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Abstract The cJun NH2-terminal kinase (JNK) signaling pathway is implicated in the response to

metabolic stress. Indeed, it is established that the ubiquitously expressed JNK1 and JNK2 isoforms

regulate energy expenditure and insulin resistance. However, the role of the neuron-specific

isoform JNK3 is unclear. Here we demonstrate that JNK3 deficiency causes hyperphagia selectively

in high fat diet (HFD)-fed mice. JNK3 deficiency in neurons that express the leptin receptor LEPRb

was sufficient to cause HFD-dependent hyperphagia. Studies of sub-groups of leptin-responsive

neurons demonstrated that JNK3 deficiency in AgRP neurons, but not POMC neurons, was

sufficient to cause the hyperphagic response. These effects of JNK3 deficiency were associated

with enhanced excitatory signaling by AgRP neurons in HFD-fed mice. JNK3 therefore provides a

mechanism that contributes to homeostatic regulation of energy balance in response to metabolic

stress.

DOI: 10.7554/eLife.10031.001

Introduction
The regulation of energy balance (food consumption and energy expenditure) is important for health

and survival. Sustained negative energy balance caused by cachexia and anorexia is associated with

serious injury to multiple organ systems (Aoyagi et al., 2015; Mehler and Brown, 2015). Similarly,

sustained positive energy balance caused by hyperphagia results in obesity associated with severe

metabolic disorders (e.g. type 2 diabetes, cardiovascular disease, hepatitis, neurodegeneration and

cancer) that represent leading causes of morbidity and mortality (Flegal et al., 2013). The homeo-

static maintenance of energy balance is therefore critically important.

It is established that the arcuate nucleus (ARC) in the hypothalamus plays a key role in the regula-

tion of energy balance (Cone, 2005). AgRP neurons in the ARC mediate orexigenic signals, including

neuropeptide Y (NPY), agouti-related peptide (AgRP), and g-aminobutyric acid (GABA) that project
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to POMC neurons in the ARC and to secondary response neurons in many brain regions, including

the lateral hypothalamus (LH) and the paraventricular nucleus (PVN) of the hypothalamus. In contrast,

POMC neurons mediate anorexigenic signals, including cocaine and amphetamine regulated tran-

script (CART) and pro-opiomelanocortin (POMC)-derived a-melanocyte stimulating hormone (a-

MSH). POMC neurons project to many brain areas, including the PVN and LH in the hypothalamus

where a-MSH acts as an agonist of the melanocortin receptors MC3R and MC4R on secondary

response neurons to inhibit feeding and increase energy expenditure. Importantly, this action of a-

MSH is antagonized by AgRP. Moreover, POMC neurons receive inhibitory GABAergic input from

AgRP neurons. Consequently, AgRP and POMC neurons act together to balance food consumption,

energy expenditure and nutrient homeostasis (Cone, 2005).

AgRP and POMC neurons integrate signals from nutrients (e.g. glucose and fatty acids) and

peripheral hormones (e.g. leptin, insulin, ghrelin, and cytokines) to mediate opposite actions regulat-

ing downstream neuroendocrine circuits linking internal and environmental stimuli with the coordi-

nated control of homeostatic satiety (Blouet and Schwartz, 2010; Varela and Horvath, 2012).

Thus, leptin activates POMC neurons (Cowley et al., 2001) and inhibits AgRP neurons

(Takahashi and Cone, 2005) leading to reduced food consumption and increased energy expendi-

ture. These processes can be regulated by intracellular signaling networks, including the Janus

kinase 2-signal transducer and activator of transcription 3 (JAK2-STAT3) axis (Bates and Myers,

2003), Rho-associated coiled coil containing protein kinase 1 (ROCK1) (Huang et al., 2012), mecha-

nistic target of rapamycin (mTOR) (Mori et al., 2009; Kocalis et al., 2014), adenosine monophos-

phate-activated protein kinase (AMPK) (Claret et al., 2007; Dagon et al., 2012), and

phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) (Niswender et al., 2003), that contribute to

the fine-tuning of energy balance.

The anorexigenic hormone leptin plays a key role in the regulation of food consumption. Leptin

can act directly on AgRP and POMC neurons, but leptin can also act on other neurons in several

brain sub-regions, including mid-brain and brainstem nuclei (Scott et al., 2009; Patterson et al.,

2011). Control of leptin signaling in these neurons is important for maintaining energy balance. For

eLife digest Consuming the right amount of food is important for health. Eating too little for a

long time causes damage to organs, and overeating can cause harm as well, in the form of

conditions such as obesity and type 2 diabetes. Several signaling molecules and brain regions are

linked to controlling food consumption and ensuring the body receives the correct amount of

nutrients to fuel its activities.

Previous studies have found that two proteins called JNK1 and JNK2, which are found in most

tissues of the body, can reduce how much energy cells use. This can trigger insulin resistance and fat

accumulation, and so suggests that blocking the activity of these proteins may help to treat type 2

diabetes and obesity. However, the role of another JNK protein – JNK3, which is mostly found in the

brain – was not known.

Now, Vernia, Morel et al. have investigated the role of JNK3 in metabolism. It was found that

JNK3 reduced the amount of food consumed by mice provided with a cafeteria (high fat) diet. Mice

that lacked JNK3 ate far more food and gained more weight on a high fat diet than normal mice.

However, JNK3 played no role in food consumption when mice were fed a standard chow diet.

Treating normal mice with leptin – an appetite-suppressing hormone – caused them to lose weight,

but did not affect mice that lacked JNK3.

Examining the brains of the mice revealed that in normal mice, JNK3 in a specific sub-population

of neurons decreases the production of proteins that promote eating. However, the proteins

continued to be produced in mice that lacked JNK3, encouraging overeating.

Overall, the results suggest that blocking the activity of all the JNK proteins will not help treat

obesity and diabetes as shutting down JNK3 could encourage overeating. Therefore, future

investigation into treatments for these conditions should focus on drugs that specifically target JNK1

and JNK2, and not JNK3.

DOI: 10.7554/eLife.10031.002
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example, obesity causes an increase in the blood concentration of leptin, most likely because of

increased adipose tissue mass. The increased leptin concentration can lead to tachyphylaxis and sup-

pression of the anorexigenic actions of leptin (Frederich et al., 1995). This mechanism enables

homeostatic regulation of feeding behavior in response to metabolic stress. Whether this mechanism

represents “leptin resistance” is unclear (Myers et al., 2010) because some biochemical aspects of

leptin signaling are maintained in the obese state (Ottaway et al., 2015). A requirement for leptin

signaling may reflect the role of the leptin-stimulated JAK2-STAT3 pathway to increase expression

of the negative regulator SOCS3 (Allison and Myers, 2014). Negative regulation of leptin signaling

may also involve the tyrosine phosphatases PTPN1 and PTPN2 (Bence et al., 2006; Loh et al.,

2011), reactive oxygen species (Diano et al., 2011), the endoplasmic reticulum unfolded protein

response (Zhang et al., 2008; Ozcan et al., 2009), autophagy (Kaushik et al., 2011), and low-grade

inflammation (de Git and Adan, 2015).

The purpose of the study reported here was to test whether the cJun NH2-terminal kinase (JNK)

signaling pathway regulates feeding behavior. Previous studies have established that the ubiqui-

tously expressed JNK1 and JNK2 isoforms play an important role in the metabolic stress response of

peripheral tissues (Sabio and Davis, 2010). However, loss-of-function studies have not identified a

role for JNK in the control of food consumption. Here we demonstrate that the neuronal isoform

JNK3 (encoded by the Mapk10 gene) plays a key role in the maintenance of energy balance during

consumption of a high fat diet (HFD) by promoting leptin signaling. Mapk10 gene ablation studies

identify AgRP neurons as a site of JNK3 function. JNK3 is therefore a key mediator of homeostatic

regulation of energy balance in response to metabolic stress.

Results

Feeding a high fat diet causes JNK3 activation
Leptin is an anorexigenic hormone. Indeed, treatment of chow-fed mice with leptin suppressed feed-

ing behavior and caused decreased body mass (Figure 1A). In contrast, HFD-fed mice failed to

respond to leptin (Figure 1A). The mechanism that accounts for this observation is unclear, but may

involve both decreased leptin signaling and reduced signaling by down-stream mediators (e.g.

MC4R). Tachyphylaxis may be a contributing factor and mutational analysis of leptin signaling com-

ponents implicates functions of the leptin receptor, tyrosine phosphatases, reactive oxygen species,

and SOCS3 (Myers et al., 2010).

We considered the possibility that a stress-activated MAP kinase pathway may contribute to the

regulation of leptin signaling in HFD-fed mice. It is established that feeding a HFD causes activation

of the ubiquitously expressed isoforms JNK1 and JNK2 in peripheral tissues, including liver, muscle,

and adipose tissue (Sabio and Davis, 2010). However, the regulation of JNK caused by feeding a

HFD in the central nervous system is unclear because these ubiquitously expressed JNK isoforms in

neurons are constitutively activated and are primarily localized to axons and dendrites (Coffey et al.,

2000; Oliva et al., 2006). In contrast, the neuron-specific isoform JNK3 exhibits low basal activity

and can be activated in the nucleus when neurons are exposed to environmental stress (Yang et al.,

1997). We therefore tested whether feeding a HFD caused activation of JNK3. This analysis demon-

strated that feeding a HFD caused JNK3 phosphorylation and activation in the hypothalamus

(Figure 1B). JNK3 in the central nervous system is therefore responsive to diet-induced metabolic

stress. This JNK3 pathway represents a possible mediator of altered leptin signaling in HFD-fed

mice.

JNK3 deficiency promotes obesity and insulin resistance
To examine the role of the JNK3 pathway, we investigated the effect of feeding a chow diet (CD) or

a HFD to wild-type (WT) mice or Mapk10-/- (JNK3-deficient) mice. We found that Mapk10-/- mice

gained similar body mass when fed a CD, but these mice gained significantly greater mass when fed

a HFD compared with WT mice (Figure 1C). 1H-MRS analysis demonstrated that the greater HFD-

induced body mass was caused by increased fat and lean mass (Figure 1D). Indeed, HFD-fed

Mapk10-/- mice exhibited increased liver, skeletal muscle, heart, and adipose tissue mass compared

with HFD-fed WT mice (Figure 1—figure supplement 1A). Microscopic examination of tissue
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Figure 1. JNK3 deficiency causes hyperphagia and obesity. (A) WT mice were fed (4 wk) a chow diet (CD) or a

high-fat diet (HFD). The body mass change at 24 hr post-injection (i.p. with solvent (PBS) or 2.5 mg/kg leptin) was

measured (mean ± SEM; n=8; ***p<0.001). (B) WT and Mapk10-/- mice fed (12 wk) a CD or a HFD were starved

overnight. Phospho-JNK3, JNK3, and GAPDH in the hypothalamus were measured by immunoblot analysis. (C,D)

The body mass gain of CD-fed and HFD-fed (12 wk) mice was measured (mean ± SEM; n=10~12) (C). Fat and lean

mass were measured by 1H-MRS analysis (mean ± SEM; n=10~12). (D) Statistically significant differences between

WT and Mapk10-/- mice are indicated (***p<0.001). (E) Paraffin embedded sections of epididymal white adipose

tissue (WAT), interscapular brown adipose tissue (BAT), and liver were prepared from HFD-fed (12 wk) WT and

Mapk10-/- mice. The sections were stained with hematoxylin & eosin. Scale bar, 100 mm. (F) Food consumption by

WT and Mapk10-/- mice fed a CD or a HFD (3 wk) was measured (mean ± SEM; n=6; **p<0.01; ***p<0.001). (G) WT

and Mapk10-/- mice fed a CD or a HFD (4 wk) were fasted overnight and the blood concentration of leptin and

insulin was measured (mean ± SE; n=10~12; *p<0.05). (H,I) Glucose tolerance tests (H) and insulin tolerance tests (I)

Figure 1 continued on next page
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sections demonstrated increased hypertrophy of white and brown adipocytes and increased hepatic

steatosis in HFD-fed Mapk10-/- mice compared with HFD-fed WT mice (Figure 1E).

We performed metabolic cage analysis to examine the mechanism of obesity promoted by JNK3

deficiency. These studies demonstrated that Mapk10 gene ablation selectively increased consump-

tion of a HFD, but not a CD (Figure 1F). Time course analysis demonstrated that the HFD-selective

hyperphagia was observed within 2 days of consuming the HFD (Figure 1—figure supplement 2A)

and was detected prior to the development of obesity (Figure 1—figure supplement 2B). No signif-

icant changes in VO2, VCO2, or energy expenditure were detected in the HFD-fed mice (Figure 1—

figure supplement 1B). These data suggest that hyperphagia contributes to the increased obesity

of HFD-fed Mapk10-/- mice compared with HFD-fed WT mice.

We used a pair-feeding protocol to test whether the increased obesity of Mapk10-/- mice com-

pared with WT mice was caused by greater food consumption. We found that WT and Mapk10-/-

mice gained similar body mass when fed the same amount of food (Figure 1—figure supplement

3). These data demonstrate that hyperphagia accounts for the increased HFD-induced obesity of

Mapk10-/- mice compared with WT mice.

Consequences of the increased HFD feeding behavior of Mapk10-/- mice include increased hyper-

insulinemia and hyperleptinemia (Figure 1G), increased blood lipid concentrations (Figure 1—figure

supplement 1C), decreased glucose tolerance (Figure 1H), and increased insulin resistance

(Figure 1I) when fed a HFD, but not a CD. These data indicate that Mapk10-/- mice may exhibit

increased HFD-induced insulin resistance. To test this hypothesis, we performed a hyperinsulinemic-

euglycemic clamp study. No significant differences between CD-fed WT and Mapk10-/- mice were

detected (Figure 2A–F). In contrast, HFD-fed Mapk10-/- mice showed significantly reduced glucose

infusion rate (a measure of whole body insulin sensitivity), reduced glucose turnover, reduced whole

body glycolysis, increased hepatic glucose production, and decreased hepatic insulin action com-

pared with HFD-fed WT mice (Figure 2A–F). These data demonstrate that Mapk10-/- mice exhibit a

profound defect in glycemic regulation compared with WT mice when fed a HFD, but not a CD.

JNK3 deficiency promotes adipose tissue inflammation
The increased adipose tissue mass of HFD-fed Mapk10-/- mice compared with HFD-fed control mice

was associated with increased adipose tissue infiltration by F4/80+ macrophages (Figure 2G).

Indeed, gene expression analysis identified markedly increased expression of macrophage marker

genes (Emr1 (F4/80) & Cd68), increased expression of genes associated with M1-like macrophage

polarization (Ccl2, Il1b, Il6 & Tnf), and decreased expression of genes associated with M2-like macro-

phage polarization (Arg1, Mgl2, Mrc1 & Mrc2) in the adipose tissue of HFD-fed Mapk10-/- mice com-

pared with HFD-fed control mice (Figure 2H–J). These data indicate that JNK3 deficiency promotes

increased adipose tissue inflammation in HFD-fed mice. It is likely that this increase in inflammation

contributes to the glucose intolerant and insulin resistant phenotype of HFD-fed Mapk10-/- mice

compared with HFD-fed WT mice (Brestoff and Artis, 2015).

JNK3 deficiency suppresses leptin signaling
Low concentrations of leptin were detected in the blood when WT and Mapk10-/- mice were fed a

CD (Figure 1G). The blood leptin concentration was increased when these mice were fed a HFD and

Figure 1 continued

were performed on WT and Mapk10-/- mice fed a CD or a HFD (12 wk) by measurement of blood glucose

concentration (mean ± SEM; n=10~12; *p < 0.05; **p < 0.01; ***p < 0.001).

DOI: 10.7554/eLife.10031.003

The following figure supplements are available for figure 1:

Figure supplement 1. JNK3 deficiency causes obesity without changes in energy expenditure.

DOI: 10.7554/eLife.10031.004

Figure supplement 2. Time course of the development of hyperphagia in HFD-fed JNK3-deficient mice.

DOI: 10.7554/eLife.10031.005

Figure supplement 3. Increased food consumption is required for obesity caused by JNK3 deficiency in HFD-fed

mice.

DOI: 10.7554/eLife.10031.006
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Figure 2. JNK3 deficiency promotes and adipose tissue inflammation and insulin resistance. (A-F)

Hyperinsulinemic-euglycemic clamps were performed on CD-fed or HFD-fed (3 wk) WT and Mapk10-/- mice.

Clamp hepatic glucose production (A), hepatic insulin action (B), glucose turnover (C), glucose infusion rate (D),

whole body glycolysis (E), and glycogen plus lipid synthesis (F) were measured (mean ± SE; n=8; *p<0.05;

***p<0.001). (G-J) Sections of epididymal WAT from HFD-fed (12 wk) WT and Mapk10-/- mice were stained with

hematoxylin & eosin or with an antibody to the macrophage protein F4/80 (G). Macrophage infiltration was

examined by measurement of the expression of Cd68 and Emr1 (F4/80) mRNA (H) and also mRNA expressed by

genes associated with M1-like (I) and M2-like (J) polarization by TaqmanÓ assays (mean ± SEM; n=10~12; *p<0.05;

**p<0.01; ***p<0.001).

DOI: 10.7554/eLife.10031.007
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was significantly greater in HFD-fed Mapk10-/- mice compared with HFD-fed WT mice (Figure 1G).

These changes in the amount of leptin circulating in the blood correlate, as expected, with differen-

ces in obesity (Friedman, 2014). However, the hyperleptinemia and hyperphagia of HFD-fed

Mapk10-/-mice is not consistent with the established anorexigenic function of leptin. This analysis

suggested that leptin signaling may be suppressed in HFD-fed Mapk10-/- mice. To test this hypothe-

sis, we examined the effect of treating mice with leptin. We found that intracerebroventricular

administration of leptin decreased the body mass of WT mice, but not Mapk10-/- mice (Figure 3A).

Measurement of hypothalamic gene expression demonstrated that leptin decreased Agrp and Npy

expression in WT mice, but not Mapk10-/- mice (Figure 3B). In contrast, leptin caused increased

Pomc and Socs3 gene expression in both WT and Mapk10-/- mice (Figure 3B). These data indicate

that Mapk10-/- mice exhibit a selective deficiency in leptin regulation of Agrp and Npy expression.

To confirm this conclusion, we compared hypothalamic gene expression in CD-fed and HFD-fed

mice. This analysis demonstrated increased Agrp and Npy expression in HFD-fed Mapk10-/- mice

compared with HFD-fed WT mice (Figure 3C). In contrast, no significant difference in Pomc and

Socs3 gene expression between HFD-fed WT and Mapk10-/- mice was detected (Figure 3C). These

observations indicate that JNK3 deficiency caused a selective defect in leptin signaling.

LEPRb+ neurons mediate the effects of JNK3 on feeding behavior
To examine the mechanism of JNK3 function, we established floxed Mapk10 mice to investigate the

neuron-specific effects of JNK3 on feeding behavior (Figure 4—figure supplement 1). We tested

whether JNK3 in neurons that express the leptin receptor LEPRb regulates feeding behavior by

investigating the effect of Mapk10 gene ablation specifically in LEPRb+ neurons. This analysis dem-

onstrated that control Leprb-cre (LepRWT) mice and Leprb-cre Mapk10Loxp/LoxP (LepRDJ3) mice

gained similar body mass when fed a CD. However, HFD-fed LepRDJ3 mice gained significant more

Figure 3. JNK3 deficiency causes a selective defect in AgRP neurons. (A) HFD-fed (4 wk) WT and Mapk10-/- mice were treated by

intracerebroventricular administration of 5 mg leptin or solvent (Control). The change in body mass at 24 hr post-treatment was measured (mean ± SEM;

n=10~12; ***p<0.001). (B) WT and Mapk10-/- mice were treated without or with leptin (2h) prior to measurement of hypothalamic gene expression by

TaqmanÓ assays (mean ± SEM; n=10~12; *p<0.05). (C) Hypothalamic gene expression in CD-fed and HFD-fed (12 wk) WT and Mapk10-/- mice was

measured by TaqmanÓ assay (mean ± SEM; n=10~12; *p<0.05).

DOI: 10.7554/eLife.10031.008
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Figure 4. JNK3 deficiency in leptin-responsive neurons causes HFD-induced hyperphagia and obesity. (A) The total body mass gain of CD-fed and

HFD-fed mice was examined (mean ± SEM; n = 10~25; *p<0.05; **p<0.01). JNK3 deficiency in LEPRb+ neurons was studied by comparing Leprb-cre

control mice (LepRbWT mice) and Leprb-cre Mapk10LoxP/LoxPmice (LepRDJ3 mice). (B) The fat and lean mass of CD-fed and HFD-fed (16 wk) mice was

measured by 1H-MRS analysis (mean ± SEM; n = 8~10; **p<0.001). (C) Food consumption by CD-fed and HFD-fed (4 wk) LepRWT and LepRDJ3 mice was

examined (mean ± SEM; n = 8; *p<0.05). (D,E) Glucose tolerance (D) and insulin tolerance (E) tests were performed using CD-fed and HFD-fed (12 wk)

LepRWT and LepRDJ3 mice (mean ± SEM; n = 8~12; *p<0.05; **p<0.01). (F-H) CD-fed and HFD-fed (12 wks) LepRWT and LepRDJ3 mice were fasted

overnight and the blood concentration of glucose (F), insulin (G), and leptin (H) was measured (mean ± SEM; n = 8~20; *p<0.05**p<0.01). (I) Sections of

epididymal WAT, interscapular BAT, and liver from CD-fed and HFD-fed (12 wk) LepRWT and LepRDJ3 mice were stained with hematoxylin & eosin. Bar,

100 mm.

DOI: 10.7554/eLife.10031.009

Figure 4 continued on next page
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body mass than LepRWT mice (Figure 4A and Figure 4—figure supplement 2A). 1H-MRS analysis

showed that the difference in body mass was caused by increased fat mass (Figure 4B). Metabolic

cage analysis demonstrated that Mapk10 gene ablation in LEPRb+ neurons caused no change in CD

food consumption, but caused increased HFD food consumption (Figure 4C). This increase in HFD

consumption was not associated with changes in VO2, VCO2, or energy expenditure (Figure 4—fig-

ure supplement 2B). JNK3 in LEPRb+ neurons of HFD-fed mice therefore regulates feeding behav-

ior, but not other aspects of energy balance.

The increased feeding behavior of HFD-fed (but not CD-fed) LepRDJ3 mice was associated with

decreased glucose tolerance (Figure 4D), increased insulin resistance (Figure 4E), increased blood

glucose concentration (Figure 4F), increased hyperinsulinemia (Figure 4G), and increased hyperlep-

tinemia (Figure 4H). White and brown adipose tissue (WAT & BAT) in HFD-fed LepRDJ3 mice exhib-

ited increased adipocyte hypertrophy compared with HFD-fed LepRWT mice (Figure 4I). Moreover,

JNK3 deficiency in LepRb+ neurons caused increased HFD-induced hepatic steatosis (Figure 4I).

JNK3 in AgRP neurons suppresses HFD feeding behavior
To identify a LepRb+ neuronal sub-population relevant to JNK3-regulated HFD feeding behavior, we

examined Mapk10 gene ablation in selected neurons within the hypothalamus. Gene expression

analysis demonstrated that JNK3 was required for HFD-induced regulation of Agrp and Npy, but

not Pomc (Figure 3). This analysis indicated that AgRP neurons rather than POMC neurons may play

an important role in JNK3-regulated feeding behavior in HFD-fed mice. To test this hypothesis, we

examined the phenotype of Agrp-cre Mapk10Loxp/LoxP (AgrpDJ3) mice and Pomc-cre Mapk10Loxp/LoxP

(PomcDJ3) mice. We found that JNK3 deficiency in POMC neurons of HFD-fed mice caused no signif-

icant changes in feeding behavior, glucose intolerance, blood glucose concentration, hypertrophy of

white and brown adipocytes, and hepatic steatosis compared with control Pomc-cre (PomcWT) mice

(Figure 5A,C,E). In contrast, JNK3 deficiency in AgRP neurons in HFD-fed mice caused increased

feeding, increased glucose intolerance, increased blood glucose concentration, increased hypertro-

phy of white and brown adipocytes, and increased hepatic steatosis compared with control Agrp-cre

(AgrpWT) mice (Figure 5B,D,F). Metabolic cage analysis demonstrated that the VO2, VCO2, and

energy expenditure of HFD-fed AgrpDJ3 mice and PomcDJ3 mice were similar to control mice (Fig-

ure 5—figure supplement 1). Together, these data demonstrate that JNK3 in AgRP neurons, but

not POMC neurons, acts to suppress HFD consumption.

JNK3 regulates excitatory transmission onto AgRP neurons of HFD-fed
mice
Leptin and its receptor are known to affect synaptic transmission and modulate AgRP neuron activity

(Pinto et al., 2004; Baver et al., 2014). We therefore examined miniature inhibitory postsynaptic

currents (mIPSCs) and miniature excitatory postsynaptic currents (mEPSCs) of AgRP neurons in the

ARC of WT and Mapk10-/- mice. This analysis demonstrated that JNK3 deficiency caused no change

in mIPSC frequency or amplitude in CD-fed and HFD-fed mice (Figure 6A–D). Similarly, JNK3 defi-

ciency caused no change in mEPSC frequency or amplitude in CD-fed mice (Figure 6E–H). In con-

trast, HFD-fed JNK3-deficient mice demonstrated increased mEPSC amplitudes in the absence of

changes in mEPSC frequency (Figure 6E–H). Studies using the selective antagonist DNQX demon-

strated that these mEPSC currents were mediated by AMPA receptors in AgRP neurons (Figure 6-

figure supplement 1). Together, these data indicate that JNK3 deficiency leads to altered excitatory

transmission onto AgRP neurons compared to WT mice when fed a HFD. This finding is consistent

with the increased expression of AgRP and NPY (Figure 3C) and the increased food consumption

(Figure 1F) observed in HFD-fed JNK3-deficient compared to HFD-fed WT mice.

Figure 4 continued

The following figure supplements are available for figure 4:

Figure supplement 1. Establishment of Mapk10LoxP/LoxPmice.

DOI: 10.7554/eLife.10031.010

Figure supplement 2. JNK3 deficiency in leptin-responsive neurons causes obesity.

DOI: 10.7554/eLife.10031.011
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Figure 5. JNK3 in AgRP neurons, but not POMC neurons, regulates food consumption. (A,B) Food consumption

by CD-fed and HFD-fed (4 wk) mice was measured (mean ± SEM; n = 8; *p<0.05). JNK3 deficiency in POMC

neurons was studied by comparing Pomc-cre control mice (PomcWT mice) and Pomc-cre Mapk10LoxP/LoxPmice

(PomcDJ3 mice). JNK3 deficiency in AgRP neurons was studied by comparing Agrp-cre control mice (AgrpWT mice)

and Agrp-cre Mapk10LoxP/LoxPmice (AgrpDJ3 mice). (C,D) CD-fed and HFD-fed (16 wk) control mice and mice with

JNK3 deficiency in POMC neurons (C) and AgRP neurons (D) or were tested using glucose tolerance assays and by

measurement of fasting blood glucose concentration (mean ± SEM; n = 8~12; *p<0.05; **p<0.01; ***p<0.001). (E,

F) Representative hematoxylin & eosin-stained sections of liver, epididymal WAT, and interscapular BAT from CD-

fed and HFD-fed (16 wk) control mice and mice with JNK3 deficiency in POMC neurons (E) and AgRP neurons (F)

are presented.

DOI: 10.7554/eLife.10031.012

The following figure supplement is available for figure 5:

Figure supplement 1. Effect of JNK3 deficiency in AgRP and POMC neurons on energy expenditure.

DOI: 10.7554/eLife.10031.013
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Discussion
The JNK signaling pathway is implicated in the metabolic stress response (Sabio and Davis, 2010).

Studies of the ubiquitously expressed isoforms JNK1 and JNK2 demonstrate that the JNK pathway

Figure 6. JNK3 regulates excitatory transmission onto AgRP neurons. (A,B) Mapk10+/+ Npy-GFP and Mapk10-/-

Npy-GFP mice were fed a HFD (3 wk) prior to electrophysiological recording of mIPSC from AgRP neurons. (C,D)

mIPSC frequency (freq.) and amplitude (amp.) in recordings of CD-fed and HFD-fed mice were quantitated (mean

± SEM; n=11~12; *p<0.05). (E,F) Mapk10+/+ Npy-GFP and Mapk10-/- Npy-GFP mice were fed a HFD (3 wk) prior to

electrophysiological recording of mEPSC from AgRP neurons. (G,H) mEPSC frequency and amplitude in

recordings of CD-fed and HFD-fed mice were quantitated (mean ± SEM; n=10; *p<0.05).

DOI: 10.7554/eLife.10031.014

The following figure supplement is available for figure 6:

Figure supplement 1. The AMPA receptor antagonist DNQX blocks mEPSCs in AgRP neurons.

DOI: 10.7554/eLife.10031.015
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is activated in peripheral tissues by feeding a HFD (Hirosumi et al., 2002). Consequences of HFD-

stimulated JNK1 and JNK2 activation in peripheral tissues include promotion of insulin resistance in

adipose tissue, liver, and muscle (Sabio et al., 2008; Sabio et al., 2010b; Vernia et al., 2014). In

contrast, central actions of JNK1 and JNK2 are mediated by the hypothalamic-pituitary axis by regu-

lation of energy expenditure (Belgardt et al., 2010; Sabio et al., 2010a; Vernia et al., 2013).

Together, these studies indicate that JNK1 and JNK2 play important roles in metabolic stress

responses by causing insulin resistance in peripheral tissues and promoting obesity by suppressing

energy expenditure (Sabio and Davis, 2010).

JNK3 is expressed in a limited number of tissues, including the brain and testis (Gupta et al.,

1996). Since JNK1 and JNK2 are expressed ubiquitously, the expression of JNK3 by neurons means

that these cells express all three JNK isoforms (Davis, 2000). To examine the role of JNK in neurons,

the effects of ablation of the three genes that encode JNK (Mapk8, Mapk9, and Mapk10) in neurons

have been examined. This analysis demonstrated that compound JNK-deficiency caused markedly

increased survival responses associated with increased autophagy (Xu et al., 2011). Roles for individ-

ual JNK isoforms in neurons have also been studied (Coffey, 2014). JNK1 and, to some extent

JNK2, are constitutively activated and are primarily localized to axons and dendrites (Coffey et al.,

2000; Oliva et al., 2006) where they play a major role in the regulation of the cytoskeleton and axo-

nal/dendritic morphology (Coffey, 2014). In contrast, JNK3 exhibits low basal activity and is acti-

vated in the nucleus when neurons are exposed to stress (Yang et al., 1997). Studies of Mapk10-/-

mice demonstrate that JNK3 is required for stress-induced cJun phosphorylation and AP-1 activation

in neurons (Yang et al., 1997). This role of JNK3 in neurons is non-redundant with JNK1 and JNK2.

Here we report that JNK3 in LEPRb+ neurons regulates feeding behavior in mice (Figure 4). The

mechanism of JNK3 function requires metabolic stress (e.g. feeding a HFD) to cause JNK3 activa-

tion. This distinguishes the JNK3 deficiency phenotype from other negative regulators of leptin sig-

naling. Thus, JNK3 deficiency does not cause hyperphagia when mice are fed a chow diet, but JNK3

deficiency does cause hyperphagia when mice are fed a HFD. In contrast, PTPN1-deficiency causes

hypophagia on both CD and HFD (Bence et al., 2006). This analysis indicates that JNK3 is not

required for fine-tuning leptin receptor signaling, but JNK3 is essential for determining the leptin

signaling response during exposure to metabolic stress. JNK3 therefore serves a key role in the

establishment of the set-point for the threshold of leptin signaling that controls feeding behavior in

response to metabolic stress.

Gene ablation studies in sub-populations of LEPRb+ neurons demonstrated that HFD (but not

CD) hyperphagia was found in mice with JNK3 deficiency in AgRP neurons, but not POMC neurons

(Figure 5). These data demonstrate that JNK3 deficiency in AgRP neurons is sufficient to cause HFD

hyperphagia, although possible roles for JNK3 in other LEPRb+ neurons cannot be excluded by this

analysis. We conclude that orexigenic signaling by AgRP neurons contributes to the effects of JNK3

deficiency on HFD hyperphagia.

Molecular mechanisms that account for JNK3 function include altered excitatory transmission to

AgRP neurons in HFD-fed mice. Our recordings measured glutamatergic transmission from all inputs

to AgRP neurons and demonstrated an increase in mEPSC amplitude, but not frequency, from HFD-

fed JNK3-deficient mice compared with HFD-fed control mice (Figure 6). This observation is consis-

tent with a possible postsynaptic function of JNK3 in AgRP neurons whereby JNK3 affects AMPA

and/or NMDA receptor activity within these neurons. Interestingly, glutamatergic input to AgRP neu-

rons stimulates feeding behavior (Liu et al., 2012). Previous studies have established functional con-

nections between the JNK signaling pathway and glutamatergic receptor signaling in neurons. For

example, the JNK scaffold proteins JIP1/2 can regulate NMDA receptor signaling (Kennedy et al.,

2007) and AMPA receptor phosphorylation by JNK regulates AMPA receptor function and traffick-

ing (Thomas et al., 2008). Further studies are required to identify the complete spectrum of JNK3

targets in AgRP neurons. Nevertheless, since an increased AMPA response was detected in JNK3-

deficient AgRP neurons (Figure 6H and Figure 6-figure supplement 1), we conclude that JNK-

mediated AMPA receptor regulation (Thomas et al., 2008) may contribute to the hyperphagic phe-

notype of HFD-fed JNK3-deficient mice.

The results of the present study indicate that JNK3 plays a major role in the regulation of energy

balance. This function of JNK3 to regulate feeding behavior differs from the roles of JNK1/JNK2 to

regulate energy expenditure and insulin resistance (Sabio and Davis, 2010). These conclusions are

based on loss-of-function studies. A contrasting conclusion has been reported based on gain-of-
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function studies using transgenic expression of a MKK7-JNK1 fusion protein (that mimics constitu-

tively activated JNK1) in AgRP neurons that causes a small increase in food consumption by CD-fed

mice (Tsaousidou et al., 2014). Since JNK1-deficient (Mapk8-/-) mice do not exhibit altered feeding

behavior (Sabio et al., 2008) and endogenous JNK1 is constitutively activated in neurons (Cof-

fey, 2014), it is unclear why transgenic over-expression of an activated Mapk8 allele (encoding a

MKK7-JNK1 fusion protein) in WT mice would cause a small change in feeding behavior. However,

the pro-apoptotic function of this activated Mapk8 allele (Lei et al., 2002) may cause defects in

hypothalamic neuronal circuits that contribute to the reported phenotype. On balance, we favor the

conclusion that JNK1 and JNK2 do not influence feeding behavior (Sabio and Davis, 2010), but

JNK3 promotes leptin-mediated suppression of HFD feeding behavior (when JNK3 is activated), but

not CD feeding behavior (when JNK3 is inactive).

The observation that JNK1 and JNK2 promote obesity (by inhibiting energy expenditure) and

cause insulin resistance in peripheral tissues indicates that drugs that block JNK signaling may be

therapeutically beneficial for the treatment of pre-diabetes (Sabio and Davis, 2010). However, this

study demonstrates that JNK3 inhibition causes HFD-dependent hyperphagia (Figure 1F). This rep-

resents a potential problem for drug therapy. While JNK1/2 inhibition may be therapeutically benefi-

cial, hyperphagia may therefore result from JNK3 inhibition. Consequently, the most effective drug

strategy for the treatment of pre-diabetes may require a small molecule that inhibits JNK1/2, but

not JNK3.

Materials and methods

Mice
We have described Mapk10-/- mice previously (Yang et al., 1997). We obtained C57BL/6J mice

(stock number 000664), B6.129S4-Gt(ROSA)26Sortm1(FLP1)Dym/RainJ (Farley et al., 2000) (stock num-

ber 009086), B6.129-Leprtm2(cre)Rck/J mice (DeFalco et al., 2001) (stock number 008320), B6.FVB-Tg

(Npy-hrGFP)1Lowl/J mice (van den Pol et al., 2009) (stock number 006417), Agrptm1(cre)Lowl/J mice

(Tong et al., 2008) (stock number 012899), and Tg(Pomc1-cre)16Lowl/J mice (Balthasar et al.,

2004) (stock number 005965) from the Jackson Laboratory. These mice were backcrossed to the

C57BL/6J genetic background.

We established Mapk10LoxP/LoxP mice using homologous recombination in C57BL/6N embryonic

stem cells, the generation of chimeric mice, and breeding to obtain germ-line transmission of the

floxed Mapk10 allele using standard procedures. The mice used for these studies were backcrossed

to the C57BL/6J strain. The Frt-Neo cassette was excised by crossing the mice with FLP transgenic

mice. Homologous recombination of 5’ arm of the targeting vector was verified by PCR using the

primers 1F: 5’-TGTGACCTTCTAATACAG-3’ and 2R: 5’-CCTAAGACTGTCAGAGAG-3’ (Mapk10+:

135 bp; Mapk10LoxP: 282 bp). Homologous recombination of the 3’ arm of the targeting vector was

verified by PCR using the primers (3F: 5’-CTGAGTGACGTGTGGAG-3’ and 5R: 5’-TCATTGGG

TTGGGATATTC-3’) followed by digestion with XhoI (Mapk10+: 1,975 bp; Mapk10LoxP: 1026 bp &

1028 bp). Cre-mediated recombination between the LoxP sites was detected by PCR using the pri-

mers 1F and 4R: 5’-GATTCTCCCTGTCTGAG-3’ (Mapk10+: 1008 bp; Mapk10Loxp: 1759 bp;

Mapk10D: 171 bp). The Mapk10LoxP/LoxP mice were routinely genotyped by PCR using primers 1F

and 2R (Mapk10+: 135 bp; Mapk10LoxP: 282 bp).

Male mice (8 wks old) were fed a chow diet (Iso Pro 3000, Purina) or a HFD (F3282, Bioserve) for

4 to 12 wks. Body weight was measured on a weekly basis and whole body fat and lean mass were

non-invasively measured using 1H-MRS (Echo Medical Systems, Houston, TX). The mice were housed

in a facility accredited by the American Association for Laboratory Animal Care (AALAC). The Institu-

tional Animal Care and Use Committee (IACUC) of the University of Massachusetts and the Univer-

sity of Cincinnati approved all studies using animals.

Hyperinsulinemic-euglycemic clamp studies
The clamp studies were performed at the National Mouse Metabolic Phenotyping Center at the Uni-

versity of Massachusetts Medical School. A 2 hr hyperinsulinemic-euglycemic clamp was conducted

using overnight fasted conscious mice with a primed and continuous infusion of human insulin (150
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mU/kg body weight priming followed by 2.5 mU/kg/min; Humulin; Eli Lilly), and 20% glucose was

infused at variable rates to maintain euglycemia (Kim et al., 2004).

Metabolic cages
The analysis was performed by the National Mouse Metabolic Phenotyping Centers at the University

of Massachusetts Medical School and the University of Cincinnati. The mice were housed under con-

trolled temperature and lighting with free access to food and water. The food/water intake, energy

expenditure, respiratory exchange ratio, and physical activity were measured using metabolic cages

(TSE Systems, Chesterfield, MO).

Leptin treatment
Intracerebroventricular treatment with leptin was performed using mice with a cannula stereotaxi-

cally implanted into the 3rd ventricle (coordinates from Bregma: anteroventral, -1.8 mm; lateral,

0.0 mm; dorsoventral, 5.0 mm). Mice were monitored daily and allowed to recover for 1 week after

surgery. Mice received either solvent (artificial cerebrospinal fluid; aCSF) or Leptin (5 mg) in 2 ml deliv-

ered over 10 min. Leptin treatment by intraperitoneal (ip) injection was performed following 3 conse-

cutive days of sham injection.

RNA analysis
Tissue isolated from mice starved overnight was used to isolate total RNA using the RNAeasy mini

kit (Qiagen). Total RNA (500 ng) was converted into cDNA using the high capacity cDNA reverse

transcription kit (Life Technologies, Carlsbad, CA). The diluted cDNA was used for real-time quanti-

tative PCR analysis using a Quantstudio PCR PCR machine (Life Technologies). TaqMan assays (Life

Technologies) were used to quantify Adipoq (Mm00456425_m1), Agrp (Mm00475829_g1), Arg1

(Mm00475988_m1), Ccl2 (Mm00441242_m1), Emr1 (F4/80) (Mm00802530_m1), Il1b

(Mm00434228_m1), Il6 (Mm00446190_m1), Mapk8 (Jnk1) (Mm00489514_m1), Mapk9 (Jnk2)

(Mm00444231_m1), Mapk10 (Jnk3) (Mm00436518_m1), Mgl2 (Mm00460844_m1), Mrc1

(Mm00485148_m1), Mrc2 (Mm00485184_m1), Npy (Mm03048253_m1), Pomc (Mm00435874_m1),

and Tnf (Mm00443258_m1). The relative mRNA expression was normalized by measurement of the

amount of 18S RNA in each sample using TaqmanÓ assays (catalog number 4308329; Life

Technologies).

Blood analysis
Blood glucose was measured with an Ascensia Breeze 2 glucometer (Bayer, Pittsburgh, PA). Adipo-

kines and insulin in plasma were measured by multiplexed ELISA using a Luminex 200 machine

(Millipore, Billerica, MA).

Glucose and insulin tolerance tests
Glucose and insulin tolerance tests were performed by intraperitoneal injection of mice with glucose

(1 g/kg) or insulin (1.5 U/kg) using methods described previously (Sabio et al., 2008).

JNK3 activation
Mice (8–12 week-old) were fasted overnight. Hypothalamic extracts were prepared using Triton lysis

buffer (20 mM Tris-pH 7.4, 1% Triton-X100, 10% glycerol, 137 mM NaCl, 2 mM EDTA, 25 mM b-

glycerophosphate, 1 mM sodium orthovanadate, 1 mM PMSF and 10 mg/mL leupeptin and aprotinin).

Extracts (30–50 mg of protein) were examined by immunoblot analysis by probing with antibodies to

JNK3 (Cell Signaling Technologies, Danvers, MA) and GAPDH (Santa Cruz Biotechnology, Dallas,

TX). Activated JNK was isolated by immunoprecipitation with the mouse monoclonal p-JNK antibody

G9 (Cell Signaling Technologies) pre-bound to protein G Sepharose (GE Healthcare, Pittsburgh, PA)

and detected by immunoblot analysis by probing with an antibody to JNK3 (Cell Signaling Technolo-

gies). Immunocomplexes were detected by fluorescence using anti-mouse and anti-rabbit secondary

IRDye antibodies (LI-COR Biosciences, Lincoln, NE) and quantitated using the Li-COR Imaging

system
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Analysis of tissue sections
Histology was performed using tissue fixed in 10% formalin for 24 h, dehydrated, and embedded in

paraffin. Sections (7 mm) were cut and stained using hematoxylin & eosin (American Master Tech

Scientific, Lodi, CA). Paraffin sections were stained with an antibody to F4/80

(Abcam, Cambridge, MA) that was detected by incubation with anti-rabbit Ig conjugated to Alexa

Fluor 488 (Life Technologies). DNA was detected by staining with DAPI (Life Technologies). Fluores-

cence was visualized using a Leica TCS SP2 confocal microscope equipped with a 405 nm diode laser

(Leica Microsystems, Buffalo Grove, IL).

Electrophysiology
Brain slice preparations were performed using 8–10-weeks-old mice anaesthetized with isoflurane

before decapitation and removal of the entire brain. The brains were immediately submerged in ice-

cold, carbogen-saturated (95% O2, 5% CO2) high sucrose solution (238 mM sucrose, 26 mM

NaHCO3, 2.5 mM KCl, 1.0 mM NaH2PO4, 5.0 mM MgCl2, 10.0 mM CaCl2, 11 mM glucose). Then,

300 mm thick coronal sections were cut with a Leica VT1000S Vibratome and incubated in oxygen-

ated aCSF (126 NaCl, 21.4 mM NaHCO3, 2.5 mM KCl, 1.2 mM NaH2PO4, 1.2 mM MgCl2, 2.4 mM

CaCl2, 10 mM glucose) at 34˚C for 30 min. The slices were maintained and recorded at room tem-

perature (20–24˚C). The intracellular solution for voltage clamp recording contained the following:

140 mM CsCl, 1 mM BAPTA, 10 mM HEPES, 5 mM MgCl2, 5 mM Mg-ATP, and 0.3 mM Na2GTP, pH

7.35 and 290 mOsm.

To isolate glutamatergic, action potential-independent events, minitature excitatory postsynaptic

currents (mEPSCs) were recorded in the presence of tetrodotoxin (1 mM) and picrotoxin (100 mM) in

whole cell voltage clamp mode. To record miniature inhibitory postsynaptic currents (mIPSCs), the

neurons were recorded in the presence of TTX and kynurenic acid (1 mM). The membrane potential

was clamped at �60 mV. All recordings were made using a Multiclamp 700B amplifier, and data

were filtered at 1.4 kHz and digitized at 20 kHz. Data was analyzed using Clampfit 10.2 and Origin

Pro 8.6.

Statistical analysis
Differences between groups were examined for statistical significance using the Student’s test or

analysis of variance (ANOVA) with the Fisher’s test.
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protein kinase isoforms with transcription factors. The EMBO Journal 15:2760–2770.

Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS. 2002. A central role
for JNK in obesity and insulin resistance. Nature 420:333–336. doi: 10.1038/nature01137

Huang H, Kong D, Byun KH, Ye C, Koda S, Lee DH, Oh B-C, Lee SW, Lee B, Zabolotny JM, Kim MS, Bjørbæk C,
Lowell BB, Kim Y-B. 2012. Rho-kinase regulates energy balance by targeting hypothalamic leptin receptor
signaling. Nature Neuroscience 15:1391–1398. doi: 10.1038/nn.3207

Kaushik S, Rodriguez-Navarro JA, Arias E, Kiffin R, Sahu S, Schwartz GJ, Cuervo AM, Singh R. 2011. Autophagy
in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metabolism 14:173–183. doi: 10.
1016/j.cmet.2011.06.008

Kennedy NJ, Martin G, Ehrhardt AG, Cavanagh-Kyros J, Kuan C-Y, Rakic P, Flavell RA, Treistman SN, Davis RJ.
2007. Requirement of JIP scaffold proteins for NMDA-mediated signal transduction. Genes & Development 21:
2336–2346. doi: 10.1101/gad.1563107

Kim H-J, Higashimori T, Park S-Y, Choi H, Dong J, Kim Y-J, Noh H-L, Cho Y-R, Cline G, Kim Y-B, Kim JK. 2004.
Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in Vivo. Diabetes 53:1060–
1067. doi: 10.2337/diabetes.53.4.1060

Kocalis HE, Hagan SL, George L, Turney MK, Siuta MA, Laryea GN, Morris LC, Muglia LJ, Printz RL, Stanwood
GD, Niswender KD. 2014. Rictor/mTORC2 facilitates central regulation of energy and glucose homeostasis.
Molecular Metabolism 3:394–407. doi: 10.1016/j.molmet.2014.01.014

Lei K, Nimnual A, Zong W-X, Kennedy NJ, Flavell RA, Thompson CB, Bar-Sagi D, Davis RJ. 2002. The bax
subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun NH2-terminal kinase.
Molecular and Cellular Biology 22:4929–4942. doi: 10.1128/MCB.22.13.4929-4942.2002

Liu T, Kong D, Shah BP, Ye C, Koda S, Saunders A, Ding JB, Yang Z, Sabatini BL, Lowell BB. 2012. Fasting
activation of AgRP neurons requires NMDA receptors and involves spinogenesis and increased excitatory tone.
Neuron 73:511–522. doi: 10.1016/j.neuron.2011.11.027

Loh K, Fukushima A, Zhang X, Galic S, Briggs D, Enriori PJ, Simonds S, Wiede F, Reichenbach A, Hauser C, Sims
NA, Bence KK, Zhang S, Zhang Z-Y, Kahn BB, Neel BG, Andrews ZB, Cowley MA, Tiganis T. 2011. Elevated
hypothalamic TCPTP in obesity contributes to cellular leptin resistance. Cell Metabolism 14:684–699. doi: 10.
1016/j.cmet.2011.09.011

Mehler PS, Brown C. 2015. Anorexia nervosa – medical complications. Journal of Eating Disorders 3. doi: 10.
1186/s40337-015-0040-8

Mori H, Inoki K, Münzberg H, Opland D, Faouzi M, Villanueva EC, Ikenoue T, Kwiatkowski D, MacDougald OA,
Myers MG, Guan K-L. 2009. Critical role for hypothalamic mTOR activity in energy balance. Cell Metabolism 9:
362–374. doi: 10.1016/j.cmet.2009.03.005

Myers MG, Leibel RL, Seeley RJ, Schwartz MW. 2010. Obesity and leptin resistance: distinguishing cause from
effect. Trends in Endocrinology & Metabolism 21:643–651. doi: 10.1016/j.tem.2010.08.002

Niswender KD, Morrison CD, Clegg DJ, Olson R, Baskin DG, Myers MG, Seeley RJ, Schwartz MW. 2003. Insulin
activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-
induced anorexia. Diabetes 52:227–231. doi: 10.2337/diabetes.52.2.227

Oliva AA, Atkins CM, Copenagle L, Banker GA. 2006. Activated c-jun N-terminal kinase is required for axon
formation. Journal of Neuroscience 26:9462–9470. doi: 10.1523/JNEUROSCI.2625-06.2006

Ottaway N, Mahbod P, Rivero B, Norman LA, Gertler A, D’Alessio DA, Perez-Tilve D. 2015. Diet-induced obese
mice retain endogenous leptin action. Cell Metabolism 21:877–882. doi: 10.1016/j.cmet.2015.04.015

Ozcan L, Ergin AS, Lu A, Chung J, Sarkar S, Nie D, Myers MG, Ozcan U. 2009. Endoplasmic reticulum stress
plays a central role in development of leptin resistance. Cell Metabolism 9:35–51. doi: 10.1016/j.cmet.2008.12.
004

Patterson CM, Leshan RL, Jones JC, Myers MG. 2011. Molecular mapping of mouse brain regions innervated by
leptin receptor-expressing cells. Brain Research 1378:18–28. doi: 10.1016/j.brainres.2011.01.010

Pinto S, Roseberry AG, Liu H, Diano S, Shanabrough M, Cai X, Friedman JM, Horvath TL. 2004. Rapid rewiring of
arcuate nucleus feeding circuits by leptin. Science 304:110–115. doi: 10.1126/science.1089459

Vernia et al. eLife 2016;5:e10031. DOI: 10.7554/eLife.10031 17 of 18

Research article Cell biology Neuroscience

http://dx.doi.org/10.1126/science.1056602
http://dx.doi.org/10.1126/science.1056602
http://dx.doi.org/10.1038/nm.2421
http://dx.doi.org/10.1002/1526-968X(200011/12)28:3/4%3C106::AID-GENE30%3E3.0.CO;2-T
http://dx.doi.org/10.1001/jama.2012.113905
http://dx.doi.org/10.1038/nm1295-1311
http://dx.doi.org/10.1038/nm1295-1311
http://dx.doi.org/10.1530/JOE-14-0405
http://dx.doi.org/10.1530/JOE-14-0405
http://dx.doi.org/10.1038/nature01137
http://dx.doi.org/10.1038/nn.3207
http://dx.doi.org/10.1016/j.cmet.2011.06.008
http://dx.doi.org/10.1016/j.cmet.2011.06.008
http://dx.doi.org/10.1101/gad.1563107
http://dx.doi.org/10.2337/diabetes.53.4.1060
http://dx.doi.org/10.1016/j.molmet.2014.01.014
http://dx.doi.org/10.1128/MCB.22.13.4929-4942.2002
http://dx.doi.org/10.1016/j.neuron.2011.11.027
http://dx.doi.org/10.1016/j.cmet.2011.09.011
http://dx.doi.org/10.1016/j.cmet.2011.09.011
http://dx.doi.org/10.1186/s40337-015-0040-8
http://dx.doi.org/10.1186/s40337-015-0040-8
http://dx.doi.org/10.1016/j.cmet.2009.03.005
http://dx.doi.org/10.1016/j.tem.2010.08.002
http://dx.doi.org/10.2337/diabetes.52.2.227
http://dx.doi.org/10.1523/JNEUROSCI.2625-06.2006
http://dx.doi.org/10.1016/j.cmet.2015.04.015
http://dx.doi.org/10.1016/j.cmet.2008.12.004
http://dx.doi.org/10.1016/j.cmet.2008.12.004
http://dx.doi.org/10.1016/j.brainres.2011.01.010
http://dx.doi.org/10.1126/science.1089459
http://dx.doi.org/10.7554/eLife.10031


Sabio G, Cavanagh-Kyros J, Barrett T, Jung DY, Ko HJ, Ong H, Morel C, Mora A, Reilly J, Kim JK, Davis RJ.
2010a. Role of the hypothalamic-pituitary-thyroid axis in metabolic regulation by JNK1. Genes & Development
24:256–264. doi: 10.1101/gad.1878510

Sabio G, Das M, Mora A, Zhang Z, Jun JY, Ko HJ, Barrett T, Kim JK, Davis RJ. 2008. A stress signaling pathway in
adipose tissue regulates hepatic insulin resistance. Science 322:1539–1543. doi: 10.1126/science.1160794

Sabio G, Davis RJ. 2010. cJun NH2-terminal kinase 1 (JNK1): roles in metabolic regulation of insulin resistance.
Trends in Biochemical Sciences 35:490–496. doi: 10.1016/j.tibs.2010.04.004

Sabio G, Kennedy NJ, Cavanagh-Kyros J, Jung DY, Ko HJ, Ong H, Barrett T, Kim JK, Davis RJ. 2010b. Role of
muscle c-jun NH2-terminal kinase 1 in obesity-induced insulin resistance. Molecular and Cellular Biology 30:
106–115. doi: 10.1128/MCB.01162-09

Scott MM, Lachey JL, Sternson SM, Lee CE, Elias CF, Friedman JM, Elmquist JK. 2009. Leptin targets in the
mouse brain. The Journal of Comparative Neurology 514:518–532. doi: 10.1002/cne.22025

Takahashi KA, Cone RD. 2005. Fasting induces a large, leptin-dependent increase in the intrinsic action potential
frequency of orexigenic arcuate nucleus neuropeptide Y/agouti-related protein neurons. Endocrinology 146:
1043–1047. doi: 10.1210/en.2004-1397

Thomas GM, Lin D-T, Nuriya M, Huganir RL. 2008. Rapid and bi-directional regulation of AMPA receptor
phosphorylation and trafficking by JNK. The EMBO Journal 27:361–372. doi: 10.1038/sj.emboj.7601969

Tong Q, Ye C-P, Jones JE, Elmquist JK, Lowell BB. 2008. Synaptic release of GABA by AgRP neurons is required
for normal regulation of energy balance. Nature Neuroscience 11:998–1000. doi: 10.1038/nn.2167

Tsaousidou E, Paeger L, Belgardt BF, Pal M, Wunderlich CM, Brönneke H, Collienne U, Hampel B, Wunderlich
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