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We present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic
clover lattices. A method for operator construction is introduced that allows for the reliable iden-
tification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic
lattice. Using this method, we are able to determine a spectrum of single-particle states for spins
up to and including J = 7

2
, of both parities, the first time this has been achieved in a lattice cal-

culation. We find a spectrum of states identifiable as admixtures of SU(6) ⊗ O(3) representations
and a counting of levels that is consistent with the non-relativistic qqq constituent quark model.
This dense spectrum is incompatible with quark-diquark model solutions to the “missing resonance
problem” and shows no signs of parity doubling of states.

I. INTRODUCTION

Explaining the excitation spectrum of baryons is core
to our understanding of QCD in the low-energy regime,
and if we truly understand QCD in the strong-coupling
regime, we should be able to confront experimental spec-
troscopic data with first-principles calculations within
QCD. The experimental investigation of the excited
baryon spectrum has been a long-standing element of
the hadronic-physics program. An important goal has
been the search for so-called “missing resonances”, bary-
onic states predicted by the quark model based on three
constituent quarks but which have not yet been ob-
served experimentally; should such states not be found,
it may indicate that the baryon spectrum can be mod-
eled with fewer effective degrees of freedom, such as in
quark-diquark models. In the past decade, there has
been an extensive program to collect data on electro-
magnetic production of one and two mesons at Jefferson
Lab, MIT-Bates, LEGS, MAMI, ELSA, and GRAAL. To
analyse these data, and thereby refine our knowledge of
the baryon spectrum, a variety of physics analysis models
have been developed at Bonn, George Washington Uni-
versity, Jefferson Laboratory and Mainz.

The experimental efforts outlined above should be
complemented by high-quality ab initio computations
within lattice QCD. Historically, the calculation of the
masses of the lowest-lying states, for both baryons and
mesons, has been a benchmark calculation of this dis-
cretized, finite-volume computational approach, where
the aim is well-understood control over the various sys-
tematic errors that enter into a calculation; for a recent
review, see [1]. However, there is now increasing effort
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aimed at calculating the excited states of the theory, with
several groups presenting investigations of the low-lying
excited baryon spectrum, using a variety of discretiza-
tions, numbers of quark flavors, interpolating operators,
and fitting methodologies [2–5]. Some aspects of these
calculations remain unresolved and are the subject of in-
tense effort, notably the ordering of the Roper resonance
in the low-lying Nucleon spectrum.

A basis of baryon operators for states at rest, re-
specting the (cubic) symmetry of the lattice, was de-
veloped in Refs. [6, 7], and subsequently used in cal-
culations of the excited state Nucleon spectrum in
both quenched QCD[8], and with two dynamical quark
flavors[9]. In parallel, we studied Clover fermions on
anisotropic lattices[10, 11], with a finer temporal than
spatial resolution, enabling the hadron correlation func-
tions to be observed at short temporal distances and
hence many energy levels to be extracted. Crucial to
our determination of the spectrum has been the use of
the variational method [12–14] with a large number of in-
terpolating operators at both the source and the sink; we
developed and used the “distillation” method, enabling
the necessary correlation functions to be computed in an
efficient manner. A recent calculation of the Nucleon, ∆
and Ω excited-state spectrum demonstrated the efficacy
of the method[15].

In this paper, we expand the above program of
computations considerably, extending to baryons the
spin-identification techniques developed for mesons in
Refs. [16, 17]. We develop a new basis of interpolat-
ing operators with good total angular momentum, J , in
the continuum, which are then subduced to the various
lattice irreducible representations (irreps). We find that
the subduced operators retain a memory of their contin-
uum antecedents to a remarkable degree. For example,
hadron correlation functions between operators subduced
from different continuum spins J are suppressed relative
to those subduced from the same J , illustrating an ap-
proximate realization of rotational symmetry at the scale
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atmℓ
atms

mπ

/MeV mK/mπ atmΩ volume Ncfgs Ntsrcs Nvecs

−0.0808
−0.0743 524 1.15 0.3200(7) 163 × 128 500 7 56
−0.0830
−0.0743 444 1.29 0.3040(8) 163 × 128 601 5 56
−0.0840
−0.0743 396 1.39 0.2951(22) 163 × 128 479 8 56

TABLE I: The lattice data sets and propagators used in this
paper. The light and strange quark mass as well as the Ω
baryon mass in temporal lattice units are shown. The pion
mass, lattice size and number of configurations are listed, as
well as the number of time-sources and the number of distil-
lation vectors Nvecs.

of hadrons. This allows us to determine reliably the spins
of most of the (single-particle) states, which helps to de-
lineate between the nearly degenerate energy levels we
observe in the spectrum. We are thereby able to deter-
mine the highly excited spectrum, including spins up to
J = 7

2 , and to resolve the masses of the low-lying states
with a statistical precision at or below 1%.
The remainder of the paper is organized as follows. In

Section II we describe the parameters of the lattice gauge
fields used in our calculation. The “distillation” method,
and its application to the construction of baryon cor-
relation functions is outlined in Section III. Section IV
describes the procedure for constructing baryon inter-
polating operators with good continuum spin. Angular
dependence transforming like orbital angular momenta
is incorporated through covariant derivatives that trans-
form as representations with L = 1 and L = 2; a de-
tailed construction is provided in Appendix A. We also
develop subduction matrices that allow the continuum
operators to be subduced to irreducible representations
of the cubic group; a derivation for half-integer spins up
to 9

2 is given in Appendix B, where tables of the sub-
duction matrices are also given. Our implementation of
the variational method is presented in Section V, and
our procedure for determining the spins of the result-
ing lattice states is described in Section VI, which also
shows tests of the approximate rotational invariance in
the spectra. The stability of the resultant spectra with
respect to changes in the analysis method is discussed in
Section VII. We present our results in Section VIII, be-
ginning with a detailed discussion of the spectrum at the
heaviest of our quark masses before examining the quark
mass dependence. Discussion of multi-particle states is
given in Section IX. We summarize our findings and pro-
vide our onclusions in Section X.

II. GAUGE FIELDS

A major challenge in the extraction of the spectrum
of excited states from a lattice calculation is that the
correlation functions, or more specifically the principal
correlators of the variational method that correspond
to excited states, decay increasingly rapidly with Eu-
clidean time as the energy of the state increases, whilst
the noise behaves in the same manner as in the ground

state. Hence the signal-to-noise ratio for excited-state
correlators exhibits increasingly rapid degradation with
Euclidean time with increasing energy. To ameliorate
this problem we have adopted a dynamical anisotropic
lattice formulation whereby the temporal extent is dis-
cretized with a finer lattice spacing than in the spatial
directions; this approach avoids the computational cost
that would come from reducing the spacing in all direc-
tions, and is core to our excited-state spectroscopy pro-
gram. Improved gauge and fermion actions are used,
with two mass-degenerate light dynamical quarks and
one strange dynamical quark, of masses ml and ms re-
spectively. Details of the formulation of the actions as
well as the techniques used to determine the anisotropy
parameters can be found in Refs. [10, 11].
The lattices have a spatial lattice spacing as ∼

0.123 fm with a temporal lattice spacing approximately
3.5 times smaller, corresponding to a temporal scale
a−1
t ∼ 5.6 GeV. In this work, results are presented for

the light quark baryon spectrum at quark mass param-
eters atml = (−0.0808,−0.0830,−0.0840) and atms =
−0.0743, and lattice sizes of 163×128 with spatial extent
∼ 2fm. The bare strange quark mass is held fixed to its
tuned value of atms = −0.0743; some details of the lat-
tices are provided in Table I. The lattice scale, as quoted
above, is determined by an extrapolation to the physical
quark mass limit using the Ω baryon mass (denoted by
atmΩ). To facilitate comparisons of the spectrum at dif-
ferent quark masses, the ratio of hadron masses with the
Ω baryon mass obtained on the same ensemble is used to
remove the explicit scale dependence, following Ref. [11].

III. CORRELATOR CONSTRUCTION USING
DISTILLATION

The determination of the excited baryon spectrum pro-
ceeds through the calculation of matrices of correlation
functions between baryon creation and annihilation op-
erators at time 0 and t respectively:

Cij(t) =
〈

0
∣

∣Oi(t)O†
j(0)

∣

∣0
〉

.

Inserting a complete set of eigenstates of the Hamilto-
nian, we have

Cij(t) =
∑

n

1

2En

〈

0
∣

∣Oi

∣

∣n
〉〈

n
∣

∣O†
j

∣

∣0
〉

e−Ent, (1)

where the sum is over all states that have the same quan-
tum numbers as the interpolating operators {Oi}. Note
that in a finite volume, this yields a discrete set of ener-
gies.
Smearing is a well-established means of suppressing

the short-distance modes that do not contribute signif-
icantly to the low-energy part of the spectrum, and in
turn, allows for the construction of operators that cou-
ple predominantly to the low-lying states. A widely
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adopted version is Jacobi smearing, which uses the three-
dimensional Laplacian,

−∇2
xy(t) = 6δxy−

3
∑

j=1

(

Ũj(x, t)δx+̂,y + Ũ †
j (x− ̂, t)δx−̂,y

)

,

where the gauge fields, Ũ may be constructed from an ap-
propriate covariant gauge-field-smearing algorithm [18].
From this a simple smearing operator,

Jσ,nσ
(t) =

(

1 +
σ∇2(t)

nσ

)nσ

,

is subsequently applied to the quark fields ψ; for
large nσ, this approaches a Gaussian form expσ∇2(t).
“Distillation”[19], the method we adopt, replaces the
smearing function by an outer product over the low-lying
eigenmodes of the Laplacian,

✷xy(t) =

N
∑

k=1

ξ(k)x (t)ξ(k)†y (t), (2)

where the ξ(k)(t) is the kth eigenvector of ∇2
xy(t), or-

dered by the magnitude of the eigenvalue; the (volume-
dependent) number of modes N should be sufficient to
sample the required angular structure at the hadronic
scale[17, 19], but is small compared to the number of
sites on a time slice. Thus distillation is a highly efficient
way of computing hadron correlation functions.
To illustrate how distillation is applied to the construc-

tion of the baryon correlators, we specialize to the case
of a positively charged isospin- 12 baryon. A generic anni-
hilation operator can be written

Oi(t) = ǫabcSi
αβγ(Γ1✷d)

a
α(Γ2✷u)

b
β(Γ3✷u)

c
γ(t), (3)

where u and d are u− and d−quark fields respectively,
Γj is a spatial operator, including possible displacements,
acting on quark j, a, b, c are color indices, and α, β, γ are
spin indices; S encodes the spin structure of the operator,
and is constructed so that the operator has the desired
quantum numbers, as discussed in the next section. We
now construct a baryon correlation function as

Cij(t) = ǫabcǫāb̄c̄Si
αβγ S̄

∗j
ᾱβ̄γ̄

×
〈

[

(Γ1✷d)
a
α(Γ2✷u)

b
β(Γ3✷u)

c
γ(t)

]

·
[

(d̄✷Γ1)
ā
ᾱ(ū✷Γ2)

b̄
β̄(ū✷Γ3)

c̄
γ̄(0)

]

〉

,

where the bar over S and Γ indicate these belong to the
creation operator. Inserting the outer-product decompo-
sition of ✷ from Eq. 2, we can express the correlation
function as

Cij(t) = Φ
i,(p,q,r)
αβγ (t)Φ

j,(p̄,q̄,r̄)†
ᾱβ̄γ̄

(0)

×
[

τpp̄αᾱ(t, 0)τ
qq̄

ββ̄
(t, 0)τ rr̄γγ̄(t, 0)

− τpp̄αᾱ(t, 0)τ
qr̄
βγ̄(t, 0)τ

rq̄

γβ̄
(t, 0)

]

, (4)

where

Φ
i,(p,q,r)
αβγ = ǫabcSi

αβγ(Γ1ξ
(p))a(Γ2ξ

(q))b(Γ3ξ
(r))c

encodes the choice of operator and

τpp̄αᾱ(t, 0) = ξ†(p)(t)M−1
αᾱ (t, 0)ξ

(p̄)(0)

is the operator-independent “perambulator”, with p, p̄
the eigenvector indices, and M the usual discretized
Dirac operator. The perambulators play the role of the
quark propagators between smeared sources and sinks.
Once the perambulators have been computed, the fac-
torization exhibited in Eq. (4) enables the correlators to
be computed between any operators expressed through
Φi,Φj , including those with displaced quark fields, at
both the source and the sink. This feature will be key
to our use of the variational method and the subsequent
extraction of a spin-identified baryon spectrum.

IV. CONSTRUCTION OF BARYON
OPERATORS

The construction of a comprehensive basis of baryon
interpolation operators is critical to the successful appli-
cation of the variational method. The lowest-lying states
in the spectrum can be captured with color-singlet local
baryon operators, of the form given in Eq. (3)1. Combi-
nations of such fields can be formed so as to have definite
quantum numbers, including definite symmetry proper-
ties on the cubic lattice. The introduction of a rotation-
ally symmetric smearing operation, be it Jacobi smearing
or distillation, in which the quark fields ψ(x) are replaced
by quasi-local, smeared fields ✷ψ(x), does not change
the symmetry properties of the interpolating operators.
However, such local and quasi-local operators can only
provide access to states with spins up to 3

2 . In order to
access higher spins in the spectrum, and to have a suffi-
cient basis of operators to effectively apply the variational
method, it is necessary to employ non-local operators.
A basis of baryon interpolating operators incorporat-

ing angular structure, respecting the cubic symmetry of
the lattice, and able to access higher spins in the spec-
trum, was constructed in refs. [6, 7], and these operators
were employed in our earlier determinations of the spec-
trum. The identification of the continuum spins corre-
sponding to the calculated energy levels remained chal-
lenging, however. To overcome this challenge, we adopt
a different procedure for operator construction: we first
derive a basis of operators in the continuum, with well-
defined continuum spin quantum numbers, and then form
the subduction of those operators into the irreducible rep-
resentations of the octahedral group of the lattice.

1 With, in this case, Γ being just ordinary Dirac gamma matrices.
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A. Continuum baryon interpolating operators

Baryons are color-singlet objects, and thus they in-
volve totally anti-symmetric combinations of the color
indices of the three valence quarks. Furthermore baryon
interpolating operators have to be anti-symmetric un-
der the exchange of any pair of quarks, which is auto-
matically satisfied since they are constructed from anti-
commuting Grassmann fields. Thus the remaining quark
labels, namely those of flavor, spin and spatial structure,
have to be in totally symmetric combinations.

We will construct our baryon interpolating operators
from products of three quark fields. Before proceeding to
classify our operators, we note that three objects {x, y, z}
can exist in four definite symmetry combinations: sym-
metric (S), mixed-symmetric (MS), mixed antisymmetric
(MA) and totally antisymmetric (A)2; projection oper-
ators that generate these combinations are specified in
the Appendix, in Eqs. (A1) and (A2). We will write
our baryon interpolating operators by applying projec-
tion operators that act on the flavor, spin and spatial
labels of a generic three-quark operator, ψ1ψ2ψ3:

B =
(

FΣF
⊗ SΣS

⊗DΣD

)

{ψ1ψ2ψ3},

where F ,S and D are flavor, Dirac spin and spatial pro-
jection operators, respectively, and the subscripts ΣF,ΣS

and ΣD specify the symmetry combinations of flavor,
Dirac spin and spatial labels. For each operator B, we
must combine the symmetry projection operators such
that the resulting baryon operator is overall symmetric.
The rules for combining symmetries of such direct prod-
ucts are given in Eq. (A3).

To illustrate the construction, we specialize to the case
of local or quasi-local operators, where the spatial depen-
dence is the same for each quark, and thereby symmetric.
Thus we write this simplified interpolating operator as

B =
(

FΣF
⊗ SΣS

)

{ψ1ψ2ψ3}.

Furthermore, we will only consider the case of two-
component Pauli spin rather than four-component Dirac
spin. In the standard convention, Pauli spin involves a
label s that can take two values: + and −. It is straight-
forward to extend the construction to Dirac spins using
the Dirac-Pauli representation of Dirac matrices, as in
Refs. [6, 7]. Dirac spins involve direct products of two
Pauli spin representations: one for s-spin and the other
for ρ-spin (intrinsic parity). The operator construction
for Dirac spin is described in Appendix A.

The product rules of Eq. (A3) specify three ways to
combine these flavor and spin projectors to yield an over-

2 Mixed symmetry combinations are of definite symmetry under

exchange of the first two objects.

all symmetric projector:

FSSS (5)

FASA (6)
1√
2
(FMSSMS + FMASMA) (7)

The four symmetric spin combinations SS simply cor-
respond to the four states or operators of spin 3

2 :
{+++}S, {++−}S, {+−−}S, {− − −}S, while the two
mixed symmetric and two mixed antisymmetric combi-
nations each correspond to states or operators of spin 1

2 ;
there is no antisymmetric combination of three objects
taking only two values.
For the case of SU(3) flavor, the flavor-symmetric com-

bination FS yields the decuplet (10). Hence Eq. (5), with
FS → {uuu}, specifies the operators for the spin- 32 ∆++.
The mixed-symmetric combinations FMS,MA specify the
octet (8), so that {udu}MA,MS correspond to the Nucleon.
Thus we see that Eq. (7) specifies the operators for the
spin- 12 octet. Since there is no SA spin combination, this
example cannot provide flavor-singlet (1) interpolating
operators - angular structure through non-local behavior
is required.
Covariant derivatives defined as in Ref. [6] are incorpo-

rated into the three-quark operators in order to obtain
suitable representations that transform like orbital an-
gular momentum. This is necessary in order to obtain
operators with total angular momentum J > 3

2 . First
the covariant derivatives are combined in definite sym-
metries with respect to their action on the three quark

fields. A single derivative is constructed from { ~D 11 11}ΣD
.

There are two relevant symmetry combinations,

L = 1 :

{

D
[1]
MS

= 1√
6

(

2D(3) −D(1) −D(2)
)

D
[1]
MA

= 1√
2

(

D(1) −D(2)
) (8)

where the notation D(q) means that the derivative acts
on the q-th quark. There is no totally antisymmetric
construction of one derivative and the symmetric combi-
nation D(1) +D(2) +D(3) is a total derivative that gives
zero when applied to a baryon with zero momentum - it
is omitted. Each derivative additionally has a direction
index (suppressed above) for which we choose a circu-
lar basis such that they transform under rotations like
components of a spin-1 object:

Dm=±1 = ± i
2 (Dx ± iDy)

Dm=0 = − i√
2
Dz.

Totally symmetric baryon operators with one deriva-
tive are constructed by applying Eq. (8) to the mixed
symmetry spin-flavor operators according to the rules
given in Eq. (A3),

ψ
[1]
S

=
1√
2

(

D
[1]
MS
ψ
[0]
MS

+D
[1]
MA
ψ
[0]
MA

)

,

where superscripts in brackets indicate the number of
derivatives in the operator.
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J irreps, Λ(dim)
1
2

G1(2)
3
2

H(4)
5
2

H(4)⊕G2(2)
7
2

G1(2)⊕H(4)⊕G2(2)
9
2

G1(2)⊕
1H(4)⊕ 2H(4)

TABLE II: Continuum spins subduced into lattice irreps
Λ(dim). There are two embeddings of H in J = 9

2
.

Two derivative operators can be formed in definite
three-quark symmetry combinations that transform like
L = 0, 1, 2 as follows,

L = 0, 2 : D
[2]
S

=
1√
2
(+D

[1]
MS
D

[1]
MS

+D
[1]
MA
D

[1]
MA

), (9)

L = 0, 2 : D
[2]
MS

=
1√
2
(−D[1]

MS
D

[1]
MS

+D
[1]
MA
D

[1]
MA

), (10)

L = 0, 2 : D
[2]
MA

=
1√
2
(+D

[1]
MS
D

[1]
MA

+D
[1]
MA
D

[1]
MS

), (11)

L = 1 : D
[2]
A

=
1√
2
(+D

[1]
MS
D

[1]
MA

−D
[1]
MA
D

[1]
MS

). (12)

The projection into L = 0, 1, 2 comes from combining
a pair of derivatives via their (suppressed) direction in-
dices using an SO(3) Clebsch-Gordan coefficient, i.e. as
〈

1,m1; 1,m2

∣

∣L,M
〉

Dm1
Dm2

.

Although it is allowed, we omit the D
[2]
S

combination
that couples to L = 0. It corresponds to the spatial
Laplacian and vanishes at zero momentum. Several pos-
sibilities occur when totally symmetric baryon operators
are formed using the rules of Eq. (A3) to combine the
spatial derivatives and spins,

ψ
[2]
S

= D
[2]
S
ψ
[0]
S
,

1√
2

(

D
[2]
MS
ψ
[0]
MS

+D
[2]
MA
ψ
[0]
MA

)

, D
[2]
A
ψ
[0]
A

,

where no total derivatives are formed from these con-
structions. The angular momenta of spinors and deriva-
tives are combined using the standard Clebsch-Gordan
formula of SU(2) in order to obtain operators with good
J in the continuum,

∣

∣ [J,M ]
〉

=
∑

m1,m2

∣

∣ [J1,m1]
〉

⊗
∣

∣ [J2,m2]
〉〈

J1m1; J2m2

∣

∣JM
〉

.

The scheme outlined in this section provides a classi-
fication of all baryon operators constructed from three
quarks with either light or strange masses, up to two
derivatives in their spatial structure and respecting clas-
sical continuum symmetries.
A naming convention for such operators is useful. A

Nucleon operator, with spin and parity of the three

quarks equal to 3
2

−
, two derivatives coupled into L = 2

and total spin and parity JP = 7
2

−
, is denoted as

(

NM ⊗
(

3
2

−)1
M
⊗D

[2]
L=2,S

)J=
7
2
, (13)

G1 H G2

Singlet, 1 13 22 9

Octet, 8 28 48 20

Decuplet, 10 15 26 11

I S G1 H G2

N 1
2

0 28 48 20

∆ 3
2

0 15 26 11

Λ 0 0 41 60 29

Σ 1 -1 43 74 31

Ξ 1
2
-2 43 74 31

Ω 0 -3 15 26 11

TABLE III: (left) Number of distinct operators, categorized
by SU(3)F in each lattice irrep Λg,u, using operators with
up to two derivatives. (right) Number of distinct operators,
categorized by SU(2)F isospin (I) and strangeness (S) in each
lattice irrep Λg,u, using operators with up to two derivatives.
Each operator has dim(Λ) “rows”. There are equal numbers
of operators in positive and negative parity.

where subscripts show that the flavor construction is
mixed symmetry (M), the spin construction also is mixed
symmetry and the two derivatives are in a symmetric
combination (S) as in Eq. (9). Direct products of these
flavor, spin and space constructions yield an overall sym-
metric set of flavor, spin and spatial labels, as required.

A spin state like
(

3
2

−)
can be constructed in several

ways because Dirac spinors are used and they have four
components, two upper and two lower components. A
superscript 1 attached to the spin part indicates that
the operator is the first of several embeddings with the
same quantum numbers. Because of this, the basis set
presented here is over-complete since operators featur-
ing both derivatives and lower components are specified.
However, this redundancy is intentional as we need a
basis with multiple operators in each irrep for use with
the variational method. If only Pauli spinors were used,
we would have an SU(6) ⊗ O(3) classification of opera-
tors. That subset of our operators is referred to as “non-
relativistic”.
We reiterate that the operator construction described

here provides a basis set for spectrum calculations. We
are not forcing the symmetries manifested in the oper-
ator basis into the spectrum results to be shown later.
Rather, the dynamics of QCD will decide on the eigen-
states, which can correspond to any linear superpositions
of the operator basis which may exhibit quite different
symmetries to those diagonalised by this basis.

B. Subduction

In lattice QCD calculations the theory is discretized
on a four-dimensional Euclidean grid. The full three-
dimensional rotational symmetry that classifies energy
eigenstates in the continuum is reduced to the symmetry
group of a cube (the cubic symmetry group, or equiv-
alently the octahedral group). Instead of the infinite
number of irreducible representations labelled by spin
and parity, JP , the double-cover cubic group for half-
integer spin has only six irreducible representations (ir-
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reps): G1g, Hg, G2g, G1u, Hu, G2u, where parity is de-
noted by the g (gerade) subscript for positive parity or
the u (ungerade) subscript for negative parity. The dis-
tribution of the variousM components of a spin-J baryon
into the lattice irreps is known as subduction, the result
of which is shown in Table II.
Extending the analysis of Refs. [16, 17] to baryons,

we use “subduction” matrices for half-integer spins to
project the continuum-based operators to irreducible rep-
resentations of the octahedral group,

O[J]
nΛ,r =

∑

M

SJ,M
nΛ,rO[J,M ] , (14)

where O[J,M ] is a lattice operator constructed as outlined
in Appendix (A 3). As seen in Table II, subduction of
J = 9

2 yields two occurrences of the H irrep. Multiple
occurrences of lattice irreps are the general rule for spins
higher than 4. We denote by nΛ the nth occurrence of
irrep Λ in the subduction of spin J . For example, the
two occurrences of octahedral irrep H in the subduction
of J = 9

2 are denoted as 1H and 2H. For each J →nΛ
there is a subduction matrix S in the values of M and
the rows of the irrep, r, that maps the continuum spin
operators to irreducible representations of the octahedral
group. These subduction matrices are derived for half-
integer spins up to 9

2 in Appendix B and the resulting
matrices are tabulated in Appendix B.
Classifying operators by SU(3)F symmetry, we have

the total number of operators in each lattice irrep as
shown in Table III(left). Considered as a broken sym-
metry with an unbroken SU(2)F isospin symmetry, we
have the number of operators shown in Table III(right).
The operator basis used in this work is constructed using
SU(3)F flavor symmetry. Of course, the SU(3)F symme-
try is broken in QCD, most notably by the mass of the
strange quark. The SU(3)F operator basis allows the fla-
vor symmetry breaking to be determined by the relative
degree of overlap onto operators transforming in different
representations of SU(3)F . This is comparable to what is
done in quark models and other approaches, which helps
to relate the lattice results to phenomenology.
With the construction of operators and their subduc-

tion to irreps of the cubic group outlined as above, we
defer further details to the appendices. Appendix A pro-
vides details of the operator constructions, Appendix B
derives the subduction matrices through an analysis of
the quantum mechanics of continuum spin in the octa-
hedral representation, and Appendix B provides the sub-
duction matrices for half-integer spins.

V. CORRELATOR ANALYSIS

The variational method for spectral extraction [12–
14], which takes advantage of the multiplicity of op-
erators within a given symmetry channel to find the
best (in a variational sense) linear combination of op-
erators for each state in the spectrum, is now in common
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FIG. 1: Principal correlator fits according to Eq. (17). For
ten states of the Nucleon Hu irrep for mπ = 524 MeV, the
plots show λn(t) · emn(t−t0) data and the fit for t0 = 9. Data
used in the fit are shown in black, while points excluded from
the fit are in grey.

usage[15, 20–23]. Our application of the method follows
that developed in Refs. [16, 17, 24], and applied to the
analysis of the excited meson spectrum, and we summa-
rize it here.
The starting point is the system of generalized eigen-

value equations for the correlation matrix:

C(t)vn(t) = λn(t)C(t0)v
n(t) (15)

where λn(t0) = 1, and where there is an orthogonality
condition on the eigenvectors of different states (n, n′),
vn

′†C(t0)vn = δn,n′ . This orthogonality condition pro-
vides eigenvectors that distinguish clearly between nearly
degenerate states, which would be difficult to distinguish
by their time dependence alone. Equation (15) is solved
for eigenvalues, λn, and eigenvectors, vn, independently
on each timeslice, t. Rather than ordering the states by
the size of their eigenvalue, which can become uncertain
because of the high level of degeneracy in the baryon
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spectrum, we associate states at different timeslices us-
ing the similarity of their eigenvectors. We choose a ref-
erence timeslice on which reference eigenvectors are de-
fined, vnref ≡ vn(tref), and compare eigenvectors on other

timeslices by finding the maximum value of vn
′†

ref C(t0)v
n

which associates a state n with a reference state n
′. Us-

ing this procedure we observe essentially no “flipping”
between states in either the principal correlators, λn(t),
or the eigenvectors, vn(t), as functions of t.

Any two-point correlation function on a finite spatial
lattice can be expressed as a spectral decomposition

Cij(t) =
∑

n

Zn∗
i Zn

j

2mn

e−mnt (16)

where we assume that t ≪ Lt, the temporal length
of the box, so that the opposite-parity contributions
arising from the other time ordering on the periodic
lattice can be ignored. The “overlap factors”, Zn

i ≡
〈n|O†

i |0〉 are related to the eigenvectors by Zn
i =√

2mne
mnt0/2 vn∗j Cji(t0).

We obtain the masses from fitting the principal cor-
relators, λn(t), which for large times should tend to
e−mn(t−t0). In practice we allow a second exponential
in the fit form, and our fit function is

λn(t) = (1−An)e
−mn(t−t0) +Ane

−m′
n
(t−t0), (17)

where the fit parameters are mn,m
′
n and An. Typical fits

for a set of excited states within an irrep are shown in
Figure 1 where we plot the principal correlator with the
dominant time-dependence due to state n divided out. If
a single exponential were to dominate the fit, such a plot
would show a constant value of unity for all times. For
the form of Eq. 17, the data would approach a constant
1−A at large times, and this is clearly satisfied for t > t0.

Empirically we find that the size of the second expo-
nential term decreases rapidly as one increases t0. Fur-
ther we find, in agreement with the perturbative analysis
of Ref. [14] and with our earlier meson analysis, that
for large t0 values the m′

n extracted are larger than the
value of mn=dim(C), the largest “first” exponential mass
extracted. At smaller t0 values this is not necessarily
true and is indicative of an insufficient number of states
in Eq. (16) to describe C(t0) completely. The values of
An and m′

n are not used elsewhere in the analysis.
Our choice of t0 is made using the “reconstruction”

scheme[17, 24]: the masses, mn, extracted from the fits to
the principal correlators, and the Zn

i extracted from the
eigenvectors at a single time slice are used to reconstruct
the correlator matrix using Eq. (16). This reconstructed
matrix is then compared with the data for t > t0, with
the degree of agreement indicating the acceptability of
the spectral reconstruction. Adopting too small a value
of t0 leads to a poor reconstruction of the data for t > t0.
In general, the reproduction is better as t0 is increased
until increased statistical noise prevents further improve-
ment. The sensitivity of extracted spectral quantities to

0.2 0.4 0.6 0.8 1.0

FIG. 2: The magnitude of matrix elements in a matrix of
correlation functions, Cij/

√

CiiCjj , at time-slice 5 is shown
according to the scale at the lower right. The matrix is for
the Nucleon Hu irrep, with 28 [J = 3

2
] operators, 16 [J = 5

2
]

operators and 4 [J = 7
2
] operators.

the value of t0 used will be discussed in detail in section
VIIA, but in short the energies of low-lying states are
rather insensitive to t0 and the reconstruction of the full
correlator matrix usually is best when t0 & 7, but not
too large.

From the spectral decomposition of the correlator,
equation 16, it is clear that there should in fact be no
time dependence in the eigenvectors. Because of states
at higher energies than can be resolved with dim(C) op-
erators, there generally is a contribution to energies and
Z’s that decays more rapidly than the lowest mass state
that contributes to a principal correlator. As for ener-
gies, we obtain “time-independent” overlap factors, Zn

i

from fits of Zn
i (t), obtained from the eigenvectors, with a

constant or a constant plus an exponential, in the spirit
of the perturbative corrections outlined in [14]).

VI. DETERMINING THE SPIN OF A STATE

A. Motivation and procedure

A new method for identifying the spins of excited
mesonic states was introduced in Refs. [16, 17]. In this
work, we extend the method to identify spins of excited
baryonic states. The explanation for the success of the
new method is that there is an approximate realization
of rotational invariance at the scale of hadrons in our cor-
relation functions. There are two reasons for this claim.
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The first is that there are no dimension-five operators
made of quark bilinears that respect the symmetries of
lattice actions based on the Wilson formalism and that do
not also transform trivially under the continuum group
of spatial rotations. Thus, rotational symmetry breaking
terms do not appear until O(a2) in the action. This argu-
ment holds even though the action used in this work de-
scribes an anisotropic lattice. The second reason is that
our baryon operators are constructed from low momen-
tum filtered, smeared quark fields, where the smearing is
designed to filter out fluctuations on small scales. Pos-
sible divergent mixing with lower dimensional operators
is then expected to be suppressed. The baryon opera-
tors then are reasonably smooth on a size scale typical
of baryons, which is R ≈ 1 fm. With the lattice spacing
of ∼ 0.12 fm, the breaking of rotational symmetry in the
action or the baryon operators can be small: (a/R)2 ≈
0.015. Of course, these qualitative arguments should be
backed up by evidence of approximate rotational invari-
ance in explicit calculation.
The operators constructed in Section IV using sub-

duction matrices transform irreducibly under the allowed
cubic rotations, that is they faithfully respect the sym-
metries of the lattice. They also carry information about
the continuum angular momentum, J , from which they
are subduced. To the extent that approximate rotational
invariance is realized, we expect that an operator sub-
duced from spin J to overlap strongly only onto states
of continuum spin J , and have little overlap with states
of different continuum spin. In fact this is clearly appar-
ent even at the level of the correlator matrix as seen in
Figure 2. Here the correlator matrix for the Nucleon Hu

is observed to be approximately block diagonal when the
operators are ordered according to the spin from which
they were subduced.
To identify the spin of a state, we use the operator

“overlaps” Zn
i = 〈n|O†

i |0〉 for a given state extracted
through the variational method presented in the previ-
ous section. In Figure 3 we show the overlaps for a set
of low-lying states in the Nucleon Hu and G2u irreps of
the mπ = 524 MeV 163 calculation. The principal corre-
lators for these states in Hu are shown in Figure 1, and
the corresponding mass spectrum is shown in Figure 9.
The overlaps for a given state show a clear preference for
overlap onto only operators of a single spin. While we
show only a subset of the operators for clarity, the same
pattern is observed for the full operator set.
The assignment of spin must hold for states with

continuum spin J subduced across multiple irreps. In
the continuum our operators are of definite spin such
that 〈0|OJ,M†|J ′,M ′〉 = Z [J]δJ,J ′δM,M ′ , and therefore
from Eq. 14 the overlap of the subduced operator is

〈0|O[J]†
nΛ,r|J ′,M〉 = SJ,M

nΛ,rZ
[J]δJ,J ′ . Only the spin J states

will contribute, and not any of the other spins present in
the irrep nΛ. Inserting a complete set of hadronic states
between the operators in the correlator and using the
fact that the subduction coefficients form an orthogonal

matrix (B7),
∑

M SJ,M
Λ,r SJ,M

Λ′,r′ = δΛ,Λ′δr,r′ , we thus obtain

terms in the correlator spectral decomposition propor-
tional to Z [J]∗Z [J] for each Λ we have subduced into, up
to discretization uncertainties as described above. Hence,
for example, a J = 7

2 baryon created by a [J = 7
2 ] oper-

ator will have the same Z value in each of the G1, H,G2

irreps. This suggests that we compare the independently
obtained Z-values in each irrep. In Figure 4 we show the
extracted Z values for negative-parity states suspected of
being spin 5

2 across the Hu and G2u irreps, and of being

spin 7
2 across the G1u, Hu and G2u irreps. As can be

seen, there is good agreement of Z values in the different
irreps that are subduced from spin J , with only small
deviations from exact equality.
These results demonstrate that the Z values of care-

fully constructed subduced operators can be used to iden-
tify the continuum spin of states extracted in explicit
computation for the lattices and operators we have used.
We take the next step and use the identification of the

components of the spin-J baryon subduced across mul-
tiple irreps to make a best estimate of the mass of the
state. The mass values determined from fits to princi-
pal correlators in each irrep differ slightly due to what
we assumed to be discretization effects and, in principle,
avoidable fitting variations (such as the fitting intervals).
We follow Ref. [17] and perform a joint fit to the principal
correlators with the mass being common. This method
provides a numerical test that the state has been identi-
fied. We allow a differing second exponential in each prin-
cipal correlator so that the fit parameters are mn, {m

′Λ
n }

and {AΛ
n }. These fits are typically very successful with

correlated χ2/Ndof close to 1, suggesting again that the
descretization effects are small. An example for the case

of 7
2

−
components identified in G1u, Hu, G2u is shown in

Figure 5. When we present our final, spin-assigned spec-
tra it is the results of such fits that we show.

B. Additional demonstration of approximate
rotational invariance

A further demonstration of approximate rotational in-
variance is based on the spectrum of energy levels. If
indeed the mixing between states of different continuum
spin J is small, then the omission of such coupling should
not much affect the excited state spectra. That propo-
sition can be tested by extracting energies using all op-
erators, and comparing them with the energies obtained
from only operators subduced from a single J value. If
approximate rotational invariance were achieved in the
spectrum, the energies would be nearly the same. As
an example, we show results for the Nucleon Hu irrep,
in Fig. 6. The left column of the Fig. 6, labelled “all”,
shows the lowest 12 energy levels obtained from matrices
of correlation functions using the set of all 48 Hu oper-
ators, and spin identified using the methods previously
described. The states listed in Figure 3 correspond to a
few of these 12 levels. The second column shows the low-
est 6 levels resulting from the variational method when
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FIG. 3: Histograms of spectral overlaps, Z, are shown for a selection of eight operators (shown at the top using the naming
convention of Eq. (13)). The 4 operators labelled with J = 3

2
(color red) have subductions only to the Hu irrep. The 3 operators

labelled with J = 5
2
(color green) and the 1 labelled with J = 7

2
(color blue) have subductions to both Hu and G2u irreps.

Each histogram is labelled by the value of mass m of the state (in units of mΩ) and has 8 vertical bars showing the relative Z
values for each of the operators. The data are from the mπ = 524 MeV ensemble and Z’s are normalized so that the largest
value across all states, for a given operator, is equal to 1. The lighter area at the head of each bar represents the one sigma
statistical uncertainly. Note that for each state only one or two operators have a large relative Z value, and it is the same
operators appearing across each of the irreps. Note also that nearly the same energies are obtained in Hu and G2u irreps for
state subduced from one J value.
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FIG. 4: Selected Z values across irreps Λu are shown for states suspected of being J = 5
2
(left panel) and 7

2
(right panel), based

on the mπ = 524 MeV ensemble. The boxes at the top show the mass for the various states. There are two states of J = 5
2

−
.

The operators in the left panel, all projected onto J = 5
2

−
, are left to right, NM ⊗ ( 1

2

−
)1M ⊗ D

[2]
L=2,S, NM ⊗ ( 1

2

−
)1S ⊗ D

[2]
L=2,M,

NM ⊗ ( 3
2

+
)1M ⊗ D

[1]
L=1,M, NM ⊗ ( 3

2

+
)1S ⊗ D

[1]
L=1,M, NM ⊗ ( 3

2

−
)1M ⊗ D

[1]
L=2,S, NM ⊗ ( 3

2

−
)1S ⊗ D

[1]
L=2,M. Overlaps of these operators

after subduction into Hu and G2u, agree well for each of the two states shown. The operators in the right panel, all projected

onto J = 7
2

−
, are left to right, NM ⊗ ( 3

2

−
)1M ⊗D

[2]
L=2,M, NM ⊗ ( 3

2

−
)1M ⊗D

[2]
L=2,S, NM ⊗ ( 3

2

−
)1S ⊗D

[2]
L=2,M, NM ⊗ ( 3

2

−
)2S ⊗D

[2]
L=2,M.

Similarly, the operator overlaps for this state agree well across G1u, Hu, and G2u.

the operator basis is restricted to only those with contin-
uum spin J = 3

2 . Similarly, the third shows the lowest 4
levels when the operator basis is restricted to only those
with continuum spin J = 5

2 , and the last column are
the lowest two levels when the basis is restricted to only
J = 7

2 operators.

The results are striking. We see that the masses of the
levels in each of the restricted bases agree quite well with
the results found in the full basis. The agreement is quite
remarkable because one expects operators in theHu irrep
that can couple with the ground state (the lowest J = 3

2
state), will allow for the rapid decay of correlators down
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FIG. 5: Fit to the three subduced principal correlators of lowest lying 7
2

−
Nucleon using a common mass. Results are from

the mπ = 524 MeV ensemble. These levels correspond to the sixth excited G1u, the seventh Hu and the fourth G2u. Plotted
is λ(t) · em(t−t0). Grey points not included in the fit.
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FIG. 6: Extracted Nucleon Hu mass spectrum for various
operator bases. (a) Full basis (dim = 48), (b) Only J = 3

2

operators (dim = 28), (c) Only J = 5
2
operators (dim = 16),

(d) Only J = 7
2
operators (dim = 4). Results are from the

mπ = 524 MeV ensemble. The dimensionality of the operator
basis in each J is shown in Table A 3.

to the ground state as a function of time, t. However, the
higher-energy spin 5

2 and 7
2 states do not show such a de-

cay; we obtain good plateaus in plots like those in Fig. 1.
These results provide rather striking demonstration for
the lack of significant rotational symmetry breaking in
the spectrum.

VII. STABILITY OF SPECTRUM
EXTRACTION

In this section we consider to what extent the extracted
spectrum changes as we vary details of the calculation,
such as the metric timeslice, t0, used in the variational

 1.1
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 1.8
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FIG. 7: Extracted Nucleon Hu mass spectrum as a function
of t0. Horizontal bands to guide the eye. For clarity of pre-

sentation, only one of the highly excited J = 3
2

−
and J = 5

2

−

levels are shown.

analysis, and the number of distillation vectors. We will
use the Nucleon Hu and the Delta Hg irreps in the mπ =
524 MeV dataset to demonstrate our findings.

A. Variational analysis and t0

Our fitting methodology was described in Section V
where reconstruction of the correlator was used to guide
us to an appropriate value of t0. As seen in Figure 7, for
t0 & 7, the low-lying mass spectrum is quite stable with
respect to variations of t0. This appears to be mostly due
to the inclusion of a second exponential term in Eq. (17),
which is able to absorb much of the effect of states out-
side the diagonalization space. The contribution of this
second exponential typically falls rapidly with increasing
t0 both by having a smaller A and a larger m′.
Overlaps, Zi

n =
〈

n
∣

∣O†
i

∣

∣0
〉

, can show more of a sensitiv-
ity to t0 values being too low, as was found also in the
analysis of mesons, Ref. [17].
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FIG. 8: Extracted the Delta Hg mass spectrum as a func-
tion of number of distillation vectors in the mπ = 524 MeV
dataset. For N . 32, spin identification is lost for the highest

J = 5
2

+
and J = 7

2

+
levels.

In summary it appears that variational fitting is
reliable provided t0 is “large enough”. Using two-
exponential fits in principal correlators we observe rel-
atively small t0 dependence of masses, but more signif-
icant dependence for the Z values which we require for
spin-identification.

B. Number of distillation vectors

The results presented so far are based on the analysis
of correlators computed on 163 lattices using 56 distilla-
tion vectors. We consider how the determination of the
spectrum varies if one reduces the number of distillation
vectors and thus reduces the computational cost of the
calculation. This is particularly important given that,
as shown in [19], to get the same smearing operator on
larger volumes one must scale up the number of distil-
lation vectors by a factor equal to the ratio of spatial
volumes. To scale up to a 323 lattice this would require

56×
(

32
16

)3
= 448 vectors which is not currently a realiz-

able number without using stochastic estimation [25].
In figure 8 we show the low-lying part of the extracted

Delta Hg spectrum on the mπ = 524 MeV lattice as
a function of the number of distillation vectors used in
the correlator construction. It is clear that the spectrum
is reasonably stable for N & 32 but that the spectrum
quality degrades rapidly for fewer vectors. In particular,
the methods for spin identification fail for the highest

JP = 5
2

+
state as well as the first JP = 7

2

+
state.

The need for a large numbers of distillation vectors
has been discussed in Ref. [17] for the case of isovector
mesons. The conclusion drawn is that to describe high
spin hadrons having large orbital angular momentum,
one needs to include sufficient vectors to sample the rapid

angular dependence of the wavefunction over the typical
size of a hadron. The results for baryons presented here
are consistent with these observations.
In summary one is limited as to how few distillation

vectors can be used if one requires reliable extraction
of high-spin states. The results shown here suggest 32
distillation vectors on a 163 lattice is the minimum, so at
least 64 distillation vectors on a 203 lattice are likely to
be required.

VIII. RESULTS

Our results are obtained on 163 × 128 lattices with
pion masses between 396 and 524 MeV. More complete
details of the number of configurations, time sources and
distillation vectors used are given in Table I. The full
basis of operators in each irrep listed in Table III is used
for the variational method construction.

A. mπ = 524 MeV results

Using the variational method outlined in Section V,
the spectrum of energies in each lattice irrep for the Nu-
cleon and for the Delta are shown in Figures 9 and 10, re-
spectively. By applying the spin-identification procedure
described above, we can subsequently associate contin-
uum JP labels to each of these states, as labelled on the
figures. For the remainder of this paper, we will there-
fore label the energies by their assigned continuum spins;
these are shown for the lattices at mπ = 524 MeV in
Figure 11, with the energies obtained from a joint fit to
the principal correlators as described in Section V.

0.6
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FIG. 9: Extracted Nucleon spectra by irrep for mπ =
524 MeV. Colors are black (J = 1

2
), red ( 3

2
), green ( 5

2
),

blue ( 7
2
). Masses are shown in ratios of the Ω baryon mass.

There are several notable features in these spectra.
As we will discuss, the patterns of states have a good
correspondence with single-hadron states as classified by
SU(6)⊗O(3) symmetry. The numbers of low-lying states
in each JP are similar to the numbers obtained in the
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FIG. 10: Extracted Delta spectra by irrep for mπ = 524 MeV.
Colors are black (J = 1

2
), red ( 3

2
), green ( 5

2
), blue ( 7

2
). Masses

are shown in ratios of the Ω baryon mass.

non-relativistic quark model which is a particular real-
isation of the symmetry above (e.g., [26, 27]). For the
purposes of these comparisons, it is helpful to introduce
a spectroscopic notation: X 2S+1LπJ

P , where X is the
Nucleon N or the Delta ∆, S is the Dirac spin, L = S,
P , D,. . . denotes the combined angular momentum of the
derivatives, π = S, M, or A is the permutational symme-
try of the derivative, and JP is the total angular momen-
tum and parity. This notation also is used in Table IV,
which we discuss now.

In the negative parity N∗ spectrum, there is a pat-

tern of five low-lying levels, consisting of two N 1
2

−
lev-

els, two N 3
2

−
levels, and one N 5

2

−
level. The triplet

of higher levels in this group of five is nearly degen-

erate with a pair of ∆ 1
2

−
and ∆ 3

2

−
levels. This pat-

tern of Nucleon and Delta levels is consistent with an
L = 1− P -wave spatial structure with mixed symme-
try, PM. As shown in Table IV, the same numbers of
states are obtained in the SU(6)⊗O(3) classification for
the negative-parity Nucleon and Delta states constructed
from the “non-relativistic” Pauli spinors as we find in the
lattice spectra. The lowest twoN∗− states are dominated
by operators constructed in the notation of Eq. 13 as

NM⊗(S = 1
2

+
)M⊗(L = 1−)M → JP = 1

2

−
and 3

2

−
, while

the three higher N∗− levels are dominated by operators

constructed according to NM ⊗ (S = 3
2

+
)S ⊗ (L = 1−)M

with JP = 1
2

−
, 3
2

−
and 5

2

−
. Similarly, the low-lying Delta

levels are consistent with a ∆ 1
2

−
and ∆ 3

2

−
assignment.

There are no low-lying negative-parity S = 3
2 Delta states

since a totally symmetric state (up to antisymmetry in
color) cannot be formed. Consequently, there is no low-

lying ∆ 5
2

−
, which agrees with the lattice spectrum. In

the non-relativistic quark model [26], a hyperfine contact
term is introduced to split the doublet and quartet states
up and down, respectively, compared to unperturbed lev-
els and the tensor part of the interaction provides some
additional splitting. The result is that the doublet Delta
states are nearly degenerate with the quartet Nucleon
states as is observed in the lattice spectra, Fig. 11. In

Nucleon (8) SU(6)⊗O(3) n

JP = 1
2

−
N 2PM

1
2

−
N 4PM

1
2

−
[70, 1−] [70, 1−] 2

JP = 3
2

−
N 2PM

3
2

−
N 4PM

3
2

−
[70, 1−] [70, 1−] 2

JP = 5
2

−
N 4PM

5
2

−
[70, 1−] 1

JP = 1
2

+
N 2SS

1
2

+
N 4DM

1
2

+
[56, 0+] [70, 2+]

4N 2SM
1
2

+
[70, 0+]

N 2PA
1
2

+
[20, 1+]

JP = 3
2

+
N 2DS

3
2

+
N 4SM

3
2

+
[56, 2+] [70, 0+]

5N 2DM
3
2

+
N 4DM

3
2

+
[70, 2+] [70, 2+]

N 2PA
3
2

+
[20, 1+]

JP = 5
2

+
N 2DS

5
2

+
N 4DM

5
2

+
[56, 2+] [70, 2+]

3
N 2DM

5
2

+
[70, 2+]

JP = 7
2

+
N 4DM

7
2

+
[70, 2+] 1

Delta (10) SU(6)⊗O(3) n

JP = 1
2

−
∆ 2PM

1
2

−
[70, 1−] 1

JP = 3
2

−
∆ 2PM

3
2

−
[70, 1−] 1

JP = 5
2

−
0

JP = 1
2

+
∆ 2SM

1
2

+
∆ 4DS

1
2

+
[70, 0+] [56, 2+] 2

JP = 3
2

+
∆ 2DM

3
2

+
∆ 4SS

3
2

+
[70, 2+] [56, 0+]

3
∆ 4DS

3
2

+
[56, 2+]

JP = 5
2

+
∆ 2DM

5
2

+
∆ 4DS

5
2

+
[70, 2+] [56, 2+] 2

JP = 7
2

+
∆ 4DS

7
2

+
[56, 2+] 1

TABLE IV: Subset of the operator basis classified by SU(6)⊗
O(3) multiplets and total spin and parity JP . The entries
are the orbital angular momentum structures outlined in Sec-
tion IV and Appendix A that contribute within each JP . The
operators listed here are all from the first embedding in Dirac
spin in Table VI, and correspond to only upper components
(referred to as “non-relativistic”). A spectroscopic notation
of X 2S+1LπJ

P is used, where X = N or ∆, S is the Dirac
spin, L = S, P , D,. . . is the combined angular momentum of
the derivatives, π = S, M, or A is the permutational symme-
try of the derivatives, and JP is the total angular momen-
tum and parity. In Sections IV-VI, an operator notation like
(

NM ⊗
(

3
2

+)1

S
⊗D

[1]
L=1,M

)J=
5
2
was used which in this spectro-

scopic notation would be N 4PM
5
2

−
. Dimensions and parities

of SU(6) ⊗ O(3) representations are listed in column 4 for
the doublet spin states of column 2, and in column 5 for the
quartet spin states of column 3. The number, n, of opera-
tors for each JP is listed in the rightmost column. This same
spectroscopic notation and classification of spatial structure
is also used for comparisons with models where L represents
the orbital angular momentum.

the language of SU(6)⊗O(3), these low-lying N and ∆
states constitute the strangeness zero part of a [70, 1−]
multiplet, as indicated in Table IV.
In the positive parity sector, there also are inter-

pretable patterns of lattice states in the range m/mΩ ∼
1.3 − 1.5. There are four N 1

2

+
levels, five N 3

2

+
levels,

three N 5
2

+
levels and one N 7

2

+
level, which are the same

numbers of levels for each JP as in Table IV. The lattice
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FIG. 11: Spin-identified spectrum of Nucleons and Deltas from the lattices at mπ = 524 MeV, in units of the calculated Ω
mass.
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FIG. 12: Spin-identified spectrum of Nucleons and Deltas from the lattices at mπ = 396 MeV, in units of the calculated Ω
mass.

spectra also have two ∆ 1
2

+
levels, three ∆ 3

2

+
levels, two

∆ 5
2

+
levels, and one ∆ 7

2

+
level, which are the same num-

bers of levels for each JP as in Table IV. In this case we
are considering the multiplets [70, 0+], [56, 2+], [70, 2+],
[20, 1+] and a radially excited [56, 0+] and within non-
relativistic qqq constituent quark models [27], the mass
eigenstates are admixtures of these basis states.

In general for both the Nucleon and Delta spectrum,
there are reasonably well-separated bands of levels across
the range of J values, alternating in parity, with each
band higher in energy than the previous one. We remark
that there are no obvious patterns of degenerate levels
with opposite parities for the same total spin, J as in
Ref. [28].

The discussion up to now has focused on observables;
namely, the level energies. More information about the
internal structure of the lattice states can be obtained by
analyzing the spectral overlaps. We remind the reader
that the full basis of operators listed in Table III is
used within the variational method. We find that only a
few operators have large overlaps in the lowest negative-
parity Nucleon levels of the G1u, Hu and G2u irreps,
and these are the subduced versions of “non-relativistic”
operators. From the construction of operators in Ap-
pendix A, those featuring only upper components in spin
are in the first embedding of Dirac spin in Table VI.
There is a one-to-one correspondence between these op-
erators, and those listed in Table IV, and we will adopt
the spectroscopic names as a shorthand. This spectro-



14

0.02

0.04

0.06

0.08

FIG. 13: Spectral overlaps for the negative parity Nucleon
operators in Table IV within the lowest lying states for the
mπ = 524 MeV ensemble. The operators are subduced into
the G1u, Hu and G2u irreps, and their spectral overlaps are
shown for the lowest lying states with the masses listed in
units of the Ω baryon mass. In the spectroscopic notation,

these are the N 2PM
1
2

−
and N 4PM

1
2

−
subduced into G1u, the

N 2PM
3
2

−
and N 4PM

5
2

−
subduced into Hu, and N 4PM

5
2

−
sub-

duced into both Hu and G2u. As can be seen, for each level
one operator is dominant.

scopic notation is used in Table IV to identify operators,
but is also applicable for identification of states. (De-
tails of the derivative construction for the operators can
be found in Appendix A 3.) The Nucleon (and Delta)

J = 1
2

−
, 3

2

−
and 5

2

−
operators all feature one derivative

in PM coupled to either a spin S = 1
2 (doublet) or S = 3

2
(quartet). Spectral overlaps (Z) for these operators can
be directly compared since they all have a consistent nor-
malization. An S = 3

2 spin coupled to one derivative can

be projected to either J = 1
2 , J = 3

2 or J = 5
2 . The first

and second constructions are subduced into the G1u and
Hu irreps, while the J = 5

2 construction is subduced into
the Hu and G2u irreps.

In Figure 13, we compare these non-relativistic opera-
tor overlaps for the lowest lying states and across irreps.
We see that one operator is dominant for each state, with
magnitudes that are roughly consistent across all irreps.
In particular, the constructions coupled to different J
have similar magnitudes. These results suggest that these

low-lying levels form a multiplet with little mixing among
the states. In the language of SU(6)⊗O(3) (spin-flavor
and space), these states, and their negative parity Delta
partners, are part of a [70, 1−] multiplet.
Similarly, we can examine the first group of excited

positive-parity levels in the Nucleon channel that cluster
around m/mΩ ∼ 1.4. Again, we find that the positive
parity Nucleon operators from Table IV are dominant
in the spectral overlaps. One of them has a quasi-local
structure (indicated as SS for no derivatives) with J = 1

2 ,
while the others involve two derivatives coupled either
to L = 0, 1, or 2, and are labeled as SM, PA or DS

and DM. We find that there is not a unique mapping
of each state to one particular operator, rather each op-
erator contributes in varying magnitude to each state,
indicating significant mixing in this basis.
These results, along with the observation that the

numbers of states are consistent with the numbers of
non-relativistic operators in each J+, suggest that this
band of positive-parity states belongs to more than one
SU(6)⊗O(3) multiplet, with now mixing among the mul-
tiplets mentioned before; namely, the [70, 0+], [56, 2+],
[70, 2+] [20, 1+] and a radially excited [56, 0+]. It is no-
table that there is overlap with all the allowed LπJ

P

multiplets with L ≤ 2, and in particular, there is mixing
with the [20, 1+] multiplet. There does not appear to be
any “freezing” of degrees of freedom as suggested in some
diquark models (for some reviews see Refs. [29, 30]). We
will return to this point in the summary.
As we move up to the second excited negative-parity

band in the Nucleon and Delta channels, we find the
“non-relativistic” PM operators discussed previously do
not feature prominently in the spectral overlaps in these
higher lying excited states. Instead, operators using two
derivatives together with one quark having a lower com-
ponent (ρ = −) Dirac structure appear, some of which
appear in Figures 3 and 4. The lower component spinor
contributes a factor −1 to the parity. Similarly, those op-
erators that featured prominently in the first excited pos-
itive parity band do not appear significantly in the second
excited positive band in the Nucleon and Delta chan-
nels. Instead, operators involving two derivatives and
two lower-component Dirac spinors appear. The lower
components effectively bring in angular momentum, but
are not equivalent in spatial structure. To adequately
resolve the internal structure of these higher lying states
will require the introduction of operators featuring three
and four derivatives.

B. Quark mass dependence

At the two lighter pion masses, mπ = 444 and 396
MeV, we find the spectra for Nucleons and Deltas, clas-
sified by irreps, to be qualitatively similar to the heaviest
pion mass case. The spin identification techniques de-
scribed above are successful, and the resulting spectrum,
identified by spin is shown in Fig. 12 for the ensemble at
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FIG. 14: Lightest few Nucleon J = 1
2

+
, 3

2

+
, 5

2

+
, and 7

2

+

states. Also shown in N 1
2

+
is the threshold for Nπ and Nππ.

The influence in the spectrum from these thresholds is com-
plicated by the use of a finite spatial cubic box. Further dis-
cussion is in Section IX.

mπ = 396 MeV, normalized in units of the measured Ω
baryon mass determined at this quark mass.

The Nucleon and Delta spectrum is qualitatively sim-
ilar to that determined at the heaviest pion mass - the
mπ = 524 MeV lattices - albeit typically at smaller mass
in units of the Ω baryon mass. There are the same num-
ber and pattern of low lying negative parity Nucleon and
Delta states, as well as in the first excited band of positive
parity states. Again, the low lying negative parity Delta
states are slightly higher than the corresponding Nucleon
states. There is a slightly enhanced splitting for the first
excited band of positive parity Delta states across J+, as
well as more mixing among the positive parity Nucleon
states around m/mΩ ∼ 1.3.

In Figures 14 - 17, we show extracted state masses as

a function of ℓΩ ≡ 9
4
(atmπ)

2

(atmΩ)2 which we use as a proxy for

the quark mass [11] for the three quark masses listed in

Table I. The state masses are presented via atmH

atmΩ
mphys.

Ω .

The ratio of the state mass (mH) to the Ω-baryon mass
computed on the same lattice removes the explicit scale
dependence and multiplying by the physical Ω-baryon
mass conveniently expresses the result in MeV units.
This is clearly not a unique scale-setting prescription, but
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FIG. 15: Lightest few Nucleon J = 1
2

−
, 3

2

−
, 5

2

−
, and 7

2

−

states. Also shown in N 1
2

−
is the threshold for Nπ and Nππ.

The influence in the spectrum from these thresholds is com-
plicated by the use of a finite spatial cubic box. Further dis-
cussion is in Section IX.

it serves to display the data in a relatively straightfor-
ward way. We remind the reader that the data between
different quark masses are uncorrelated since they follow
from computations on independently generated dynami-
cal gauge-fields.
In Figure 14 we show the mass of some of the lowest

identified positive parity levels. In Figure 15 we show
the lowest few negative parity Nucleon levels. To help
resolve near degeneracies, we slightly shift symbols at
the same pion mass horizontally in lΩ. In some cases,
for comparison, we plot the mass of the lightest Nπ and
Nππ thresholds – the mass follows from the simple sum
of the extracted masses on these lattices. In general, the
lattice levels decrease with the quark mass. There is no
observed dramatic behavior, for example, from crossing
of thresholds.
Notable in these plots is the clustering of bands of lev-

els as seen in Figures 11 and 12 and described above.
In the first excited positive parity Nucleon band, there
is a tendency for the levels across J+ to cluster, and is

most readily apparent in the J = 1
2

+
to cluster around

m/mΩ ∼ 1.3 as the pion mass decreases. Another no-
table feature in these figures is the absence of an excited

Nucleon J = 1
2

+
state comparable, or slightly below, the
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FIG. 16: Lightest few Delta J = 1
2

+
, 3

2

+
, 5

2

+
, and 7

2

+
states.

Also shown in ∆ 3
2

+
is the threshold for Nπ and Nππ. The

influence in the spectrum from these thresholds is complicated
by the use of a finite spatial cubic box. Further discussion is
in Section IX.

lowest lying 1
2

−
level as reported in the PDG [31]. Simi-

larly, there is no low lying Delta J = 3
2

+
state comparable

in mass to the 3
2

−
. The ordering of the low-lying states

in the Nucleon spectrum, and in particular the spectrum

of the N 1
2

+
channel, has been the subject of much effort

in lattice QCD.

C. Comparisons

In Figure 18, we show a comparison of our result for

the Nucleon J = 1
2

+
spectrum with other calculations

in full QCD. Those shown in grey are from Ref. [32]
using 2 ⊕ 1 dynamical quark flavors, while those in or-
ange are from Ref. [4] using two dynamical light-quark
flavors. Each of these calculations employs a different
means to set the lattice scale, and we have made no at-
tempt to resolve these calculations to a common scale-
setting scheme. Rather our aim in this discussion is to
compare the pattern of states that has emerged in each
calculation, and to provide a possible explanation for the
differences.
References [32] and [4] find only two excited levels be-
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FIG. 17: Lightest few Delta J = 1
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−
, 3
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−
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2

−
, and 7

2

−
states.

Also shown in ∆ 1
2

−
is the threshold for Nπ and Nππ. The

influence in the spectrum from these thresholds is complicated
by the use of a finite spatial cubic box. Further discussion is
in Section IX.

low 2.8 GeV, notably isolated from one another in the
case of Ref. [32], at pion masses comparable to those
in this study. At the lightest quark mass reported in
this work, there are four nearly degenerate excited states
found at approximately 2.2 GeV, and three nearly de-
generate states near 2.8 GeV. A possible explanation for
the discrepancy in the number of levels is the operator
constructions used. Refs. [4, 32] use a basis of local or
quasi-local operators, without, for example, derivatives,
but with multiple smearing radii. These operators, which
have an S-wave spatial structure concentrated at the ori-
gin, can have overlap with radial excitations of S-waves,
but will have limited overlap with higher orbital waves.
The results presented here suggest the observed excited

J = 1
2

+
states are admixtures of radial excitations as well

as D-wave and anti-symmetric P -waves structures, and
the inclusion of operators featuring such structures is es-
sential to resolve the degeneracy of states. The impact of
an incomplete basis of operators will be addressed more
in Section IX.

The authors of Ref. [32] note the large drop in the ener-
gies of the first and second excited states at their lightest
pion mass, and ascribe this to the emergence of a light
“Roper” in their calculation. While we do not reach cor-
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FIG. 18: Comparison of results for the Nucleon J = 1
2

+
channel. The results shown in grey are from Ref. [32], while those in

orange are from Ref. [4]. Note that data are plotted using the scale-setting scheme in the respective papers. Results from this
paper are shown in red (the ground state), green and blue. At the lightest pion mass, there is a clustering of four states as
indicated near 2 GeV, while there are three nearly degenerate states 2.7 GeV. Operators featuring the derivative constructions
discussed in this paper feature prominently in these excited states.

respondingly light pion masses and large volumes in this
study, the work presented here clearly shows the need for
a sufficiently complete basis of operators before a faithful
description of the spectrum can emerge, and the identi-
fication of the Roper resonance be warranted. Indeed,
even our work remains incomplete since we have entered
a regime of open decay channels, discussed next, requir-
ing the addition of multi-particle operators to the basis.

IX. MULTI-PARTICLE STATES

In the previous section we presented the extracted
spectra from calculations with three different light quark
masses. In each case we were able, using the operator
overlaps, to match states across irreps that we believe
are subduced from the same continuum spin state. This
suggests an interpretation of the spectrum in terms of
single-hadron states, while in principle our correlators
should receive contributions from all eigenstates of finite-
volume QCD having the appropriate quantum numbers.
This includes baryon-meson states which in finite volume
have a discrete spectrum. Where are these multi-particle
states?
This issue was investigated in the meson sector [17]

where the spectrum was compared between multiple vol-
umes and on multiple mass data sets. In particular, un-
der change of volume, the extracted spectrum did not
resemble the changing pattern of levels one would expect
from two-meson states, but rather was largely volume-

independent. As such, the interpretation of the observed
levels was that of a single particle spectrum. In this work,
some initial investigations were made with a 203×128 lat-
tice at the lightest pion mass available, and similar obser-
vations are made; namely, the spectrum between different
volumes does not change substantially. We are thus led
to interpret the spectrum is terms of single hadron states.
The subsequent observations we make are quite similar
to those made for mesons [17].

The overlap of a localized three-quark operator onto a
baryon-meson state will be suppressed by 1/

√
V , where

V is the lattice volume, if the operator creates a reso-
nance with a finite width in the infinite volume limit.
This fall-off is matched by a growth in the density of
states with the volume and the resonant state thus main-
tains a finite width as the mixing with each discrete state
falls. The simulations in this study are carried out in cu-
bic volumes with side-lengths ∼ 2 fm, which might be
sufficiently large that the mixing between one of the low-
lying two-particle states and a resonance is suppressed
sufficiently for it to be undetectable with the three-quark
operator basis.

Even if the mixing between localized single-hadron
states and baryon-meson states to form resonance-like fi-
nite volume eigenstates is not small, there still remains a
practical difficulty associated with using only three-quark
operators. In this case the state can be produced at the
source time-slice through its localized single-hadron com-
ponent, while the correlator time dependence obtained
from e−Ht will indicate the mass of the resonant eigen-
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state. Consider a hypothetical situation in which a sin-
gle baryon-meson state, denoted by |2〉, mixes arbitrarily
strongly with a single localized single-hadron state, |1〉,
with all other states being sufficiently distant in energy
as to be negligible. There will be two eigenstates

∣

∣a
〉

= cos θ
∣

∣1
〉

+ sin θ
∣

∣2
〉

∣

∣b
〉

= − sin θ
∣

∣1
〉

+ cos θ
∣

∣2
〉

,

with masses ma,mb. At the source (and sink) only the
localized single-hadron component of each state overlaps
with the operators in our basis and hence the overlaps,

Za,b
i ≡ 〈a, b|O†

i |0〉, will differ only by an overall multi-

plicative constant, Za
i = cos θZ

|1〉
i , Zb

i = − sin θZ
|1〉
i . As

such the eigenvectors va, vb point in the same direction
and cannot be made orthogonal. Thus the time depen-
dence of both states will appear in the same principal
correlator as

λ(t) ∼ Aae
−ma(t−t0) +Abe

−mb(t−t0) + . . .

Since ma and mb most likely do not differ significantly
(on the scale of a−1

t ) it will prove very difficult to ex-
tract a clear signal of two-exponential behavior from the
principal correlator. This is precisely why the varia-
tional method’s orthogonality condition on near degen-
erate states is so useful, but we see that it cannot work
here and we are left trying to extract two nearby states
from a χ2 fit to time-dependence. Typically this is
not possible and reasonable looking fits to data are ob-
tained with just one low-mass exponential. This is anal-
ogous to the interpretation made in the comparison be-

tween our computedN 1
2

+
spectrum, and those computed

using only rotationally-symmetric smeared (quasi-)local
sources[4, 32], shown in Figure 18; our results showed
a cluster of four near-degenerate states, while the other
analyses showed one or perhaps two since all four states
would only couple through their S-wave components.
Thus, in some portions of the extracted spectrum, we

might be observing admixtures of “single-particle” and
baryon-meson states. A conservative interpretation then
of our spectrum is that the mass values are only accurate
up to the hadronic width of the state extracted, since
this width is correlated with mixing with baryon-meson
states via a scattering phase-shift.
In order to truly compare with the experimental situa-

tion, we would like to explicitly observe resonant behav-
ior, thus to obtain a significant overlap with multi-hadron
states, we should include operators with a larger number
of fermion fields into our basis, and in particular, multi-
particle operators. The construction of single-meson and
single baryon operators of definite continuum helicity and
subduced into the ‘in flight’ little-group irreps can be
done using the tables in [33, 34]. Spin identification is
possible and will be reported in future work. These in-
flight operators can be used in two-particle constructions,
and along with single particle operators, provide a far
more complete determination of the excited levels in an
irrep.

As shown by Lüscher[35], one can map these discrete
energy levels onto the the continuum energy dependent
phase shift within a partial wave expansion, including the
phase shift for higher partial waves. Such a technique
was recently used to determine the L = 0 and L = 2
phase shift for non-resonant I = 2 ππ scattering [36].
The mapping of the phase shift is both volume and irrep
dependent. This is the origin of the cautionary remarks
in the captions of Figures 14 - 17. Namely, the location
of the threshold energies are in fact irrep dependent and
not solely determined by the energy of the continuum
states.
With suitable understanding of the discrete energy

spectrum of the system, the Lüscher formalism can be
used to extract the energy dependent phase shift for a res-
onant system, such as has been performed for the I = 1
ρ system [37]. The energy of the resonant state is deter-
mined from the energy dependence of the phase shift. It
is this resonant energy that is suitable for chiral extrap-
olations.
Annihilation dynamics feature prominently in resonant

systems, and these dynamics arise from quark discon-
nected diagrams in multi-particle constructions. Utiliz-
ing the techniques developed recently for the study of
isoscalar systems[38], distillation, and stochastic vari-
ants [25], can be used for the efficient numerical eval-
uation of multi-particle systems.

X. SUMMARY

We have described in detail our method for extracting
a large number of Nucleon and Delta excited states using
the variational method on dynamical anisotropic lattices.
Key to the success of the method has been the use of
a large basis of carefully constructed operators, namely
all three quark baryon operators consistent with classical
continuum symmetries, and with up to two derivatives,
that are subsequently projected onto the irreducible rep-
resentations of the cubic group. We have exploited the
observed approximate realization of rotational symme-
try to devise a method of spin identification based on
operator overlaps, enabling us to confidently assign con-
tinuum spin quantum numbers to many states. We have
demonstrated the importance of having a suitable oper-
ator basis with overlap to all the continuum spin states
that contribute to the spectrum. We have then demon-
strated the stability of the spectra with respect to chang-
ing the number of distillation vectors and the details of
the variational analysis. We have successfully applied
these techniques at one lattice volume with three differ-
ent light quark masses. We are able to reliably extract
a large number of excited states with JP ranging from
J = 1

2 up through J = 7
2 in both positive and negative

parity. These are the first lattice calculations to achieve
such a resolution of states in the baryon sector with spin
assignments and J ≥ 5

2 .

We find a high multiplicity of levels spanning across JP
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which is consistent with SU(6) ⊗ O(3) multiplet count-
ing, and hence with that of the non-relativistic qqq con-
stituent quark model. In particular, the counting of lev-
els in the low lying negative parity sectors are consistent
with the non-relativistic quark model and with the ob-
served experimental states [31]. The spectrum observed
in the first excited positive parity sector is also consis-
tent in counting with the quark model, but the compar-
ison with experiment is less clear with the quark model
predicting more states than are observed experimentally,
spurring phenomenological investigations to explain the
discrepancies (e.g., see Refs. [27, 29–31, 39–41]).
We find that each of the operators in our basis fea-

tures prominently in some energy level, and there is sig-
nificant mixing among each of the allowed multiplets, in-
cluding the 20-plet that is present in the non-relativistic
qqq quark model, but does not appear in quark-diquark
models[29], and in particular Ref. [42]. This adds fur-
ther credence to the assertion that there is no “freezing”
of degrees of freedom with respect to those of the non-
relativistic quark model. These qualitative features of
the calculated spectrum extend across all three of our
quark-mass ensembles. Furthermore, we see no evidence
for the emergence of parity-doubling in the spectrum[28].
We have argued that the extracted spectrum can be

interpreted in terms of single-hadron states, and based
on investigations in the meson sector[17] and initial in-
vestigations of the baryon sector at a larger volume, we
find little evidence for multi-hadron states. To study
multi-particle states, and hence the resonant nature of
excited states, we need to construct operators with a
larger number of fermion fields. Such constructions are
in progress, and we believe that the addition of these op-
erators will lead to a denser spectrum of states which can

be interpreted in terms of resonances via techniques like
Lüscher’s and its inelastic extensions[43].

The extraction and identification of a highly excited,
spin identified single-hadron spectrum, represents an im-
portant step towards a determination of the excited
baryon spectrum. The calculation of the single-baryon
spectrum including strange quarks is ongoing. Combin-
ing the methods developed in this paper with finite vol-
ume techniques for the extraction of phase shifts, future
work will focus on the determination of hadronic reso-
nances within QCD.
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Appendix A: Construction of flavor/spin/space
symmetric states

Consider the construction of sets of definite symme-
try for three objects that can be labeled by x, y, and
z, where the first object is labeled by x, the second is
labeled by y and the third is labeled by z. There are in
general, four definite symmetry combinations: symmet-
ric, mixed-symmetric, mixed anti-symmetric, and totally
antisymmetric, denoted by S, MS, MA, A.

Let symmetry projection operator SΣ

(

x y z

x′ y′ z′

)

be

defined so that its action on a generic object with la-
bels x′, y′ and z′ is to create a superposition of objects,
denoted by {xyz}Σ, with symmetry Σ of their labels as
follows,

{xyz}Σ =
∑

x′y′z′

SΣ

(

x y z

x′ y′ z′

)

{x′y′z′}. (A1)

Permutation operators SΣ can be inferred from their
action on an object with three labels to produce the four
allowed symmetry combinations as follows,

{xyz}S = NS

[

{xyz}+ {yxz}+ {zyx}+ {yzx}
+ {xzy}+ {zxy}

]

,

{xyz}MS = NMS

[

{xyz}+ {yxz}+ {zyx}+ {yzx}
− 2{xzy} − 2{zxy}

]

,

{xyz}MA = NMA

[

{xyz} − {yxz}+ {zyx} − {yzx}
]

,

{xyz}A = NA

[

− {xyz}+ {xzy} − {yzx}+ {yxz}
− {zxy}+ {zyx}

]

. (A2)

If two or more labels are the same, then equivalent terms
must be combined and the normalization constants ad-
justed to give an appropriate normalization, e.g., for or-
thonormal quantum states NS = 1√

6
when x, y and z

all are different. By convention, mixed symmetries are
MS or MA according to whether the first two labels are
symmetric or antisymmetric.

The use of projection operators allows the same con-
structions to be applied to the labels of operators as are
applied to the labels of the states created by the oper-
ators. They also provide the basis for a straightforward
computational algorithm that yields the desired super-
positions.

Baryon operators have sets of labels for flavor, spin,
and spatial arguments that transform independently,
therefore as direct products. Each of these sets of la-
bels can be arranged according to Eq. (A2). Then the
symmetries of the sets of flavor labels must be combined
with the symmetries of the sets of spin and spatial labels
in order to make an overall symmetric object as discussed
in the text. The general rules for combining direct prod-
ucts of objects with independent labels sets 1 and 2 to
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make overall symmetries of the combined sets of all la-
bels, denoted by 1,2, are as follows,

{1}S{2}S = {1, 2}S, {1}S{2}MS = {1, 2}MS,

{1}S{2}MA = {1, 2}MA, {1}S{2}A = {1, 2}A,
{1}A{2}S = {1, 2}A, {1}A{2}MS = {1, 2}MA,

−{1}A{2}MA = {1, 2}MS, {1}A{2}A = {1, 2}S,

1√
2

(

+ {1}MS{2}MS + {1}MA{2}MA

)

= {1, 2}S,

1√
2

(

− {1}MS{2}MS + {1}MA{2}MA

)

= {1, 2}MS,

1√
2

(

+ {1}MS{2}MA + {1}MA{2}MS

)

= {1, 2}MA,

1√
2

(

− {1}MS{2}MA + {1}MA{2}MS

)

= {1, 2}A

(A3)

1. Dirac spin

The construction of Dirac spin representations follows
Table 14 in Appendix B of Ref. [7]. A Dirac spinor with
an index that takes four values is formed from direct
products of two spinors that have indices that take two
values: one for ordinary spin (s-spin) and the other for
intrinsic parity (ρ-spin). The s-spin indices are s = + for
spin up and s = − for spin down while the ρ-spin indices
are ρ = + for positive intrinsic parity and ρ = − for neg-
ative intrinsic parity. These ρ- and s-spin indices deter-
mine the Dirac spin index (in the rest frame) as shown
in Table V, based on the Dirac-Pauli representation of
Dirac matices.
There are eight s-spin states for a three-quark baryon

and they are obtained by projecting an arbitrary state to
combinations with good symmetry. The resulting states
follow from Eq. (A2) with x, y and z taking two values,
+ and −, which produces four symmetric (S) states with
total spin 3

2 ,

∣

∣

3
2 ,+

3
2

〉

S
=
∣

∣+++
〉

S
,

∣

∣

3
2 ,+

1
2

〉

S
=
∣

∣++−
〉

S
,

∣

∣

3
2 ,− 1

2

〉

S
=
∣

∣+−−
〉

S
,

∣

∣

3
2 ,− 3

2

〉

S
=
∣

∣−−−
〉

S
, (A4)

two mixed-symmetric (MS) states with total spin 1
2 ,

∣

∣

1
2 ,+

1
2

〉

MS
= +

∣

∣+−+
〉

MS
,

∣

∣

1
2 ,− 1

2

〉

MS
= −

∣

∣−+−
〉

MS
, (A5)

and two mixed-antisymmetric (MA) states with total spin
1
2 ,

∣

∣

1
2 ,+

1
2

〉

MA
= +

∣

∣+−+
〉

MA
,

∣

∣

1
2 ,− 1

2

〉

MA
= −

∣

∣−+−
〉

MA
. (A6)

Dirac ρ s

1 + +

2 + −

3 − +

4 − −

TABLE V: Mapping of Dirac spin indices to ρ and s labels.

The states on the right side are normalized states of def-
inite symmetry. The eight ρ-spin states take exactly the
same form as the s-spin states.
The 64 Dirac spin labels of three quarks are obtained

from direct products of ρ-spin and s-spin states of the
quarks. The possible symmetries of the Dirac spinors
are obtained from the multiplication rules in Eq. A3, to-
gether with Table V, which shows how each quark’s Dirac
index is determined by its s-spin and ρ-spin indices. Ex-
amples of the construction are given in Ref. [7]. Equal
numbers of positive- and negative-parity states are al-
ways produced. The octahedral irrep of the product is
G1 for s-spin 1

2 and H for s-spin 3
2 representations of

SU(2). Table VI shows the irreps of SU(2) that are pro-
duced. The number of embeddings of each irrep also is
listed. Parities of the states are determined by products
of the ρ-spins of the three quarks.

2. Flavor

The flavor states with well-defined symmetries also are
constructed using Eq. (A2). For the purposes of dis-
cussion, we will consider the flavor symmetric limit, i.e.,
degenerate quark masses. There are three separate rep-
resentations – the symmetric (S) states are the SU(3)
decuplet,

∣

∣10
〉

S
, the mixed-symmetric (MS,MA) states

are the SU(3) octets,
∣

∣8
〉

MS,MA
, and the antisymmetric

(A) state is the SU(3) flavor-singlet state,
∣

∣1
〉

A
. The

∆+ is |udu〉S, while the proton is |udu〉MA,MS. The Σ0

is |uds〉MA,MS. The octet, singlet and decuplet construc-
tions are shown in Table VII.
Within the SU(3) flavor representations, we also have

SU(2) isospin states. In the construction that follows,
it is straightforward to generalize to the case of broken
SU(3). The combinations of symmetry states remain
valid, however, there are some new states, such as Σ in a
S flavor state.

3. Orbital angular momentum based on covariant
derivatives

Smearing of quark fields is based on the distillation
method of Ref. [19]. It is used in order to filter out the
effects of small scale fluctuations of the gauge fields and
it provides a spherically symmetric distribution of each
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Dirac IR Emb ρ⊗ s

S
1
2

1 1√
2

(

+ |ρ〉MS|s〉MS + |ρ〉MA|s〉MA

)

3
2

1 , 2 |ρ〉S|s〉S

M
1
2

1 , 2 MS |ρ〉S|s〉MS MA |ρ〉S|s〉MA

3 1√
2

(

− |ρ〉MS|s〉MS + |ρ〉MA|s〉MA

)

1√
2

(

+ |ρ〉MS|s〉MA + |ρ〉MA|s〉MS

)

3
2

1 |ρ〉MS|s〉S |ρ〉MA|s〉S

A
1
2

1 1√
2

(

− |ρ〉MS|s〉MA + |ρ〉MA|s〉MS

)

TABLE VI: Symmetries of Dirac spin states based on direct products of ρ-spin and s-spin states for three quarks. States
labeled as |ρ〉Σ refer to a ρ-spin state with symmetry Σ from Eqs. (A4-A6). Similarly, states labeled as |s〉Σ refer to a s-spin
state with symmetry Σ from Eqs. (A4-A6). Direct products of the ρ-spin and s-spin states yield sums of three-quark terms in
which each quark has a ρ and s label. That determines each quark’s Dirac index according to Table V.

Octet, 8

I Iz S φMS φMA

p 1
2
+ 1

2
0 |udu〉MS |udu〉MA

n 1
2
− 1

2
0 −|dud〉MS −|dud〉MA

Λ8 0 0 −1 1√
2
(|sud〉MS − |uds〉MS)

1√
2
(|sud〉MA − |uds〉MA)

Σ+
8

1 +1 −1 |usu〉MS |usu〉MA

Σ0
8 1 0 −1 |usd〉MS |usd〉MA

Σ−
8

1 −1 −1 |dsd〉MS |dsd〉MA

Ξ0
8

1
2
+ 1

2
−2 −|sus〉MS −|sus〉MA

Ξ−
8

1
2
− 1

2
−2 −|sds〉MS −|sds〉MA

Decuplet, 10

I Iz S φS

∆++ 3
2
+ 3

2
0 |uuu〉S

∆+ 3
2
+ 1

2
0 |uud〉S

∆0 3
2
− 1

2
0 |udd〉S

∆− 3
2
− 3

2
0 |ddd〉S

Σ+
10

1 +1 −1 |uus〉S

Σ0
10 1 0 −1 |uds〉S

Σ−
10

1 −1 −1 |dds〉S

Ξ0
10

1
2
+ 1

2
−2 |sus〉S

Ξ−
10

1
2
− 1

2
−2 |sds〉S

Ω− 0 0 −3 |sss〉S

Singlet, 1

I Iz S φA

Λ0
1 0 0 −1 |dus〉A

TABLE VII: Flavor octet, decuplet and singlet constructions.

quark field that carries no orbital angular momentum.
In order to obtain higher spins, it is necessary to add
spatial structure using covariant derivative operators, as
described in the text, which are combined in definite sym-
metries that correspond to orbital angular momenta in
the continuum. For a single derivative, (D[1]), the two
symmetry combinations are given in Eq. (8), while for
two derivativesi, (D[2]), the combinations are given in
Eq. (12).
Operators that have good spin in the continuum are

built by applying some number of derivatives to the Dirac
spinors. Using the SU(2) Clebsch-Gordan coefficients
to combine orbital and spin angular momenta, the one-
derivative operators are,

(

D[1]Ψ[S]
)[J,M ]

=
∑

m,s

〈1,m;S, s|J,M〉 ~D[1]
L=1,mΨS,s,

(A7)
where S = 1

2 or 3
2 are the possible spin states of three

quarks in the absence of derivatives. Reference [7] devel-
oped single derivative operators for baryons and it pro-
vides some examples of the incorporation of combinations
of covariant derivatives into three-quark operators.
Additional derivatives together with SU(2) Clebsch-

Gordan coefficients are used to obtain higher J states.
For example, the two-derivative operators are first com-

bined to get L = 2 ,

D
[2]
L=2,M =

∑

m1,m2

〈1,m1; 1,m2|2,M〉D[1]
m1
D[1]

m2
. (A8)

This L = 2 derivative operator is then applied to a spinor
ΨS,s as follows,

(

D
[2]
L=2Ψ

[S]
)[J,M ]

=
∑

m,s

〈2,m;S, s|J,M〉D[2]
L=2,MΨS,s.

(A9)
Derivative operator constructions for singlet, octet and
decuplet follow from Table VIII. The single-site operators
are symmetric in space, flavor and Dirac indices. With
one derivative, a mixed symmetry flavor and spin con-
struction is combined with mixed symmetry derivative
operators to make the overall symmetric combinations.
Similarly, with two derivatives, various spin-flavor sym-
metry states are combined with the derivative operators
to make overall symmetric operators.
As noted above, three quarks with no derivatives can

form at most spin 1
2 and 3

2 states. The corresponding
lattice irreps G1 and H are faithful representations of
these continuum spins, and hence form the basis of the
constructions of higher spins. The numbers of operators
with up to two derivatives are shown in Table IX. The
number of operators classified according to total spin J
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Σ
SU(3)
SU(2) Nnonrel Nrel

S (10,4) 1 1 φSχS

(10,2) 1 φSχS

(8,4) 1 1√
2
(φMSχMS + φMAχMA)

(8,2) 1 2 1√
2
(φMSχMS + φMAχMA)

(1,2) 1 φAχA

M (10,4) 1 MS φSχMS MA φSχMA

(10,2) 1 2 φSχMS φSχMA

(8,4) 1 1 φMSχS φMAχS

(8,4) 1 1√
2
(−φMSχMS + φMAχMA)

1√
2
(φMSχMA + φMAχMS)

(8,2) 1 φMSχS φMAχS

(8,2) 1 2 1√
2
(−φMSχMS + φMAχMA)

1√
2
(φMSχMA + φMAχMS)

(8,2) 1 φMAχA φMSχA

(1,4) 1 φAχMA φAχMS

(1,2) 1 2 φAχMA φAχMS

A (10,2) 1 φSχA

(8,4) 1 1√
2
(φMSχMA − φMAχMS)

(8,2) 1 2 1√
2
(φMSχMA − φMAχMS)

(1,4) 1 1 φAχS

(1,2) 1 φAχS

TABLE VIII: Local operators classified according to symmetry of flavor and Dirac spin. The dimensionality of the SU(3)
representation is shown. The number of Dirac spin embeddings (number of operators) in a non-relativistic (ρ = +) construction
are shown in column Nnonrel, and the number of constructions featuring some number of lower components is shown in column
Nrel. The total number of embeddings is the sum of Nnonrel +Nrel. The multiplicity of operators in the non-relativistic case is
56 (S), 70 (MS), 70 (MA) and 20 (A), and corresponds to the conventional non-relativistic SU(6) ⊗ O(3) construction. The
relativistic construction, which involves both positive and negative parity operators, corresponds to the reduction of SU(12).
Note that the flavor singlet operators are distinct from the octet and decuplet operators. In the SU(3) flavor limit, the flavor
singlet states do not mix with the octet or decuplet states.

and irrep are shown in Table A 3. A general feature of
the operator construction is that there is always an equal
number of positive and negative parity operators. For ex-
ample, for every operator in G1g, there is a corresponding
operator in G1u and similarly for Hg and Hu. There are
no single-site operators in G2.

These constructions provide operators that have good
total angular momentum up to J = 7

2 in the continuum
limit. However, they are reducible with respect to the
octahedral group that represents the symmetry of a cubic
lattice.

Appendix B: Quantum mechanics of continuum spin
in the octahedral representation

In this appendix we develop the subduction of SU(2)
quantum states to irreducible octahedral states in the
continuum. The lowest spins are trivial as suitable sub-
ductions for spins J = 1

2 and J = 3
2 are provided by the

elementary G1 and H octahedral irrep states, i.e.,
∣

∣

∣

∣

[

1

2
,m

]〉

=

∣

∣

∣

∣

G1, r,

[

1

2

]〉

, r =
3

2
−m,

∣

∣

∣

∣

[

3

2
,m

]〉

=

∣

∣

∣

∣

H, r,

[

3

2

]〉

, r =
5

2
−m. (B1)

A suitable subduction for spin 1 also is trivial in terms
of octahedral irrep T1,

|[1,m]〉 = |T1, r, [1]〉 , r = 2−m.

Here and in the following we label octahedral states that
carry continuum quantum numbers J,M by placing the
quantum numbers in brackets, i.e., |[J,M ]〉. The angu-
lar momentum basis states are orthogonal in the contin-
uum and consequently the octahedral states labelled as
|[J,M ]〉 are orthogonal in the continuum limit as follows,

〈

[J,M ]
∣

∣

∣ [J ′,M ′]
〉

= δJ,J ′δM,M ′ . (B2)

However, they are reducible.
Irreducible octahedral states, |Λ, r, [J ]〉, that are sub-

duced from a single spin J are labelled by the octahe-
dral irrep, Λ, row r, and spin [J ] in brackets. Examples
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Singlet, 1

IR d = 0 d = 1 d = 2 Total

G1 1 4 9 14

H 0 5 17 22

G2 0 1 8 9

Octet, 8

IR d = 0 d = 1 d = 2 Total

G1 3 8 17 28

H 1 11 36 48

G2 0 3 17 20

Decuplet, 10

IR d = 0 d = 1 d = 2 Total

G1 1 4 10 15

H 2 5 19 26

G2 0 1 10 11

TABLE IX: Numbers of singlet, octet and decuplet opera-
tors for each parity according to the irrep and the number
of derivatives, d. Total derivative constructions have been
removed.

Singlet, 1

Rep J = 1
2
J = 3

2
J = 5

2
J = 7

2
Total

G1 13 1 14

H 13 8 1 22

G2 8 1 9

Octet, 8

Rep J = 1
2
J = 3

2
J = 5

2
J = 7

2
Total

G1 24 4 28

H 28 16 4 48

G2 16 4 20

Decuplet, 10

Rep J = 1
2
J = 3

2
J = 5

2
J = 7

2
Total

G1 12 3 15

H 15 8 3 26

G2 8 3 11

TABLE X: Number of singlet, octet and decuplet operators
according to continuum spin and subduced irrep. With two
derivatives, at most J = 7

2
can be reached.

appear on the right side of Eq. (B1). Owing to the or-
thogonality of different octahedral irreps and rows, these
states form an orthonormal set obeying,

〈

Λ, r, [J ]
∣

∣

∣Λ′, r′, [J ]
〉

= δΛ,Λ′δr,r′ . (B3)

A general octahedral irrep can contain an infinite number
of continuum spins. States transforming as the same oc-
tahedral irrep and row but subduced from different spins,
such as

∣

∣H, r,
[

3
2

]〉

,
∣

∣H, r,
[

5
2

]〉

and
∣

∣H, r,
[

7
2

]〉

, are distin-
guished by their [J ] labels. These states are orthogonal to

one another as shown in Eq. (B11). The lowest spins have
a one-to-one relation between the |[J,M ]〉 and |Λ, r, [J ]〉
labellings as in Eq. (B1) but higher spins do not.
Higher-spin states can be constructed from direct prod-

ucts of lower-spin states by use of the SU(2) Clebsch-
Gordan formula for direct products of states of spins J1
and J2 as follows,

∣

∣ [J,M ]
〉

=
∑

m1,m2

∣

∣ [J1,m1]
〉

⊗
∣

∣ [J2,m2]
〉

×
〈

J1m1; J2m2

∣

∣JM
〉

, (B4)

where
〈

J1m1; J2m2

∣

∣JM
〉

is a SU(2) Clebsch-Gordan co-
efficient. Equation (B4) provides a block-diagonal uni-
tary transformation between the basis of (2J1+1)(2J2+1)
product states on the right side and the equal number of
states in the basis of total angular momentum on the left
side for J in the range

∣

∣J1 − J2
∣

∣ ≤ J ≤ J1 + J2.
Each of the octahedral states should be expanded in

terms of a set of (2J1 + 1)(2J2 + 1) linearly independent
states transforming as irreducible representations of the
octahedral group and subduced from a single J value.
Tables XI and XII show the relevant states based on using
J1 = 1 and J2 = 3

2 or 5
2 to construct J = 5

2 or J = 7
2 .

The limited dimensions of the octahedral irreps require
multiple occurrences of some irreps in the subduction of
high spins. In the continuum, the different occurrences
of the same irrep and row provide linearly independent
states, as we will show by construction. Representa-
tions with multiple occurrences are denoted as |nΛ, r, [J ]〉,
where nΛ denotes the nth occurrence of irrep Λ, r denotes
the row of the irrep and [J ] shows the spin from which
the state is subduced. When there is a single occurrence,
the left superscript is omitted.
Expanding in terms of a complete set of irreducible

octahedral states gives,
∣

∣ [J,M ]
〉

=
∑

nΛ,r

∣

∣

nΛ, r, [J ]
〉 〈n

Λ, r, [J ]
∣

∣ [ J,M ]
〉

,

=
∑

nΛ,r

∣

∣

n
Λ, r, [J ]

〉

SJ,M
nΛ,r ,

SJ,M
nΛ,r =

〈n
Λ, r, [J ]

∣

∣ [J,M ]
〉

, (B5)

where we sum over all irreps, including multiple occur-
rences of the same irrep, that are linearly independent.

The subduction matrix, SJ,M
nΛ,r , is defined by the overlap

of an irreducible octahedral state subduced from a single
J and the spin state

∣

∣ [J,M ]
〉

. Orthogonality proper-
ties of the subduction matrices follow from substituting
Eq. (B5) into Eq. (B2) with J = J ′ as follows,
∑

Λ,r

∑

Λ′,r′

SJ,M
Λ,r SJ,M ′

Λ′,r′

〈

Λ, r, [J ]
∣

∣Λ′, r′, [J ]
〉

= δM,M ′ .

(B6)

Because of Eq. (B3), this reduces to
∑

Λ,r

SJ,M
Λ,r SJ,M ′

Λ,r = δM,M ′ . (B7)
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J 1
2

3
2

5
2

IR states
∣

∣G1, r,
[

1
2

]〉 ∣

∣H, r,
[

3
2

]〉 ∣

∣H, r,
[

5
2

]〉

,
∣

∣G2, r,
[

5
2

]〉

TABLE XI: Occurrences of octahedral irrep states with spins J = 1
2
, 3

2
and 5

2
based on using J1 = 1 and J2 = 3

2
.

J 3
2

5
2

7
2

IR states
∣

∣H, r,
[

3
2

] 〉 ∣

∣H, r,
[

5
2

] 〉

,
∣

∣G2, r,
[

5
2

] 〉 ∣

∣G1, r,
[

7
2

] 〉

,
∣

∣H, r,
[

7
2

] 〉

,
∣

∣G2, r,
[

7
2

] 〉

TABLE XII: Occurrences of octahedral irrep states with spins J = 3
2
, 5

2
and 7

2
based on J1 = 1 and J2 = 5

2
.

Summation of the squares of SJ,M
Λ,r over Λ and r gives the

normalization condition,
∑

Λ,r

SJ,M
Λ,r SJ,M

Λ,r = 1. (B8)

Because the
∣

∣ [J,M ]
〉

states are a complete set over the
subspace of spin J , there is a sum rule

∑

M

〈

Λ, r, [J ]
∣

∣ [J,M ]
〉 〈

[J,M ]
∣

∣Λ′, r′, [J ]
〉

=
〈

Λ, r, [J ]
∣

∣Λ′, r′, [J ]
〉

.

where
∑

M |[J,M ]〉〈[J,M ]| = 1 was used to obtain the
right side. The left side involves a sum over products
of subduction matrices and the right side involves the
δ-functions of Eq. (B3), yielding

∑

M

SJ,M
Λ,r SJ,M

Λ′,r′ = δΛ,Λ′δr,r′ . (B9)

Multiplying a subduction matrix times both sides of
Eq. (B5) and summing over M yields
∑

M

SJ,M
Λ,r

∣

∣ [J,M ]
〉

=
∑

M

SJ,M
Λ,r

∑

Λ′,r′

SJ,M
Λ′,r′

∣

∣Λ′, r′, [J ]
〉

=
∣

∣Λ, r, [J ]
〉

, (B10)

where Eq. (B9) was used to evaluate the summations on
the right side. This last equation shows how the subduc-
tion matrix is used. Once one has a realization of |[J,M ]〉
states, the subduction matrix is applied to obtain the oc-
tahedral irrep states that are subduced from a single J
value. Using Eq. (B10) leads to an important extension
of Eq. (B3),

〈

Λ, r, [J ]
∣

∣Λ′, r′, [J ′]
〉

=
∑

M,M ′

SJ,M
Λ,r

〈

[J,M ]
∣

∣ [J ′,M ′]
〉

SJ ′,M ′

Λ′,r′ ,

=
∑

M,M ′

SJ,M
Λ,r δJ,J ′δM,M ′ SJ ′,M ′

Λ′,r′ ,

=
∑

M

SJ,M
Λ,r SJ,M

Λ′,r′δJ,J ′ ,

=δΛ,Λ′δr,r′δJ,J ′ , (B11)

where Eq. (B9) was used in the last step. The octahedral
states subduced from single J values are orthonormal

with respect to J as well as with respect to octahedral
irrep, Λ, and row, r.
Substituting the expansion in terms of orthonormal

irrep states for each octahedral state in the Clebsch-
Gordan formula of Eq. (B4) gives
∑

nΛ,r

∣

∣

n
Λ, r, [J ]

〉

SJ,M
nΛ,r =

∑

m1,m2

Λ1,r1
Λ2,r2

∣

∣Λ1, r1, [J1]
〉

⊗
∣

∣Λ2, r2, [J2]
〉

× SJ1,m1

Λ1,r1
SJ2,m2

Λ2,r2

〈

J1m1; J2m2

∣

∣JM
〉

(B12)

Here the octahedral irrep states on the right side are
assumed not to involve multiple occurrences so left su-
perscripts are omitted for Λ1 and Λ2.
The rules for combining direct products of octahedral

group irreps are similar to those for continuum spins. The
direct product T1⊗H corresponds to a direct product of
J = 1 and J = 3

2 continuum irreps. It yields a G1 irrep

that corresponds to spin- 12 , a H irrep that corresponds

to spin- 32 and a pair of irreps, H ′ and G2, that taken

together correspond to spin-[ 52 ]. The H and H ′ irrep
states are orthogonal in the continuum limit because they
are subduced from different spins, i.e., J = 3

2 and 5
2 .

Direct products of octahedral states are equal to sums
of irreducible states according to the Clebsch-Gordan for-
mula for the octahedral group,
∣

∣Λ1, r1, [J1]
〉

⊗
∣

∣Λ2, r2, [J2]
〉

=

∑

ΛΛ1⊗Λ2
,r

∣

∣ΛΛ1⊗Λ2
, r
〉

· C
(

Λ1 Λ2 ΛΛ1⊗Λ2

r1 r2 r

)

,

(B13)

where the states produced on the right side are labeled by
the irreps involved in the direct products. The [J1] and
[J2] labels of the states on the left side are passive and do
not affect the direct products. This gives the following
expansion,
∑

nΛ,r

∣

∣

n
Λ, r, [J ]

〉

SJ,M
nΛ,r =

∑

ΛΛ1⊗Λ2
,r

∣

∣ΛΛ1⊗Λ2
, r
〉

RJ,M
ΛΛ1⊗Λ2

,r,

(B14)
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J 5
2

7
2

9
2

IR states
∣

∣H, r,
[

5
2

]〉

,
∣

∣G2, r,
[

5
2

]〉 ∣

∣G1, r,
[

7
2

]〉

,
∣

∣H, r,
[

7
2

]〉

,
∣

∣G2, r,
[

7
2

]〉 ∣

∣G1, r,
[

9
2

]〉

,
∣

∣

1H, r,
[

9
2

]〉

,
∣

∣

2H, r,
[

9
2

]〉

TABLE XIII: Occurrences of octahedral irrep states in the subduction of spin 9
2
based on J1 = 1 and J2 = 7

2

where matrix RJ,M
ΛΛ1⊗Λ2

,r is defined by

RJ,M
ΛΛ1⊗Λ2

,r =
∑

m1,m2

Λ1,r1
Λ2,r2

C

(

Λ1 Λ2 ΛΛ1⊗Λ2

r1 r2 r

)

× SJ1,m1

Λ1,r1
SJ2,m2

Λ2,r2

×
〈

J1m1; J2m2

∣

∣JM
〉

. (B15)

The notation used here is based on the fact that the
states produced by the Clebsch-Gordan expansion are
general octahedral irrep states, not states subduced from
a single J value. For the construction based on Eq. (B12),
the SU(2) spins in the range |J1 − J2| ≤ J ≤ J1 + J2
provide a complete set of (2J1 + 1)(2J2 + 1) linearly in-
dependent states and the octahedral irrep states on the
right side of Eq. (B14) can be expanded as a linear com-
bination of the octahedral irrep states subduced from a
single spin as follows,

∣

∣ΛΛ1⊗Λ2
, r
〉

=

J1+J2
∑

J ′=|J1−J2|
AΛΛ1⊗Λ2

,nΛ[J ′]

∣

∣

n
Λ, r, [J ′]

〉

(B16)
whereAΛΛ1⊗Λ2

,nΛ[J ′], is a matrix in the ΛΛ1⊗Λ2
and nΛ[J ′]

indices.
Substituting Eqs. (B13) and (B16) into Eq. (B12) and

using Eq. (B5) gives

∑

nΛ,r

∣

∣

n
Λ, r, [J ]

〉

SJ,M
nΛ,r =

∑

J ′,ΛΛ1⊗Λ2
,r

AΛΛ1⊗Λ2
,nΛ[J′]

×
∣

∣

n
Λ, r, [J ′]

〉

RJ,M
ΛΛ1⊗Λ2

,r (B17)

Because the octahedral states
∣

∣

n
Λ, r, [J ]

〉

that are sub-
duced from a single spin form an orthonormal set, their
coefficients must be the same on both sides of Eq. (B17).
Thus, the subduction matrix for total spin, J , obeys

SJ,M
nΛ,r =

∑

ΛΛ1⊗Λ2

AΛΛ1⊗Λ2
,nΛ[J]RJ,M

ΛΛ1⊗Λ2
,r (B18)

As will become evident, matrix A is orthogonal: AAT =
1. When the above equation is multiplied by |[J,M ]〉 on
both sides, and then summed over M , we get

∑

M

SJ,M
nΛ,r

∣

∣

[

J,M
] 〉

=
∑

ΛΛ1⊗Λ2

AΛΛ1⊗Λ2
,nΛ[J]

×
∑

M

RJ,M
ΛΛ1⊗Λ2

,r

∣

∣ [J,M ]
〉

.(B19)

Using Eq. (B5), this becomes

∣

∣

n
Λ, r, [J ]

〉

=
∑

ΛΛ1⊗Λ2

AΛΛ1⊗Λ2
,nΛ[J]

∣

∣ΛΛ1⊗Λ2
, r
〉

,

(B20)

where

∣

∣ΛΛ1⊗Λ2
, r
〉

=
∑

M

RJ,M
ΛΛ1⊗Λ2

,r

∣

∣ [J,M ]
〉

. (B21)

Table XIV shows the subduction matrices for the ele-
mentary states of spin 1

2 , 1 and
3
2 . They are unit matrices

in the basis used. Starting with the known subduction
matrices for spins J1 = 1 and J2 = 3

2 , the subduction

matrix for spin 5
2 can be obtained as follows. Evalu-

ate Eq. (B15) to obtain matrices R
5

2
,M

H′
T1⊗H

,r, R
3

2
,M

HT1⊗H ,r

and R
5

2
,M

G2T1⊗H ,r. Matrix R
5

2
,M

H′
T1⊗H

,r is equal within an

overall constant factor AH′[ 5
2
],HT1⊗H

to subduction ma-

trix S
5

2
,M

H,r . Similarly, R
3

2
,M

HT1⊗H ,r and R
5

2
,M

G2T1⊗H ,r are equal

within overall factors to S
3

2
,M

H,r and S
5

2
,M

G2,r
. The over-

all factors lead to S matrices normalized as in Eq. (B8).
The subduction matrices that are obtained for spin 5

2 are
given in Table XV. The overall factors determine matrix
AnΛ[J],ΛΛ1⊗Λ2

, which is a unit matrix in this example, i.e.,

Eq. (B16) takes the form,







|HT1⊗H , r〉
∣

∣H ′
T1⊗H , r

〉

|G2T1⊗H , r〉






=







1 0 0

0 1 0

0 0 1













∣

∣H, r,
[

3
2

]〉

∣

∣H, r,
[

5
2

]〉

∣

∣G2, r,
[

5
2

]〉






.

(B22)

This block-matrix equation holds when the row indices,
r, are the same on both sides. Note that orthonormality
of the states on the right side implies that the states on
the left side are orthonormal.
For higher spins, the Clebsch-Gordan coefficients of

the octahedral group do not provide a block-diagonal
result for the subduction, i.e., matrix A takes a non-
trivial form. This is demonstrated for the construction
of spin 7

2 based on J1 = 1 and J2 = 5
2 , which involves

use of the previous subduction,
[

5
2

]

→ H ⊕ G2. Three
orthogonal occurrences of irrep H are produced in the
T1⊗

[

5
2

]

= T1⊗
(

H⊕G2

)

direct products and two orthogo-
nal occurrences of G2 are produced. Taking into account
the fact that two different H irreps are produced by each
T1⊗H product, i.e., T1⊗H → G1⊕H⊕H ′⊕G2, the three
H states that occur are HT1⊗H , H ′

T1⊗H and HT1⊗G2
.



27

The two different G2 states that occur are G2T1⊗H and
G2T1⊗G2

.
The procedure is similar to the spin 5

2 case.
First one evaluates Eq. (B15) to obtain matrices

R
7

2
,M

G1T1⊗H ,r, R
7

2
,M

HT1⊗H ,r, R
5

2
,M

H′
T1⊗H

,r, R
3

2
,M

HT1⊗H ,r, R
7

2
,M

G2T1⊗H ,r

and R
5

2
,M

G2T1⊗G2
,r. Each R matrix corresponds to a single

S matrix of the set S
7

2
,M

G1,r
S

7

2
,M

H,r , S
5

2
,M

H,r , S
3

2
,M

H,r , S
7

2
,M

G2,r
and

S
5

2
,M

G2,r
. In this case the subduction matrices for spin 7

2 can
be obtained simply by imposing the normalization con-

dition
∑

M SJ,M
Λ,r SJ,M

Λ,r = 1. That gives the subduction
matrices of Table XVI.
The octahedral states that result from the Clebsch-

Gordan formula are linear combinations of the states
subduced from a single J value. This is expressed by
the block-matrix equation,



















|G1 T1⊗H , r〉
|HT1⊗H , r〉
∣

∣H ′
T1⊗H , r

〉

|HT1⊗G2
, r〉

|G2T1⊗H , r〉
|G2T1⊗G2

, r〉



















= AT1⊗ 5

2 ×



















∣

∣G1, r,
[

7
2

]〉

∣

∣H, r,
[

7
2

]〉

∣

∣H, r
[

5
2

]〉

∣

∣H, r
[

3
2

]〉

∣

∣G2, r,
[

7
2

]〉

∣

∣G2, r
[

5
2

]〉



















. (B23)

where matrix AT1⊗ 5

2 is

AT1⊗ 5

2 =



























1 0 0 0 0 0

0
√

4
7

√

3
7 0 0 0

0 −
√

1
7

√

4
21 −

√

2
3 0 0

0 −
√

2
7

√

8
21

√

1
3 0 0

0 0 0 0
√

5
21 −

√

16
21

0 0 0 0 −
√

16
21 −

√

5
21



























.

(B24)

Note that row indices, r, are the same on both sides of
Eq. (B23) so that it connects the 18 states on the left side
(considering all allowed values of the row indices) to 18
states on the right side. The states on the right side are
orthonormal as in Eq. (B11) and the rows of the matrix in
Eq. (B23) are orthogonal to one another. It follows that
the states on the left side also form an orthonormal set
by construction. Matrix equation (B23) takes the form of
Eq. (B16) and it provides a nontrivial example of matrix
A, demonstrating the relation between irreducible states
resulting from direct products of octahedral states and
the irreducible states that are subduced from a single
spin. It is straightforward to solve for the irreducible
states subduced from a single spin by applyingA−1 = AT

to both sides of Eq. (B23). That demonstrates that the
irreducible octahedral states subduced from a single J are
linear combinations of the irreducible octahedral states
resulting from the Clebsch-Gordan formula.
The same reasoning can be applied to the subduction

of spin 9
2 based on J1 = 1 and J2 = 7

2 . Table XIII

shows the linearly independent states for this case. A
total of four orthogonal occurrences of H, two of G1 and
two of G2 arise from T1 ⊗

[

7
2

]

= T1 ⊗ (G1 ⊕ H ⊕ G2).
Two of the H irreps reproduce the previous results for
subduction of spins 5

2 and 7
2 . The other two H irreps are

yet-to-be-determined subductions of spin 9
2 . The two G1

irreps provide subductions of spins 9
2 and 7

2 . The two

G2 irreps provide subductions of spins 7
2 and 5

2 . The

new element for spin 9
2 is that two occurrences of irrep

H are unknown. They are determined as follows. First

matrices RJ,M
ΛΛ1⊗Λ2

,r are calculated. They are related to

the subduction matrices by a matrix AT1⊗ 7

2 , which also
relates the states formed from the R and S matrices as
in Eqs. (B10) and (B21). That relation can be expressed
as follows,





























|G1 T1⊗G1
, r〉

|G1 T1⊗H , r〉
|H1 T1⊗G1

, r〉
|HT1⊗H , r〉
∣

∣H ′
T1⊗H , r

〉

|HT1⊗G2
, r〉

|G2T1⊗H , r〉
|G2T1⊗G2

, r〉





























= AT1⊗ 7

2 ×





























∣

∣G1, r,
[

9
2

]〉

∣

∣G1, r,
[

7
2

]〉

∣

∣
1H, r,

[

9
2

]〉

∣

∣
2H, r,

[

9
2

]〉

∣

∣H, r
[

7
2

]〉

∣

∣H, r
[

5
2

]〉

∣

∣G2, r,
[

7
2

]〉

∣

∣G2, r
[

5
2

]〉





























.

(B25)

where matrix AT1⊗ 7

2 is









































√

20
27 −

√

7
27 0 0 0 0 0 0

−
√

7
27 −

√

20
27 0 0 0 0 0 0

0 0 a1 b1

√

10
27

√

3
8 0 0

0 0 a2 b2

√

1
945 −

√

3
7 0 0

0 0 a3 b3 −
√

12
35

√

3
28 0 0

0 0 a4 b4 −
√

2
7

√

5
56 0 0

0 0 0 0 0 0
√

4
7 −

√

3
7

0 0 0 0 0 0
√

3
7

√

4
7









































.

(B26)

Constants an and bn express the unknown parts of
the matrix that connect the four H irreps on the left

side to linear combinations involving
∣

∣

1
H, r,

[

9
2

] 〉

and
∣

∣

2
H, r,

[

9
2

] 〉

.
The upper-left block of the matrix equation can be

solved for
∣

∣

∣G1, r,
[

9
2

]

〉

=
√

20
27

∣

∣

∣G1T1⊗G1
, r
〉

−
√

7
27

∣

∣

∣G1T1⊗H , r
〉

.

(B27)

Subduction matrix S
9

2
,M

G1,r
is determined by a linear com-

bination of R matrices with the same coefficients as in
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Eq. (B27), i.e.,

S
9
2 ,M

G1,r
=
√

20
27R

9
2 ,M

G1T1⊗G1
,r −

√

7
27R

9
2 ,M

G1T1⊗H ,r. (B28)

The middle block gives four equations for the H irreps.
They can be reduced to three by making linear combi-
nations of pairs of equations to eliminate the

∣

∣H, r,
[

5
2

]〉

terms, and then further reduced to two equations by mak-
ing linear combinations of pairs of equations to eliminate
the

∣

∣H, r,
[

7
2

]〉

terms. The resulting equations provide

candidates for the 1H and 2H irrep states subduced from
spin 9

2 as follows,

a
′′

1

∣

∣

∣

1H, r,
[

9
2

]

〉

+ b
′′

1

∣

∣

∣

2H, r,
[

9
2

]

〉

=
√

5
96

∣

∣

∣HT1⊗G1
, r
〉

+
√

7
60

∣

∣

∣HT1⊗H , r
〉

+
√

21
320

∣

∣

∣H ′
T1⊗H , r

〉

a
′′

2

∣

∣

∣

1H, r,
[

9
2

]

〉

+ b
′′

2

∣

∣

∣

2H, r,
[

9
2

]

〉

=

5
24

∣

∣

∣
HT1⊗G1

, r
〉

+
√

7
72

∣

∣

∣
HT1⊗H , r

〉

−
√

21
320

∣

∣

∣
HT1⊗G2

, r
〉

,

where a
′′

n and b
′′

n are combinations of the unknown con-
stants an and bn. There remain four unknown constants
here and three equations that constrain them in order
that states

∣

∣
1H, r,

[

9
2

]〉

and
∣

∣
2H, r,

[

9
2

]〉

are orthonormal.
A one-parameter family of solutions exists. It is sufficient
for our purpose to obtain a single solution by choosing
b
′′

1 = 0. From the first equation we find

∣

∣

∣

1H, r,
[

9
2

]

〉

=
√

2
9

∣

∣

∣HT1⊗G1
, r
〉

+
√

112
225

∣

∣

∣HT1⊗H , r
〉

+
√

7
25

∣

∣

∣H ′
T1⊗H , r

〉

, (B29)

where constant a
′′

1 was determined by normalizing the
state. The second equation is then used to obtain a state
that is orthonormal to the first one, which determines
constants a

′′

2 and b
′′

2 , and yields

∣

∣

∣

2H, r,
[

9
2

]

〉

=
√

7
216

∣

∣

∣HT1⊗G1
, r
〉

+
√

49
675

∣

∣

∣HT1⊗H , r
〉

−
√

27
100

∣

∣

∣H ′
T1⊗H , r

〉

+
√

5
8

∣

∣

∣HT1⊗G2
, r
〉

.

The coefficients appearing in Eq. (B29) give the values
of a1, a2, a3 ( a4 = 0) and the coefficients appearing in

Eq.(B30) give the values of b1, b2, b3 and b4. They com-
plete the determination of matrix A and can be used to
show that it is orthogonal. Subduction matrices are de-
termined as linear combinations of R matrices with the
same coefficients that appear above for the 1H and 2H
states,

S
9

2
,M

1H,r =
√

2
9R

9

2
,M

HT1⊗G1
,r +

√

112
225R

9

2
,M

HT1⊗H ,r +
√

7
25R

9

2
,M

H′
T1⊗H

,r

S
9
2 ,M
2H,r =

√

7
216 R

9

2
,M

HT1⊗G1
,r +

√

49
675R

9

2
,M

HT1⊗H ,r −
√

27
100R

9

2
,M

H′
T1⊗H

,r +
√

5
8R

9

2
,M

H′
T1⊗G2

,r. (B30)

The resulting subduction matrices for spin 9
2 are given in

Table XVII.

TABLE XIV: Elementary subduction matrices S
1

2
,m

G1,r
, S1,m

T1,r

and S
3

2
,m

H,r .

J = 1
2
→ G1

m
r + 1

2
− 1

2

1 1 0

2 0 1

J = 1 → T1

m
r +1 0 −1

1 1 0 0

2 0 1 0

3 0 0 1

J = 3
2
→ H

m
r + 3

2
+ 1

2
− 1

2
− 3

2

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

TABLE XV: Subduction matrices S
5

2
,m

H,r and S
5

2
,m

G2,r

J = 5
2
→ H

m
r + 5

2
+ 3

2
+ 1

2
− 1

2
− 3

2
− 5

2

1 0 +
√

1
6

0 0 0 +
√

5
6

2 0 0 −1 0 0 0

3 0 0 0 +1 0 0

4 −
√

5
6

0 0 0 −
√

1
6

0

J = 5
2
→ G2

m
r + 5

2
+ 3

2
+ 1

2
− 1

2
− 3

2
− 5

2

1 +
√

1
6

0 0 0 −
√

5
6

0

2 0 −
√

5
6

0 0 0 +
√

1
6
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TABLE XVI: Subduction matrices S
7

2
,m

G1,r
, S

7

2
,m

H,r and S
7

2
,m

G2,r
.

J = 7
2
→ G1

m
r + 7

2
+ 5

2
+ 3

2
+ 1

2
− 1

2
− 3

2
− 5

2
− 7

2

1 0 0 0 +
√

7
12

0 0 0 +
√

5
12

2 −
√

5
12

0 0 0 −
√

7
12

0 0 0

J = 7
2
→ H

m
r + 7

2
+ 5

2
+ 3

2
+ 1

2
− 1

2
− 3

2
− 5

2
− 7

2

1 0 0 +
√

3
4

0 0 0 +
√

1
4

0

2 0 0 0 −
√

5
12

0 0 0 +
√

7
12

3 +
√

7
12

0 0 0 −
√

5
12

0 0 0

4 0 +
√

1
4

0 0 0 +
√

3
4

0 0

J = 7
2
→ G2

m
r + 7

2
+ 5

2
+ 3

2
+ 1

2
− 1

2
− 3

2
− 5

2
− 7

2

1 0 +
√

3
4

0 0 0 −
√

1
4

0 0

2 0 0 +
√

1
4

0 0 0 −
√

3
4

0

TABLE XVII: Subduction matrices S
9

2
,m

G1,r
, S

9

2
,m

1H,r
and S

9

2
,m

2H,r
.

J = 9
2
→ G1

m
r + 9

2
+ 7

2
+ 5

2
+ 3

2
+ 1

2
− 1

2
− 3

2
− 5

2
− 7

2
− 9

2

1 −
√

3
8

0 0 0 −
√

7
12

0 0 0 −
√

1
24

0

2 0 −
√

1
24

0 0 0 −
√

7
12

0 0 0 −
√

3
8

J = 9
2
→ 1H

m
r + 9

2
+ 7

2
+ 5

2
+ 3

2
+ 1

2
− 1

2
− 3

2
− 5

2
− 7

2
− 9

2

1 0 0 0 +
√

7
10

0 0 0 +
√

3
10

0 0

2 −
√

5
8

0 0 0 +
√

7
20

0 0 0 +
√

1
40

0

3 0 −
√

1
40

0 0 0 −
√

7
20

0 0 0 +
√

5
8

4 0 0 −
√

3
10

0 0 0 −
√

7
10

0 0 0

J = 9
2
→ 2H

m
r + 9

2
+ 7

2
+ 5

2
+ 3

2
+ 1

2
− 1

2
− 3

2
− 5

2
− 7

2
− 9

2

1 0 0 0 +
√

3
10

0 0 0 −
√

7
10

0 0

2 0 0 0 0 −
√

1
15

0 0 0 +
√

14
15

0

3 0 −
√

14
15

0 0 0 +
√

1
15

0 0 0 0

4 0 0 +
√

7
10

0 0 0 −
√

3
10

0 0 0
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