
 Open access  Posted Content  DOI:10.1101/2021.04.15.439946

Excitatory-inhibitory balance modulates the formation and dynamics of neuronal
assemblies in cortical networks — Source link 

Sadra Sadeh, Claudia Clopath

Institutions: Imperial College London

Published on: 15 Apr 2021 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Lateral inhibition

Related papers:

 Theory of Neuronal Perturbome: Linking Connectivity to Coding via Perturbations

 Theory of neuronal perturbome in cortical networks.

 
Mechanisms of Self-Sustained Oscillatory States in Hierarchical Modular Networks with Mixtures of
Electrophysiological Cell Types.

 
A computational model of cell culture dynamics: the role of connectivity and synaptic receptors in the appearance of
synchronized bursting events

 Neuronal assemblies

Share this paper:    

View more about this paper here: https://typeset.io/papers/excitatory-inhibitory-balance-modulates-the-formation-and-
21fbs65gn2

https://typeset.io/
https://www.doi.org/10.1101/2021.04.15.439946
https://typeset.io/papers/excitatory-inhibitory-balance-modulates-the-formation-and-21fbs65gn2
https://typeset.io/authors/sadra-sadeh-2mbo9ibn2h
https://typeset.io/authors/claudia-clopath-1mn2nvb7sv
https://typeset.io/institutions/imperial-college-london-1zhbqb9r
https://typeset.io/journals/biorxiv-318tydph
https://typeset.io/topics/lateral-inhibition-2f1a6xnm
https://typeset.io/papers/theory-of-neuronal-perturbome-linking-connectivity-to-coding-3sa6wir63b
https://typeset.io/papers/theory-of-neuronal-perturbome-in-cortical-networks-3siacie5mz
https://typeset.io/papers/mechanisms-of-self-sustained-oscillatory-states-in-5epw6v2vo3
https://typeset.io/papers/a-computational-model-of-cell-culture-dynamics-the-role-of-3zptl8hpsp
https://typeset.io/papers/neuronal-assemblies-33z3ch32by
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/excitatory-inhibitory-balance-modulates-the-formation-and-21fbs65gn2
https://twitter.com/intent/tweet?text=Excitatory-inhibitory%20balance%20modulates%20the%20formation%20and%20dynamics%20of%20neuronal%20assemblies%20in%20cortical%20networks&url=https://typeset.io/papers/excitatory-inhibitory-balance-modulates-the-formation-and-21fbs65gn2
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/excitatory-inhibitory-balance-modulates-the-formation-and-21fbs65gn2
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/excitatory-inhibitory-balance-modulates-the-formation-and-21fbs65gn2
https://typeset.io/papers/excitatory-inhibitory-balance-modulates-the-formation-and-21fbs65gn2


1 

Excitatory-inhibitory balance modulates the formation and dynamics of neuronal 

assemblies in cortical networks 

Sadra Sadeh1 and Claudia Clopath1* 

1 Bioengineering Department, Imperial College London, London SW7 2AZ, United Kingdom 

* Correspondence: c.clopath@imperial.ac.uk 

Abstract 

Repetitive activation of subpopulation of neurons in cortical networks leads to the formation of 

neuronal assemblies, which can guide learning and behavior. Recent technological advances 

have made the artificial induction of such assemblies feasible, yet how various patterns of 

activation can shape their emergence in different operating regimes is not clear. Here we studied 

this question in large-scale cortical networks composed of excitatory (E) and inhibitory (I) 

neurons.  We found that the dynamics of the network in which neuronal assemblies are 

embedded is important for their induction. In networks with strong E-E coupling at the border of 

E-I balance, increasing the number of perturbed neurons enhanced the potentiation of 

ensembles. This was, however, accompanied by off-target potentiation of connections from 

unperturbed neurons. When strong E-E connectivity was combined with dominant E-I 

interactions, formation of ensembles became specific. Counter-intuitively, increasing the number 

of perturbed neurons in this regime decreased the average potentiation of individual synapses, 

leading to an optimal assembly formation at intermediate sizes. This was due to potent lateral 

inhibition in this regime, which also slowed down the formation of neuronal assemblies, resulting 

in a speed-accuracy trade-off in the performance of the networks in pattern completion and 

behavioral discrimination. Our results therefore suggest that the two regimes might be suited for 

different cognitive tasks, with fast regimes enabling crude detections and slow but specific 

regimes favoring finer discriminations. Functional connectivity inferred from recent experiments 

in mouse cortical networks seems to be consistent with the latter regime, but we show that 

recurrent and top-down mechanisms can dynamically modulate the networks to switch between 

different states. Our work provides a framework to study how neuronal perturbations can lead 

to network-wide plasticity under biologically realistic conditions, and sheds light on the design 

of future experiments to optimally induce behaviorally relevant neuronal assemblies. 
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Introduction 

Neuronal assemblies are building blocks of computation and learning in the brain (1–4). Recent 

technological advances have provided us with unprecedented tools to bidirectionally interact 

with their circuitry, by enabling us to record from and perturb the activity of subpopulations of 

neurons (5–7), in order to ultimately link their dynamics to behavior (8). Experimental work has 

specially been successful in recent years to artificially induce neuronal ensembles by targeted 

activation of a subset of cortical neurons (9, 10). Efficient induction of such assemblies can 

provide a powerful means to trigger or suppress a specific behavior (8, 11), and can potentially 

guide us in understanding brain diseases (12) and to design more efficient brain machine 

interfaces (13). As with other perturbation techniques (14–17), it is crucial to understand how 

parameters of stimulation, including the pattern of activation of specific neurons and the general 

state of the network dynamics, can be optimized for an efficient induction.  

This optimization can, however, be complicated, given the complex connectivity and dynamics 

of cortical networks. Neuronal ensembles cannot form in isolation, as they are embedded in a 

background of connections from other neurons in local and distal networks, which can modulate 

their activity. The background network itself can be in different operating regimes (e.g. awake 

versus anaesthetized) and modulated by different mechanisms like top-down input and 

neuromodulators. Moreover, perturbation of a subset of neurons embedded in such background 

networks is likely to create a cascade of activation of downstream neurons (18, 19), which can 

in turn affect the activity and plasticity of the initially perturbed neurons in a recurrent manner. 

This complex interaction is especially expected in cortical networks with strong recurrent 

excitatory and inhibitory connections, as reported in many brain regions (19–25). 

To study the formation of neuronal assemblies under biologically realistic conditions we therefore 

need to consider this complex interplay of network dynamics and plasticity. Conventional 

plasticity protocols, in contrast, typically study the weight changes under artificial conditions 

(26–28). The plasticity is often induced in a few, isolated pairs of neurons, in conditions where 

the effect of background activity (29) and network interactions is masked or minimized. They 

also involve patterns (30) and conditions (31) of stimulation that are optimized to maximally drive 

the activity of pre- and post-synaptic neurons (Fig. 1A). Learning in naturalistic conditions, on 

the other hand, is likely to be guided by a different pattern of neuronal perturbations (30), 

involving sparse activity of a large subpopulation of neurons (32), spanning a wide range of 

spatial and temporal scales pertinent to behaviourally relevant stimuli (33) (Fig. 1B).  
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To breach this gap, here we studied how neuronal ensembles can be induced in large-scale 

recurrent networks of excitatory and inhibitory neurons under various regimes of perturbation. 

We used a theory we recently developed to analyse the effect of neuronal perturbations in such 

networks (34), and asked how activity changes resulting from different perturbations guide 

network-wide plasticity (Fig. 1C-E). Network response dynamics operate on much faster 

timescales (~10-100 ms) compared to the timescale of long-term plasticity (minutes to days), so 

we used separation of timescales between the two stages to guide our analysis. In the first step, 

we assessed how input perturbations are transferred to output responses, assuming a fixed 

weight matrix for the network (Fig. 1D); we then studied how the correlative activity patterns 

emerging from such responses lead to modification of neuronal ensembles (Fig. 1E). We started 

our study by analyzing the influence of network dynamics on network-wide plasticity (Fig. 1C), 

but later also considered the bidirectional interaction of the two over longer time scales.  

Using this approach we found that not only the parameters of external stimulation, but also the 

operating regime of the network affect the induction of neuronal assemblies. Ensembles formed 

fast but with less specificity in networks with weak E-I coupling, while networks with strong E-I 

coupling gave rise to specific ensembles, which formed more slowly. Moreover, the size of 

perturbed neurons had different effects on the formation of assemblies in different regimes. 

Specifically, increasing the number of perturbed neurons in strong E-I coupling regimes did not 

always enhance the formation of assemblies, suggesting an optimal size for the induction of 

ensembles. Different E-I regimes also favored a different trade-off of speed and accuracy in 

behavioral tasks, and modulating the E-I regime provided a powerful and generic means to 

control this trade-off in assembly formation and learning. 

Results 

Induction of neuronal assemblies in excitatory-inhibitory networks 

We studied the formation of neuronal assemblies as a result of different patterns of perturbations 

in large-scale cortical network models with balance of excitation (E) and inhibition (I) (35–37). A 

subset of excitatory neurons is targeted by repetitive external perturbations to induce a neuronal 

assembly (Fig. 1F). Induction protocols are characterized by the key parameters of the 

perturbations including the number of targeted neurons (𝑁! – or the size of neuronal ensemble), 

and the temporal properties of the stimulus, which is alternating between binary states of ON 
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(𝑆	 = 	1, for 𝑇"#) and OFF (𝑆	 = 	0, for 𝑇"$$). The background network is parameterized by the 

strength of E-E weights (𝐽%% = 𝐽), and the relative strength of E-I coupling (𝑘). The parameter 𝑘 

describes the dominance of the overall 𝐸 → 𝐼 and 𝐼 → {E, I} couplings relative to E-E weights, 

with 𝑘	 = 	1 denoting perfect balance and 𝑘	 > 	1 ensuring a dominant recurrent inhibition (Fig. 

1G; see Methods). E-E coupling is strong (𝐽	 > 	1), such that in the absence of E-I interactions 

(𝑘	 = 	0) the network is unstable, consistent with the observation that cortical networks operate 

in inhibitory-stabilized regimes of activity (24, 38).  

We simulated the response of the network to perturbations in two regimes of recurrent E-I 

interaction (Fig. 1H-M). The first regime is equipped with the minimum amount of inhibition that 

is necessary to stabilize the E-E subnetwork (𝑘 = 1); we refer to this regime as weak E-I coupling 

(Fig. 1G, left). The second regime has a stronger E-I coupling (𝑘 = 4) (Fig. 1G, right), which 

guarantees the operation of the network away from the border of instability and enables stronger 

lateral inhibition. We simulate the response of the network before and after perturbations in each 

regime (Fig. 1H,K), and evaluate how Hebbian-type plasticity rules (see Methods) change the 

weight matrix as a result of pre- and post-synaptic activity changes (Fig. 1I,L). The strength of 

neuronal ensemble resulting from perturbation-induced plasticity was quantified by calculating 

the potentiation of synapses within the perturbed subset of neurons in each case (Fig. 1J,M). 

Networks with weak E-I balance (𝑘 = 1) showed supralinear potentiation of the strength of 

assemblies with increasing the size of targeted neurons (𝑁!), and this effect was increased for 

longer time interval of perturbation (𝑇!) (Fig. 1J). Overall, this pattern is consistent with the 

presence of some cooperativity in the amplification of external perturbations within the ensemble 

(39). In the second regime with dominant E-I coupling (𝑘 = 4), however, we observed a different 

trend. The strength of induced ensembles grew sublinearly with 𝑁!, plateauing when around 

~30% of all excitatory neurons were perturbed, and dropping for larger fractions of stimulated 

neurons (Fig. 1M). These results indicate that, contrary to the prima facie assumption, increasing 

the number of targeted neurons by external perturbations may not always lead to formation of 

stronger neuronal assemblies in E-I networks. 

We observed similar results for networks with higher ratio of excitatory to inhibitory neurons (Fig. 

S1A), in networks with sparse connectivity of E-E connections (Fig. S1B), and when the network 

connectivity was random rather than specific (Fig. S1C). Our results also hold for different 

variants of Hebbian rule  (Fig. S2). We focused our analysis in the following sections on randomly 

connected networks with covariance-based learning rule (see Methods).  
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Fig. 1. Induction of neuronal assemblies in different regimes of excitation-inhibition balance. 
(A) Schematic of conventional protocols for the induction and investigation of plasticity, often involving a 

small number of neurons and perturbations with brief ON pulses (𝑇!"). (B) Typical activity patterns in 

response to naturalistic stimuli involves activation of a large but sparsely active subset of neurons, with 

typical temporal scales much longer than a few milliseconds (33). (C-E) Analytical steps (C) to evaluate the 

effect of external perturbations on the formation of neuronal assemblies, involving dynamics of networks 
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responses (D) and network-wide plasticity (E). Knowing the weight matrix (𝑊), input perturbations (δ𝑠) are 

transferred to output perturbations (𝛿𝑟) (D); the resulting correlated activity patterns of pre- and post-

synaptic neurons (Σ) in turn guide a network-wide plasticity of weights (E). (F) Schematic of the perturbation 

protocol to study plasticity in large-scale networks, composed of excitatory (Exc, triangles) and inhibitory 

(Inh, circles) neurons. Left: 𝑁# excitatory neurons are perturbed, with a series of stimulation pulses which 

are alternating between on and off states for 𝑇!" and 𝑇!$$, respectively. Right: The effect of perturbations 

on the induction of assemblies is assayed by evaluating the potentiation of weights within the perturbed 

neurons (orange) as a result of Hebbian learning (see Methods). (G) Parameterization of different regimes 

of large-scale networks in which neuronal assemblies are induced, with two sample networks 

demonstrating weak (𝑘	 = 	1) and strong (𝑘	 > 1) E-I coupling regimes. 𝐽%& = |𝐽&%| = |𝐽%%| = 𝑘𝐽&&. (H) 

Responses of 𝑁& excitatory and 𝑁% inhibitory neurons in a network with weak E-I coupling (𝑘	 = 	1) to 

perturbations (10 pulses with 𝑇# = 50, delivered to 𝑁# = 50 neurons, starting from 𝑇	 = 	300). 𝑁& = 𝑁% =
500. (I) Matrix of weight changes resulting from a Hebbian plasticity rule based on the covariance of 

response changes after perturbations in (H). Neurons are sorted such that closer neurons are more 

strongly connected in the initial weight matrix (see Methods for details). Orange bars denote the stimulated 

neurons. (J) Ensemble potentiation for different ensemble sizes (𝑁#) resulting from perturbations with 

different temporal profiles (𝑇#). Ensemble potentiation is evaluated, within the assembly of perturbed 

neurons, as the normalized average sum of all pre-synaptic weights to perturbed neurons (averaged 

across post-synaptic sources and normalized to the maximum ensemble potentiation for tested 

combinations of 𝑁# and 𝑇#). (K-M) Same as (H-J) for networks with strong E-I coupling (𝑘	 = 	4). 

 

Transition from cooperative to suppressive regimes 

To gain further insights into the formation of assemblies in different regimes, we analyzed how 

the average strength of individual synapses change as a function of parameters of perturbation 

(Fig. 2A-F). Within the ensemble of targeted neurons, we plotted the average potentiation of 

synapses for the two regimes (Fig. 2A,D). For networks with weak E-I coupling, increasing N and 

T both enhanced the average induction (Fig. 2A), indicating that the recurrent interactions amplify 

the strengthening of ensembles. Such enhancement of potentiation per synapse combined with 

the increase in the number of presynaptic sources leads to the supralinear potentiation of the 

weights of the assemblies, as we observed before (Fig. 1J). Networks with dominant E-I 

coupling, on the other hand, showed a suppressive behavior per synapse: average enhancement 

of synapses was decreased for larger perturbation sizes (Fig. 2D). Combination of this 

suppressive effect with the increase in the number of presynaptic sources led to a sublinear 

growth of the total potentiation of the ensemble, as we observed before (Fig. 1M). Similar 

dependence on the induction size was also observed for more biologically realistic 

implementation of networks with spiking neurons in different E/I regimes (Fig. S3).     
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Distinct dependence of the induction on the size of perturbed neurons was predicted by our 

theoretical analysis (Fig. 2B,E), which calculated the potentiation of synapses from the 

covariance of response changes resulting from the dynamics of the network, given the initial 

weight matrix (see Methods). The results of network simulations approached the theoretical limit 

for larger values of 𝑇!, reflecting the fact that our analysis considers the stationary state 

responses of the networks and ignores the temporal dynamics of the transients, which become 

more dominant in perturbations with smaller 𝑇!. Consistent with this reasoning, inferring the 

potentiation from very short transient responses almost abolished the dependence on the 

perturbation size; conversely, very large values of 𝑇! matched well with the theoretical prediction 

and numerical simulations (Fig. S4). These results suggest that perturbation protocols employing 

very fast alternating pulses may fail to reveal the effect of network dynamics on plasticity, as 

recurrent E/I interactions may not emerge at such short time scales.  

To further understand the behavior of networks in different regimes, we developed a mean-field 

analysis based on the average behavior of the perturbed and nonperturbed subpopulations (see 

Methods). The result of the mean-field analysis matched well with the previous theoretical 

analysis inferred from the detailed weight matrix of the network (Fig. 2B,E). Employing the mean-

field analysis, we could scan a large parameter space of arbitrarily large-scale networks with 

different E-E coupling and different fractions of targeted neurons (Fig. 2C,F). The results 

suggested that for weak E-I coupling, increasing both parameters increases the average 

potentiation of synapses (Fig. 2C), consistent with the conventional assumption that stronger 

excitatory connections and larger induction sizes both enhance the potentiation of assemblies.  

For strong E-I coupling regimes, on the other hand, we observed a different behavior. Apart from 

a small part of the parameter space for very weak E-E coupling, the opposite dependence on 𝑁! 

was observed, namely suppression of the average potentiation for larger perturbation sizes (Fig. 

2F). This relationship became steeper for stronger E-E couplings and particularly held for the 

range of E-E couplings recently estimated in the mouse cortical networks (24). Such networks 

are thus predicted to show unintuitive dependence on the size of perturbation, if they are 

operating in strong E-I coupling regimes, as suggested for the functional connectivity of the 

mouse primary visual cortex (19, 34). 
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Fig. 2. Transition from cooperative to suppressive regimes.  

(A) Average potentiation (Avg. Pot.) of individual synapses within the assembly of perturbed neurons (cf. 

Fig. 1J,M) for different ensemble sizes (𝑁#) and temporal profiles of perturbation (𝑇#), normalized to the 

maximum. (B) The values of average potentiation relative to the average E-E weights in the network (𝑤&&), 

compared with the theoretical values obtained from linearized dynamics of the network based on its weight 

matrix (theory W) and from the mean-field analysis (dashed line) (see Methods for details). The results of 

simulations for larger 𝑇# values converge to the theoretical values inferred from 𝑊, which in turn match 

with the mean-field analysis. Ensemble size is expressed as a fraction of total E neurons in the network 

(𝑁#/𝑁&, where 𝑁& = 500). Other parameters the same as Fig. 1. Networks are in the weak E-I coupling 

regime (𝑘	 = 	1). (C) Average potentiation relative to 𝑤&& calculated from the mean-field analysis for 

different combination of network E-E coupling (𝐽&' = 𝑁& 	𝑤&&) and the size of neuronal ensembles as a 

fraction of the total size of the network (𝑁#/𝑁&). (D-F) Same as (A-C) for induced ensembles in networks 

with strong E-I coupling (𝑘	 = 	4). The black line in (F) corresponds to previous simulations in (D,E) with 

𝐽&& = 2. White lines indicate the range of 𝐽&& estimated in mouse cortical networks, with the solid and 

dashed lines corresponding to the mode (𝐽&& = 2.5) and the median (𝐽&& = 4.7) of the estimated values (24). 

 

Strength versus specificity of induced ensembles 

Our results so far indicated that cooperativity in the formation of neuronal ensembles emerges 

in networks with weaker E-I couplings, and that this changes to suppressive behavior in networks 

with stronger E-I interactions. Neuronal ensembles are thus expected to emerge faster and 

stronger in the former regime compared to the latter. But how specific would the outcome of the 

induction be in each regime? To answer this, we quantified the selectivity of assembly formation 
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by comparing the strength of presynaptic weights of perturbed neurons arising from neurons 

within and outside the assembly (Fig. 3A). If the outcome of induction is specific, the potentiation 

of weights remains confined to connections within the intended assembly. On the other hand, 

perturbation of the targeted neurons can lead to off-target effects, causing a potentiation of 

synapses from (or to) outside the assembly, thus creating a nonspecific potentiation. 

For networks with weak E-I coupling, strong within-assembly potentiation was accompanied by 

a substantial out-of-assembly potentiation of weights, resulting in a significant drop in ensemble 

specificity for large perturbation sizes (Fig. 3B,C). However, potentiation of connections from 

outside the ensemble grew much slower for networks with strong E-I coupling, leading to an 

optimal size of induction where the strongest potentiation had a high induction specificity (Fig. 

3D,E). We observed qualitatively similar results for different variants of the Hebbian plasticity rule 

(Fig. S5). These results show that stronger potentiation of assemblies in networks with weak E-

I coupling comes at the price of losing ensemble specificity, as the relative potentiation of within-

assembly to out-of-assembly weights decreases for larger perturbation sizes. Strong E-I 

interaction hampers the potentiation of ensembles, but leads to a more selective formation of 

neuronal assemblies, which is more robust to the size of perturbations. 

In randomly connected networks, the distribution of weight changes from non-assembly neurons 

is random, irrespective of different mean values in different regimes (Fig. 3B,D). However, 

preexisting wiring in the network may guide the process of induction (40) and lead to a non-

random distribution. Connectivity between neurons are in fact reported to be organized 

according to their functional properties (22, 23, 41, 42). We therefore asked how the modulation 

of out-of-assembly connections depends on the initial network structure in networks with some 

non-random (specific) connectivity structure. Specific connectivity was implemented by 

modulating the connectivity weights in the network to have stronger connections between pairs 

of neurons with similar functional properties, which was assumed to be a one-dimensional 

feature (e.g. preferred orientation) here (cf. Fig. 1I,L and Methods). 

In weak E/I regime (𝑘 = 1), we found feature-specific potentiation, namely out-of-assembly 

connections potentiated more for neurons with similar functional features as the perturbed 

neurons (Fig. S6A). This result suggests that preexisting connectivity in this regime interferes 

with the potentiation of the induced ensemble. For networks with strong E/I interactions (𝑘 = 4), 

on the other hand, we observed an opposite trend: neurons closer in the functional space 

experienced, on average, a larger depression of their weights to the ensemble (Fig. S6B). Such 

feature-specific depression of weights can increase the specificity of induction, by suppressing 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.15.439946doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.439946
http://creativecommons.org/licenses/by/4.0/


10 

the strong presynaptic connections that are irrelevant to the intended ensemble. Different 

regimes of E/I can therefore support different modes of assembly formation with regard to 

preexisting structure of the network, with weak E-I coupling regimes promoting the influence of 

the previous connectivity, and strong E-I coupling enabling a more efficient “rewriting”.  

Both feature-specific potentiation and depression were absent when initially perturbed neurons 

were chosen randomly, independent of their preferred orientations (Fig. S6A,B). These results 

therefore argue that different regimes of recurrent interaction as well as different patterns of 

induction can lead to distinct outcomes of plasticity. Note that, while we assumed similar 

properties for all neurons, accounting for more biologically realistic receptive fields of E/I neurons 

(34) and their connections (e.g. broader selectivity and connectivity of inhibition (43–46)) could 

lead to a center-surround pattern of out-of-assembly plasticity, with potentiation and depression 

for highly similar and less similar connections, respectively (via-a-vis center-surround patterns 

of influence resulting from neuronal perturbations in the visual cortex (19, 34)). 

Neuronal ensembles are suggested to be involved in subnetwork-specific recovery of responses 

following input deprivation (47). We therefore asked how this process can be guided by 

specificity of resulting assemblies in different regimes. We reduced the feedforward input to a 

fraction of neurons in the network (comprising distinct subnetworks, A and B), and studied how 

correlated external activation of a subset of them (subnetwork A) can lead to recovery. In both 

regimes, neurons in subnetwork A potentiated their recurrent weights, which can counteract the 

lack of feedforward drive after input deprivation (Fig. S6C,D). While this potentiation happened 

exclusively within subnetwork A in networks with strong E-I coupling (Fig. S6D), recovery in weak 

E-I coupling regimes was also accompanied by potentiation of connections from other E neurons 

(Fig. S6C). Specifically, the reciprocal connectivity between subnetworks A and B was 

potentiated in the weak E-I regime, while it was depressed in the strong E-I regime (Fig. S6C,D). 

These results therefore suggest that strong E-I interactions can shape the specificity of formation 

of neuronal assemblies in the network and their subsequent recovery following input deprivation. 
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Fig. 3. Specificity of assembly formation in different regimes of E/I balance.  

(A) The outcome of induction can be nonspecific (left), if the within-assembly potentiation of weights is 

accompanied by a substantial potentiation of connections originating from outside the assembly, or 

specific (right), when the potentiation of weights remains predominantly within the intended ensemble. (B) 

Potentiation of presynaptic connections within the assembly (orange) versus those from the assembly to 

outside (assemb.-to-out; gray), from outside to the assembly (out-to-assemb.; black), and within the 

outside neurons (out-to-out; gray dashed), respectively. 𝑇# = 50 and inductions is in the weak E-I coupling 

regime (𝑘	 = 	1). Ensemble potentiation is calculated as the average (across postsynaptic neurons) of the 

sum of connection weights from all presynaptic sources (cf. Fig. 1J,M). For each 𝑁#, out-of-assembly 

potentiation is calculated for 100 randomly selected pools of neurons other than, but with the same size 

(𝑁#) as, the perturbed neurons. Line and error bars show the average and std across the pools, 

respectively. (C) Ensemble specificity (Spec.) quantifies the specificity of induced ensembles for different 

sizes of perturbed neurons. It is calculated as (𝐸(–𝐸!)/(𝐸( + 𝐸!), where 𝐸( and 𝐸! are the average within 

and out-of-assembly (assemb.-to-out) ensemble potentiation in (B), respectively. Ensemble specificity 

drops for larger ensemble sizes, reflecting the fact that within-assembly potentiation of weights is 

accompanied by a substantial potentiation of connections from outside. (D,E) Same as (B,C) for neuronal 

ensembles forming in networks with strong E-I coupling (𝑘	 = 	4). Out-of-assembly potentiation grows 

much slower than within assembly potentiation initially until the latter plateaus and starts to drop (D), 

leading to a high ensemble specificity for initial ensemble sizes (E).  
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Speed and specificity of assembly formation 

In the previous analyses, we focused on how response changes resulting from perturbations in 

different dynamic regimes guide network-wide plasticity and formation of assemblies (Fig. 1C). 

Such unidirectional effects of dynamics on plasticity might in fact be pertinent to initial stages;  

in later stages, however, weight changes would in turn shape the network dynamics (although 

with a slower time course). To fully analyze the dynamic evolution and growth of neuronal 

assemblies in cortical networks, we therefore need to consider this closed-loop interaction of 

dynamics and plasticity (Fig. 4A).  

To study this, we repeated our previous perturbation protocols while updating the weight matrix 

of the network in incremental steps. The weight matrix was updated in time intervals of Δ𝑇&, 

while between the updates the weight matrix (𝑊) was kept constant and determined the network 

dynamics. Note that Δ𝑇& is much larger than the time scale of network integration (τ), which is 

justified by the separation of time scales of dynamics and plasticity (48). We used a Hebbian 

rate-based covariance rule to update the weights (see Methods). To ensure the stability of 

network dynamics, the weight update is performed at each stage only if the largest eigenvalue 

of the weight matrix (or its spectral radius) does not grow more than a value close to, but smaller 

than, one (Fig. 4B; Methods). Different mechanisms can be employed to ensure such stability, 

e.g. hard bounds for the weights, weight normalization, synaptic scaling or inhibitory stabilization 

(38, 49, 50), but our analysis here remains agnostic about the nature of this mechanism.  

Growth of the spectral radius provides a proxy for the speed of learning in different regimes (Fig. 

4C). The spectral radius grew much faster for networks with weak E-I coupling (𝑘	 = 	1), 

indicating a faster strengthening of weights in this regime. Evolution of the spectral radius was 

similar to the fast strengthening of weights within the induced neuronal ensemble in this regime 

(Fig. 4D). The fast assembly growth was, however, accompanied with the fast potentiation of 

out-of-assembly connections (Fig. 4D). The evolution of neuronal assemblies in the strong E-I 

coupling regime (𝑘	 = 	4), on the other hand, was slow and specific: both the spectral radius and 

within-assembly weights grew much slower, but this was accompanied by weakening of 

connections from outside the ensemble, leading to specificity of assembly formation (Fig. 4C,D).  

Different patterns of growth of neuronal assemblies in different regimes can be explained in terms 

of the eigenvector corresponding to the largest eigenvalue of the network at each stage (Fig. 

4E-F). If the connections within the induced ensemble are mainly potentiated over time, the 

eigenvector will have specific projections over the perturbed neurons. Nonspecific growth would, 
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on the other hand, translate to nonspecific projection of this eigenvector over perturbed and 

unperturbed neurons. In fact, networks with weak and strong E-I couplings show, respectively, 

such nonspecific and specific projections during learning (Fig. 4E) and at the end of it (Fig. 4F). 

Thus, although the largest eigenvalue of the network grows faster in weak E-I regimes (Fig. 4C), 

its corresponding eigenvector does not remain confined to perturbed neurons (Fig. 4E), 

indicating that within-assembly potentiation of weights is accompanied by potentiation of 

connections from outside the ensemble (Fig. 4D). The growth of eigenvalue in strongly coupled 

E-I regimes is slower, but the corresponding eigenvector and the potentiation of weights remain 

specific to perturbed neurons, ensuring a specific formation of neuronal assemblies (Fig. 4C-F). 

 

 

Fig. 4. Growth of ensembles in networks with recurrent interaction of dynamics and plasticity.  

(A) Closed-loop interaction of network dynamics and network plasticity underlying the formation and 

growth of neuronal ensembles. Network dynamics governed by the weight matrix (W) determines the 

input-output responses to external perturbations, which in turn shape the structure of covariances in the 

network. Network plasticity (P) guided by the resulting covariance patterns determines the weight changes 

and updates, on a slower time scale, the weight matrix, which, in turn, modifies the network dynamics. (B) 

Upper: The spectral radius of the network, denoting the growth of the maximum eigenvalue of the weight 

matrix (λ)), at different steps of weight update. To avoid instability of the network dynamics (𝜆) 	> 	1), the 

learning is stopped before 𝜆) reaches a threshold close to 1 (vertical dashed line). Lower: Sample weight 

matrices of the perturbed neurons at different stages of weight updates, for networks in different E/I 

regimes. 𝑁# = 20, 𝑇# = 50, other parameters the same as networks in Fig. 2. (C) Evolution of the spectral 
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radius in different regimes. Neuronal ensembles in networks with weak E-I coupling (𝑘 = 1) reach the upper 

bound on the spectral radius faster, and their growth is therefore limited sooner, than network with 𝑘 = 4 

(cf. (B)). (D) Ensemble coupling within (orange) and from outside (gray) the ensembles (cf. Fig. 3B,D) at 

different steps of weight update (dashed: 𝑘 = 1, solid: 𝑘 = 4). (E) Relative projection of the eigenvector (𝑣)) 
corresponding to the largest eigenvalue (𝜆)) of the network over neurons within (orange) and outside (gray) 

the ensemble for networks with 𝑘 = 1 (dashed) and 𝑘 = 4 (solid). It is calculated as the average real part 

of the entries corresponding to perturbed and non-perturbed neurons, respectively, and normalized by 

the maximum value for each regime. (F) Left: Distribution of the real part of the largest eigenvector (𝑣)) 
over excitatory neurons at the end of learning. For comparison, the dashed line shows the average value 

(across all excitatory neurons) of the initial, random distribution before induction. Right: Average projection 

of the final eigenvector (shown on the left) over excitatory neurons within and outside the assembly. 

 

Pattern completion and different regimes of recall 

We also studied how neuronal ensembles emerging in each regime show pattern completion 

(Fig. 5). At the end of learning (Fig. 4B), we partially activated the neurons within the induced 

ensemble and measured the response of other neurons, which were not directly activated by the 

external stimulation (Fig. 5A). Neuronal ensembles formed in both regimes showed pattern 

completion when half of their neurons were activated (Fig. 5B,D). We further quantified the 

strength of pattern completion for different fractions of partial activation. This was calculated by 

comparing the average response of the nonactivated and activated neurons within the ensemble 

(see Methods). Both networks showed comparable pattern completion curves within the 

ensemble, with even small fractions of activation eliciting significant responses in nonactivated 

neurons (Fig. 5C,E).  

However, pattern completion was more specific in networks with stronger E-I couplings. In the 

network with strong E-I coupling (𝑘	 = 	4), recurrent activation of nonactivated neurons remained 

specific to the induced ensemble (Fig. 5E). In contrast, in the network with weaker E-I coupling 

(𝑘	 = 	1), recurrent interactions also elevated the activity of neurons outside the assembly, leading 

to some degree of nonspecificity in pattern completion (Fig. 5B,C). Taken together, these results 

suggest that neuronal ensembles forming in networks with weak or strong E-I coupling may 

enable computations with different speed-accuracy trade-off. If such neuronal ensembles guide 

behavior, they may, in turn, lead to different regimes of cognitive processing. 
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Fig. 5. Pattern completion in neuronal ensembles emerging in different E/I regimes.  

(A) Pattern completion is triggered by partial activation of neurons within an induced ensemble and 

evaluating the response of other, nonactivated neurons. (B) Response of the network with weak E-I 

coupling (𝑘	 = 	1) in the baseline with and without partial activation of the assembly. Left: before formation 

of ensemble (before induction); Right: after induction, with updated weights at the end of learning, as 

described in Fig. 4. Half of the neurons in the induced ensemble (10 out of 20, shown in red) are stimulated 

by extra perturbations, and the effect on other excitatory neurons within (orange) and outside (gray) the 

ensemble is evaluated. (C) Pattern completion curve describing the degree of pattern completion 

(quantified by Fraction resp.) as a result of partial activation of the ensemble (Partial activ.). Fraction resp. 

is calculated as the average response change of the nonactivated neurons (within (orange) and outside 

(gray) the assembly, respectively) divided by the average response change of activated neurons. Response 

changes are measured relative to the respective baseline activity of each neuron before partial activation. 

Note that this is a conservative measure for quantifying pattern completion, which only reaches 100% 

when all non-activated neurons reach the same level of activity as activated ones. (D,E) Same as (B,C) for 

networks with strong E-I coupling (𝑘	 = 	4). The pattern completion curve for 𝑘	 = 	1 is copied in (E) for 

comparison (dashed lines). Note that the strength of external perturbations is larger for 𝑘	 = 	1, to adjust 

for the higher baseline activity of the network (see Methods for details). 
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Behavioral performance associated with neuronal assemblies in different E/I regimes 

We next studied how neuronal assemblies can contribute to behavioral performance in different 

regimes of recall (Fig. 6). We simulated the development of two neuronal assemblies (A and B), 

associated with two stimuli corresponding to distinct behavioral contexts (Fig. 6A, left). The 

association was established in induction sessions, where neurons belonging to each assembly 

were perturbed (similar to protocols described in Fig. 4; 𝑁! = 20). The behavioral performance 

was assessed in recall sessions (Fig. 6B), where a fraction of neurons (5/20) in each assembly 

(A or B, respectively) was stimulated. The capacity of the network to detect the presence of a 

context was assayed by quantifying the “recall strength” of the respective assembly (see 

Methods). The performance of the network to distinguish between the two behavioral contexts 

was quantified by calculating a “discriminability index” (𝑑′), which compared the response of a 

given assembly to its target and distractor contexts (see Methods for details).  

Networks with weak E-I coupling showed a very swift increase in recall strength, which matched 

with the quick growth of their spectral radius (Fig. 6C). This shows that neuronal assemblies in 

this regime can amplify a weak stimulation of a small fraction of their neurons, providing a 

substrate for fast and strong recalls. In comparison, recall strength was much weaker and rose 

up much more slowly in networks with strong E-I coupling (Fig. 6C). Neuronal ensembles in the 

latter regime had, however, a significant advantage in discriminating between the two contexts 

(Fig. 6D). While the initial enhancement of discriminability (𝑑′) plateaued in weak E-I regimes, 

neuronal assemblies in strong E-I regimes improved their discrimination capacity for much longer 

and to much higher values, matching the slower growth of their spectral radius (Fig. 6D).  

These results suggest that neuronal ensembles emerge slower in inhibition-dominated regimes 

and enable fine downstream readout discriminations, while the assemblies forming in weaker E-

I regimes can be suited for faster but less specific cognitive tasks. Modulating E-I balance in the 

network, for instance by top-down mechanisms (e.g. via vasoactive intestinal peptide (VIP)-

positive neurons) (51–53) can, therefore, provide a powerful tool to control different modes of 

learning (54). We tested this in our networks and found that modulating EàI coupling 

bidirectionally modulated learning: increasing EàI coupling in weak E-I networks increased 

discrimination (and decreased the recall strength), while decreasing EàI coupling in strong E-I 

networks increased recall strength (and reduced discrimination) (Fig. 6E). Different modes of 

learning and induction can therefore be achieved by general modulation of the network. 
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Fig. 6. Performance of neuronal assemblies in behavioral tasks in different regimes of recall.  

(A) Left: In networks with different regimes of E-I coupling, two neuronal assemblies (A and B) are induced 

to represent two behavioral contexts (A and B, respectively). Right: Performance of the network in 

behaviorally relevant tasks are evaluated from the read-outs of ensemble responses to partial triggers. (B) 

The read-outs are evaluated after each induction session, and the weights are updated in the next session 

following the same procedure described in Fig. 4. 𝑁& = 𝑁% = 200. (C) Recall strength is quantified in each 

session to evaluate the capacity of the ensemble (𝑁# = 20) to detect its respective context. It is calculated 

as the average increase in the activity of non-triggered neurons (15/20) in the assembly, when a small 

fraction of neurons (5/20) are stimulated to trigger the corresponding behavior. The evolution of the 

spectral radius in the weak E-I regime (𝑘	 = 	1) is plotted on the right y-axis for comparison. (D) A 

discriminability index is calculated at each read-out session to evaluate the capacity of the ensembles to 

distinguish between the two contexts (see Methods). The evolution of the spectral radius in the strong E-

I regime (𝑘	 = 	4) is plotted on the right y-axis for comparison. (E) Discrimination and recall strength for 

networks with weak E-I (gray) and strong E-I (black) coupling at the end of learning. The results are 

compared with networks with weak E-I coupling when the recruitment of inhibition is boosted via EàI 

connections (inhibitory modulation; blue), and to networks with strong E-I coupling where EàI connections 

are weakened (disinhibitory modulation; red). These modulations enhance discriminability in networks with 

weak E-I, and increase the recall strength in networks with strong E-I coupling regimes, respectively.  

 

Dynamic transition between different regimes resulting from E-I plasticity 

In our networks so far, we only allowed E-E synapses to be plastic, and studied the effect of E-I 

interactions on this plasticity by changing static E-I weights in different E/I regimes. Such regimes 

may not be static, however, and can be dynamically modulated, as we discussed in the previous 

section. In addition to external mechanism like top-down modulation, plasticity of E-I 
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connections within the network can also intrinsically change the E/I regime (55, 56). Different 

plasticity rules of subtypes of inhibitory neurons indeed shape dynamics and learning in different 

manners (57–59). We therefore studied how E-I plasticity may contribute to different regimes of 

induction by extending our model networks and allowing EàI and IàE synapses to be governed 

by Hebbian rules based on covariance of responses, similar to E-E weights (cf. Fig. 4).  

Specifically, we asked if combining E-E and E-I plasticity can enable a network with weak E-I 

coupling to dynamically transition to a strong E-I regime of induction (Fig. 7A). Induction of 

neuronal assemblies in such a network indeed led to a strong potentiation of perturbed excitatory 

neurons (Fig. 7B, left); this potentiation was much weaker when E-I plasticity was inactive (Fig. 

7B, right and Fig. 7D). Potentiation of E-E ensembles was anticorrelated with the average activity 

of the networks: networks with E-E and E-I plasticity in fact decreased their baseline activity over 

the course of learning, while the baseline activity increased for networks in which E-I plasticity 

was inactive (Fig. 7C). Sparsification of activity was a result of potentiation of E-I coupling, which 

put the network in a more inhibition-dominated regime.  

The network with E-E and E-I plasticity showed selective pattern completion upon partial 

activation of neurons in the ensemble (Fig. 7C, left), and this selective pattern completion was 

abolished after inactivating E-I plasticity (Fig. 7C, right) (cf. Fig. 5B,D). Slow but selective growth 

of the eigenvector associated with the largest eigenvalue shed light on the slow and selective 

potentiation of within-ensemble weights, which was in contrast to fast and nonspecific formation 

of assemblies when E-I plasticity was blocked (Fig. 7D; cf. Fig. 4C-F for different E-I regimes). 

Our results also hold for another implementation of E-I plasticity based on pre- and post-synaptic 

covariances (Fig. S7). Taken together, these results suggest that E-I plasticity can enable the 

network to dynamically transition between different regimes of induction and learning. 
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Fig. 7. Dynamic transitions between different regimes of assembly formation.  

(A) Schematic of a network with E-E and E-I plasticity before and after induction of assemblies. (B) Final 

weight matrix of the network at the end of learning (similar to the procedure described in Fig. 4), in the 

network where both E-E and E-I weights are plastic (left), compared with the condition where E-I plasticity 

is blocked and only E-E plasticity remains (right). 𝑁& = 𝑁% = 400, 𝑁# = 100 (perturbed neurons #1-100). 

(C) Pattern completion in networks with E-E and E-I plasticity (left) and only E-E plasticity (right), at the end 

of learning. (D) Growth of the spectral radius (top; cf. Fig. 4c), average projection of the largest eigenvector 

over excitatory neurons (middle; cf. Fig. 4F), and evolution of ensemble coupling (bottom; cf. Fig. 4D), in 

the networks with E-E and E-I plasticity (solid lines) and when E-I plasticity is blocked (dashed lines). 
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Discussion 

We studied how different patterns of perturbations can induce neuronal assemblies in large-

scale balanced networks. Our results revealed different regimes of induction for the spectrum of 

excitation-inhibition balance. In particular, we found that increasing the size of perturbed neurons 

may not always lead to more potentiation. Induced assemblies in regimes with dominant E-I 

coupling exert a potent lateral inhibition, which suppresses the activity of neurons and the 

potentiation of their respective connections. This would also apply to connections within the 

intended assembly in a recurrent manner, leading to a sublinear growth of the total weights. 

Although hampering the strength of plasticity, the mutual inhibition increases the specificity of 

ensembles, by suppressing the nonspecific potentiation of connections.   

Our results therefore suggest that inhibition can gate and modulate the specificity of induction. 

It slows down the formation and growth of neuronal assemblies, but ensures that perturbation-

induced learning remains specific to intended ensembles, and does not lead to off-target effects. 

The selectivity remained the same for various sizes of induced ensembles, suggesting that 

regimes with dominant E-I coupling also guarantee the size-invariance of plasticity. We could 

further show, in our model behavioral experiments, that such inhibition-dominated regimes are 

best suited for fine discrimination tasks, which rely on selectivity of neuronal assemblies. It would 

be interesting to test these predictions in future experiments, by modulating E/I balance (60) in 

cortical networks and measuring the discriminability of behavioral responses.  

When excitation was predominant, induction was fast and strong in our network models, but did 

not remain specific to the induced assembly. Due to an indirect recurrent recruitment of other 

neurons in the network, connections from outside the assembly also strengthened. This 

compromised the specificity of pattern completion by neuronal ensembles, and it reduced the 

capacity of the network to discriminate between behavioral contexts represented by different 

ensembles. This regime might, instead, be better suited for crude detection tasks, and can 

provide a substrate for generalization to other assemblies and beyond a specific context.  

Which regimes of induction are more pertinent to the regimes in which cortical networks 

operate? Functionally, network with strong E-I coupling can provide a natural substrate for recent 

behavioral findings, which suggest that mutual inhibition of neuronal ensembles can underlie 

their selective responses (61, 62). In terms of connectivity, the key ingredient of the strong E-I 

coupling regime has been observed in many cortical regions, where a dense and strong 

connectivity between pyramidal cells and different subtypes of interneurons, including 
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parvalbumin-positive (PV+) and somatostatin-positive (SOM+) cells, has been reported (63, 64). 

In the mouse primary visual cortex (V1), for instance, both pyramidal cell (PC)-to-PV and PV-to-

PC connections are an order of magnitude larger than PC-PC connections (20). This regime is 

also consistent, in terms of dynamics, with recent results from single-neuron optogenetic studies 

(19): the prevalence of suppressive effects reported in the experiments only emerges in networks 

with dominant E-I coupling (34). It is therefore likely that mouse V1 operates in an inhibition-

dominated regime which favors selective (but weak and slow) induction of assemblies. 

This regime might be relevant to other cortices, too. Strong local excitatory-inhibitory coupling 

has been also reported in other areas, including mouse somatosensory and frontal cortex (63–

66). In the mouse barrel cortex, optogenetic stimulation of ~100 excitatory neurons induced a 

strong inhibition of neighboring excitatory neurons, arguing for an inhibition-dominated regime 

of activity favoring competition and sparsification (65). Optogenetic stimulation induced rapid 

excitation (at ~5 ms), which was quickly quenched by inhibition (at ~10 ms) (65), consistent with 

our results on the emergence of suppressive effects for longer pulses (𝑇!) (cf. Fig. 1M and Fig. 

S4). A recent study in the mouse premotor cortex found patterned perturbations of a smaller 

subset of neurons (<10) to induce more excitatory effects in coupled excitatory neurons, 

although still a significant number of coupled neurons were inhibited (about one third of the 

excited ones) (67). It would be interesting to explore, in future studies, how such differences 

arising from stimulation protocols and operating regimes can contribute to differential formation 

of neuronal assemblies in different cortices. 

The operating regime of induction can, in turn, be dynamically modulated across different 

cortices and layers by different factors, including behavioral states (e.g. transition from 

anesthetized to awake states (68) or stationary versus running (51)), neuromodulation and 

attention. For instance, top-down inputs can disinhibit the local circuitry (via VIPàSOM 

disinhibition) (51), VIP neurons can control different stages of learning by differential recruitment 

of PV neurons (54), and the neuromodulatory suppression of PV cells by SOM neurons is crucial 

for the onset and closure of the critical period of plasticity (69). Our results too suggest that 

modulating E-I coupling -- either via top-down modulation (Fig. 6) or intrinsic plasticity of E-I 

interactions (Fig. 7) -- can provide a potent mechanism to control the formation of neuronal 

assemblies in different regimes of learning. Plasticity of EàI connections has indeed been shown 

to be crucial for gating of memory and network plasticity (70) (cf. Fig. 7). It would be interesting 

to see how such different network states affect the formation of neuronal assemblies and 

learning, by studying the effect of perturbation protocols in different regimes. 
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Future theoretical work is also needed to study different regimes of induction in more realistic 

conditions. First, following the classical notion of neuronal assemblies as recurrent subnetworks, 

we focused our analysis on the induction of neuronal assemblies in the spontaneous state, where 

the effect of recurrent interactions are dominant. However, it would be also interesting to see 

how the plasticity of feedforward synapses in the evoked state interacts with recurrent 

connections (71). Such evoked state will also amplify the effect of stimulus selectivity of neurons, 

and hence their preexisting connectivity based on that selectivity, which might in turn guide or 

limit the induction (40). Extension of our model networks to allow for feedforward as well as 

recurrent plasticity can shed light on these more realistic regimes of network responses. 

To obtain computational insights into the basic properties of network-wide plasticity and 

assembly formation, we focused our analysis on simple models of dynamics and plasticity. 

Inevitably, many biological mechanisms were absent from our models. It would therefore be 

important to investigate our results in more realistic networks, including those with more complex 

single-cell mechanisms like dendritic nonlinearity and plateau potentials, and networks equipped 

with other rules of plasticity (55, 56, 72) (e.g. STDP or voltage-based plasticity rules (73)) and 

homeostasis (50, 74, 75). For instance, correlations emerging in spiking networks (76) especially 

in excitation-dominant regimes (77, 78) may amplify nonspecific potentiation across the network, 

when STDP rules are employed. It would also be interesting to study how different subtypes of 

inhibition and their mutual disinhibition (79) affect our results, as well as different frequency 

bands (80, 81) and various rules of inhibitory plasticity (57, 59, 82) associated with them. Finally, 

it would be interesting to extend our work to learning sequential chains (9) and tasks. 

In summary, our work highlights the importance of studying dynamics of neuronal networks and 

network-wide plasticity in tandem to cast light on the formation of neuronal assemblies. It 

suggests that unexpected results may emerge when considering the recurrent interactions within 

networks of excitatory and inhibitory neurons, and that such effects might be missed by focusing 

on isolated pairs of neurons detached from their network interactions. As behaviorally relevant 

learning is ultimately happening in ensembles of neurons embedded in large-scale recurrent 

networks, it is crucial to understand the effect of the background dynamics on the formation of 

neuronal assemblies and learning. Here, we developed a computational framework to help with 

this understanding, which can guide the design of future perturbation protocols. 
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Materials and Methods 

Network simulations 

Rate-based networks were simulated by the following equations for excitatory (E) and inhibitory 

(I) neurons: 𝜏𝑑𝑟%/𝑑𝑡	 = 	−𝑟% + [𝑊%% . 𝑟% 	+ 	𝑊%' . 𝑟' 	+ 	𝑠%](  

  𝜏𝑑𝑟'/𝑑𝑡	 = 	−𝑟' + [𝑊'% . 𝑟% 	+ 	𝑊'' . 𝑟' 	+ 	𝑠']( [1] 

where 𝑟% and 𝑟' are the vectors of firing rates of E and I neurons, and 𝑠 is the external input with 𝑠% and 𝑠' denoting inputs to E and I neurons, respectively. 𝑊 is the matrix of connection weights, 

including connections between E-to-E (𝑊%%), E-to-I (𝑊'%), I-to-E (𝑊%'), and I-to-I (𝑊'') neurons. 𝜏 
is the effective time constant of the network integration, and []( denotes half-wave rectification. 

We used forward Euler method to solve for the firing rates of neurons.  

Spiking networks were modelled by simulating the equations describing the membrane potential 

dynamics of leaky integrate-and-fire neurons: 𝜏)	𝑑𝑉)/𝑑𝑡	 = 	−𝑉)(𝑡) + 𝑠(𝑡)   [2] 

where 𝑉) is the membrane potential of a neuron, and τ+ = 𝑅𝐶 is the time constant of integration 

of the membrane potential, with 𝑅 and 𝐶 denoting the membrane resistance and capacitance, 

respectively. When the membrane potential reaches a voltage threshold (𝑉,-), a spike is elicited 

and the membrane potential is reset to the reset voltage, 𝑉./0/, = 0. 𝑠(𝑡) 	= 	𝑅	𝐼(𝑡) describes the 

momentary input to the neurons, which arises from incoming spikes and comprises external 

(feedforward and non-local) input and recurrent input from presynaptic neurons in the network. 

Once a spike is emitted in a presynaptic source, an instantaneous change in the membrane 

potential of all postsynaptic sources is emulated in the next simulation time step, by the value of 𝑤, which is expressed in units of volts and describes the effect of 𝑅𝐼 simultaneously. The total 

input at time 𝑡 for a postsynaptic neuron 𝑖 is given by 𝑠(𝑡) = 𝛴1 	w21𝛿1(𝑡), where 𝛿1(𝑡) denotes the 

presence (1) or absence (0) of spike in presynaptic sources, with w21 describing the weight of 

connection from the 𝑗-th presynaptic source. We used exact integration method (83) to solve for 

the membrane potential and spiking activity of neurons. 

Network connectivity is described by the weight matrix 𝑊, with 𝑤21 denoting an entry on its 𝑖-th 

row and 𝑗-th column. Connections between neurons are established by drawing from a binomial 

distribution with probability ϵ (ϵ = 	1 for networks with all-to-all connectivity). 𝑤21 is set to zero if 

there is no connection from a pre- to postsynaptic neuron. If there is a connection, 𝑤21 is drawn 
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from a uniform distribution (with mean 𝐽) in randomly connected networks. In networks with 

specific connectivity, 𝑤21 depends on the functional similarity of pre- and postsynaptic neurons. 

Neurons are assumed to have a 1D receptive field (e.g., orientation selectivity), and the weight 

of connections is modulated as: 𝑤21 	= 	𝐽	(1	 + 	𝑚	 cos(2(θ2∗ − θ1∗))) [3] 

where 𝜃2∗ and 𝜃4∗	are the preferred orientation (in radians) of pre- and postsynaptic neurons, and 

𝑚 controls the degree of specificity of the connections (with 𝑚 = 0 recapitulating random, 

nonspecific connectivity). Default parameters of simulations are listed in Table 1.  

Network plasticity 

To induce neuronal assemblies, a subset of 𝑁! excitatory neurons in the network are perturbed. 

The perturbation pattern consists of 𝑛0 alternating pulses (ON/OFF); each pulse stays ON (𝑠"# =𝑠5 + δ𝑠) for 𝑇"# and turns off (𝑠"$$ = 𝑠5) for 𝑇"$$. 𝑠5 describes the input to the neurons before 

perturbations, respectively, and δ𝑠 denotes the strength of perturbation (e.g. corresponding to 

laser intensity in optogenetic stimulations (19, 67)). The total duration of perturbation is therefore 𝑛	(𝑇"# + 𝑇"$$), with the duty cycle of 𝑇"#/(𝑇"# + 𝑇"$$). Assuming 𝑇! = 𝑇"# = 𝑇"$$, the 

stimulation frequency is 𝑓! = 1/𝑇!.  

Following perturbations, synaptic plasticity is assumed to change the initial weight matrix as a 

result of network activity. The change in the weight 𝑤21 is given as a function of the activity of 

pre- and post-synaptic neurons: Δ𝑤21 = 𝜂  < \𝑟1 − r45^ \𝑟2 − r65^ >  [4] 

where 𝑟4 and 𝑟6 describe the firing rate of pre- and postsynaptic neurons, respectively, 𝜂 is the 

learning rate, and <.> denotes the temporal average which is evaluated during perturbations. r5 
denotes the average firing rate of individual neurons in their baseline state, obtained from 

network simulations before perturbations. We refer to this rule as covariance-based Hebbian 

learning, where covariance of the activity of pre- and postsynaptic neurons drives the plasticity. 

Two other versions of the rule are also considered, where response changes in only pre- or 

postsynaptic sources are considered, while the other term (post or pre, respectively) is still 

contributing to plasticity in absolute terms: 

pre:  Δ𝑤21 = 𝜂  < \𝑟1 − r45^	𝑟2 >		  

post:  Δ𝑤21 = 𝜂  < 𝑟1 	\𝑟6 − r65^ > [5] 

At each weight update, the weights of synapses are updated according to: 𝑤21 ← 𝑤21 + Δ𝑤21. 
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Data analysis 

To quantify the strength of assembly formation as a result of perturbation-induced plasticity we 

calculated ensemble potentiation. For each postsynaptic neuron (𝑖) in the targeted pool of 

neurons (Ω), the sum of weight changes from the presynaptic sources within the pool (𝑗	 ∈ Ω) is 

calculated: ∑ Δ𝑤214∈8 . Ensemble potentiation within the assembly (𝐸&) is then obtained as the 

average of this value over postsynaptic neurons within the pool (i ∈ Ω):  

𝐸& = 9

#!
∑ ∑ Δ𝑤211∈82∈8   [6] 

Out-of-assembly potentiation is, in turn, quantified by the average (over postsynaptic neurons 

within the targeted pool: i ∈ Ω) of the sum of presynaptic weight changes from excitatory neurons 

outside the assembly (𝑗	 ∉ Ω): 

𝐸: = 9

#!
∑ ∑ Δ𝑤211∉82∈8 . [7] 

Specificity of induction is quantified by comparing within-assembly and out-of-assembly 

ensemble potentiation: (𝐸&–𝐸<)/(𝐸& + 𝐸<). To quantify the average weight changes within 

ensembles per individual synapse (e.g. as in Fig. 2, and as used in Theoretical analysis below), 

we also calculated average potentiation as: 
9

="
#
∑ ∑ Δ𝑤211∈82∈8 . 

Behavioral performance of induced neuronal assemblies was quantified by two metrics (Fig. 6). 

First, recall strength was used to measure the absolute capacity of neuronal ensembles to trigger 

readout responses upon partial stimulation. The activity of the linear readout was calculated as 

the sum (over neurons) of the activity of non-activated (NA) cells in the ensemble: 𝑟.< = ∑ 𝑟22∈#> . 

The average (temporal) differential response of the readout after partial activation was taken as 

a measure of recall strength: < 𝑟.< − 𝑟.<5 >, where 𝑟.<5  is the baseline activity of the readout and <.> denotes temporal averaging evaluated during partial activation.  

A discriminability index was also developed to characterize how neuronal ensembles can 

distinguish between different behavioral contexts (A and B in Fig. 6). Using signal detection 

theory, it was calculated as: 

𝑑′ = (𝜇0 − 𝜇?)/g𝜎0@ + 𝜎?@   [8] 

where µ0 and µ? are the average readout responses to “signal” (relevant context) and “noise” 

(irrelevant context), respectively. µ0 is calculated as the average (across repetitions) of < 𝑟.< >, 

when a small number of neurons in the same ensemble are activated, while µ? corresponds to 

the condition where same number of neurons from the other ensemble are stimulated. σ is the 

std of < 𝑟.< > over different repetitions of the partial stimulation in respective conditions. 
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Theoretical analysis 

To obtain theoretical insights into our numerical simulations, we analyzed how ensembles form 

in different E/I regimes and by different perturbation patterns. We first calculated the average 

potentiation of synapses expected from the linearized dynamics of the network. Writing Eq. 1 for 

the stationary state of network responses (𝑑𝑟/𝑑𝑡 = 0), we have: 𝑟 = (𝐼 −𝑊)A9𝑠  [9] 

where 𝑠 = k0$
0%
l and 𝑟 = k.$

.%
l denote the 𝑁 × 1 vectors of input and output activity, respectively 

(with 𝑁 denoting the total number of E and I neurons in the network, 𝑁 = 𝑁% +𝑁'). Perturbation 

of a subset of excitatory neurons by δ𝑠 = \B0$
5
^ changes the output firing rates: 

δ𝑟 = (𝐼 −𝑊)A9δ𝑠  [10] 

Applying the covariance-based Hebbian rule in Eq. 4, weight changes can be written as: Δ𝑤21 = η	δ𝑟2δ𝑟1  [11] 

Matrix of weight changes 𝑃, with entry 𝑝21 = Δ𝑤21 on 𝑖-th row and 𝑗-th column representing the 

weight change of the connection from the 𝑖-th presynaptic neuron to the 𝑗-th postsynaptic one, 

can, therefore, be expressed as: 𝑃 = η	δrδ𝑟C  [12] 

where Σ = δ𝑟δ𝑟C is the covariance matrix of response changes following perturbations. Writing 𝐴 = (𝐼 −𝑊)A9 and substituting Eq. 10, matrix of plasticity 𝑃 can in turn be expressed in terms 

of input perturbations as: 𝑃 = 𝜂	A	𝛿𝑠	δ𝑠C𝐴C  [13] 

For different patterns of perturbations of excitatory neurons with different 𝑁! and strength of 

perturbation, we can evaluate the ensemble potentiation from Eq. 12 by knowing the initial 

weight matrix, 𝑊 (plotted in Fig. 2 as prediction from theory based on W). Note that the prediction 

of this analysis by definition does not depend on 𝑇!, as it is based on stationary state responses. 

While the previous analysis sheds light on the relation between dynamics of the networks and 

the resulting weight changes via the weight matrix, it still needs to be evaluated numerically; 

especially, calculating 𝐴 = (𝐼 −𝑊)A9 can be computationally expensive for large matrices and 

precludes further analytical insights into the key parameters underlying the emergence of 

different regimes of induction. We therefore developed a mean-field analysis to calculate average 

potentiation within the assembly as a function of the average parameters of connectivity. The 

perturbed excitatory (𝐸9), unperturbed excitatory (𝐸@) and inhibitory (I) populations were reduced 

to single nodes in the mean-field analysis, with the connectivity between them described by: 
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𝑊t = u𝑤%&←%& 𝑤%&←%# 𝑤%&←'𝑤%#←%& 𝑤%#←%# 𝑤%#←'𝑤'←%& 𝑤'←%# 𝑤'←' v [14] 

For the connectivity matrix parameterized in Fig. 1G, and assuming that a fraction 𝑓 of E neurons 

are perturbed (𝑓	 = 	𝑁!/NE), we can write the mean-field weight matrix as: 

Wt = y f	𝐽%% 	(1 − f)	𝐽%% −𝑘	𝐽%Ef	𝐽%% (1 − f)	𝐽%% −𝑘	𝐽%E𝑘𝑓	𝐽%% 𝑘(1 − 𝑓)	𝐽%% −𝑘	𝐽%%{ [15] 

where 𝐽%% is the mean-field, overall coupling strength of E population. For a network with 

connection probability ϵ and average weight 𝐽5 of individual EàE synapses, it can be expressed 

as 𝐽%% = 𝑁%ϵ𝐽5. The mean-field coupling of Ià{E,I} population can in turn be expressed as 𝑁'ϵ𝑔𝐽5, 
where 𝑔 determines the inhibition-dominance of individual Ià{E,I} synapses over EàE ones. If 𝑁% = 𝑁', and given similar connection probabilities for all connection types, 𝑘 = 𝑔. Dominant 

individual EàI synapses by the same factor also leads to overall dominance of EàI coupling: 𝑁%𝜖𝑘𝐽5, as expressed in mean-field couplings in Eq. 15. 

Knowing the mean-field matrix 𝑊t , we can now obtain the corresponding matrix of weight 

changes for the mean-field analysis, 𝑃~, from Eq. 13, as: 𝑃~ = 𝜂	At𝛿�̃�𝛿�̃�C𝐴�C  [16] 

where δ�̃� = (1 0 0)C and 𝐴� = \𝐼 −𝑊t ^A9. To obtain the average potentiation of synapses 

within the ensemble of perturbed neurons, we are interested in entry 𝑝�99 of the 𝑃~ matrix, which 

can be obtained as: 𝑃~99 = 𝜂𝐴�99@   [17]. 

Writing 𝐽 = 𝐽%%, 𝐴�99 can in turn be computed from 𝐴� = \𝐼 −𝑊t ^A9 as: 

𝐴�99 = 1 − FG

H
(𝐽𝑘@ − 𝐽𝑘 − 1)  [18] 

where Δ = 𝐽@𝑘@ − 𝐽@𝑘 + 𝐽𝑘 − 𝐽 + 1. This is used in Fig. 2 for the mean-field analysis. 

For 𝑘	 = 	1, Eq. 18 suggests that 𝐴�99 ≈ 1 + 𝑓𝐽, and hence:  𝑃~99 ≈ η	(1 + 𝑓𝐽)@,  [19] 

implying a supralinear enhancement of assembly formation for larger fraction of perturbed 

neurons. Note that this is the case independent of how large or small 𝐽 is; especially whether 𝐽 <1 or 𝐽 > 1 (unstable E-E subnetwork) does not change the result (cf. Fig. 2C). For large 𝐽, and 

strong 𝑘 (𝐽𝑘 ≫ 1), another regime is obtained with 𝐴�99 ≈ 1 − 𝑓, and  𝑃~99 ≈ η	(1 − 𝑓)@,   [20] 

which suggests a weaker potentiation of synapses for larger 𝑓 and hence 𝑁! (cf. Fig. 2F). 
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Table 1. Table of parameters. 

Description Type Param. Fig. 1 Figs. 2,3 Figs. 4,5 Fig. 6 Fig. 7 

No. of neurons E 𝑁& 500 500 400 200 400 

I 𝑁% 500 500 400 200 400 

Time constant 

of neuronal 
integration 

E&I 𝜏 10 10 10 10 10 

Average weight 

of synaptic 
connections 

E→E 𝑤&& 0.004 0.004 0.005 0.005 0.005 

E→I 𝑤%& 0.004 (k=1) 
0.016 (k=4) 

0.004 (k=1) 
0.016 (k=4) 

0.005 (k=1) 
0.02 (k=4) 

0.005 (k=1) 
0.02 (k=4) 

0.005 (k=1) 
0.02 (k=4) 

I→E 𝑤&% -0.004 (k=1) 
-0.016 (k=4) 

-0.004 (k=1) 
-0.016 (k=4) 

-0.005 (k=1) 
-0.02 (k=4) 

-0.005 (k=1) 
-0.02 (k=4) 

-0.005 (k=1) 
-0.02 (k=4) 

I→I 𝑤%% -0.004 (k=1) 

-0.016 (k=4) 

-0.004 (k=1) 

-0.016 (k=4) 

-0.005 (k=1) 

-0.02 (k=4) 

-0.005 (k=1) 

-0.02 (k=4) 

-0.005 (k=1) 

-0.02 (k=4) 

Connection 
probability 

All ϵ 1 1 1 1 1 

Synaptic 
specificity 

All m 0.5 0 0 0 0 

No. of perturbed 

neurons 

E 𝑁# 10, 50, 100, 

150, 200 

10, 50, 100, 

150, 200 

20 20 100 

Time of pulse 

On/Off 

 𝑇# = 

𝑇!" = 𝑇!$$ 

10, 20, 50, 

100 

10, 20, 50, 

100 

50 100 50 

Stimulus 

(baseline) 

E 𝑠 1 1 1 1 1 

Perturbation 
size 

E δ𝑠 0.1 (k=1) 
0.1 (k=4) 

0.1 (k=1) 
0.1 (k=4) 

0.1 (k=1) 
0.1 (k=4) 

0.1 (k=1) 
0.1 (k=4) 

0.1 (k=1) 
0.1 (k=4) 

Learning rate E→E η&& - - 0.2 0.1 0.1 

E→I η%& - - 0 0 0.1 

I→E η&% - - 0 0 0.1 

I→I η%% - - 0 0 0 
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Supplementary figures 

 

Fig. S1. Induction of neuronal assemblies in networks with different combinations of parameters. 

(A) Same as Fig. 1J,M, respectively, for a network with larger number of excitatory neurons. 𝑁& = 800,𝑁% =
200. To provide the same level of inhibition, Ià{E,I} weights are made 4 times stronger to adjust for the 

lower number of inhibitory neurons. (B) Same as Fig. 1J,M, for a network with sparser E-E connectivity. 

As opposed to all-to-all connectivity we assumed before, excitatory neurons are now connected to each 

other with 25% probability of connections (ϵ = 0.25). To have the same level of overall E-E coupling, EàE 

weights are made 4 times stronger to adjust for the lower number of synapses. (C) Same as Fig. 1J,M, for 

a network with random connectivity. As opposed to network in Fig. 1, the weights of connections here are 

not modulated by functional similarity of neurons (see Methods for details). 
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Fig. S2: Induction of neuronal assemblies in networks with different Hebbian rules. 

The covariance-based Hebbian rule in Fig. 1, Δ𝑤 ∝ I𝑟#*+ − 𝑟)#*+KI𝑟#!,- − 𝑟)#!,-K (see Methods), was 

governed by the deviation of pre- and post-synaptic activity from their baseline value before perturbations 

(denoted by 𝑟)). This is changed here to consider different Hebbian-type rules of plasticity which depend 

only on the deviations of pre- (A) or post-synaptic (B) activity, while the absolute value of post- or pre-

synaptic activity is preserved, respectively. (A) Same as Fig. 1J,M when weight changes are governed by: 

Δ𝑤 ∝ I𝑟#*+ − r./0) K	𝑟#!,-. (B) Same as Fig. 1J,M when weight changes are governed by: Δ𝑤 ∝

r./0I𝑟#!,- − 𝑟)#!,-K. The matrix of weight changes for 𝑁# = 50 and 𝑇# = 50 is shown for each condition. 
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Fig. S3: Induction of neuronal assemblies in spiking networks. 

(A) Induction of neuronal assemblies in networks of spiking neurons in the weak E-I coupling regime (𝑘	 =
	1). A sample simulation (with 𝑁# = 100 and 𝑇	 = 	50	𝑚𝑠) is shown, with raster plots of activity on top (red: 

Exc., blue: Inh.), and average population activity of 𝑁& Exc. and 𝑁% Inh. neurons on the bottom (calculated 

in bins of 1 ms and smoothened with a sliding Gaussian kernel of 20 ms length). 𝑁& = 𝑁% = 400. 

Connectivity is all-to-all (ϵ = 1) and random (𝑚 = 0), with an average weight of 𝑤&& = 0.1	𝑚𝑉 for E-to-E 

connections. τ'1 = τ21 = 20 ms. Perturbations are performed for 10 cycles in this example. (B) Average 

potentiation of individual synapses for induction protocols with different values of 𝑁# and 𝑇# shows similar 

dependence on the size of induced ensembles as rate-based models (cf. Fig. 2A). The plasticity of 

synapses is governed by a Hebbian plasticity rule based on the covariances of pre- and post-synaptic 

sources. The pre- term is read from the presynaptic spiking activity of neurons and the post- term is 

inferred from the average free membrane potential of postsynaptic neurons (see Methods for details). The 

absolute value of the average potentiation of synapses within induced assemblies are normalized to the 

maximum value across all inductions. Perturbations are performed for 100 cycles to obtain more reliable 

estimates of response changes. (C,D) Same as (A,B) for induction in spiking networks with 𝑘	 = 	4. 
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Fig. S4: Potentiation of synapses with extreme perturbation times. 

(A,B) Same as Fig. 2B,E, respectively, for extremely small and large values of 𝑇#. The residual discrepancy 

between theory and simulations (cf. Fig. 2B,E) is absent for very long pulses (𝑇# = 500), while the 

increasing/decreasing trends with ensemble size are much weaker for very brief perturbations (𝑇# = 2). 
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Fig. S5: Specificity of assembly formation with different Hebbian rules. 

(A,B) Specificity of ensemble formations (similar to Fig. 3B-E) for different Hebbian rules of plasticity. As 

opposed to the covariance-based rule in Fig. 1 which depended on the response changes of both pre- 

and post-synaptic neurons (see Methods), here the Hebbian rules depend on pre- (A) or post-synaptic (B) 

changes, while preserving the dependence on the absolute activity of the post and pre, respectively 

(similar to rules in Fig. S2A,B, respectively; see the caption for the details of the rules employed here). 
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Fig. S6: Specificity of ensemble potentiation based on initial weights and after input deprivation. 

(A,B) Weight changes (Δ𝑤) of out-of-assembly connections (same as Fig. 1I,L, respectively), for different 

regimes of E-I coupling (A and B, respectively), as a function of their initial connectivity (Initial w) to the 

ensemble. The initial ensemble, namely the E neurons perturbed initially, are 𝑁# = 50 neurons with similar 

preferred orientations (cf. Fig. 1I,L). The black lines show the average value of Δ𝑤 calculated in 20 equal 

bins along the x-axis, respectively. The red lines show similar average values of Δ𝑤, when 𝑁# = 50 neurons 

in the initial ensemble are chosen randomly, independent of their initial preferred orientations. (C,D) Weight 

changes of subnetworks with deprived input. In networks similar to those in Fig. 2 (with random 

connectivity), the feedforward input to a fraction of neurons (#1-200) is reduced to half the initial value. 

Correlated input patterns (similar to those delivered in Fig. 1, with 𝑇# = 50) from other sources are assumed 

to activate one of the subnetworks (A: #1-100), while the other subnetwork (B: #101-200) does not receive 

the input perturbations. The average weight changes of presynaptic E neurons (𝑁& = 500) to different 

subnetworks (cf. e.g. Fig. 2) are plotted, for weak (C) and strong (D) E-I coupling regimes, respectively. 

W
ei

gh
t c

ha
ng

es
 a

s 
a 

fu
nc

tio
n 

of
 in

iti
al

 w
ei

gh
ts

W
ei

gh
t r

ec
ov

er
y 

fo
llo

w
in

g
in

pu
t d

ep
riv

at
io

n

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.15.439946doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.439946
http://creativecommons.org/licenses/by/4.0/


40 

 

Fig. S7: Transition between different regimes of induction with different rules of E-I learning. 

Same as Fig. 7 for a different rule of E-I plasticity. EàI and IàE plasticity in Fig. 7 depended on changes 

in the activity of pre-synaptic excitatory and inhibitory neurons, respectively (Methods). Here, pre- and 

post-synaptic activity changes are both considered for both types of synapses (see Methods for details). 
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