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A new systematical method which enables us to describe an electron gas in terms of 
bosons is developed. This boson corresponds to an "exciton", i. e. a pair of an electron 
outside the Fermi sphere and a hole inside. The formalism is particularly suitable to the 
system at high density, as suggested by Sawada's discussion of the same system. As a 
straightforward application, the effect of electron exchange on the plasma frequency is 
calculated. The result coincides with that of a Hartree-Fock treatment. 

§ 1. Introduction 

In his reformulation of Sawada's theory!) on the Coulomb interaction in a 
dense electron gas, WentzeP) used operators corresponding to processes where an 
electron with a momentum inside the Fermi sphere is excited to a momentum 
state outside, or vice versa. These operators were treated as boson creation and 
annihilation operators, which is justifiable at high density limit. Also a substitute 
Hamiltonian was adopted that gives the same commutators, or in other words, the 
same equation of motion of the aforesaid operators, as the basic relations of 
Sawada's argument. In view of Sawada's success in formulating the high-density 
problem in terms of this" boson" avoiding the perturbation expansion of Gell-Mann 
and Brueckner,3) the boson (excited electron plus hole), which we shall loosely 
call an "exciton", can be an effective concept, particularly at high density of 
electrons. It is the purpose of this paper to present a systematical formulation of 
the electron gas problem in terms of the excitons. 

In order to simplify the presentation, we shall consider a system of lV spinless 
fermions, which shall be called electrons in the following. Let us assume that 
they are confined in a box of volume Q with periodic boundaries. The Hamilt­
onian of the system is such that the number of the fermions should be conserved. 

* The research reported in this document was partially supported jointly by the U. S. Atomic 
Energy Commission and the National Science Foundation under contract with the University of 
Chicago. 
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As a reference state we shall take the state in which· the N electrons occupy the 
lowest lV momentum states (orbitals), i.e. the states with momenta smaller than 
PF are occupied and the other states are vacant. Let us denote this reference state 
by (/Ja. 

Now any state of the system can be written in the form 

(1) 

where a and a* are the fermion annihilation and creation operators and it is 
understood that P always stands for a momentum vector inside the Fermi sphere, 
while P always stands for one outside. In order to define these base states uniquely, 
we shall consider all the momentum vectors to be arranged in a certain order, and 
understand that the annihilation or creation operators in the expression (1) are 
arranged according to this prescribed order. Then the state above can be con­
sidered as a certain assembly of excitons, each exciton being a definite pair of a 
hole with momentum p and an electron with momentum P. This pairing is unique 
thanks to the prescription above. Weare going to describe the fermion system 
as an ensemble of excitons of this type. Let us first note that excitons are of 
Bose type in a certain sense because 

(2) 

§ 2. Transformation 

Let us introduce here Bose operators C/ and C* pP which have two indices 
defined in the same region as above and obey the standard commutation relations: 

[C P C*P'] " " p, p' = 0 ppl 0 P pI , 

(3) 
[CpP

, Cp,P']=[Cp*P, CpTP']=O. 

The vacuum state of the bosons will be denoted by Wo. 
Define the operator U in the product space of the fermions and the bosons by 

where A and r are the projection operators to Wo and Wo, respectively. Then one 
can easily show that 

U If ap * apWo Wo= 2.J (-) Pp IfC/P WoWo, (5) 
p 

where P is a permutation of the lower indices of C* 'so This theorem shows 
that the operator U can effectuate a one-to-one correspondence between the fermion 
states and a certain sub-space of the boson states. Before accomplishing that, we 
have to introduce an ordering operator in accordance with the prescription 
,stated in Section 1: Let 0 be an operator which operates on the indices of 

. '". - . . 

C or C* and, 'by definition, its eigenvalue is one if .the pairing of the indices P 
and p is in compliance with the prescription, and zero otherwise. Then the 
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product operato~ OU just effectuates the transformation of flaj,al/Jo to flC:PlJfij. 
with the same pairs of indices. It may be noted that the ordering operator defined 
above is a projection operator: 

0 2=0. 

Inversely, the hermitian conjugate of U, 

U=r·exp(::S~ CpP ap*ap ) ·A, 

transforms any boson state back to a corresponding fermion state, 

U fI Cp*P P'o (/)0 = flap * ap (/Jo 7Jfo. 

(6) 

(7) 

(8) 

Hence, the transformations 0 U and UO complete the one-to-one correspondence of 
the exciton states in the fermion representation and in the boson representation. 
It is evident that UOU is unity in the fermion state space. 

§ 3. The Hamiltonian in the boson representation 

Let the Hamiltonian of the fermion system be >C. Then the equation of 
motion for any fermion state rp IS 

Now according to the last statement in Section 2, this equation may be written 
in the form: 

.a ~ 
1-rp7Jfo = >C UO UW iJfo, 

at 
(10) 

where we assumed that the energy of the state 7Jfo is zero. Hereby we see that 
we can investigate the dynamics of the Driginal fermion system in the boson repre­
sentation if we take OUXUO as its Hamiltonian. In other words, we can tran­
scribe the dynamics of the fermion system into that of the boson system, where, 
however, we have to limit ourselves to the subspace OW and hence the Hamiltonian 
U:;CU should also be cut in such a way that it connects only the states in this 
subspace. 

Now let us proceed to work out the corresponding boson Hamiltonian assuming 
that the Hamiltonian of the fermion system is given by 

(11) 

where 

and 

;t'2~~::S2J::S V).a",!).a,.*aI'Ha",. 

The general principle of the calculation which we make in the following may be 
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stated as follows. Assume first that the resulting Hamiltonian is expanded in 
powers of C and C* operators. Then we can find its coefficients by evaluating 
the expectation values of the multiple commutators of UXU with C and C*, in 
the product state (j)o7Jlo. 

The first term, which is a constant, is just the expectation value of UX U 
itself. We shall denote the expectation value of any operator Q in the state (j)o7Jlo 

by (Q). The result is 
~ F F 

(UXU)=(JC)= 2i Ep+~ 2J~ (Vo- V p _ p ,). 
=F 

(12) 

The coefficient of C/ is given by ([UXU, C;PJ), which is equal to 

([U:;CU, Cp*PJ) = ([X, ap * apJ)=O, (13) 

because of the translation invariance of the Hamiltonian. The hermitian property 
of UJCfJ ensures that the coefficient of C;P also vanishes. Following a similar 
procedure, we can get the coefficients of the next higher terms. We shall not 
write down the details of the calculation, which is straightforward, but just list 
the results: 

and 

([[UXU, C/P] , CptP
']) = ([[X, ap*ap] , a};aplJ) = (Vp_p- Vpf _p) JP+Pl,P+PI. 

(15) 

Concerning these two formulas, there are some points to be noted. First there 
appears no term with Vo. For example, the sum ::s Vp_pl should be understood 

pI 

to exclude the term with p= pl. The reason is the operator ::S::S a lC *af' *al"a IC , which 
is associated with Vo in the expression for JC2, always commutes with atap 

Secondly, the expression of the type (15) always vanishes when pI = P and/or 
p' = p. This is just a consequence of the Pauli principle. 

Leaving the calculation of higher terms to a later section, let us write down 
the exciton Hamiltonian to the second order. To this we shall introduce an ab­
breviation for the exchange energy, defined by 

F 

A (A) = 2J VA-pI, (16) 

where we understand that if A lies inside the Fermi sphere we have to omit the 
term with p'=A. We shall also use the following notation: 

(17) 

Then it IS' easy to see the relevant Hamiltonian IS gIven by 
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uXu= 2.:: Ep+~ VoN(N-l) -~ 2.J A(p) +2J2J {w/+A(p) -A(P)}C/PC/ 

+ 2J2J2j {Vp _ p- VPI_P}Cp~Pl+P-PC/ +~ 2J2J2J {Vp _ p- V p _ p,} 

791 

X (C;:,'+P-P C/ + complex conj.). (18) 

To obtain the Hamiltonian for the excitons we remember that we still have to 
take the ordering operator into account. This may be done conveniently in each 
actual application we meet. We shall discuss an example in the next section. 
Here, however, we shall give some remarks concerning new features appearing In 
the Hamiltonian above. 

The expression in the first line of Eq. (18) is just the expectation value of 
the Hamiltonian for the reference state Wo. The first sum is the Fermi energy, 
the next the average "Coulomb" interaction and the last sum is the exchange 
energy. Therefore, by definition, the remainder represents the so-called correlation 
energy in a certain approximation. The present correlation Hamiltonian, as a 
matter of course, has the same structure in the main as that of Wentze1.2

) However, 
in the present Hamiltonian there appear several new terms which were neglected 
by Sawada and Wentzel because of their less importance at high density. Namely, 
{A(p) -- (P) }'s in the second line, - VP1-P's in the third and - Vp_p,'s in the 
last line. These are all originated from the exchange effect. For example, the 
term - VP1_pC;;l+P-PC: corresponds to the following process. One electron with 
momentum P makes a transition to the state PI + P-p, while another electron 
makes a transition from PI to pc The appropriate matrix element is V p1- P ' This 
type of transition was consistently neglected in Sawada's and Wentzel's calcula­
tions. However, in the present formulation we do not discard any process in the 
mid-way, sticking consistently to the exciton picture. Hence, we describe the 
process above in such a way, as the creation and annihilation operators show, that 
one electron is excited from PI to Pl + P - P and another is deexci ted from P to 
p, the final state being physically the same as above. The phase, however, is 
different from the former by 77:, because the electrons in the states p and PI + P-P 
have been exchanged. This is the reason for the appearance of the minus sign. 

In short and formally stated, the present Hamiltonian has a structure consistent 
with the Fermi statistics of the original particles. Besides, it is obtained straight­
forwardly by a mathematical apparatus. (In fact, one can supplement Wentzel's 
Hamiltonian in accordance with the Fermi statistics and get to the result (18). 
This procedure, however, is apparently limited in its applicability.) 

§ 4. The plasma oscillation 

In this section we shall investigate the effect of the exchange terms on the 
plasma frequency. Sawada has already argued that the effect is small. However, 
as a specific example of application, we shall here derive a detailed expression for 
the plasma frequency of electrons in a neutralizing positive charge sea, including 
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the aforesaid exchange effect. Since the present author has not been able to find 
out any method to diagonalize the Hamiltonian (18), we are going to restrict 
ourselves to the discussion of the plasma oscillation and resort to the perturbation 
method. 

The equation of motion for the annihilation operator of an exciton with mo­
mentum transfer q is, according to Eq. (18), 

iCp,q=wp,qCp,q+ 2J (Vq- Vp_pl) Cpl,q+ ~o (Vq- V p, +P+,) C!Pl,-q, (19) 
pI PI 

where we have used the slightly altered notations defined as follows: 

and 

C =Cp+o p,q- p 

(20) 

and the summation denoted by ~ with a superscript" 0" means that one has to 
sum only those terms with the ind1ces that are compatible with the prescription 
stated in Section 1. Hence in the last sum there appear only such p/s that the 
combination (p, q) and (-PI, - q) is in 
compliance with the ordering prescription. 
This may be conveniently done in the 
following way: Given a certain q, one 
may prescribe the order of the momenta 
.3.ccording to the magnitude of p. q or 
p. q. Correspondingly we shall divide 
the momentum space relevant to Eq. (19) 
into the :five regions indicated in Fig. 1. 
Then in the second line of the equation, 
p belongs to the region ro+ r, p+q to 
R while -PI to rl + ro and -PI - q to 
R1 • Hence in the summation we have 
only to be careful when both P and -PI 

ro 

Fig. 1. 

run in the region ro. Here, and everywhere in the following, the summation sign 
2Jo of Eq. (19) will just mean that one should sum the terms in compliance with 

the condition p.q> -PI·q or (P+Pl) ·q>O. 
Then the equation above can be rewritten in the following way: 

iCp,q=wp,qCp,q+ V q 2J (Cpf,q+C!pl,_q) - 2J Vp_pf Cpl,q 

- Vq 2J C_";,f,_q- ~ VP+Pf~qC-*Pf,_q. 
(P+l1f).q<O (p+pl)·o>O 

The complex conjugate equation is 

iC_*p,_q= -lVp,o C!p,_Q- Vq 2.J (Cpf,q+ C!pf,-o) + ~ Vp_pf C!pf,_q 

+ Vq 2J Cpl,q+ 2J Vp+Pf+qCpf,Q' 

(21) 

(21') 
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Excitations in a High Density Electron Gas. I 793 

To get the eigen-frequency, let us regard Cor C* as non-quantized amplitudes. 
Since we are treating progressive waves, we must set these expressions equal to 

].ICp,q or ].IC :'p,_q, respectively, where ].I is the eigen-frequency of the wave. The 
first lines in the equations are just those terms which were discussed in Sawada's or 

Wentzel's papers. As mentioned before, we shall treat the remainder as perturbations. 
First the unperturbed amplitudes are immediately given by these equations as 

follows: 

(22) 

and 

(22') 

where 

C,,= ~ (Cp,Q+C':-P,_Q)' (23) 
p 

In these expressions C" is actually a non-perturbed amplitude. However, as long 

as the first perturbational approximation is intended, it makes no difference whether 
we take it to be nonperturbed or perturbed. Hence we shall regard it as the 
perturbed amplitude. Inserting these expressions into the perturbing terms in Eq. 
(21) and Eq. (21'), i.e. into the second lines, and solving them for Cp,q and 
C :'p, _q, and then inserting these results back into the defining equation for Cu, 

(23), we get 

_1_ = ~ ~_( _____ Vp-,--,q,-----_ 

2V L..J 2 -2 
q p].l -Wp,q 

V ( 2 --') p+pl+Q J) -WW (24) 

Since we are treating the plasma oscillation, we can assume that 

and simplify the secular equation for ].I by expansion. We are gomg to get the 
dispersion formula up to the second order in q. 

The first terms in the expansion give 

(25) 

q 

Here the summation sign ~ denotes that one should sum over those p's inside a 
beret-shaped region which is bounded by the surfaces of the Fermi sphere and of 
the sphere obtained by displacing it by the amount - q. We have simplified the 
expression by using the equality: 

q q q q q q 

~ 2j V P _ Pf - ~ ~ Vp_pf = ~ ~ V p + q- Pf - ~ ~ Vp+Q+pl • (26) 
P pi l' 1" l' pI l' pI 
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794 T Usui 

By using a similar equality, one can easily see that the next terms in the expansion 
contribute 

A 2 _ 2 V q {~ 3 + 1 ~, ~-, [ ( ') 2 V (+ ') 2 V ] i.I).I ---2- LJ(Op,q -.L.JLJ (1)--(1) p_p'- (J) (J) P+P'+q 
]..I 2 P pi 

(27) 

It is readily seen that the last sum in Eq. (27) is higher by if than the last one 
in Eq. (25). 

Let us evaluate the expressions for ]..12 and L/]..I2 to the order t/ in the case of 
spinless electrons in a positive charge sea. For this case 

V - 47Ce
2 

(2- 1 

A- A? '" (28) 

and 

p.q q2 
lOp,Q=---+--' (29) 

m 2m 

We shall gIve the values of the separate sums in Appendix 1. The final result IS 

2e2p 3 e4 
_----""--_F_ + --9 q2, 

37CJJl 16n-
(30) 

and with this value of ]..12 inserted, 

j).l2=2 PF2_q2_~ e
2pF q2. 

5 ln2 5n m 
(31) 

Transcribing these results in terms of the usual notations: 

PF3=6n2 n, 

1 4n 3 3 
-=-r aB n 3 s , 

and 

( 2 )-1 aB= e 1n , (32) 

where n is the number density of the electrons and aB is the Bohr radius, we 
obtain as the required dispersion formula for the plasma oscillation 

2 4ne2n 3 PF2 2 { 1 (2 )1/3 5 (2 )2/3 2} 
.Ii = +---q 1-- - rs+-- - rs. 

m 5 m 2 3n 9n 48n2 9n 
(33) 

It is to be noted here that a correction to the non-dispersive term, which 
would otherwise contain a term proportional down to rs, has been cancelled out 
by virtue of the relation (26). It may also be noted that the last term in the 
dispersion coefficient, which is proportional to e4 or the correction factor propor­
tional to rs2, has arisen from our taking account of the Pauli principle in the case 
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of doubly annihilation or creation processes in the region roo 

The first and the second terms in the dispersion coefficient, (31), may also be 
wri tten in the form: 

(34) * 

where the average is to be taken over the Fermi sphere and Ex IS the exchange 
energy per electron in the Fermi ground state, i. e. 

3 2 
Ex=---e PFo 

4n 
(35) 

This, including the result about the non-dispersive term, is just what one obtains 
on the basis of Hartree-Fock treatment of the plasma oscillation. We shall give 
the analysis in the Appendix 2. 

§ 5. Interaction between the excitons and concluding remarks 

One can extend the calculation to obtain the interaction Hamiltonian in a 
similar way. The three exciton interaction can be obtained by evaluating the 
expreSSIOn 

which, transformed into the fermion representation, is equal to 

([ap{apu [[X, ap*ap] , ap~apl]J). 

The evaluation of this latter expression is straightforward, and one thus obtains 

([Cp~\ [[UXU, C/P] , Cp'V']J) 

+ (Vp_p,- V p_p) aP1,Pf ap1+p,p+p,+ (Vpl_p- VPI_p/) ap1,papl+PI,P+PI' (36) 

Here one may note that 

[[Xl, ap*ap] , ap~apI]=O, (37) 

so that Xl contributes only to the two-exciton Hamiltonian. Hence, the three­
exciton interaction is given by 

~~ (V - V ) {C*P1+P-PC P'C P+C*PC*P;CPf +P-P} LJ L..J P-p pl-p pI pf P P p' pI 

- 2J~ (Vp_p- V p_p,) {C;'~'p_pCpf'C:+C:PC;'P1C::+p_p}. (38) 

The four-exciton interaction is rather heavy to work out, but the calculation 
goes in quite a similar straightforward way. However, we shall refrain from 

* The author learned later that DuBois obtained the same answer through a different 
analysis. D. F. DuBois, thesis, California Institute of Technology, 1958. 
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writing it down here. Instead we shall only note that in the above expansion of 
the fermion Hamiltonian on the basis of exciton picture the interaction Hamiltonian 
will involve evaluation of a finite number of coefficients, since the multiple com­
mutator of :JC2 with various a'ta/s vanishes beyond the fourth. 

We shall defer the investigation of the interactions to a later paper. 
We showed once4

) that any system of interacting Bose particles can be completely 
described in terms of Bogoliubov excitations.5

) There appeared interactions involving 
up to six excitations. The formulation was analogous to the spin wave theory of 
Dyson.6

) The same procedure was followed for the fermion case first, obtaining 
essentially the same Hamiltonian. It is, however, not hermitian and, besides, it is 
not straightforward to take full account of the Pauli principle. The utilization of 
the transformation (4) is certainly superior in this respect. The present method 
may have a more versatile applicability. 

We presented here only one simple application and laid a stress on the formal 
aspect of the method. However, the investigation of the diamagnetism and the 
Froehlich interaction of metals on the basis of this formalism is interesting and, 
in fact, the work on these lines is under way in our laboratory. 
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Appendix I 

We shall list here the various sums involved III Eqs. (25) and (27) : 

(A·l) 

(A·2) 

(A·3) 

(A·4) 
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Appendix 2 

Here we shall give a brief discussion based on Hartree-Fock's self-consistent 
field. 

First transform the density matrix defined by the orthogonal oribitals equal 
in number to the number density of the electrons, to the" Wigner representation": 

(A·5) 

with 
n 

(q'lplq") = 2J (q'l r) (rlqff) , (A· 5') 
:r 

This obeys the equation of motion of the type, 

a 2 . n [a a a a J U)/ -p(q, p)=-sln- ----- J() (q,p)p(q,p) 
at h 2 Opp aq'ib ap'ib aqp 

ap aX aX op 
~ ap aq- ap aq' (A·6) 

wi th the Hamiltonian 

X (q, p) = __ +e2 q p(q', p') -~-P2 J d' J dp' r 4nrP dp' 
e

2

J Ip-p'1 2 p(q, p') (2nn)3' 2m Iq- q'l (2nn) 3 

(A. 6') 7) 

Let us assume that 

p(q, p, t) =Po(p) +Pl(Q, p, t) (A·7) 

and linearize the equation. Here the assumed positive charge background cancels 
the Coulomb field due to the homogeneous distribution of the electrons Po (p) . 

a ( t) _ 2 ( r ~ dq' r (' 't) d p' 
at PI q, p, -e J aq Iq-q'l JP1 q,p, (2n) 3 

r 4n a ( ') dp' ) apo 
J Ip-p'1 2 aqPlq,P,t (2n) 3 ap 

( p 2 r 4n a (') d p' ) a PI 
- m -e J Ip-p'1 2 ap' Po p (2n) 3 aq' (A·8) 

Putting the fluctuating part of the Wigner distribution function in the form: 

(A·9) 

we obtain the eigen-value equation. The same perturbational method as in the 
text gives as the dispersion formula 
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798 T. Usui 

k.P!~ dpo 
p' dp' 

())- k. p' /m)2 

(k. (p_ p') )2 
ip_p'j2 

d 3p' 
(27l') 3 

(A·I0) 

Assuming that ))2';3> (k.p/m) 2 for the plasma oscillation and expanding in power 
of k2

, we can reduce Eq. (A. 10) to 

))2 = 4:2 n + k2 
(( ~ )) 

The last integral, divided by the factor k2
, can be shown to be equal to 

47l'e
2 

1 JJ 1 I p - p' I d 3 P --~ --log i poPo' 
nm 15 pp' p+p' (27l') 3 

Hence Eq. (A. 11) can be written in the form 

d 3p' 
(27l') 3 • 

d 3p' 
(27l') 3 

(A· 11) 

(A·12) 

(A ,13) 

where E)f is the exchange energy per electron in the state Wo. Ferre1l8
) gave a result 

of the same form except for a difference of the factor 1 instead of 4/15. The 
same result as Eq. (A. 13) was given by Silin.9

) 
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