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Excited spin states and phase separation in spinor Bose-Einstein condensates
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We analyze the structure of spin-one Bose-Einstein condensates in the presence of a homogeneous magnetic
field. We classify the homogeneous stationary states and study their existence, bifurcations, and energy spectra.
We reveal that phase separation can occur in the ground state of antiferromagnetic (polar) condensates while
the spin components of the ferromagnetic condensates are always miscible and no phase separation occurs. Our
theoretical model, confirmed by numerical simulations, explains that this phenomenon takes place when the
energy of the lowest homogeneous state is a concave function of the magnetization. In particular, we predict
that phase separation can be observed in a %Na condensate confined in a highly elongated harmonic trap.
Finally, we discuss the phenomena of dynamical instability and spin domain formation.
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I. INTRODUCTION

The spin degree of freedom of spinor Bose-Einstein con-
densates (BECs) [1-3] leads to a wealth of new phenomena
not possessed by single-component (spin-frozen) conden-
sates. New spin-induced dynamics such as spin waves [2],
spin mixing [4], and spin textures [2,5] have all been pre-
dicted and observed. These spin-dependent phenomena are
possible due to the development of optical traps [6], which
trap all spin components rather than just the low-magnetic-
field seeking spin states of magnetic traps. However, the ef-
fect of an additional small nonzero magnetic field on the
condensate in these optical traps was studied even in the
seminal theoretical [3] and experimental [1] works. In fact
the interplay of spin and magnetic fields has been at the heart
of some of the most impressive spinor BEC experiments,
including the demonstration of spin domains [1], spin oscil-
lations [7], and spin textures and vortices [8].

A spin-one BEC in a magnetic field is subjected to the
well-known Zeeman effect. At low fields the effect is domi-
nated by the linear Zeeman effect, which leads to a Larmor
precession of the spin vector about the magnetic field at a
constant rate, which is unaffected by spatial inhomogeneities
in the condensate [9]. At higher magnetic fields the quadratic
Zeeman effect becomes important, and leads to much more
dramatic effects in the condensate, such as coherent popula-
tion exchange between spin components [7,10,11] and the
breaking of the single-mode approximation (SMA) [12,13],
which assumes that all the spin components share the same
spatial density and phase profile. The study of the behavior
of a spin-one condensate in the presence of a magnetic field
began with the work of Stenger er al. [1], where spin do-
mains were predicted and observed in the ground state of a
polar »Na condensate subject to a magnetic-field gradient.
At the same time, the ground states of both ferromagnetic
and antiferromagnetic (polar) condensates in homogeneous
magnetic field were found to be free of spin domains in the
local-density approximation. It was later found that the SMA
was broken in the ground state of a condensate confined in a
harmonic trap even in a homogeneous field [12]. Neverthe-
less, the SMA continued to be used in studies of spinor con-
densates for its simplicity and validity in a broad range of
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experimental situations [10,14], in particular when the con-
densate size is smaller than the spin healing length, which
determines the minimum domain size. On the other hand,
dynamical instability, leading to the spontaneous formation
of dynamic spin domains, was found to occur in large ferro-
magnetic condensates in prepared excited initial states
[8,15-17] while no such phenomenon was predicted to occur
[15] or indeed observed [18] in antiferromagnetic conden-
sates. Similar instabilities were found in the transport of both
types of spin-one condensates in optical lattices [19]. Tt
seemed that, however, spin domains were only to be found in
antiferromagnetic condensates in the presence of inhomoge-
neous magnetic fields [1] or potentials.

Recently, we have shown that, contrary to the common
belief, antiferromagnetic spin-one condensates may exhibit
spin domain formation in a homogeneous magnetic field
[20], provided that the condensate is larger than the spin
healing length. In fact, we found that for a homogeneous
antiferromagnetic BEC with nonzero magnetization all states
are unstable. The form of the ground state in this case was,
therefore, unknown.

In this work we resolve the ground-state phase diagram of
a spin-one condensate in the absence of a trapping potential.
We show that the translational symmetry of a homogeneous
BEC is spontaneously broken and phase separation occurs in
magnetized polar condensates if the magnetic field is strong
enough. An analogous phenomenon has been predicted and
observed previously in binary condensates [21,22]. In con-
trast, the cases when domain formation is driven by inhomo-
geneous external potentials or magnetic-field gradients may
be referred to as potential separation according to the naming
used in [22]. To explain the physics behind phase separation
and determine the conditions for it to occur, we analyze the
excitation spectrum of the internal spin degree of freedom of
a homogeneous condensate. In contrast to spatial excitations
of the condensate, which have the form of sound waves or
phonons [2,3,23,24], we analyze the case when the spin-
dependent energy, but not the kinetic energy, is increased
with respect to the ground state [14,20]. Next, we show that
for a range of experimental conditions, it is energetically
favorable for the system to consist of two separate phases
composed of different stationary states. We demonstrate nu-
merically that this phenomenon can be observed in a polar
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condensate trapped in a harmonic optical potential.

The paper is organized as follows. Section II introduces
the theoretical model of a spin-one condensate in a homoge-
neous magnetic field. In Sec. III we study homogeneous sta-
tionary states of the condensate in a magnetic field and cal-
culate the energy of each state in terms of the magnetization
and the quadratic Zeeman energy shift. We then present the
internal spin excitation spectra and bifurcation behavior of
the different spin states. In Sec. IV we analyze the ground-
state structure, and show that phase separation can occur in
polar condensates and that the behavior without a trapping
potential can be used to predict the ground states in a har-
monic trap. Section V concludes the paper.

II. MODEL

We consider dilute spin-one BEC in a homogeneous mag-
netic field pointing in the z direction. The mean-field Hamil-
tonian of this system is given by

H:fdrz

J==0.+

(;ﬁzv*v @||2V(||2>
ar Vi Sl Vol

+H,, (1)

where _, ¢y, ¥, are the wave functions of atoms in mag-
netic sublevels m=-1,0,+1, M is the atomic mass, V(r) is
an external potential, and n=3n;=2[¢;|* is the total atom
density. The asymmetric part of the Hamiltonian is given by

Ha:Jdr S En+ 2FR, 2)
Jj=—0.+ 2

where E; is the Zeeman energy shift for state i; and the spin
density is

F=(F.F,.F)='F ' Fy'F ), (3)

where 1’:“)6,%Z are the spin matrices [25] and ¢=(,, b, ).
The nonlinear coefficients are given by cy=47h*(2a,
+ag)/3M and c,=4mh*(a,—ay)/3M, where ag is the s-wave
scattering length for colliding atoms with total spin S. The
total number of atoms and the total magnetization,

N= f ndr. 4)

M= f der=f (n,—n_)dr, (5)

are conserved quantities. The Zeeman energy shift for each
of the components E; can be calculated using the Breit-Rabi
formula [26]

1 A
E.=- gEHFS(l + 41 + a+d?) F gupB,

1 —

where Eyrg is the hyperfine energy splitting at zero magnetic
field, a=(g;+g,) upB/Epps, where g is the Bohr magneton,
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g;and g; are the gyromagnetic ratios of electron and nucleus,
and B is the magnetic-field strength. The linear part of the
Zeeman effect gives rise to an overall shift of the energy, and
so we can remove it with the transformation

H—H+(N+ M)E )2+ (N- M)E_/2. (7)

This transformation is equivalent to the removal of the Lar-
mor precession of the spin vector around the z axis [20,24].
We thus consider only the effects of the quadratic Zeeman
shift. For sufficiently weak magnetic field we can approxi-
mate it by E=(E,+E_—2E;)/2~ a*Eyrg/ 16, which is al-
ways positive.

The asymmetric part of Hamiltonian (2) can now be re-
written as

H,= f dr(— SEng + %|F|2> - f drne(r), (8
where the energy per atom e(r) is given by [10]

e == SEpy+ It == Epy + 2 (I[P ).

£ |*=2p0(1 = po) +2po\(1 = pg)* = m? cos(6).  (9)

We express the wave functions as 1,bj=\"7m exp(if;), where
the relative densities are p;=n;/n. We also introduced the
relative phase 6#=6,+60_-26,, spin per atom f=F/n, and
magnetization per atom m=f,=p,—p_. The perpendicular
spin component per atom is [f, [*=f;+f.

Hamiltonian (1) gives rise to the Gross-Pitacvskii (GP)
equations describing the mean-field dynamics of the system

I

i = L0+ e+ g = )]s + o

iﬁﬁ&—fo =[L - 6E + cy(n.+n) ]y + 202‘/’+'/’—¢;’ (10)

where £ is given by £L=~#2V?/2M +con+V(r).

By comparing the kinetic energy with the interaction en-
ergy, we can define a characteristic healing length ¢
=2mh/\V2Mcyn and spin healing length &=2mh/\2Mc,n.
These quantities give the length scales of spatial variations in
the condensate profile induced by the spin-independent or
spin-dependent interactions, respectively. Analogously, we
define magnetic healing length as &=2mh/\2M SE.

In real spinor condensates, the a( and a, scattering lengths
have similar magnitude. The spin-dependent interaction co-
efficient ¢, is, therefore, much smaller than its spin-
independent counterpart c,. For example, this ratio is about
1:30 in a »Na condensate and 1:220 in a 8’Rb condensate far
from Feshbach resonances [27]. As a result, the excitations
that change the total density require much more energy than
those that keep n(r) close to the ground-state profile. In our
considerations we will assume that the amount of energy
present in the system is not sufficient to excite the high-
energy modes, and we will treat the total atom density n(r)
as a constant.
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III. HOMOGENOUS STATIONARY STATES

First, we investigate the homogeneous condensate in the
case of a vanishing potential, V(r)=0. We look for homoge-
neous stationary solutions in the form

Py, 1) = e 40 (11)

where ug=con/f is a constant. We thus extend the studies of
[14,20]. These solutions are stationary in the sense that the
number of atoms in each magnetic sublevel is constant in
time. The relative phase between the components may
change in time as long as the phase matching condition,

M+ =2, (12)

is fulfilled [20,28]. Because the symmetric part of the Hamil-
tonian in Eq. (1) is constant, the relevant part of the Hamil-
tonian is given by Eq. (8).

Hamiltonian (1) and GP equations (10) are invariant under
the gauge transformation ;— ; exp(-if) and rotation
around the z axis );— ; exp(=iF,y), which transform the
wave-function components according to

/A ey,
o | — ey | (13)
/3 ey

Hence the solutions can be classified using the relative den-
sities p;=n;/n and a single relative phase 6=0,+6_-26,,
with the chemical potentials w; given as solutions to Egs.
(10). We note that for stationary solutions the relative phase
must take one of two values, #=0 or 6=7. We call the
former “phase-matched” (PM) states and the latter
“antiphase-matched” (APM) states. The names derive from
the fact that within the continuum of states satisfying spin
rotation (13) there is a set (¢, , %, _) with all components in
phase for the PM states, and a set with ¢, and ¢ in phase
but 7 out of phase with ¢_ for the APM states.

The following analysis is also applicable to nonhomog-
enous condensates within the SMA, which assumes that the
spin components share the same spatial profile [2,10,13], af-
ter replacing n with (n). This assumption is true, e.g., when
the condensate size is much smaller than the spin healing
length &,

Stationary solutions of system (10) may have one, two, or
three nonzero components. We examine each case separately
and then examine the existence regions and bifurcation be-
havior of the three states together.

A. One-component solutions (p,p.)

If only one component has nonzero atom density, we have
two qualitatively distinct possibilities:

(1) pp=1. This state exists for m=0. From Eq. (9) and
substitution of Eq. (11) into Eq. (10), we find the chemical
potential of the m=0 component, the perpendicular spin per
atom, and the energy per atom,

fipg=— 6E,

If,|°=0, e, =-6E. (14)

Po
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(2) p,=1 or p_=1. These two states exist for m=1 or m
=-1, respectively. Following a similar procedure to the case
above, we find

c
hu,=c or hu_=c, |f,[?=0, e, = > (15)
where we have introduced a shorthand notation for the effec-

tive interaction coefficient, c=c,n.

B. Two-component solutions (2C)

Here one can in general choose the vanishing component
arbitrarily but only one choice turns out to be a stationary
solution.

(1) po=0. One distinct state exists for any values of m, c,
and OF,

2 )
fipr= =cm, |f |*=0, exc=m. (16)

(2) p,=0 or p_=0. Due to the spin-dependent interaction

these cases are nonstationary, leading to the generation of the

third component, as is evident from the final terms in Eqs.
(10).

C. Three-component solutions (PM,APM)

We can derive the relationship between JE/c, m, and py
from phase matching condition (12) and GP equations (10),

OE (1= pp)(1=2py) —m?
—2p0+s > 5

17
V(1= pg)*—m 4
where s=1 for PM states and s=—1 for APM states. This
condition can be alternatively derived from the energy func-
tional as de/d(py, )|, s£.,=0 since the stationary states cor-
respond to energy extrema under constraint on m and n. Note
that 6E/c can be positive or negative depending on the sign
of ¢ 2-

It can be shown that, if m # 0, there can be at most one
distinct PM and one APM solution from the interval p
€[0,1] for a given SE/c and m. More specifically we find
the following:

(1) PM solutions (6=0).

(a) For m#0, there is one PM solution for each OFE
€ (=%, 5Epyy), where we find 8Epy=c(1+1-m?) from Eq.
(17) for py=0.

(b) For m=0, the solutions exist in the interval OF
e (=2c,2c).

(2) APM solutions (6=1).

(a) For m#0, there is one APM solution for each SE
€ (SE spy»+%), where OEpy=c(1—y1-m?) [again found
from Eq. (17) with py=0].

(b) For m=0, an infinite number of degenerate solutions
exist at SE=0 (no magnetic field) for any value of p,
€[0,1]; however, APM states do not exist at nonzero field.

We see from Eq. (9) that for three-component solutions f |
is nonzero for both PM and APM states; hence these solu-
tions break the U(1) rotational symmetry. In fact, the state
investigated in [24] is identical to the PM state, which is the
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FIG. 1. (Color online) Diagram of existence of 2C and three-
component (PM or APM) homogeneous stationary states in spin-
one condensates. In addition to the solutions shown on the diagram,
one-component solutions p;=1 exist with j=—,0,+. The dotted and
dashed lines at M =0 indicate the absence of a PM or APM state,
respectively.

ground state of a ferromagnetic condensate whenever m # 0
or SE<2|c|. Moreover, as the chemical potentials of the
three components are in general not equal, the spin vector
rotates around the z axis, in addition to the Larmor rotation,
at a rate proportional to the difference in chemical potentials.

To obtain further information about the nature of the
three-component solutions, we examine some of the limiting
behavior. By expanding p, about 1—|m| we can determine
the behavior in the limit |SE/c|— +o,

2
C
po= (1= |ml) = 2 |m|(1 = |m|".
£ =2m|(1 = |m|),

|m|
eapm == OE(1 = |m|) +c|m|(1 -5 )

hitg=—SE+0(c), e == SE[1 T sgn(m)]+0(c).

(18)

On the other hand, when SE — SE4)py (close to the bifurca-
tion point),
1|6E = SE s

pul a2
Po V1 =m?,
2 5E(A)PM

c
fi ~ Po  €APMT 5"12,

Apg=0, fhupe= *cm. (19)

D. Existence and order-parameter spaces

Combining the above results, the complete diagram of
existence of the two-component (2C) and three-component
states is shown in Fig. 1. Because SE >0, the upper half of
the diagram corresponds to polar condensates (c,>0), and
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the lower half describes ferromagnetic BECs (¢, <0). There
is clearly a region of coexistence of PM and APM solutions
in polar condensates. For ferromagnetic condensates APM
states only exist at zero magnetic field (and zero magnetiza-
tion).

The order-parameter space of the two- and three-
component solutions in nonzero magnetic field is U(1)
X U(1) (toroid) due to the two symmetries, gauge, and rota-
tion around the z axis, which leave the phase 6 and the atom
density in each of the components unchanged. However, the
one-component solutions have only the U(1) parameter space
(the same as for a scalar condensate) due to the equivalence
of gauge transformation and rotation. When no magnetic
field is present, the situation is different because PM and
APM states become degenerate for all values of p,, and form
the families of polar and ferromagnetic states together with
p+ and p, states, respectively (see Fig. 4). The order-
parameter manifolds of these families are SO(3) for the fer-
romagnetic [2] and U(1) X §?/Z, for the polar state family
[29,30].

E. Internal spin excitations spectra and bifurcations

In scalar condensates, where only one spin component is
present, the Bogolubov theory can be used to describe spatial
excitations of the condensate, which have the form of sound
waves or phonons [23]. In spinor condensates, modes of a
similar nature have been studied [2,3,24] but another degree
of freedom is also available. One can consider internal spin
excitations, where the spin-dependent energy, but not the ki-
netic energy, is increased with respect to the ground state. In
contrast to the phonon-type excitations, the excitation spec-
trum of the internal spin states is discrete. The stationary
solutions, described in the previous section, form a set of
such modes when a magnetic field is applied to a homoge-
neous condensate. We argue that the energy of the system
can be exchanged between the spin modes and spatial exci-
tations, which has important consequences for the conden-
sate dynamics.

The dependence of the energy per atom given by Eq. (9)
on the magnetic field and magnetization for the spin states
studied in the previous section is shown on three-
dimensional plots in Fig. 2. Note that renormalized variables
e/(|c,n) and SE/(c,n) are used, which allows us to include
all possible configurations of spin-one condensate in just two
universal graphs (there is no fixed parameter).

The energy dependence cross section in the particular
case m=0 is shown in Figs. 3(a) and 3(b). It is clear from
Fig. 3(a) that, when the Zeeman energy is decreased, the py
state ceases to be the lowest-energy state of the ferromag-
netic condensate, and the PM state becomes the ground state
[24]. This fact has been utilized in the experiment by Sadler
et al. [8], where the ferromagnetic BEC prepared in the p,
state in strong magnetic field was suddenly quenched to the
low-magnetic-field regime. As the condensate relaxed locally
to the PM state in a conservative process, an amount of en-
ergy was transformed from the spin to the kinetic energy,
which allowed the formation of spin domains and topologi-
cal excitations. As we will show later, this excess energy was
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(a)  Ferromagnetic condensate

(b) Antiferromagnetic condensate

FIG. 2. (Color online) Normalized energy per atom e/(|cy|n) as
a function of magnetization |m|=|M|/N and normalized quadratic
Zeeman energy SE/(c,n) for homogeneous stationary states of spin-
one condensates, including 2C, PM, and APM states. The single-
component py=1 state is also shown. (a) Ferromagnetic condensate;
(b) antiferromagnetic condensate, with lower panel showing a zoom
of the upper panel.

necessary since no spin domains exist in the ground state of
a ferromagnetic condensate. In Figs. 3(c) and 3(d) we show
dependence of energy on magnetization for fixed magnetic-
field strength and indicate the points of bifurcation.

We summarize the degeneracies and bifurcations between
the various spin states in the following list:

(1) The three-component (PM, APM) and 2C solutions
become identical to one-component solutions p. at m=* 1.

(2) The PM states bifurcate from 2C solutions at SE
=0Epy;. The APM states bifurcate from 2C solutions at oE
=SE Apm-

(3) The APM states become identical to p, states at m
=0.

(4) In a ferromagnetic condensate (¢ <0), PM states be-
come identical to the p, state at m=0 if SE>2|c|. However,
for SE e (0,2c|) there exists a separate PM state with m=0,
which is not equivalent to p, [see Fig. 3(a)]. Hence SE=
—2c¢, m=0 is a bifurcation point.

(5) At SE=0 (no magnetic field), all the APM states have
|fj=m=0 and are degenerate and continuously connected to
the p, state. These states together form the family of polar
states, which is the ground state of polar condensates [2,29].
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FIG. 3. (Color online) (a) and (b) Normalized energy per atom
e/(|cy|n) in function of normalized quadratic Zeeman energy
SE/(c,n) for homogeneous stationary states in the M =0 case for
(a) ferromagnetic and (b) polar condensate. The arrows in (a) show
the scenario of the quenched condensate experiment [8]. (c) and (d)
Energy in function of the absolute value of the magnetization |m|
for (c) E/(c,n)=0.5 and (d) SE/(c,n)=1.5. The black dots indicate
bifurcation points where SE=0Expy and OE= OEpy;, respectively.
The energy of the APM state is a slightly concave function of the
magnetization, which gives rise to the phase separation (see Sec.
v).

(6) At SE=0, all the PM states (with different values of
m) have |f|=1, and become degenerate and continuously
connected to the p. states. These states form the family of
ferromagnetic states, which are the ground states of ferro-
magnetic condensates [2].

These connections between states, together with the en-
ergy hierarchy, are schematically collected in Fig. 4. Equiva-
lence between two states at m=0 or |m|=1 is indicated with
continuous lines while bifurcations [occurring with either
changing m or 8E/(c,n)] are marked by dashed lines. For
example, 2C states become equivalent to p. states (i.e., ei-
ther p, or p_) whenever m— = 1. On the other hand, APM
states bifurcate from 2C states when the quadratic Zeeman
energy crosses the value OF spy;, and separate APM and 2C
states exist for the same value of m for 6E > 6FE spy. The two
circles in the middle correspond to the polar and ferromag-
netic state families at zero magnetic field.

IV. GROUND STATES AND PHASE SEPARATION
A. No trapping potential

The ground states of spin-one condensates in homoge-
neous magnetic field have been studied in a number of pre-
vious works [1,12,13,24,29]. The most common procedure
[1,24] involves minimization of the energy functional with
constraints on the number of atoms N and the total magneti-
zation M. The resulting Lagrange multipliers p and ¢ serve
as parameters related to the quadratic Zeeman shift 6E and
the magnetization m. An alternative method, elaborated in
[12], consists of minimization of the energy functional in the
parameter space of physically relevant variables B and m.
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FIG. 4. Schematic picture of equivalences and bifurcations of
homogeneous stationary states in various regimes of SE/(con).
Solid lines indicate that two states become identical for a particular
value of |m|, and dashed lines correspond to bifurcations occurring
at a given value of SE. In the SE=0 case (no magnetic field), the
two circles show that degenerate states form the families of polar
and ferromagnetic states, which are the ground states of polar and
ferromagnetic condensates, respectively [2]. Note that for ferromag-
netic condensates (¢, <0), the energy grows to the left.

Most of the previous studies, however, were assuming that
the condensate remains homogeneous and well described by
the single-mode approximation; in particular, the spatial
structure observed in [1] resulted from the applied magnetic-
field gradient but the BEC was assumed to be well described
by the homogeneous model at each point in space (local-
density approximation). In Ref. [12], the breakdown of the
single-mode approximation was shown numerically for a
condensate confined in a harmonic potential.

We correct the previous studies by showing that, when the
condensate size is larger than the spin healing length &, the
translational symmetry is spontaneously broken and phase
separation occurs in magnetized polar condensates if the
magnetic field is strong enough. This phenomenon takes
place when the energy of the spin state with the lowest en-
ergy is a concave function of m for a given SE. On the
contrary, the energy is always a convex function of m for the
ferromagnetic condensate, and no phase separation occurs.
Note that phase separation has been previously predicted in
binary condensates [21,22] and in ferromagnetic condensates
at finite temperature [31].

Two types of domain structures, depicted in Fig. 5, are
composed of two different stationary states connected with a
shaded region where all three components are nonzero to
ensure proper matching of chemical potential (12). These
two domain states have the advantage that the perpendicular
spin is nonzero only in the transitory region; hence their
energy is relatively low in polar condensates. In fact, these
are the only phase separated states that can be the ground
states of a homogeneous condensate. Their energies per atom
in the limit of infinite condensate size, which allows for ne-
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FIG. 5. (Color online) Schematic structure of the phase sepa-
rated states (a) p—+pg and (b) 2C+ py. The shaded region, in which
all three components are nonzero, has the approximate extent of one
spin healing length & or magnetic healing length &g, whichever is
greater. The relative size of the domains is indicated with arrows.
(c) and (d) The corresponding wave-function profiles obtained nu-
merically with periodic boundary conditions in the case of 2Na for
m=0.5 with (c) 8E/(c,n)=0.8 and (d) SE/(c,n)=0.23. The n,, ny,
and n_ components are depicted by dash-dotted, dashed, and dotted
lines, respectively. The solid lines show the total density.

glecting of the relatively small intermediate region, are

Cp+p, = Ile,, + (1 =m]e, ,
m m
62C+p0 = Mo 62C|m=mzc +|1- Mo ePo’ (20)

where m=M/N is the average magnetization and the mag-
netization of the 2C component m,c is a free parameter that
has to be optimized to obtain the lowest-energy state.

The ground states can be determined by comparing ener-
gies of the phase separated states with the energies of the
homogeneous solutions of Sec. III. The form of formulas
(20) indicates that the phase separation will occur when the
energy of the lowest homogeneous state is a concave func-
tion of magnetization. The results for both polar and ferro-
magnetic condensates are collected in Table I. In the cases
when no phase separation occurs, our results are in agree-
ment with those obtained in [12]. Note that we assumed that
the condensate size is much larger than & and &g. For small
condensates, the results of [12] are correct.

TABLE 1. Ground states of spin-one condensates in homoge-
neous magnetic field. The states 2C+p, and p.+p, correspond to
phase separation (see Fig. 5).

Condensate Parameter range Ground state
. OF —
Ferromagnetic 2= ol and m=0 Po
2L 22 or i #0 PM
[caln
Polar m=0 Po
OE _ in®
i o =3 2C
W _ OE _ 1 _
71<;15E<§ and m#0 2C+pg
1= and m#0 p++po
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FIG. 6. (Color online) Ground-state phase diagram of the polar
condensate. The symbols correspond to numerical data obtained for
the parameters of »Na, with solid triangles representing 2C, open
circles 2C+p,, and open squares p.+py. The solid lines and shad-
ing are given by the analytical formulas from Table L.

In the case of high magnetic-field strength, one of the
Zeeman sublevels is practically depleted [12] and the con-
densate becomes effectively two-component. The existence
of the p. +p, phase in a polar condensate can then be under-
stood within the binary condensate model [21,22]. We note
that the experiment reported in Ref. [32], performed in this
regime, can be viewed as the first confirmation of phase
separation in spin-one BEC in a homogeneous magnetic
field. However, the ground state was not achieved, and a
multiple domain structure was observed.

In Fig. 6 we present the phase diagram of polar conden-
sates, obtained both numerically and using analytical formu-
las from Table I. The ground-state profiles for a quasi-one-
dimensional (1D) condensate were found numerically by
solving the 1D version of Egs. (10) [20]

iﬁ% =L+ + ity = 12) 10 + il

d ~ ~ -,

B2 ~ o+ 4 TN + 25000, (21
with L=—(h%/2m)d/ x> +&y, where Co=4hw, (2ar+ag)/3,
Cy=4tow  (ay—ay)/3, fdx2|1zj|=N, and o, is the transverse
trapping frequency. We imposed periodic boundary condi-
tions on I,Zj(x) and used the parameters corresponding to a
2Na BEC containing N=5.2 X 10* atoms confined in a trans-
verse trap with frequency | =27 X 10°. The Fermi radius of
the transverse trapping potential is smaller than the spin heal-
ing length, and the nonlinear energy scale is much smaller
than the transverse trap energy scale, which allows us to
reduce the problem to one spatial dimension [27,33]. The
solutions were found numerically using the normalized gra-
dient flow method [34,35], which is able to find a state that
minimizes the total energy for given N and M, and fulfills
phase matching condition (12). The stability of the resulting
states was verified using numerical time evolution according
to Egs. (21). The slight discrepancy between numerical and
analytical results can be accounted for by the finite size of
the condensate (the box size was ~10&,), and by the devia-
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FIG. 7. (Color online) Ground-state profiles in a harmonic trap
potential. Phase separation occurs in the polar ZNa condensate
when the magnetic-field strength is increased from (a) B=0.1 G,
SE/(canpmay)=0.09 to (b) B=0.12 G, SE/(cynpma)=0.13 and (c) B
=0.25 G, SE/(cohmay) =0.56. For comparison, the ground state of a
8Rb condensate is shown in (d) for B=0.2 G, SE/(Contyuy)=
—0.41. The n,, ny, and n_ components are depicted by dash-dotted,
dashed, and dotted lines, respectively. The solid lines shows the
total density. Other parameters are N=2.1X103,

wH=2'rr
X 70(*Na), 0,=27X48(*Rb), w, =27 X 10%, and m=0.5.

tion from the assumption that the total density is constant
(see the discussion at the end of Sec. II). Due to the finite
value of the ratio ¢,/ there is a slight density modulation,
as is evident in Figs. 5(c) and 5(d).

B. Condensate trapped in a harmonic optical potential

The results from the preceding subsection can be verified
experimentally in configurations involving toroidal or
square-shaped optical traps [36]. However, in most experi-
ments on BECs, harmonic potentials are used. The relevance
of these results is not obvious in the case of harmonic trap-
ping since the coefficient 8E/(c,n), one of the main param-
eters controlling the condensate properties, varies in space
due to the varying total density n.

The ground states in a highly elongated harmonic trap,
where the parallel part of the potential has the form V(x)
= %M wﬁxz, are presented in Fig. 7 [35]. We can see that as the
magnetic-field strength is increased, phase separation occurs
and the p. +p, domain state is formed. However, in contrast
to the previous case, the transition is not sharp, and in par-
ticular there is no distinct 2C+ p, phase for any value of the
magnetic field. Note that the state in Fig. 7(a) is also spatially
separated due to different Thomas-Fermi radii of the ¢_ and
¢, components; however, this is an example of potential
separation, as opposed to phase separation [22], since it does
not occur in the absence of the potential. On the other hand,
Fig. 7(d) shows that the components of a ferromagnetic con-
densate are miscible even in the regime of strong magnetic
field. In the regions where the wave functions overlap, the
relative phase is equal to #=0 for ferromagnetic and 6= for
polar ground states since these configurations minimize spin
energy (9).

The characteristic feature of phase separation in the polar
BEC is that the m=0 domain tends to be localized in the
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center of the trap, as shown in Figs. 5(b) and 5(c). This can
be explained by calculating the total asymmetric energy of
condensate (8), again assuming that the contribution from the
intermediate region connecting the domains is negligible,

Ha%f drn(- 5E)+f drn%

Po P+ 2
N
== SE(N = | M) + =), . (22)

where <n>p+ is the mean condensate density within the area
of the p. domain. We see that the energy will be lowest if
this domain is localized in the outer regions, where the con-
densate density is low.

C. Spin domain formation

Our results presented above show that the domain struc-
ture forming in polar condensates is absent in ferromagnetic
BECs. This may seem to contradict the common understand-
ing of ferromagnetism and the results of the quenched BEC
experiment in Ref. [8]. The conventional picture of a ferro-
magnet involves many domains pointing in various direc-
tions separated by domain walls. Similar structure has been
observed in Ref. [8]. However, these cases correspond to the
situations when there is an excess kinetic energy present in
the system due to finite temperature or excitation of the spa-
tial modes. On the other hand, our study is limited to the
ground states at 7=0. It is easy to see from Eq. (9) that in
zero magnetic field the ground state of a ferromagnetic BEC
will always consist of a single domain with maximum pos-
sible value of the spin vector |[f|=1, pointing in the same
direction at all points in space. However, when the tempera-
ture is finite, more domains can be formed each with a dif-
ferent direction of the spin vector.

We emphasize that the domain structure of the ground
state in polar condensates is very different from the domains
formed when the kinetic energy is injected in the system as
in Ref. [8]. The latter constantly appear and disappear in a
random sequence [8,15,16,20,37,38]. On the contrary, the
ground-state domains are stationary and are positioned in the
center of the trap. They exist in the lowest-energy state while
the dynamical domains require an amount of kinetic energy
to be formed. The ground-state domains can be prepared in
an adiabatic process, involving adiabatic rf sweep or a slow
change in the magnetic field [32,37] while the kinetic do-
mains require a sudden quench [8,37].

D. Dynamical stability

The dynamical instability of ferromagnetic condensates
that leads to spontaneous formation of spin domains has been
investigated theoretically [15,17,37] and observed in experi-
ment [8]. An analogous phenomenon has been predicted re-
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cently for polar condensates in the presence of magnetic field
[20]. Here we correct the results of Ref. [20] by noting that
the pp=1 state is stable in ferromagnetic condensates for
SE>2|c,|n, and the 2C (p,=0) state is stable in polar BECs
if 8E<m?/2. Both states become the ground states for these
values of parameters. By investigating stability in various
ranges of parameters, we are able to formulate a phenomeno-
logical law governing the dynamical stability of condensates:

(1) The only stable state for both polar and ferromagnetic
BEC:s in finite magnetic field is the ground state, as shown in
Table I.

(2) In zero magnetic field, the same is true for ferromag-
netic condensates; however, all stationary states of polar con-
densates are dynamically stable in zero magnetic field
[15,17,20].

The reason for the stability of polar condensates in the
vanishing magnetic-field case is not yet clear. We note that
the polar condensates in weak magnetic field may also be
effectively stable on a finite time scale. As shown in Ref.
[20], in this latter case the instability growth rate of unstable
modes is proportional to the fourth power of the magnetic-
field strength. The time required for the development of in-
stability may be much longer than the condensate lifetime

[2].

V. CONCLUSIONS

We have studied the ground state of a spin-one BEC in the
presence of a homogeneous magnetic field with and without
an external trapping potential. We have found that without a
trapping potential the translational symmetry can be sponta-
neously broken in polar BEC, with the formation of spin
domains in the ground state. We have determined the
ground-state phase diagram in the space of magnetization
versus magnetic field divided by density, and demonstrated
the different phases, each characterized by the type of non-
vanishing components. We have found good agreement be-
tween the numerical calculation of the phase diagram and the
analytical predictions based on the homogeneous states. We
have shown that these results may be used to understand the
ground-state structure in the presence of a trapping potential
by mapping the locally varying density in the trap to the
homogeneous state. We have found that, depending on the
magnetic field, the antiferromagnetic BEC ground state in
the trap displays pronounced spin domains for a range of
possible experimental conditions. Finally, we have discussed
the relationship between the phenomenon of phase separa-
tion and the dynamical instability leading to the formation of
dynamic spin textures.

ACKNOWLEDGMENTS

This work was supported by the Australian Research
Council through the ARC Discovery Project and Center of
Excellence for Quantum-Atom Optics.

023602-8



EXCITED SPIN STATES AND PHASE SEPARATION IN...

[1]J. Stenger, S. Inouye, D. M. Stamper-Kurn, H.-J. Miesner, A.
P. Chikkatur, and W. Ketterle, Nature (London) 396, 345
(1998).

[2] T.-L. Ho, Phys. Rev. Lett. 81, 742 (1998).

[3] T. Ohmi and K. Machida, J. Phys. Soc. Jpn. 67, 1822 (1998).

[4] M.-S. Chang, C. D. Hamley, M. D. Barrett, J. A. Sauer, K. M.
Fortier, W. Zhang, L. You, and M. S. Chapman, Phys. Rev.
Lett. 92, 140403 (2004).

[5] A. E. Leanhardt, Y. Shin, D. Kielpinski, D. E. Pritchard, and
W. Ketterle, Phys. Rev. Lett. 90, 140403 (2003).

[6] D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. In-
ouye, H. J. Miesner, J. Stenger, and W. Ketterle, Phys. Rev.
Lett. 80, 2027 (1998).

[71M. S. Chang, Q. S. Qin, W. X. Zhang, L. You, and M. S.
Chapman, Nat. Phys. 1, 111 (2005).

[8] L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore, and
D. M. Stamper-Kurn, Nature (London) 443, 312 (2006).

[9] M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman, L. E.
Sadler, and D. M. Stamper-Kurn, Phys. Rev. Lett. 98, 200801
(2007).

[10] W. Zhang, D. L. Zhou, M. S. Chang, M. S. Chapman, and L.
You, Phys. Rev. A 72, 013602 (2005).

[11] J. Kronjéger, C. Becker, M. Brinkmann, R. Walser, P. Navez,
K. Bongs, and K. Sengstock, Phys. Rev. A 72, 063619 (2005).

[12] W. X. Zhang, S. Yi, and L. You, New J. Phys. 5, 77 (2003).

[13] S. Yi, O. E. Miistecaplioglu, C. P. Sun, and L. You, Phys. Rev.
A 66, 011601(R) (2002).

[14] D. R. Romano and E. J. V. de Passos, Phys. Rev. A 70, 043614
(2004).

[15] W. Zhang, D. L. Zhou, M.-S. Chang, M. S. Chapman, and L.
You, Phys. Rev. Lett. 95, 180403 (2005).

[16] H. Saito and M. Ueda, Phys. Rev. A 72, 023610 (2005).

[17] N. P. Robins, W. Zhang, E. A. Ostrovskaya, and Y. S. Kivshar,
Phys. Rev. A 64, 021601(R) (2001).

[18] A. T. Black, E. Gomez, L. D. Turner, S. Jung, and P. D. Lett,
Phys. Rev. Lett. 99, 070403 (2007).

[19]J. Ruostekoski and Z. Dutton, Phys. Rev. A 76, 063607
(2007).

[20] M. Matuszewski, T. J. Alexander, and Y. S. Kivshar, Phys.
Rev. A 78, 023632 (2008).

[21] T.-L. Ho and V. B. Shenoy, Phys. Rev. Lett. 77, 3276 (1996);
H. Pu and N. P. Bigelow, ibid. 80, 1130 (1998); M. Trippen-
bach, K. Goral, K. Rzazewski, B. Malomed, and Y. B. Band, J.
Phys. B 33, 4017 (2000).

PHYSICAL REVIEW A 80, 023602 (2009)

[22] E. Timmermans, Phys. Rev. Lett. 81, 5718 (1998).

[23] M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. M. Kurn,
D. S. Durfee, C. G. Townsend, and W. Ketterle, Phys. Rev.
Lett. 77, 988 (1996); D. M. Stamper-Kurn, A. P. Chikkatur, A.
Gorlitz, S. Inouye, S. Gupta, D. E. Pritchard, and W. Ketterle,
ibid. 83, 2876 (1999); M. Ueda, Phys. Rev. A 63, 013601
(2000).

[24] K. Murata, H. Saito, and M. Ueda, Phys. Rev. A 75, 013607
(2007).

[25] T. Isoshima, K. Machida, and T. Ohmi, Phys. Rev. A 60, 4857
(1999).

[26] S. Wiister, T. E. Argue, and C. M. Savage, Phys. Rev. A 72,
043616 (2005).

[27] B. J. Dabrowska-Wiister, E. A. Ostrovskaya, T. J. Alexander,
and Y. S. Kivshar, Phys. Rev. A 75, 023617 (2007).

[28] T. Isoshima, K. Machida, and T. Ohmi, J. Phys. Soc. Jpn. 70,
1604 (2001); T. Isoshima and K. Machida, Phys. Rev. A 66,
023602 (2002).

[29] F. Zhou, Phys. Rev. Lett. 87, 080401 (2001).

[30] S. Mukerjee, C. Xu, and J. E. Moore, Phys. Rev. Lett. 97,
120406 (2006).

[31] T. Isoshima, T. Ohmi, and K. Machida, J. Phys. Soc. Jpn. 69,
3864 (2000).

[32] H.-J. Miesner, D. M. Stamper-Kurn, J. Stenger, S. Inouye, A.
P. Chikkatur, and W. Ketterle, Phys. Rev. Lett. 82, 2228
(1999).

[33] L. Salasnich, A. Parola, and L. Reatto, Phys. Rev. A 65,
043614 (2002); W. Zhang and L. You, ibid. 71, 025603
(2005).

[34] W. Bao and F. Y. Lim, SIAM J. Sci. Comput. (USA) 30, 1925
(2008).

[35] F. Y. Lim and W. Bao, Phys. Rev. E 78, 066704 (2008).

[36] E. M. Wright, J. Arlt, and K. Dholakia, Phys. Rev. A 63,
013608 (2000); K. E. Strecker, G. B. Partridge, A. G. Truscott,
and R. G. Hulet, Nature (London) 417, 150 (2002); C. Ryu,
M. F. Andersen, P. Cladé, V. Natarajan, K. Helmerson, and W.
D. Phillips, Phys. Rev. Lett. 99, 260401 (2007); S. K.
Schnelle, E. D. van Ooijen, M. J. Davis, N. R. Heckenberg,
and H. Rubinsztein-Dunlop, Opt. Express 16, 1405 (2008).

[37] H. Saito, Y. Kawaguchi, and M. Ueda, Phys. Rev. A 75,
013621 (2007).

[38] J. Mur-Petit, M. Guilleumas, A. Polls, A. Sanpera, M. Lewen-
stein, K. Bongs, and K. Sengstock, Phys. Rev. A 73, 013629
(2006).

023602-9



