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We develop a mean-field theory of the dynamics of a nonequilibrium Bose-Einstein condensate of

exciton polaritons in a semiconductor microcavity. The spectrum of elementary excitations around the

stationary state is analytically studied by means of a generalized Gross-Pitaevskii equation. A diffusive

behavior of the Goldstone mode is found in the spatially homogeneous case and new features are predicted

for the Josephson effect in a two-well geometry.

DOI: 10.1103/PhysRevLett.99.140402 PACS numbers: 05.30.Jp, 03.75.Kk, 42.65.Sf, 71.36.+c

After a few decades of impressive efforts on a variety of

different systems such as bulk cuprous oxide [1] and

coupled quantum wells [2], first observations of Bose-

Einstein condensation (BEC) of excitons in solid state

systems have been recently reported in a gas of exciton

polaritons [3] and immediately confirmed by other groups

[4–6]. With respect to previous examples of BEC as liquid
4He and ultracold atomic gases, the present system has the

crucial novelty of being an intrinsically nonequilibrium

system: because of the finite lifetime of polaritons, the

condensate has to be continuously replenished from the

relaxation of optically injected high energy excitations

(e.g., free carriers or hot polaritons), and its steady-state

results from a dynamical balance of pumping and losses.

From this point of view, the polariton condensate shares

some similarities with a spatially extended laser [7], but a

direct analogy is made impossible by the strong nonline-

arity due to polariton-polariton collisions. The (still to

come) atom laser [8] would be the closest analog of the

present polariton BEC.

In addition to its effect on the cloud of noncondensed

polaritons [6,9,10], the nonequilibrium condition is re-

sponsible for qualitative novelties also in the dynamic

behavior of the polariton BEC. The first calculation of

the excitation spectrum on top of a homogeneous polariton

condensate taking into account its driven-dissipative nature

was reported in [11]. As is typical in dynamical systems far

from equilibrium such as Bénard cells in heat convection

[12] and optical parametric oscillators [13], the lowest-

lying excitation mode consists of a diffusive mode instead

of a propagating mode like sound. It is the purpose of the

present Letter to develop a simple and generic theory of a

nonequilibrium condensate which, differently from [11],

does not require a microscopic model of the polariton

physics, and can be used independently of the specific

pumping scheme and in arbitrary geometries. Our theory

is inspired by classical treatments of laser operation [14],

and closely resembles the generic model of atom lasers

developed in [15]. Differently from kinetic approaches

based on the Boltzmann equation [9,16–18], our model

fully includes the coherence of the polariton field; differ-

ently from single-mode theories [19,20], it is able to follow

the spatial, i.e., multimode, dynamics of the condensate.

Both these features [21] are indeed essential to get a

complete description of the coherent dynamics of the

condensate. Under reasonable assumptions, our predic-

tions for the diffusive nature of the elementary excitations

in a homogeneous system are in perfect agreement with the

conclusions of Ref. [11]. As a first application to nontrivial

geometries, novel features are anticipated for the

Josephson oscillations [22–24] between two weakly

coupled polaritonic condensates.

The physical system we consider consists of a semicon-

ductor microcavity containing a few quantum wells with an

excitonic transition strongly coupled to the cavity photon

mode [3,4]. Its basic excitation modes are exciton polar-

itons, i.e., linear superpositions of a quantum well exciton

and a cavity photon, and satisfy Bose statistics. The ex-

perimental scheme used to create the polariton condensate

is sketched in Fig. 1(a): under a continuous-wave high

energy illumination, hot free carriers are generated in the

semiconductor material forming the microcavity. Their

cooling down by phonon emission leads to the formation

of a incoherent gas of bound excitons in the quantum wells,

which eventually accumulate in the so-called bottleneck

region above the inflection point of the lower exciton

polariton (LP) branch [25]. Polariton-polariton collisions

are then responsible for the (generally slower) scattering of

polaritons from the reservoir in the bottleneck region to the

bottom of the LP branch. For high enough polariton den-

sity, scattering into the lower part of the LP is enhanced by

Bose stimulation effects [9]: when the stimulated scatter-

ing rate overcomes losses, the polariton field becomes

coherent, and a BEC appears.

Our model is based on a mean-field description of the

condensate in terms of a generalized Gross-Pitaevskii

equation (GPE) for the macroscopic wave function  �r�
including loss and amplification terms

 i
@ 

@t
�

�

�
@r2

2mLP

�
i

2
�R�nR�����gj j

2�2~gnR

�

 : (1)

PRL 99, 140402 (2007)
P H Y S I C A L R E V I E W L E T T E R S week ending

5 OCTOBER 2007

0031-9007=07=99(14)=140402(4) 140402-1  2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.99.140402


As we are interested in the lowest part of the LP dispersion,

the polariton dispersion is approximated by a parabolic one

with effective mass mLP and momentum-independent loss

rate �. The strength of polariton-polariton interactions

within the condensate is fixed by the coupling constant g.

Provided the polariton distribution in the reservoir region

and all coherences between the reservoir and the conden-

sate relax on a short time scale as compared to the con-

densate dynamics, the (non-necessarily thermal) state of

the reservoir is fully determined by its local density nR�r�.
The amplification rate R�nR� of the condensate due to

stimulated scattering of polaritons from the reservoir is a

monotonically growing function of nR. Interactions be-

tween condensate and reservoir polaritons are modeled

by the interaction constant ~g, generally different from the

condensate one g.

The condensate evolution (1) has to be coupled to an

equation for the density nR�r� of reservoir polaritons. In a

simple phenomenological model, this can be written as

 

@nR
@t

� P� �RnR � R�nR�j �r�j
2 �Dr2nR; (2)

where polaritons are pumped into the reservoir at a rate P
and relax at a rate �R. The spatial hole-burning effect due

to the scattering of reservoir polaritons into the condensate

is taken into account by the R�nR�j j
2 term;D is the spatial

diffusion rate of reservoir polaritons.

The steady state under a continuous-wave and uniform

pumping can be obtained by substituting an ansatz of the

form  �x; t� � e�i�T t 0 and nR�x; t� � n0R into (1) and (2).

For small values of P, no condensate is present  0 � 0 and

the reservoir density is proportional to the pump intensity

n0R � P=�R. This solution is dynamically stable as long as

the amplification is not able to overcome the losses, i.e.,

R�n0R�<�. The threshold P � Pth corresponds to the

value nthR of the reservoir density which guarantees exact

balance of amplification and losses R�nthR � � �. When P is

increased above the threshold, the solution  0 � 0 be-

comes dynamically unstable and a condensate appears.

Stationarity imposes the net gain to vanish, which clamps

the reservoir density to n0R � nthR , while the condensate

density grows as j 0j
2 � �P� Pth�=� . The oscillation

frequency of the macroscopic wave function is �T � ��
2~gn0R with � � gj 0j

2.

The elementary excitations spectrum around the station-

ary state of the system can be obtained in the usual way

[13,26,27] by linearizing the motion Eqs. (1) and (2)

around the steady-state solution. Thanks to the transla-

tional invariance, the fluctuations can be decomposed in

their Fourier components

  �r; t� � e�i�T t 0

�

1�
X

k
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i�kr�!t� ��v�

k
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�

;

(3)

 nR�t� � n0R�1� wke
i�kr�!t� � w�

k
e�i�kr�!t��: (4)

Introducing the fluctuation vector Uk � �uk; vk; wk�
T , the

eigenvalue equation defining the elementary excitations

has the simple matricial form LkUk � !Uk with
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Here � � P=Pth � 1 is the relative deviation from the

threshold pumping intensity and the dimensionless coeffi-

cient � � n0RR
0�n0R�=R�n

0
R� characterizes the dependence

of the amplification rate on the reservoir density, and � �
1� ��. The standard Hartree-Fock value ~g � 2g has

been taken. Quite remarkably, the excitation spectrum

does not depend on the actual value of the scattering rate

R of the reservoir into the condensate mode: only the

effective exponent � and the relative pumping rate � do

matter. Of course, the threshold value Pth of the pumping

intensity does depend (in an inversely proportional way) on

R.

Typical examples of elementary excitation spectra are

shown in Figs. 1(b)–1(d). As Bose condensation corre-

sponds to a spontaneous breaking of a U�1� symmetry,

all spectra involve a Goldstone branch whose dispersion

!G�k� tends to 0 in the long-wavelength k! 0 limit

[12,26]. Physically, this mode can be understood as a

slow rotation of the condensate phase across the sample;

the generator �1;�1; 0�T of global phase rotations is indeed

an eigenvector of Lk�0 with a vanishing eigenvalue.

FIG. 1 (color online). Top (a) panel: sketch of the pumping and

condensate formation scheme. (b)–(e) panels: real and imagi-

nary part of the excitation spectrum of a homogeneous polariton

condensate as a function of the wave vector k (in units of the

healing length � �
������������������

@=mLP�
p

). Parameters: �R=� � 5 and � �
� � �=� � 1 (b),(c); �R=� � 1 and � � 0:5, � � �=� �
�R=� � 1 (d),(e). Rescaled diffusion constant DmLP=@ 	 5

10�4; the spectra are indistinguishable from the D � 0 case.

Dashed lines in (b),(d): standard equilibrium Bogoliubov dis-

persion.
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Let us now analyze in more detail the different cases,

starting from the simplest, yet physically most relevant one

�R � � [28] when the reservoir is able to adiabatically

follow the evolution of the condensate. The dispersion of

elementary excitations is shown in Figs. 1(b) and 1(c): in

stark contrast with the linear dispersion of the propagating

sound mode in equilibrium Bose-Einstein condensates

[26], the Goldstone mode (indicated as � in the figure)

shows a diffusive and nonpropagating behavior at low k.

The real part is dispersionless and equal to zero, while the

imaginary part starts from zero in a quadratic way. This

conclusion is in agreement with Ref. [11] where these

issues were investigated using a very specific microscopic

model of the polaritons. This suggests that the diffusive

behavior of the Goldstone mode is a generic fact of non-

equilibrium phase transitions not only under a coherent

pumping as in pattern forming systems [12,13], but also in

the present case of incoherent pumping. Note that this

diffusive behavior is in no way due to the spatial diffusion

of reservoir polaritons, and would be observed even in its

absence. The value D � 5 cm2=s actually chosen in the

figures is inspired by recent experimental studies [29] and

corresponds to a very small dimensionless diffusion con-

stant ~D � DmLP=@ 	 5
 10�4.

An analytical explanation of this behavior is readily

obtained by adiabatically eliminating the dispersionless

and strongly damped reservoir mode (R in the figure)

whose imaginary part is close to �1� ����R. Taking for

simplicity D � 0, this leads to the following dispersion of

the two branches of condensate excitations:

 !��k� � �i�=2�
��������������������������������������

�!Bog�k��
2 � �2=4

q

; (6)

where !Bog�k� is the usual Bogoliubov dispersion of dilute

Bose gases at equilibrium!Bog�k� � �"k�"k � 2���1=2 and

"k � @k2=2mLP. The nonequilibrium nature of the system

is quantified by the effective relaxation rate � �
���=�1� ��� whose value tends to 0 when the threshold

is approached � * 0 and saturates to � for large �� 1.

The first � branch of (6) is the Goldstone branch which

corresponds for small k values to a slow rotation of the

condensate phase. The � branch corresponds instead to

modulations of the condensate density; for low k values, it

is damped at a finite rate �. From (6) it is immediate to

obtain the width �k of the k-space region where the

Goldstone mode is flat Re�!G�k�� � 0. Inserting parame-

ters (@� � 0:8 meV, mLP � 10�4me, @� � 0:5 meV) in-

spired by the recent experiment [3], one finds that the

Goldstone mode is dispersionless down to wavelengths of

the order of 10 �m, a value that fits well within the present

condensate sizes. On the other hand, for k� �k, the �
modes recover the standard Bogoliubov dispersion of an

equilibrium condensate.

More complex behaviors are predicted if comparable

values are taken for �R and �. In this case, the reservoir

mode takes full part in the system dynamics and is strongly

mixed with the condensate ones. As it is shown in Fig. 1(d)

and 1(e), this can result in a dramatically different disper-

sion of the elementary excitations, note, in particular, the

dynamical instability Im�!�> 0 of theDI branch for k� &

1:2. The origin of this phenomenon is due to the repulsive

interactions between condensate and reservoir polaritons.

A local depletion of the reservoir density nR�r� creates a

potential well which attracts the condensate polaritons.

This in turn leads to a further drop of the local reservoir

density by the hole-burning effect, until a spatially modu-

lated steady-state is eventually reached.

As a final point of the Letter, we now discuss the peculiar

nonequilibrium features of the Josephson effect between a

pair of spatially separated polariton condensates in a two-

well geometry. The experimental realization of such a

system appears to be feasible in the next future: as dem-

onstrated in [30], polariton traps of arbitrary shape and size

can be created with photolithographic techniques.

Following classical work [22,23,26], the theoretical de-

scription of the two-well system can be simplified by

projecting (1) onto the localized ground-state wave func-

tions�1;2 of each well (normalized as usual as
R

drj�jj
2 �

1). In terms of the amplitudes  1;2 in the two wells, the total

polariton wave function reads  �r� �  1�1�r� �  2�2�r�,
and the dynamics is

 i
d j

dt
� �J 3�j �Uj jj

2 j �
i

2
�R�nj� � �� j; (7)

 

dnj

dt
� Pj � �Rnj � R�nj�j jj

2: (8)

Here, n1;2 are the reservoir densities at the two condensate

positions, the charging energy is U � g
R

drj�jj
4, and the

hopping energy J is related to the polariton flux through a

surface separating the wells by [26]: J � �@=mLP�

R

z�0 d���
�
1@z�2 ���

2@z�1�. As a specific example, we

have considered a double-well geometry inspired from the

recent experiments [30], i.e., a pair of circular wells of

depth of 3 meV and radius 2 �m, separated by 1 �m. The

resulting values J � 0:1 meV and U � 0:03 meV (for

0 5 10 15 20 25
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(b)

FIG. 2. Time evolution of the population N1 after an excitation

sequence of duration �Texc � 1 (dashed vertical lines). Upper

(a) panel: Josephson oscillations (J � �=2). Lower (b) panel:

overdamped relaxation (J � �=20). Other parameters: U �
J=10, �R � 10�, R0 � �, P0=Pthr � 2, �P=P0 � 0:5.

PRL 99, 140402 (2007)
P H Y S I C A L R E V I E W L E T T E R S week ending

5 OCTOBER 2007

140402-3



g � 0:015 meV�m2) are quite promising in view of ex-

perimental investigations.

Restricting ourselves to the most significant �R � �
case, the frequency of the small amplitude Josephson

oscillations around the stationary state with N1;2 �
j 1;2j

2 � N polaritons per well can be obtained by simply

replacing the expression !J �
��������������������������

4J�NU� J�
p

to the

Bogoliubov frequency !Bog�k� in (6). Examples of the

different regimes are shown in Fig. 2: starting from the

steady state under P1;2 � P0, the pumping intensity in each

well is modulated to P1;2 � P0 � �P for a short time

interval 0< t < Texc and then brought back to P1;2 � P0.

The system dynamics is followed on the mode populations

N1;2. If !J > � (upper panel), the only difference as com-

pared to Josephson oscillations in atomic BECs [24] con-

sists of the intrinsic damping rate �. On the other hand, if

�>!J (lower panel), Josephson oscillations are replaced

by an exponential relaxation back to the stationary state;

the two modes at !� appear in the relaxation dynamics as

two well-separated exponentials.

To summarize, we have developed a generic model for

the dynamics of a polariton Bose-Einstein condensate. The

intrinsic nonequilibrium nature of the system is taken into

account by means of a generalized Gross-Pitaevskii equa-

tion including loss and amplification terms. The dispersion

of elementary excitations around the stationary state is

investigated in the different regimes: under a reasonable

fast reservoir hypothesis, the Goldstone mode of a spatially

homogeneous system is found to be diffusive and the

Josephson oscillations in a two-well system overdamped.

This model will be of great utility to study the complex

structures appearing [31] in spatially inhomogeneous con-

densates under the combined effect of condensation and

losses, and will be the starting point for studies of the

critical properties of the BEC phase transition in a non-

equilibrium context.
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