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Abstract: The main goal of this research is to provide a novel model that describes an optically heated
layer of an excited non-local microelongated semiconductor material. In a rotating field, the model is
examined as the photo-excitation processes occur. The model presents the microelongation scalar
function, which describes the microelement processes according to the micropolar-thermoelasticity
theory. The model analyses the interaction situation between optical-thermomechanical waves under
the impact of rotation parameters when the microelongation parameters are taken into consideration
according to the photo-thermoelasticity theory. During the electronic and thermoelastic deforma-
tion, the fundamental governing equations were obtained in dimensionless form, and they were
investigated using the harmonic wave methodology. Two-dimensional general solutions for the
fundamental fields of an isotropic, homogeneous, and linear non-local microelongated semiconductor
medium are derived (2D). The free surface of the medium is subjected to several conditions to produce
complete solutions due to the laser pulse. The physical properties of silicon (Si) material are used to
show numerical modeling of the main fields. Some comparisons are made and graphically shown
under the impact of various relaxation time and rotational parameters.

Keywords: non-local; photo-thermoelasticity; microelongation; rotation; renewable energy; hydroelasticity

1. Introduction

Recently, the significance of semiconductors has become more apparent as a result
of advances in materials research. Modern industries, particularly those such as sensors
and transistors that depend on the existence of weak electric currents, have significantly
improved from the creation of semiconductors. Normal conditions prevent semiconductors
from being sufficiently insulating or excellent conductors of electricity, such as glass or
copper. However, these materials’ internal resistance starts to diminish when they are
subjected to a steady rise in temperature as a result of being influenced by light or laser
beams. As a result, there was a rise in interest in researching the physical characteristics
of semiconductors in the second part of the 20th century. It turns out that these materials’
intrinsic characteristics, particularly their internal composition, alters when the temperature
changes (microelements) [1]. The transport of light-excited electrons to the surface causes
so-called electronic deformation (ED), which gives rise to the photothermal (PT) hypothesis.
On the other hand, the thermoelasticity hypothesis suggests that thermoelastic deformation
(TD) is brought on by internal particle vibrations. The PT theory and the thermoelastic
theory overlap, and a photo-thermoelasticity theory emerges as a result of the earlier ED
and TD deformations. Because the microelements of the semiconductor are what causes
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the change in internal resistance, the impact of the microinertia process on them should be
considered during the interference procedures (changing internal structure) [2].

Due to changes in the internal structure of semiconductors caused by the heat effect,
the impact of microelongation parameters has been studied. The four degrees of freedom
in a microelongated semiconductor are obtained. The third one is caused by the rotating
movement (microelongation) of the electrons during the ED deformation, whereas the
other three depend on the change that occurs during the TD deformation [3]. In this
instance, the micropolar theory is built on these degrees of freedom (director) to explain
the behavior of semiconductors [3]. When the microstretch and micropolar theories of
the semiconductor are examined, the directors are rigid. When the directors are orthog-
onal and contraction, the microelongational theory of material emerges as a particular
instance. Eringen [4] introduced the micropolar theory by taking into consideration the
elastic body’s microstructure. On the other hand, Eringen [5] presented a new microstretch-
thermoelasticity model that explains how the thermoelasticity theory and the microstretch
parameters interact. For elastic bodies subjected to the effects of external fields, the gen-
eralized microstretch thermoelasticity theory is researched in many applications [6–11].
Ramesh et al. [12] investigated stretching sheets under Casson fluid flow with a variable
porous medium thickness. The hydromechanics of viscoelastic porous media with a single
relaxation period was studied using a viscoelastic boundary layer flow by Ezzat and Abd-
Elaal [13]. Ailawalia et al. [14–16] developed thermo-elastic microelongated governing
equations to study the plane-strain deformation of an elastic material with an internal
heat source. The microelongated elastic medium is used to obtain the wave propagations
inside the medium under the effect of an internal heat source [17,18]. According to the
thermoelasticity theory, the double porosity structure is developed using the micropolar
theory of the elastic body [19].

When the impact of an absorbed laser beam on a sample of a semiconductor mate-
rial was examined, the photothermal (PT) theory came into existence [20]. According to
photoacoustic spectroscopy analysis, the PT theory is employed to determine the phys-
ical characteristics of semiconductors [21–24]. Hobiny and Abbas [25] investigated the
deformation of a semiconductor medium in two dimensions as a result of photothermal
and thermoelastic interactions. Todorovic et al. [26,27] studied the optical characteris-
tics of a semiconducting microcantilever medium within the framework of the electronic
deformation process. The relationship between the photothermal technique and the ther-
moelasticity theory of semiconductors was then described in different models by several
authors [28–36]. According to photothermal excitation methods, Mahdy et al. [37] inves-
tigated the microstretch elastic semiconductor medium under the influence of a rotation
field. The electromagnetic field was employed by Lotfy and El-Bary [38] to examine the
photo-thermo-microstretch semiconductor elastic media.

Using the global balancing rules and the second law of thermodynamics, Eringen
and Edelen [39] created the nonlocal elasticity theory. In the beginning, screw dislocation
and surface waves in solids were studied using the theory of nonlocal elasticity [40]. In
the framework of the nonlocal thermoelastic model, the transient thermoelastic responses
of a slab with temperature-dependent thermal are investigated [41]. In the framework of
nonlocal dual phase lag, Kumar et al. [42] proposed a dynamical model for a non-local
biothermoelastic medium with diffusion. The impacts on the characteristic waves were
acquired after they studied fundamental theorems in the form of fundamental solutions.

The main purpose of presenting this subject is to analyze the influence of micro-
elongation parameters in the context of the research of non-local semiconductor materials
within the framework of photo-thermoelasticity theory, which has not been treated previ-
ously. In the present work, a microelongated non-local semiconductor material is examined
in a rotating field according to the photo-thermoelasticity theory. In this instance, the
non-local semiconductor medium’s microinertia and microelements are taken into account.
According to the 2D deformation, the governing basic equations are presented in the di-
mensionless and rotational fields. The generalized rotational photo-thermo-microelongated
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(RPTM) of the semiconductor medium is a novel model that was recently proposed. The
main wave propagations of physical fields within the medium are obtained using the
normal mode approach and numerical closed form with some boundary constraints. With
some comparisons under the influence of the rotation field and non-local parameters un-
der the micro-elongation parameters, the numerical simulation of wave propagations is
graphically depicted.

2. Mathematical Model and Main Equations

Four main quantities may be presented based on the Cartesian coordinates (Figure 1).
The carrier density N, which describes the propagation of plasma waves, is the optical
function. The heat T, which measures the thermal (temperature) effect, may be used to
depict the thermal distribution. The displacement (elastic) vector ui can be used to introduce
the elastic wave dispersion. The function ϕ is the scalar microelongational function, which
describes the influence of elongation if a uniform rotating field (Ω = Ωn) is introduced to
the non-local semiconductor medium (n is in the direction of the y-axis, Figure 1). When the
non-local semiconductor medium is homogeneous, isotropic, and linear, the fundamental
equations for the RPTM theory may be expressed in the following way, according to 2D
deformations [1,2].
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According to photo-thermoelasticity theory, the non-local semiconductor microelon-
gated constitutive relations in tensor form are [14–18]:

σ′ ij = (λo ϕ + λur,r )δi j + 2µuj,i −
ˆ
γ(1 + vo

∂
∂t )Tδi j − ((3λ + 2µ)dnN)δi j,

(1− ξ2
1∇2)σij = σ′ ij,

mi = a0 ϕ,i,
s− σ = λoui,i −β1(1 + vo

∂
∂t )T +−((3λ + 2µ)dnN)δ2i + λ1 ϕ.

. (1)

The optical equation that describes how heat and plasma waves interact may be
written as [25]:

.
N = DEN,ii −

N
τ
+ κ T. (2)

When the medium experiences microelongation following processes involving mi-
croelements, the non-local motion (ξ1 is the non-local parameter) and microinertia equations
under the influence of the rotating field can be presented as [43,44]:

(λ + µ)uj,ij + µui,jj + λo ϕ,i −
ˆ
γ(1 + vo

∂
∂t )T,i − δnN,i =

ρ (1− ξ2
1∇2)

(
..
ui +

{
⇀
Ωx(

⇀
Ω x
→
u )
}

i
+ (2

⇀
Ω x

.
→
u )i

) . (3)

αo ϕ,ii − λ1 ϕ− λouj,j +
ˆ
γ1(1 + vo

∂

∂t
)T =

1
2

jρ
..
ϕ. (4)
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According to elastic body theory, the heat conduction equation for a non-local microe-
longated semiconductor medium may be formulated as [18]:

KT,ii − ρCE(n1 + τo
∂

∂t
)

.
T − ˆ

γTo(n1 + noτo
∂

∂t
)

.
ui,i +

Eg

τ
N =

ˆ
γ1To

.
ϕ. (5)

The fundamental fields can be selected in cases of 2D disturbance based on two-space
coordinates (x, z) and time t, according to ED and TE deformations. As a result, in the
xz-plane, the elastic vector ui and the microelongational scalar function may be written
as follows: →

u = (u, 0, w),
u = u(x, z, t) , w = w(x, z, t) ,
ϕ = ϕ(x, z, t).

. (6)

The strain relation takes the form:

e =
∂u
∂x

+
∂w
∂z

. (7)

where
ˆ
γ1 = (3λ + 2µ)αt2 , αt2 represents thermal expansions that depend on the microelon-

gation properties. The main controlling Equations (2)–(5) can be analyzed in 2D, which can
be rewritten as

(λ + µ)
(

∂2u
∂x2 +

∂2w
∂x∂z

)
+ µ

(
∂2u
∂x2 +

∂2u
∂z2

)
+ λo

∂ϕ
∂x −

ˆ
γ
(

1 + vo
∂
∂t

)
∂T
∂x − δn

∂N
∂x =

ρ
(
(1− ξ2

1∇2) ∂2u
∂t2 −Ω2u + 2Ω ∂w

∂t

)
, (8)

(λ + µ)
(

∂2u
∂x∂z +

∂2w
∂z2

)
+ µ

(
∂2w
∂x2 + ∂2w

∂z2

)
+ λo

∂ϕ
∂z −

ˆ
γ
(

1 + vo
∂
∂t

)
∂T
∂z − δn

∂N
∂z =

ρ
(
(1− ξ2

1∇2) ∂2w
∂t2 −Ω2w− 2Ω ∂u

∂t

)
, (9)

αo

(
∂2 ϕ

∂x2 +
∂2 ϕ

∂z2

)
− λ1 ϕ− λoe +

ˆ
γ1

(
1 + vo

∂

∂t

)
T =

1
2

jρ
∂2 ϕ

∂t2 , (10)

K
(

∂2T
∂x2 +

∂2T
∂z2

)
− ρCE

(
n1 + τo

∂

∂t

)
∂T
∂t
− γ̂To

(
n1 + noτo

∂

∂t

)
∂e
∂t

+
Eg

τ
N = γ̂1To

∂ϕ

∂t
. (11)

The parameters no and n1 are two selected constants that determine the various RPTM
theories (coupled-dynamical model (CD) when n1 = 1 , no = τo = vo = 0 [40], Lord and
Shulman (LS) model when n1 = no = 1, vo = 0, τo > 0 [41], and Green and Lindsay (GL)
model when n1 = 1, no = 0, vo ≥ τo > 0 [42]) with thermal relaxation times. The following
dimensionless quantities can be considered as follows for even more simplification:

N = δn

To
ˆ
γ

N, (xi, ξ1) =
ω∗(xi , ξ1)

CT
, (t, τo, νo) = ω∗(t, τo, νo),

C2
T = 2µ+λ

ρ , T = T
To

, σi j =
σi j

To
ˆ
γ

, ϕ =
ρC2

T

To
ˆ
γ

ϕ, C2
L = µ

ρ ,

(Π′, ψ′) = ρω∗2(Π,ψ)

To
ˆ
γ

, ui =
ρCTω∗

To
ˆ
γ

ui, Ω′ = Ω
ω∗ , ω∗ =

ρCEC2
T

K .


. (12)

Therefore, the fundamental equations may be converted using Equation (12) to the
following form (without superscripts), which results in:

(∇2 − ε3 − ε2
∂

∂t
)N + ε4T = 0, (13)

(
(1− ξ2

1∇2) ∂2u
∂t2 −Ω2u + 2Ω ∂w

∂t

)
=

(λ+µ)

ρC2
T

∂e
∂x + µ

ρC2
T
∇2u + λo

ρC2
T

∂ϕ
∂x − (1 + vo

∂
∂t )

∂T
∂x −

∂N
∂x

, (14)
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(
(1− ξ2

1∇2) ∂2w
∂t2 −Ω2w− 2Ω ∂u

∂t

)
=

(λ+µ)

ρC2
T

∂e
∂z +

µ

ρC2
T
∇2w + λo

ρC2
T

∂ϕ
∂z − (1 + vo

∂
∂t )

∂T
∂z −

∂N
∂z

, (15)

(∇2 − C3 − C4
∂2

∂t2 )ϕ− C5e + C6(1 + vo
∂

∂t
)T = 0, (16)

∇2T − (n1 + τo
∂

∂t
)

∂T
∂t
− ε(n1 + noτo

∂

∂t
)

∂e
∂t

+ ε5N = ε1
∂ϕ

∂t
. (17)

Depending the functions of potential scalar Π(x, z, t) and vector space-time function
Ψ(x, z, t) = (0, ψ, 0), Helmholtz’s theorem can be formulated in terms of the displacement
components as

→
u = grad Π + curl Ψ, u =

∂Π
∂x
− ∂ ψ

∂ z
, w =

∂Π
∂z

+
∂ ψ

∂ x
. (18)

The previous Equations (14)–(17) may be rearranged in the following way using
Equation (18):(

(1 + ξ2
1

∂2

∂t2 )∇
2 + Ω2 − ∂2

∂t2

)
Π + 2Ω

∂ψ

∂t
+ (1 + vo

∂

∂t
)T + a1 ϕ− N = 0, (19)

(
(1 + ξ2

1
∂2

∂t2 )∇
2 − a3Ω2 − a3

∂2

∂t2

)
ψ− a3

∗ ∂Π
∂t

= 0, (20)

(∇2 − C3 − C4
∂2

∂t2 )ϕ− C5∇2Π + C6(1 + vo
∂

∂t
)T = 0, (21)(

∇2 − (n1
∂

∂t
+ τo

∂2

∂t2 )

)
T − ε(n1

∂

∂t
+ noτo

∂2

∂t2 )∇
2Π + ε5N − ε1

∂ϕ

∂t
= 0. (22)

You may rewrite the 2D non-local constitutive relations as

(1− ξ2
1∇2)σxx = ∂u

∂x + a2
∂w
∂z − (1 + vo

∂
∂t ) T − N + a1 ϕ,

(1− ξ2
1∇2)σzz = a2

∂u
∂x + ∂w

∂z − (1 + vo
∂
∂t ) T − N + a1 ϕ,

(1− ξ2
1∇2)σxz = a4 (

∂u
∂z + ∂w

∂x ).

, (23)

where

a1 = λo
ρc2

T
, a2 = λ

ρC2
T

, a3 =
ρC2

T
µ , ε =

ˆ
γ

2
To

Kρ , ε1 =
ˆ
γ1

ˆ
γTo

Kρ , ε2 =
C2

T
DEω∗ ,

a3
∗ = 2Ωa3, a4 = µ

ρC2
T

, C4 = ρjω∗4

α0C2
2

,C5 = λoω∗2

α0C2
2

,C6 =
ˆ
γ1ρω∗2To

ˆ
γα0

,

ε3 =
C2

T
τDEω∗2 , ε4 =

κoδnC2
T

DE
ˆ
γω∗2

, ε5 =
Eg

ˆ
γC2

2
τKω∗δn

, C3 = λ1ω∗2

α0C2
2

.

3. Solutions to the Problem

All physical quantities may be divided into the categories described below because har-
monic waves propagate in the xz-plane, for which the function f (x, z, t) can be formulated
in 2D as follows [37–41]:

f (x, z, t) = f (x) exp(ωt + ibz), (24)

where b is taken in z-direction, which describes the wave number; the amplitude is f (x),
i =

√
−1, and ω = ω0 + i ζ is a constant that describes the complex time-frequency.

Equations (13) and (19)–(22) with transformation (24) yield the following:

(D2 − α1)N + ε4T = 0, (25)

(D2 − A1)Π + A9ψ + A2T + a∗1 ϕ− a∗2 N = 0, (26)

(D2 − A3)ψ− A10Π = 0, (27)
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C5(D2 − b2)Π− (D2 − A4)ϕ− A5T = 0, (28)

(D2 − A6)T − A7(D2 − b2)Π + ε5N − A8 ϕ = 0, (29)

where

α1 = b2 + ε3 + ε2ω, A1 = b2 + ω2

1+ξ2
1ω2 −Ω2, A3 = b2 + a3(Ω2+ω2)

1+ξ2
1ω2 , D = d

dx ,

A10 = a3
∗ω

1+ξ2
1ω2 , A4 = b2 + C3 + C4ω2, A5 = C6(1 + νoω), A2 = 1+νoω

1+ξ2
1ω2 , a∗2 = 1

1+ξ2
1ω2 ,

A6 = b2 + (n1ω + noτoω2), A7 = ε(n1ω + noτoω2), A8 = ε1ω, a∗1 = a1
1+ξ2

1ω2 , A9 = 2Ωω
1+ξ2

1ω2 .

. (30)

The tenth order ordinary differential equation (ODE) that results from solving
Equations (25)–(29) may be expressed as follows:{

D10 − B1D8 + B2D6 − B3D4 + B4D2 − B5

}
(ϕ, N, T, Π, ψ) = 0, (31)

where

B1 = −
{

A2 A7 + C5a∗1 − A1 − A3 − A4 − a∗2 A6 − α1
}

,

B2 =

{
(−A2 A7 − C5a∗1 + A1 + A3 + A4 + A6)α1 + ((−b2 − A3 − A6)C5 − A5 A7)a∗1 + A2 A8C4 + A5 A8+
(−b2 A2 − A2 A3 − A2 A4 + ε4)A7 + (A1 + A3 + A4)A6 + a∗2(A1 + A3)A4 + A1 A3 + A9 A10 − ε4ε5

}
,

B3 = −



(−C5a∗1 + A1 + A3 + A4)ε4ε5 + (A7(−b2 − A3 − A4) + A8C5)ε4+
(−A3 A4 − A6(A3 + A4)− A9 A10 − A5 A8a∗2 + A7(A5a∗1 + A2 A3 + A2 A4)+
A2 A7b2 + (b2a∗1 − A4 A8 + A3a1 + A6a∗1)C5 − A1 A4 − A1 A6 − A1 A3)α1−
A3 A5 A8 − A1 A5 A8 − A6 A9 A10a∗2 − A4 A9 A10 + A7(A2 A3 A4 + A3 A5a∗1)−
A3 A4 A6 + A7(A2 A3 + A2 A4 + A5a∗1)b

2 + (−A2 A3 A8 + A3 A6a∗1+
(−A2 A8 + (A3 + A6)a∗1)b

2)C5 − A1 A3 A4 − a∗2 A1 A3 A6 − A1 A4 A6


,

B4 =


((((−A3 − A6)b2 − A3 A6)α1 + (−A3 A6 + ε4ε5)b2 + A3ε4ε5)C5 + (−b2 A5 A7 − A3 A5 A7)α1−
A3 A5 A7b2)a∗1 + ((b2 A2 A8 + A2 A3 AA8)α1 + (A2 A3 A8 − A8ε4)b2 − A3 A8ε4)C5+
((−A2 A3 A7 − A2 A4 A7)b2 + A1 A3 A6 + A1 A4 A6 + A1 A5 A8 + A3(A1 A4 + A5 A8) + A4 A9 A10
+(A3 A4 + A9 A10)A6 − A2 A3 A4 A7)α1 + (−A2 A3 A4 A7 + (A3 A7 + A4 A7)ε4)b2 + A1 A3(A4 A6+
A5 A8) + (A4 A6 A9 + A5 A8 A9)A10 + (A3 A4 A7a∗2 + (−A1 A3 − A1 A4 − A3 A4 − A9 A10)ε5)ε4

,

B5 = −


((A3 A5 A7 + A3 A6C5)b2α1 − b2 A3C5ε5ε4)a∗1 + ((A2 A3 A4 A7 − A2 A3 A8C5)b2−
A1 A3(A4 A6 + A5 A8)− (A4 A6 + a∗2 A5 A8)A9 A10)α1 + (A4(A1 A3 + A9 A10)ε5+
(−A3 A4 A7 + A3 A8C5)b2)ε4

.

The following demonstrates the factorization methodology used to obtain the solutions
to Equation (31):(

D2 − k2
1

)(
D2 − k2

2

) (
D2 − k2

3

)(
D2 − k2

4

)(
D2 − k2

5

){
T, N, Π, ϕ, ψ

}
(x) = 0. (32)

The roots denote by k2
n (n = 1, 2, 3, 4, 5 : Re(kn) > 0).

The roots of Equation (31) can be used to rewrite the linear solutions in the general
form of the main quantities as

T(x) =
5

∑
i=1

Λi (b, ω)e−kix. (33)

ϕ(x) =
5

∑
i=1

Λ′ i (b, ω)e−kix =
5

∑
i=1

h1iΛi e−kix, (34)

Π(x) =
5

∑
i=1

Λ′′ i (b, ω)e−kix =
5

∑
i=1

h2iΛi e−kix, (35)
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N(x) =
5

∑
i=1

Λ′′′ i (b, ω)e−kix =
5

∑
i=1

h3iΛi e−kix, (36)

ψ(x) =
5

∑
i=1

Λ′′ ′′ i (b, ω)e−kix =
5

∑
i=1

h4iΛi e−kix. (37)

where Λn, Λ′n, Λ′′ n, and Λ′′ ′′ n represent the unknown coefficients, and the other
coefficients are

h1i =
((A2C5+A5)k6

i +c8k4
i +c9k2

i +c10)
(k8

i +c4k6
i +c5k4

i +c6k2
i +c7)

, h2i =
(A2k6

i +c1k4
i +c2k2

i +c3)
(k8

i +c4k6
i +c5k4

i +c6k2
i +c7)

,

h3i = − (ε4)

(k2
i−ε4)

, h4i =
(A2 A10k4

i +c11k2
i +c12)

(k8
i +c4k6

i +c5k4
i +c6k2

i +c7)
,

c1 = (−A2 A3 − A2 A4 − A2α1 − A5a∗1 + ε4),
c2 = (A2 A3 A4 + A2 A3α1 + A2 A4α1 + A3 A5a∗1 + A5a1α1 − A3ε4 − A4ε4),
c3 = −A2 A3 A4α1 − A3 A5a∗1α1 + A3 A4ε4,
c4 = C5a∗1 − A1 − A3 − A4 − α1,
c5 = −b2C5a1 − a∗1(A3C5 + C5α1) + A1(A3 + A4 + α1) + A3 A4 + A3α1 + A4α1 + A9 A10,
c6 = b2 AC5a1 + b2C5a1α1 + A3C5a∗1α1 − A1 A3 A4 − A1 A3α1 − A1 A4α1 − A3 A4α1 − A4 A9 A10 − A9 A10α1,
c7 = −b2 A3C5a∗1α1 + A1 A3 A4α1 + A4 A9 A10α1,
c8 = (−b2 A2C5 − A2 A3C5 − A2C5α1 − a∗2 A1 A5 − A3 A5 − A5α1 + C5ε4,
c9 = b2(A2 A3C5 + A2C5α1 − C5ε4) + A3(A2C5α1 + A1 A5) + A5α1(A1 + A3)− A3C5ε4a∗2 + A5 AA9 A10,
c10 = −b2 A3(A2C5α1 − C5ε4)− A1 A3 A5α1 − A5 A9 A10a∗2α1,
c11 = A10

(
−A2 A4 − A2α1 − A5a∗1 + ε4

)
,

c12 = A10
(

A2 A4a∗2α1 + A5a∗1α1 − A4ε4
)
,

The displacement elastic components in analytical expressions can be rewritten as

u(x) = −
5

∑
n=1

Λn(knh2n + ibh4n)e−knx, (38)

w(x) =
5

∑
n=1

Λn(ibh2n − knh4n)e−knx. (39)

The stresses relation in analytical expressions of terms Λn can be represented as

σxx =
5
∑

n=1
Λn

(
h2n(k2

n−b2a2)−A2−h3n+a1h1n−ibknh4n(a2−1)
1−ξ2

1(k
2
n−b2)

)
e−knx,

σzz =
5
∑

n=1
Λn

(
h2n(a2k2

n−b2)−A2−h3n+a1h1n−ibknh4n(1−a2)

1−ξ2
1(k

2
n−b2)

)
e−knx,

σxz = −
5
∑

n=1
a4Λn

(ib(knh2n+ibh4n)+kn(ibh2n−knh4n)

1−ξ2
1(k

2
n−b2)

e−knx.


. (40)

4. Boundary Conditions

According to some boundary conditions that may be selected at the boundary (x = 0)
of the microelongated non-local surface, the general parameters Λn in this section can be
determined [45].

Very little heat is lost into the surrounding region as a result of pulsed laser stimula-
tion’s ability to change temperature immediately, or at least over a short time. As a result,
pulsed laser excitation is advantageous for studies of absorption. It is also recognized that
a range of physical reactions, some of which need energy, may take place when a laser
beam illuminates a non-local solid surface. A portion of the energy from the laser light
is transformed into heat when it strikes a material. This kind of heat creation sends heat
waves across the substance, which have certain impacts (e.g., photothermal effects). The
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exposure of the medium’s surrounding plane (x = 0) to laser pulses is also taken into
account. The following heat condition may be taken into account in this situation [46]:

T(0, z, t) = Θ(z, t) =
_
E=(1−

_
R)ϑ(z)Q(t). (41)

where ϑ(z) = 2
R
√

2π
e−2z2/R and Q(t) = 8t3

v2 e−2t2/v2
.

In Equation (41),
_
E is the laser pulse energy per unit length,

_
R is the surface reflectivity,

R is the radius of the Gaussian beam, v is the rise-time of the laser pulse, and = represents
the extinction coefficient; it is helpful to assume a surface source for laser heating of
materials. It is important to note that the maximum amount of light energy that a laser may

emit during one of its pulses is
_
E .

The two mechanical conditions on the non-local surface (x = 0) are

σxx = −p⇒⇒ σxx = −p exp(ωt + i bz),
σxz = 0⇒⇒ σxz = 0, at x = 0,

P(x, z, t) = p(x) exp(ωt + i bz)

 (42)

The elongation can be introduced at the free non-local surface (x = 0) as

ϕ = 0. (43)

However, when the concentration of electrons ñ0 is established, the recombination
processes allow the plasma state to be selected, which may be rewritten as follows:

dN
dx

= − s̃n0

DE
. (44)

It is simple to construct the equations that must be satisfied by parameter Λn by
substituting their solutions into the boundary conditions (T, σxx, σxz, ϕ, and N):

5
∑

i=1
Λi (b, ω) = Θ(z, t) exp(ω t + i b z),

5
∑

n=1
Λn

(
h2n(k2

n−b2a2)−A2−h3n+a1h1n−ibknh4n(a2−1)
1−ξ2

1(k
2
n−b2)

)
= −p exp(ωt + ibz),

5
∑

n=1
a4Λn

(ib(knh2n+ibh4n)+kn(ibh2n−knh4n)

1−ξ2
1(k

2
n−b2)

= 0,

5
∑

i=1
h1iΛi (b, ω) = 0,

5
∑

i=1
h3ikiΛi(b, ω) = s̃ñ0

DE
.



. (45)

The values of four unknown constants Λn may be found by applying the matrix
inverse process. Deformations, the temperature field, and all other physical characteristics
of the medium may thus be obtained.

5. Discussion and Numerical Results

The physical field variables under examination will be graphically depicted to interpret
the numerical results, and comparisons are conducted for various values of physical pa-
rameters such as the rotation parameter, the laser pulse rise-time parameter, and relaxation
times (thermal memories). In this instance, silicon (Si)-based non-local microelongated
semiconductor medium input parameters are simulated numerically. The numerical out-
comes can be shown graphically using MATLAB (2022a). A graphical simulation using the
following Si parameters, which are given in Table 1, may be created using the SI units of
the physical constants of Si [47–52]:
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Table 1. The physical constants of Si material in SI units.

Unit Symbol Value Unit Symbol Value

Nm−2 λ
µ

3.64 × 1010

5.46× 1010 sec (s) τ0, ν0
0.00005,
0.0005

kg/m3 ρ 2330 m3 dn −9 × 10−31

K T0 800 m2 j 0.2× 10−19

sec (s) τ 5× 10−5 N α0 0.779× 10−9

K−1 αt1 0.04× 10−3 Nm−2 λ0 0.5× 1010

Wm−1K−1 K0 150 Nm−2 k 1010

J/(kg K) Ce 695 Nm−2 λ1 0.5× 1010

m2/s DE 2.5× 10−3 K−1 αt2 0.017× 10−3

m/s s̃ 2 m−3 ñ0 1020

sec (s) t 0.001 eV Eg 1.11

The laser parameters used in this calculation are [45]

_
R = 91%, v = 10 ns, = = 0.001 m−1, R = 0.45 mm,

_
E = 10 J.

The calculations of the main field wave propagations in this study are obtained using
non-dimensional real quantities. When the wave number b = 1 is utilized by the mechanical
load P = 1, numerical simulations are done in the range (distance refers to the depth of the
medium) 0 ≤ x ≤ 5 at z = 0.2 andω = ω0 + i ζ (where ζ = 0.05 andω0 = −2.5).

5.1. Impact of Thermal and Elastic Memories

Figure 2a–f depicts how a change in horizontal distance in the range 0 ≤ x ≤ 5
affects the wave propagation of fundamental physical variables with different relaxation
times under the impact of rotation filed Ω = 0.5 and laser pulses. In this instance, several
models in the theory of photo-thermoelasticity are used to determine the impact of the
relaxation times (three models: CD, LS, and GL). Six subfigures (Figure 2a–f) illustrate
wave propagation as thermal waves (heat distributions), microelongation distributions,
elastic waves (displacement), plasma waves (carrier intensity), and mechanical waves (σxx
and σxz) at set values of the short time. The boundary conditions at the free surface of the
exciting non-local microelongated semiconductor are satisfied by the physical distributions
shown in Figure 2a-f. Due to the thermal loads of the laser pulses, the distribution of
thermal waves starts at a positive value on the surface and increases until it reaches its
maximum value in the first range. The wave behavior according to the CD, LS, and GL
models of the thermal wave and plasma wave (exponential behavior) gradually declines
in the second range until it reaches the minimum value with the zero line. On the other
hand, the behavior of the wave distribution according to the different models agrees with
the experimental findings that appear in the two subfigures (temperature, and carrier
density) [53,54]. The variation of microelongation, elastic, and tangent stress distributions
against the distance for three various photo-thermoelasticity models is shown in the second,
third, and sixth subfigures (CD, LS, and CD). It is determined that when the values of
the relaxation durations increase, the wave propagation of the microelongation, elastic
(displacement), and tangent stress distributions decrease in the beginning until they reach
the minimum values near the surface. However, in the second range, all three distributions
increase and decrease periodically with wave behavior until approaching the zero line
(the equilibrium state is due to the decrease in the thermal effect of laser pulses). The
normal mechanical stress wave (σxx) begins at the negative value on the surface satisfying
the surface condition. Due to the laser pulse (thermal impact) and due to TE and ED,
the normal stress distribution increases gradually until it reaches the maximum value.
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The wave-propagation distribution begins to gradually decrease with distance from the
surface to reach the minimum value, then increasing and decreasing alternately until the
distribution vanishes completely with the zero line as the distance increases. According
to differences in the values of the thermal relaxation durations, all wave propagations
are different.
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5.2. Impact of the Laser Pulse Rise-Time Parameter

The rise time of picosecond laser pulses is known to be correlated with the pulse
energy, measurement range, and maximum laser energy density at the silicon surface. The
second figure (Figure 3a–f) displays the relationship between the framework quantities
under study and the laser pulse rise-time parameter v for three distinct values of v equal to
v = 0.1, v = 0.2, and v = 0.3. As can be seen in the subfigures, all physical quantities satisfy
boundary conditions, and as x approaches infinity, all curves coincide under the influence
of the rotation field according to the GL model. The numerical outcomes demonstrate
that the greatest temperature of the structure is consistently found close to the front of the
heat, mechanical, and plasma waves and subsequently decreases with increasing depth
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into the medium. Using femtosecond laser technology, an unusual mechanical force is
produced. In contrast to continuous or long-pulse laser heat generation, where the heat
treatment process causes the majority of damage to other components, femtosecond lasers
may produce high-quality surfaces with a small amount of abrasion. This is due to how
mechanical forces are produced and how lattices deform rapidly. This shows that the
electron-to-phonon interactions prevail at time scales of tens of femtoseconds, where the
photothermal mechanical model, which incorporates all of these effects, can describe the
ultrafast photothermal response throughout a range of nearly three orders of magnitude.
Furthermore, it may explain this pattern down to tens of picoseconds, when phonon-to-
phonon interactions are the dominant kind of interaction. The main field’s distribution
behavior is seen to be strongly influenced by the laser-pulse rising time factor. The Figure
clearly shows that as the parameter v is increased, the size of the amplitude fields increases.
As a result, photo-excitation transport processes strengthen the heat and plasma waves,
causing them to peak close to the surface.
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5.3. Impact of Rotation Parameter

The variations of thermal, microelongation, elastic, plasma, and mechanical (σxx and
σxz) wave propagation for given values of dimensionless time (t = 0.1), in the range
0 ≤ x ≤ 5 in two cases, are shown in Figure 4a–f (six subfigures). According to the GL
model, these two situations occur when the medium is investigated with (Ω = 0.5) and
without (Ω = 0.0) that represent the rotation effect. The rotation field parameter may be
seen to have a considerable influence on all wave propagations of the investigated fields
in this figure. The wave propagations in the different two values of rotation take place at
finite speeds, which is compatible with physical principles.
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6. Conclusions

For given values of the input physical parameters, an analytical formulation for an
isotropic, homogeneous non-local microelongated semiconducting elastic media under
the effect of a rotating field and laser pulses is described and graphically represented.
The photo-thermoelasticity theory is used to describe the interactions between thermal,
mechanical, microelongation, and carrier intensity in the main equations in 2D. In the
context of photo-excitation transport mechanisms, the microelongated semiconductor
material is investigated. According to various thermal memory, three models of the photo-
thermoelasticity theory are taken into consideration (CD, LS, and GL). For the non-local
silicon microelongate semiconducting medium, numerical simulations are created using
a few set-boundary conditions. Under the generalised photo-thermoelasticity theory, the
wave’s propagation properties in the nonlocal microelongated semiconductor structure are
investigated. It has been noted that any physical distribution of waves in motion tends
to approach equilibrium. Additionally, it was shown that relaxation time significantly
affects how the waves of the physical quantities under investigation propagate. For both
thermal and mechanical boundary conditions, the variations in physical quantities have a
similar character. On the other hand, the distribution of the waves that are propagating
has a distinct influence of the rotation parameter and laser pulse rise-time parameter.
As the value of the parameter laser pulse rise-time increases, the values of temperature,
microelongation, and mechanical and normal displacement also increase. The rising time
of the laser pulse has been shown to be a fundamental factor that significantly influences all
field distributions. The strength of the laser steadily lowers as it penetrates deeper due to
silicon’s high absorption of laser energy. The existence of a photothermal excitation under
the rotating field caused all physical variables’ behaviour to change. Microelongated non-
local semiconductor silicon is incredibly important for research and is frequently utilized in
a wide range of contemporary electronic devices, including diodes, accelerometers, inertial
sensors, and electric circuits.
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Nomenclature

λ, µ Lame’s elastic semiconductor parameters.
δn = (3λ + 2µ)dn The deformation potential difference.
n Unit vector in the direction of y-axis.
T0 Reference temperature in its natural state.
ˆ
γ = (3λ + 2µ)αt1 The volume thermal expansion.
σij The microelongational stress tensor.
ρ The density of the microelongated sample.
αt1 Coefficients of linear thermal expansion.
e Cubical dilatation.
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Ce Specific heat of the microelongated material.
K The thermal conductivity.
DE The carrier diffusion coefficient.
τ The carrier lifetime.
Eg The energy gap.
ei j Components of strain tensor.
Π, Ψ Two scalar functions.
j0 The microinertia of microelement.
a0, α0, λ0, λ1 Microelongational material parameters.
τ0, ν0 Thermal relaxation times.
ϕ The scalar microelongational function.
mk Components of the microstretch vector
s = skk Stress tensor component
δik Kronecker delta
Ω = Ωn Angular velocity
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