band. The position of the lowest terms corresponding to the 

29 excited states of f7 Gd3   was estimated using absorption spectra  
30 (see, e.g., Ref. [38]). The corresponding positions of narrow P, I,  
31 and D states without accounting for their splitting by spin-orbit  
32 interaction are indicated in the diagram. These energy positions  

33 favor the excitation transfer from the Gd3   sublattice to Ce3 

34 ions. The efficiency of this transfer is evidenced by strong 

35 luminescence  at  Ce3    ions  even  after  the  predominantly  
36 resonant excitation of gadolinium sublattice at excitation with  
37 4.9 eV photons.  

 
 

The band gap of GAGG contains defect-related states. As 1 

evidenced by the TSL study presented above, intrinsic structural 2 

defects impose the states, which are located below the band gap 3 

not deeper than  0.3 eV. These levels trap electrons from the 4 

conduction band, while the thermal reexcitation of the electrons 5 

back to the conduction band results in delayed luminescence. 6 

Our results show that the defect related with Mg 2   in GAGG 7 

has a broad absorption band, most probably due to a charge 8 

transfer transition. Therefore, the corresponding energy level in 9 

the band gap of GAGG is well below the trapping states but 10 

higher than the P, I, and D states of Gd3  . As seen in the 11 

diagram, Gd- and Ce-related transitions and traps have poor 12 

resonance conditions. Thus, the probability of tunneling from 13 

traps to Gd subsystem is low, a considerable fraction of the 14 

trapped electrons are detrapped and take part in phosphores- 15 

cence. The defects introduced by codoping with Mg might 16 

capture the electrons trapped at shallow centers. This capture is 17 

evidenced by the substantial decrease in intensity of the TSL 18 

bands due to relatively shallow traps, as discussed above, and is 19 

consistent with the results presented in Refs. [34,36]. The 20 

electrons captured down to Mg-related defects might follow two 21 

possible roots: i) be transferred to Gd3   states and further to 22 

Ce3   or ii) recombine nonradiatively at the defect with the free 23 

hole from the valence band. The first root results in a faster rise 24 

of  luminescence  response  after  short-pulse  excitation  and 25 

diminishes the delayed luminescence. Meanwhile, the addi- 26 

tional channel of nonradiative recombination, which is intro- 27 

duced by Mg-codoping, reduces the light yield of GAGG:Ce. 28 

The results discussed above show that the nonequilibrium 29 

holes  reach  the  radiative  Ce3    centers  faster  than  the 30 

nonequilibrium electrons do. This is an indication that, at a 31 

relatively small concentration of Mg ions, as in the samples 32 

studied in the current paper, the scintillation mechanism due to 33 

the consecutive capturing of the carriers, holes and electrons, by 34 

Ce3   ions is still dominating. 35 

The competition of hole capturing by Ce3    ion and its 36 

nonradiative recombination at Mg2  -based defect explains the 37 

                   

                   
                   
                   

                   

                   
                   
                   
                   

                   
                   
                   

                    
 
 

 
Figure 8. Energy-level diagram for GAGG crystal doped with Ce and codoped with Mg (a) and for LSO doped with Ce and codoped with Ca (b). 

 
 



 
1 improvement of the light yield of codoped GAGG samples with  
2 temperature decrease, as described in Ref. [16], where it is shown  

3 by the gated light yield measurements that the scintillation  
4 kinetics is not changed in the temperature range from room  
5 temperature down to 45 C, while the light yield increases by  
6 20%. An increase of the light yield with a minor temperature  
7 decrease bellow room temperature is not typical for Ce-doped  

8 scintillation crystals.[29] Most probably, the observed gain in the  
9 light yield at lower temperatures is the result of increased  
10 lifetime of holes. The carrier recombination, which is in our case  

11 a Shockey–Read–Hall process,[45–47] is temperature dependent.  
12 The  carrier  lifetime  depends  on  the  capture  rate,  which  
13 decreases as temperature is decreased. A possible mechanism  

14 of the decrease is longer time the holes remain at the 8S level of  

15 Gd3  , which is bellow the top of the valence band. 
 

 

16 4.2. Excitation Transfer in Oxyorthosilicates 
 

17 In  crystals  containing  no  matrix-building  Gd3 ions,  the 

18 resonance conditions between Ce3   and Ca (Mg) related defect 

19 play the crucial role. The crystal field at the Ce3   ion positions is 

20 smaller in LSO, YSO, and LYSO than that is GAGG. Therefore, 

21 the energy difference between 2F states and the first Stark 

22 component of 4f05d1 configuration is larger. The energy level 
23 diagram for LSO, like that described above for GAGG:Ce, is  
24 presented in Figure 8b. Similar diagrams are also expected for  
25 YSO and LYSO crystals. The main deference between LSO and  
26 GAGG is a faster electron transfer due to a better overlapping  
27 between the broad subbands due to the defects associated with  
28 divalent ion and the interconfigration absorption bands of the  
29 radiative Ce centers.  
30 In contrary to GAGG, where shallow defects dominate, LSO  
31 have trapping centers with large activation energy resulting in  
32 TSL peaks at 354, 410, 462, 524, and 569 K, which are related to  

33 oxygen vacancies.[48,49]  Similar to GAGG:Ce, codoping with  
34 divalent ions facilitates the electron transfer from the traps 

35 to Ce3  . 
36 The codoping of oxyorthosilicates by divalent ions improves  
37 both the time characteristics of luminescence response and the  
38 light yield of the crystal. In contrary to GAGG, LSO has no  
39 peculiarities in the valence zone. Thus, hole dynamics in LSO  
40 and nonradiative recombination at the Ca-based centers are less  
41 sensitive to the temperature change. As a result, the lumines-  
42 cence build-up process is practically the same in LSO with and  
43 without codoping. This is also proven by gated light yield  
44 measurements showing that the light yield is insensitive to  
45 temperature down to 45 C.[50] 
 
46 The results discussed above allow making suggestions on the  
47 choice  of  the  optimal  oxide  compound  in  view  of  both  
48 improvement of timing characteristics and a high light yield.  
49 First, the compound should have crystal field for Ce  
50 stabilization similar or larger than in orthosilicates in order  
51 to balance resonance transfer conditions from alkali-  
52 earth-based defect to activator. The choice of the crystal matrix  

53 with smaller crystal field at the Ce3   position results in a 

54 decrease of the scintillation light yield, as in YAlO3 codoped 

55 with Ce and Ca.[51] As already published, the defects practically 

56 do not affect the photoluminescence decay time, but strongly 

 
 

reduce the decay time of scintillation and the light yield. This is 1 

an evidence of weak quenching of Ce3   luminescence by Ca- 2 

based defects and strong competition of the defects and Ce3 
3 

ions in receiving excitation from matrix. Similar effect is 4 

observed when crystal is doped with Pr3   and codoped with 5 

alkali-earth ions.[52] The inter-configuration 4f5d ! f2 lumines- 6 

cence of Pr3   consists of two overlapped wide unstructured 7 

bands at room temperature, usually in the UV range. Large 8 

energy of the emitting state does not allow an effective transfer 9 

from alkali-earth-based defect. 10 

 

 

5. Conclusion 11

Our time-resolved study of the photoluminescence response to 12

short-pulse excitation at different wavelengths and free carrier 13

absorption, supported by the results available in the literature, 14

enabled us to explain the changes of the scintillation parameters 15 
of GAGG:Ce and LSO:Ce imposed by additional aliovalent 16  
codoping. 17 

It is shown that the ground state of lattice-building 18  
gadolinium ions in GAGG crystal is in the valence band by 19

1 eV from its top. The gadolinium sublattice plays a significant 20 
role in the transfer of both nonequilibrium holes and electrons. 21  
As a result, the luminescence response to a short-pulse excitation 22

becomes shorter, but the light yield decreases. 23 
In Ce-doped oxyorthosilicates, the overlap between i) the 24  

electron trap levels; ii) a broad subband due to defects related 25

with divalent ion; and iii) the excited level of radiative Ce3   ions 26

is better than that in GAGG:Ce,Mg, thus, codoping with divalent 27

ions results in improvement of both time response and light 28

yield. 29
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