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Abstract: Dual-state emissive (DSE) fluorophores are organic dyes displaying fluorescence emis-
sion both in dilute and concentrated solution and in the solid-state, as amorphous, single crystal,
polycrystalline samples or thin films. This comes in contrast to the vast majority of organic fluores-
cent dyes which typically show intense fluorescence in solution but are quenched in concentrated
media and in the solid-state owing to π-stacking interactions; a well-known phenomenon called
aggregation-caused quenching (ACQ). On the contrary, molecular rotors with a significant number of
free rotations have been engineered to show quenched emission in solution but strong fluorescence
in the aggregated-state thanks to restriction of the intramolecular motions. This is the concept of
aggregation-induced emission (AIE). DSE fluorophores have been far less explored despite the fact
that they are at the crossroad of ACQ and AIE phenomena and allow targeting applications both
in solution (bio-conjugation, sensing, imaging) and solid-state (organic electronics, data encryption,
lasing, luminescent displays). Excited-State Intramolecular Proton Transfer (ESIPT) fluorescence
is particularly suitable to engineer DSE dyes. Indeed, ESIPT fluorescence, which relies on a pho-
totautomerism between normal and tautomeric species, is characterized by a strong emission in
the solid-state along with a large Stokes’ shift, an enhanced photostability and a strong sensitivity
to the close environment, a feature prone to be used in bio-sensing. A drawback that needs to be
overcome is their weak emission intensity in solution, owing to detrimental molecular motions in the
excited-state. Several strategies have been proposed in that regard. In the past few years, a growing
number of examples of DSE-ESIPT dyes have indeed emerged in the literature, enriching the database
of such attractive dyes. This review aims at a brief but concise overview on the exploitation of ESIPT
luminescence for the optimization of DSE dyes properties. In that perspective, a synergistic approach
between organic synthesis, fluorescence spectroscopy and ab initio calculations has proven to be an
efficient tool for the construction and optimization of DSE-ESIPT fluorophores.

Keywords: fluorophores; ESIPT fluorescence; dual-state emission; ab initio calculations

1. Introduction

In the current context of sustainable development, there is a great deal of research
aimed at developing purely organic luminescent materials, that is π-conjugated organic
scaffolds capable of absorbing light at given wavelengths and reemitting it as lower-energy
photon through a radiative deactivation following various photophysical processes. Expe-
dite syntheses preferentially from biosourced or bioinspired starting materials, chemical
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and photochemical stability, biocompatibility and modular photophysical properties are
among the major goals, not to say requirements, which need to be fulfilled prior to em-
bedment in matrixes or devices for practical applications [1–3]. On top of preserving
limited natural resources like metals or rare earths, the search for original organic-based
luminescent scaffolds is fueled by the advantages of these hydrocarbon structures: low-cost,
processability, stability and solubility, and a fluorescence emission which can be fine-tuned
by small structural changes. Additionally, their capacity to respond to external stimuli, i.e.,
the presence of selected substrates or changes in the physical properties of their environ-
ment (temperature, pressure, polarity, pH, viscosity...) by adjusting their optical signatures
is also scrutinized [4,5]. In the context of designing luminescent molecular skeletons, or-
ganic synthesis and first-principle modelling (typically performed with time-dependent
density functional theory, TD-DFT) appear as complementary but intertwined scientific
tools. The potential applications of organic fluorescent chromophores can be roughly
divided between those requiring fluorophores fully dissolved in a given medium, organic
or aqueous (emission in solution) and those where fluorescence must be observed in their
solid forms, as amorphous powders, crystals, thin films or various matrixes. Organic
fluorophores displaying emission in solution, i.e., fully solvated, are typically used as
fluorescent tools or molecular beacons for biomedical applications, such as imaging of
cellular organelles (lysosomes, endoplasmic reticulum, Golgi apparatus, nucleus...), cells
or tissues, [6] selective imaging of tumors, [7] cellular mapping, bioconjugation to macro-
molecules (proteins, nucleic acids) [8] and so on. Solution-emitting luminescent dyes can
be also applied in materials for selective sensing, by modification of their photophysical
properties upon recognition of substrates of interest [9]. These probes can provide informa-
tion about the concentration of targets in organic, as well as in biological media. The most
promising sensors involve ratiometric processes which can correlate accurate concentration
and ratios of emission bands [10].

Solid-state emitting organic fluorophores have found complementary applications,
mainly as active layers embedded in devices, such as organic light-emitting diodes (OLED),
organic field-effect transistors (OFET), light-emitting electrochemical cells or in organic
photovoltaic (OPV) [11–13]. Other applications of solid-state emissive dyes include lasing,
data encryption (anti-counterfeiting security inks, logic gates), solid-state sensors and any
applications where organic dyes are to be confined in a matrix at high local concentra-
tions [14–17].

The vast majority of organic dyes display intense fluorescence emission, only as sol-
vated in dilute solutions owing to strong radiative deactivations of their excited states.
Indeed, most π-conjugated organic materials present a strong degree of planarity and
rigidity, leading to aggregation in the solid-state enabling powerful non-radiative de-
activation channels. This aggregation-caused quenching (ACQ) process is observed in
many π-conjugated hydrocarbon structures (coumarins, cyanines, polycyclic aromatic hy-
drocarbons such as pyrene, anthracene and perylene, fused heterocycles and so on, see
Figure 1). It is nevertheless worth noting that some of the listed dyes such as pyrene,
can also present intense fluorescence stemming from the formation of excimers [18–20].
These detrimental effects limited for a long time the practical applications of organic lu-
minophores in films or devices. To circumvent ACQ, Tang et al. popularized the concept
of aggregation-induced emission (AIE), which consists of molecular rotors having in their
structure multiple σ bonds, at the origin of numerous molecular motions in dilute solution
favoring non-radiative deactivations. Therefore, in contrast to the majority of organic struc-
tures described before, AIE dyes present strong fluorescence quenching in dilute solution,
whereas in their aggregated/solid-state, the restriction of molecular motions leads to the
appearance of a strong luminescence (Figure 1) [21–23]. Over the years, many molecular
structures, mainly composed of arenes or heterocycles, have been described as possessing
AIE properties. Among these compounds, tetraphenylethene (TPE) derivatives are among
the most reported but one can also quote examples derived from tetraphenylpyrazine (TPP),
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tetraphenyl-1,4-butadiene (TPBD), distyreneanthracene (DSA) or quinoline-malononitrile
(QM) as chromophores displaying AIE [24].
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Dual-state emission (DSE) molecules correspond to luminescent molecular structures
which show intense fluorescence emission both in solution and in the solid state. These
dyes have been far less studied but show nevertheless a great interest to the community
since they can simultaneously act as solution- and solid-state emitters and therefore target a
wider range of applications. This field of research still being in its infancy, there are no clear
guidelines for the elaboration of such attractive dyes yet, although their optical properties
observed in multiple media seem to arise from a tenuous balance between quasi-planarity,
semi-rigidity and solubility. The presence of heteroatoms in the π-conjugated scaffold
of DSE dyes is also often observed, presumably inducing intramolecular charge transfer
(ICT) within the structures, creating dipole moments in the excited-state and promoting
significant geometrical reorganization between the ground and excited states.

Different scaffolds have been reported to show DSE properties, among which one
can quote benzimidazoles, [25] triphenylamine-based compounds, [26] phtalamides, [27]
benzo [1,2,5]thiadiazole, [28] naphtho [2,1-b]benzofurans, [29] boron complexes, [30,31]
diphenylpyrrole [32] or even simple benzene rings rationally substituted by donors and
acceptors [33]. The range of π-conjugated structures displaying DSE, along with the
photophysical mechanisms driving DSE properties and their applications, has been recently
analyzed by Rodríguez-Molina et al., in two extensive review articles [34,35].

Fluorescent dyes presenting a molecular backbone undergoing Excited-State
Intramolecular Proton Transfer (ESIPT) emission appear particularly attractive in the
context of DSE dyes engineering. Indeed, ESIPT corresponds to a photoinduced tautomer-
ization between an excited normal (N*) and a tautomeric species (T*), therefore inducing
significant dynamics in the excited-state, which is beneficial to prevent strong π-stacking
processes (Figure 2) [36–39]. In some selected cases of solvation or upon electronic effects,
a dual N*/T* emission can be observed [40]. ESIPT luminescence is typically observed
in heterocycles presenting an intramolecular hydrogen bond forming five-, six- or seven-
membered rings in the ground-state and involves in the majority of cases phenol (E*) and
keto (K*) tautomers. Many beneficial characteristics arise from these specific excited-state
dynamics, notably large Stokes shifts and intense solid-state emission [41–43]. ESIPT emit-
ters have found numerous applications in the fields of optoelectronics, sensing, imaging,
along with various luminescent displays [44–46]. Over the years, a large variety of molecu-
lar backbones showing ESIPT emission has been reported, with a common drawback being
the weak emission intensity in dilute solution due to detrimental molecular motions in
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the excited-state, opening highly effective non-radiative deactivations channels [47–50],
notably through an accessible conical intersection (CI) corresponding to the twisting of the
interesting double bond of the keto form.
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Figure 2. Schematic representation of the four-level phototautomerization process of ESIPT. * repre-
sents the excited species.

2. Scope of This Short Review/Perspective

In the past few years, publications have started to tackle the problem of weak ESIPT
solution-state emission through various synthetic tricks and strategies [51] and a growing
number of ESIPT dyes display fluorescence in solution, while keeping strong emission in the
solid-state, a hallmark of ESIPT luminophores. The aim of this short review is to enlighten
the reader on the (so far) limited but reducing non-radiative desexcitations displaying
intense fluorescence emission intensity in multiple environments. To shorten the range
of examples and to select only the most promising ESIPT/DSE dyes, only fluorophores
showing at least quantum yields (QY) of 10% both in solution and solid media are reported
in the present account. Examples of ESIPT/DSE emitters will be first presented followed
by a summary of their optical properties in various states in solvents of different polarities,
powders, crystals, films or other solid-state matrixes depending on studies (Table 1), some
brief TD-DFT considerations and possible future developments.

3. Examples of ESIPT/DSE Emitters

This section summarizes the various π-conjugated structures showing ESIPT/DSE prop-
erties which will be tentatively classified by the nature of the main π-conjugated scaffold.

3.1. 2-(2′-Hydroxyphenylbenzazole) (HBX) Fluorophores

Among ESIPT dyes, 2-(2′-hydroxyphenyl)benzazole (HBX) fluorophores which are
composed of a benzazole ring connected to a phenol at the ortho position, have been often
studied as model dyes due to their facile synthesis, stability, biocompatibility and possibility
to adjust their photophysical properties with small structural inputs [52–54]. For example,
their constitutive heterocycle can be altered to provide 2-(2′-hydroxyphenyl)benzoxazole
(HBO), 2-(2′-hydroxyphenyl)benzothiazole (HBT) or 2-(2′-hydroxyphenyl)benzimidazole
(HBI) derivatives. HBT dyes display the most redshifted emission due to the larger po-
larizability of the thiazole ring [55] whereas HBI derivatives show the highest QY, thanks
to decreased non-radiative deactivations [56]. The impact of incorporating electrodonors
or acceptors leads to a large panel of effects, such as the emergence of an ICT emission,
increase of solution QY, stabilization of (possibly emissive) anionic species or frustration of
the ESIPT process [57–59]. HBX dyes presenting DSE properties have also been reported
in recent literature. The key parameter to combine ESIPT and DSE is to enhance radiative
deactivation in solution to increase fluorescence intensity while conserving a valuable QY
in the solid-state. Increasing molecular rigidity on the main molecular backbone is usually



Molecules 2022, 27, 2443 5 of 17

a good strategy to increase solution-state fluorescence by reducing molecular motions
and notably making the access to the above-mentioned CI energetically more difficult.
This explains why the concept of restricted access to conical intersection (RACI) has been
proposed to rationalize the reduced non-radiative deactivation in solution [60]. As stated
above, HBX can be divided in three groups, along with the nature of the heteroatom, i.e.,
nitrogen, oxygen or sulfur; each of those providing access to HBI, HBO and HBT dyes.
Examples of DSE dyes for these three classes of dyes are presented in Figures 3–5.
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Incorporating the benzimidazole ring seemed particularly attractive since several
studies hinted that HBI dyes present significantly larger fluorescence QY in solution, as
compared to their oxygen or sulfur analogs, by reducing non-radiative desexcitations in
the excited-state [66]. In addition, for HBI dyes, several examples have been reported
where the substitution leading to enhanced molecular rigidity clearly leads to an increase
of fluorescence intensity in solution (Figure 3). We also underline the marked unsymmet-
rical character of these derivatives, which limits the possibility of π-stacking, a feature
beneficial for maintaining bright emission in the solid-state. Notably, N-arylated 9,10-
phenanthroimidazole derivative 1, a rigidified analog of HBI, was one of the earliest
examples showing ESIPT/DSE properties [61]. Following the strategy of rigidification-
induced DSE engineering, Pariat et al., described a series of ethynyl-extended HBI dyes
2a–2d which pinpointed a significant influence of the position of functionalization on the
resulting QY in toluene and in potassium bromide pellets [60] Takagi et al., disclosed
an original strategy to enhance solution fluorescence intensity by introducing a methoxy
group at the 6-position of the phenol and they engineered the supramolecular H-bonded
rigidification with the benzimidazole ring, as in derivative 3 [63]. They also investigated
the influence of structural rigidification by ring fusion in HBI 4 and found out that the
presence of the ethylene bridge triggered not only an increase of fluorescence intensity but
also the enhancement of the ESIPT process, as evidenced by the main observation of the
excited tautomer species K* [64]. Finally, a recent example by Munch et al., involved a
π-extended mono N-alkylated ethynyl aniline HBI derivative 5 [65].

Similar features have been reported in the HBO series where some ESIPT/DSE probes
have been recently described (Figure 4). Indeed, the insertion of ethynyl-extended tolyl
or triaryl-/trialkyl-silyl substitution has significantly improved the fluorescence intensity
in solution, in aprotic as well as polar protic environment [67–70]. The solution QY of the
HBO dyes series 6 and 7 was increased up to twenty times, as compared to unsubstituted
HBO analogs, while maintaining intense emission in the solid-state (Table 1). Another
attractive strategy to engineer DSE features among ESIPT fluorophores is to stabilize
excited tautomers through electronic delocalization [71]. HBO dyes 8, substituted at the
5-position of the phenol by a pyridine ring displays strong blue fluorescence, which is
further enhanced by protonation of the heteroring. TD-DFT calculations revealed that the
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corresponding pyridinium was able to stabilize the K* state by resonance and therefore
disfavor non-radiative deactivations, leading to intense fluorescence in solution. The
corresponding methyl pyridinium moieties were synthesized, showing full ESIPT process
and leading to strong fluorescence in solution but also to a strong quenching of emission
in the solid-state, presumably owing to unfavorable electrostatic interactions. Solid-state
emission can be, however, beneficially recovered by substituting the methyl group for a
tolyl, as in HBO 9. Another example, HBO 10, reported by Göbel et al., consists in the
fusion of a fluorene moiety to the phenol ring, whose stiffness leads to dual-emission in
various conditions [72].
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lowing the same approaches as for the other systems, molecular rigidification appears to 
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Figure 5. (a) Examples of HBT dyes showing DSE properties [62,69,73–78]. and (b) Photographs
of HBT dye 11b under irradiation in solution (toluene, ethanol, THF, acetonitrile and DMF) and as
powders (λexc = 365 nm) [62]. Adapted from ref [62] Copyright 2021 John Wiley and Sons.
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HBT dyes have been far more studied than HBI or HBO analogs thanks to their red-
shifted emission, reaching in some cases the red region of the visible spectrum, therefore
making them more suitable for biological applications. The engineering of DSE dyes
based on HBT appears therefore as a more challenging objective (Figure 5). Following
the same approaches as for the other systems, molecular rigidification appears to be a
good strategy to enhance solution-state emission of HBT dyes, even though the QY usually
remains lower than for their HBO/HBI analogs (Table 1). The insertion of ethynyl-extended
spacer at the 3,5 positions of the phenol ring, as in HBT 11, led a drastic enhancement of
emission intensity, regardless of the nature of the alkyl chain on the silyl groups [62,69].
Another interesting example of DSE emission lies in HBT 12 where the introduction of
a strong electrowithdrawing such as a cyano group at the 4-position of the phenol ring
appeared to be a key input to trigger strong solution-state emission, while keeping full
ESIPT process [73]. Again, the theory of RACI, hypothesizing a least accessible conical
intersection, thereby avoiding detrimental non-radiative deactivations, might be useful
to explain these optimized properties. By extending the conjugation with a triphenyl
moiety, HBT dye 13 exhibits bright red solid-state fluorescence with a large Stokes shift,
a trademark of ESIPT derivatives [74]. Extension of π-conjugation as in HBT 14 and 15,
through an aryl or a styryl spacer triggers a strong frustration to the ESIPT process which
can be full or partial, leading to ICT-based emission with strong fluorescence intensity in
solution [75,76]. It is worth noting that a partial restoration of ESIPT is observed in the
solid-state for 14 [75], and upon protonation in the case of HBT 15 [76], highlighting the
small differences between the relative energies of the two excited species E* and K*. HBT
16 was conceived as a dual-channel fluorescent probe for the logic-based visualization
of aging biomarkers (thiophenol and Hypochlorous acid HOCl) [77]. Finally, Kaur et al.
designed HBT 17, bearing a delocalized styryl spacer at the ortho position of the phenol, to
tune the emission color [78].

3.2. Other Fluorophores

While HBX derivatives appear to be the leading DSE fluorophores with ESIPT prop-
erties reported up to date with several molecular engineering studies, others families of
dyes have also been reported for their intense fluorescence emission in multiple environ-
ments. Five-membered oxazoline rings, which are structurally similar to benzoxazole
yet more flexible, have been recently described as potential candidates for DSE emission
(Figure 6) [72,79–81].

Molecules 2022, 27, 2443 9 of 17 
 

 

enhancement of emission intensity, regardless of the nature of the alkyl chain on the silyl 
groups [62,69]. Another interesting example of DSE emission lies in HBT 12 where the 
introduction of a strong electrowithdrawing such as a cyano group at the 4-position of 
the phenol ring appeared to be a key input to trigger strong solution-state emission, 
while keeping full ESIPT process [73]. Again, the theory of RACI, hypothesizing a least 
accessible conical intersection, thereby avoiding detrimental non-radiative deactivations, 
might be useful to explain these optimized properties. By extending the conjugation with 
a triphenyl moiety, HBT dye 13 exhibits bright red solid-state fluorescence with a large 
Stokes shift, a trademark of ESIPT derivatives [74]. Extension of π-conjugation as in HBT 
14 and 15, through an aryl or a styryl spacer triggers a strong frustration to the ESIPT 
process which can be full or partial, leading to ICT-based emission with strong fluores-
cence intensity in solution [75,76]. It is worth noting that a partial restoration of ESIPT is 
observed in the solid-state for 14 [75], and upon protonation in the case of HBT 15 [76], 
highlighting the small differences between the relative energies of the two excited species 
E* and K*. HBT 16 was conceived as a dual-channel fluorescent probe for the logic-based 
visualization of aging biomarkers (thiophenol and Hypochlorous acid HOCl) [77]. Fi-
nally, Kaur et al. designed HBT 17, bearing a delocalized styryl spacer at the ortho posi-
tion of the phenol, to tune the emission color [78]. 

3.2. Other Fluorophores 
While HBX derivatives appear to be the leading DSE fluorophores with ESIPT 

properties reported up to date with several molecular engineering studies, others fami-
lies of dyes have also been reported for their intense fluorescence emission in multiple 
environments. Five-membered oxazoline rings, which are structurally similar to ben-
zoxazole yet more flexible, have been recently described as potential candidates for DSE 
emission (Figure 6) [72,79–81]. 

 
Figure 6. DSE/ESIPT fluorophores based on an oxazole scaffold [72,79–81]. 

Göbel et al. studied the influence of electronic substitution in 2-(oxazolinyl)-phenol 
derivatives 18a–b, as minimalistic ESIPT fluorophores. In particular, the introduction of 
strong electrowithdrawing substituents (CF3, CO2Me) at the para position of the oxazoline 
triggered intense fluorescence, as compared to other substituents or other substitution 
positions on the π-conjugated scaffold [79]. The same group also reported ni-
trile-substituted 2-(oxazolinyl)-phenols dyes 19a–d where subtle modifications, e.g., the 
position of the nitrile substituents induced different effects [80]. Although all dyes dis-
played significant emission intensity in both solution and solid, dyes 19a–b showed ag-
gregation-induced emission enhancement (AIEE) behavior, while 19d featured ACQ 
characteristics. The introduction of a fused fluorene moiety of the proton donor side en-
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Göbel et al. studied the influence of electronic substitution in 2-(oxazolinyl)-phenol
derivatives 18a–b, as minimalistic ESIPT fluorophores. In particular, the introduction of
strong electrowithdrawing substituents (CF3, CO2Me) at the para position of the oxazoline
triggered intense fluorescence, as compared to other substituents or other substitution posi-
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tions on the π-conjugated scaffold [79]. The same group also reported nitrile-substituted
2-(oxazolinyl)-phenols dyes 19a–d where subtle modifications, e.g., the position of the
nitrile substituents induced different effects [80]. Although all dyes displayed significant
emission intensity in both solution and solid, dyes 19a–b showed aggregation-induced
emission enhancement (AIEE) behavior, while 19d featured ACQ characteristics. The in-
troduction of a fused fluorene moiety of the proton donor side enhanced both planarity
and rigidity of the resulting dye 20 which in turn displayed reduced non-radiative deac-
tivations [72]. Finally, Huang et al., reported the introduction of strong electrodonating
(triphenylamine) or electrowithdrawing (triphenylboron) groups which led to enhanced
ICT effects in the resulting dye 21 and a subtle modulation of the nature of the excited
species (E*, K* or a dual emission E*/K*), emphasizing again the close relative energies of
the excited states of the two tautomers [81].

A recent example of random scaffolds showing DSE properties, reported by Stoerkler
et al., involved salicylaldehyde derivatives 23a–d with push–pull structures, which can
be easily synthesized in two steps only (Figure 7) [82]. Within this series of dyes, the
connecting spacer between the ESIPT center (salicylaldehyde as acceptor) and the donor,
i.e., ethynyl (23a,b), styryl (23c) or aryl (23d) was found to have a major influence on the
photophysical properties (nature of the excited states, maximum emission wavelength, QY).
Only the dyes with a strong donor such as amino groups displayed DSE properties with a
finely tuned emission color in solution and in the solid-state [82].
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DMSO and DMF) and (c) in the solid-state as powders [82]. Adapted from ref [82] Copyright 2021
John Wiley and Sons.

Miscellaneous organic scaffolds showing ESIPT emission with DSE properties can
be also found in the recent literature (Figure 8). Among these dyes, imidazolo [5,4-
b]thieno [3,2-e]pyridine moieties as proton acceptors have been described with hydroxy
or methanesulfonamide as proton donors [83]. The good DSE properties of dyes 24 and
25 were rationalized by a finely controlled self-assembly and a restriction of twisted in-
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tramolecular charge-transfer (TICT) processes. Another example is dye 26, presenting
a 2,2′-bipyridine-3,3′-diol-5,5′-dicarboxylic acid ethyl ester featuring two intramolecular
hydrogen bonds [84]. One of the H-bonded six-membered rings is involved in the ESIPT
emission while the other one participates in the rigidification of the overall molecular struc-
ture. The electroluminescence performance of this dye was evaluated in an OLED device.

Molecules 2022, 27, 2443 11 of 17 
 

 

structure. The electroluminescence performance of this dye was evaluated in an OLED 
device. 

 
Figure 8. Examples of DSE/ESIPT fluorophores based on miscellaneous scaffolds [83−86]. 

A step forward in the development of ESIPT dyes with DSE properties was achieved 
with the red/NIR emission observed by the squaraine dyes series 27a–d [85]. Guided by 
TD-DFT calculations, the authors demonstrate that the removal a simple phenyl ring in 
TPE-fused squaraine dyes was a valuable strategy to generate intense red/NIR emissions 
in solution and in crystals. An alleviation of the TICT mechanism within the structure of 
these dyes appears to be at the origin of these attractive photophysical properties. 
Moreover, due to their highly biocompatible emission wavelength, the squaraine series 
27 was successfully employed for cell bioimaging. A final example involves 
2,5-disubstituted-1,3,4-oxadiazoles 28 which shows an emission in the green region [86]. 

Other examples which fall into the scope of ESIPT dyes with DSE properties concern 
fluorophores with AIEE behavior. These dyes typically present significant fluorescence 
emission as molecular entities, fully dissolved in a solvent, although they possess struc-
tural features which make them prone to aggregation. Just like AIE dyes, aggregation 
leads to a strong enhancement of emission intensity. These dyes are also usually emissive 
in the solid-state where the molecular motions are hindered. In this category of DSE dyes, 
one can quote HBX and bowl-shaped tris(2-hydroxyphenyl)triazasumanene examples 
[87,88]. We would also like to emphasize an important class of ESIPT dyes, namely 
3-hydroxyflavone which display tunable fluorescence properties in solution. Their emis-
sion in the solid-state is often mentioned, rarely measured but they undeniably belong to 
the DSE/ESIPT class of compounds [89–91]. 

4. Photophysical Properties 
The key photophysical properties in solution and in the solid-state of all the dyes 

described in this account are summarized in Table 1. 

5. First-Principle Modelling 
As ESIPT relies on a subtle energetic balance between two tautomers in their excited 

states, and as this balance is highly medium-dependent, it is no surprise that theoretical 
tools are used in the majority of the recent works to probe the underlying driving 
mechanisms guiding emission in ESIPT dyes. The ab initio methods applied to model the 
properties of ESIPT dyes have recently been reviewed in this journal [39], and we refer 

Figure 8. Examples of DSE/ESIPT fluorophores based on miscellaneous scaffolds [83–86].

A step forward in the development of ESIPT dyes with DSE properties was achieved
with the red/NIR emission observed by the squaraine dyes series 27a–d [85]. Guided by
TD-DFT calculations, the authors demonstrate that the removal a simple phenyl ring in
TPE-fused squaraine dyes was a valuable strategy to generate intense red/NIR emissions in
solution and in crystals. An alleviation of the TICT mechanism within the structure of these
dyes appears to be at the origin of these attractive photophysical properties. Moreover, due
to their highly biocompatible emission wavelength, the squaraine series 27 was successfully
employed for cell bioimaging. A final example involves 2,5-disubstituted-1,3,4-oxadiazoles
28 which shows an emission in the green region [86].

Other examples which fall into the scope of ESIPT dyes with DSE properties concern
fluorophores with AIEE behavior. These dyes typically present significant fluorescence
emission as molecular entities, fully dissolved in a solvent, although they possess structural
features which make them prone to aggregation. Just like AIE dyes, aggregation leads to
a strong enhancement of emission intensity. These dyes are also usually emissive in the
solid-state where the molecular motions are hindered. In this category of DSE dyes, one can
quote HBX and bowl-shaped tris(2-hydroxyphenyl)triazasumanene examples [87,88]. We
would also like to emphasize an important class of ESIPT dyes, namely 3-hydroxyflavone
which display tunable fluorescence properties in solution. Their emission in the solid-state
is often mentioned, rarely measured but they undeniably belong to the DSE/ESIPT class of
compounds [89–91].

4. Photophysical Properties

The key photophysical properties in solution and in the solid-state of all the dyes
described in this account are summarized in Table 1.
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Table 1. Photophysical data for all DSE/ESIPT dyes in solution and solid-state.

Dye λabs
(Sol.) (nm)

λem
(Sol.) (nm)

Φf
(Sol.) Solv. λem

(Solid) (nm)
Φf

(Solid) Matrix Ref

1 363 472 0.15 CH2Cl2 473 0.12 KBr [62]

2a 353 496 0.51 toluene 470 0.36 KBr [62]

2b 347 482 0.54 toluene 460 0.39 KBr [62]

2c 346 479 0.49 toluene 488 0.68 KBr [62]

2d 368 507 0.53 toluene 490 0.30 KBr [62]

3 330 458 0.31 THF 460 0.16 powder [63]

4 328 486 0.20 THF 484 0.16 crystal [64]

5 366 414/477 0.19 benzene 470 0.13 KBr [65]

6a 349 397/514 0.10 toluene 530 0.51 KBr [67]

6b 349 489 0.19 toluene 504 0.63 KBr [67]

6c 347 550 0.32 Toluene 504 0.60 KBr [67]

6d 332 519 0.23 toluene 503 0.68 KBr [67]

6e 368 550 0.30 toluene 547 0.48 KBr [67]

7a 371 537 0.38 toluene 527 0.76 KBr [68]

7b 373 551 0.43 toluene 532 0.61 KBr [69]

7c 370 530 0.52 toluene 526 0.58 KBr [69]

7d 368 539 0.49 toluene 534 0.70 KBr [70]

7e 371 535 0.32 toluene 530 0.82 KBr [70]

7f 340 538 0.28 toluene 514 0.53 KBr [70]

7g 345 513 0.11 toluene 504 0.66 KBr [70]

8a 332 497 0.12 CH2Cl2 496 0.38 KBr [71]

8b 335 518 0.40 CH2Cl2 505 0.38 KBr [71]

8c 347 520 0.58 CH2Cl2 541 0.22 KBr [71]

9 372 543 0.50 CH2Cl2 563 0.29 KBr [71]

10 397 452/520 0.37 CHCl3 520 0.34 powder [72]

11a 378 570 0.22 toluene 558 0.52 KBr [69]

11b 378 490/582 0.15 toluene 574 0.48 KBr [62]

12 362 520 0.49 CH2Cl2 528 0.57 5-CB [73]

13 400 605 0.08 toluene 605 0.23 Crystal [74]

14 376 444 0.65 toluene 465/527 0.22 Film [75]

15 424 521 0.87 toluene 573 0.19 KBr [76]

16 350 534 0.12 PBS 534 0.51 powder [77]

17 400 600 0.34 CH2Cl2 695 0.34 powder [78]

18a 307 466 0.38 CH2Cl2 466 0.57 powder [79]

18b 325 479 0.63 CH2Cl2 477 0.74 powder [79]

19a 322 471 0.25 CH2Cl2 491 0.87 powder [80]

19b 303 452 0.25 CH2Cl2 463 0.68 powder [80]

19c 326 468 0.56 CH2Cl2 494 0.74 powder [80]

19d 321 457 0.53 CH2Cl2 473 0.15 powder [80]

20 450 481 0.17 CHCl3 481 0.38 powder [72]
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Table 1. Cont.

Dye λabs
(Sol.) (nm)

λem
(Sol.) (nm)

Φf
(Sol.) Solv. λem

(Solid) (nm)
Φf

(Solid) Matrix Ref

21 370 425 0.47 toluene 530 0.31 PS [81]

22 368 433 0.60 toluene 530 0.55 PS [81]

23a 407 490 0.68 toluene 467 0.88 PMMA [82]

23b 388 506 0.29 toluene 473 0.44 PMMA [82]

23c 436 593 0.64 CH2Cl2 528 0.83 PMMA [82]

23d 396 532 0.56 CH2Cl2 482 0.45 PMMA [82]

24a 366 520 0.48 benzene 535 0.11 powder [83]

24b 366 523 0.74 benzene 540 0.39 powder [83]

24c 380 512 0.69 benzene 523 0.42 powder [83]

24d 369 505 0.85 benzene 515 0.53 powder [83]

24e 362 510 0.51 benzene 495 0.25 powder [83]

25 366 542 0.52 benzene 535 0.13 powder [83]

26 388 521 0.75 CH2Cl2 530 0.51 crystal [84]

27a 508/544 558/593 0.11 toluene 675 0.08 crystal [85]

27b 532/560 579/616 0.27 toluene 656 0.73 crystal [85]

27c 537/568 586/622 0.58 toluene 670 0.51 crystal [85]

27d 536/568 582/621 0.43 toluene 682 0.41 crystal [85]

28 343 500/535 0.43 CH2Cl2 544 0.54 powder [86]

5. First-Principle Modelling

As ESIPT relies on a subtle energetic balance between two tautomers in their excited
states, and as this balance is highly medium-dependent, it is no surprise that theoreti-
cal tools are used in the majority of the recent works to probe the underlying driving
mechanisms guiding emission in ESIPT dyes. The ab initio methods applied to model the
properties of ESIPT dyes have recently been reviewed in this journal [39], and we refer
the interested reader to that very nice account for details about the static and dynamic
methods that are available. We also do not intend to review all ESIPT theoretical studies
published to date, but rather to give a flavor of the modelling in both solution and solid
states, especially those discussing the non-radiative pathways in ESIPT dyes. Importantly,
for historical reasons, the modelling of ESIPT was mainly done in gas phase and next in
solution, so that studies tackling actual DSE fluorophores remain very scare.

To our knowledge, the first theoretical studies demonstrating that an easily accessible
CI is close to the tautomeric excited-state minimum in the simplest ESIPT dyes were
performed by the Robb group [92,93] with a multi-reference approach well-suited to obtain
accurate CI estimates. Another seminal study discussing the importance of the deactivation
pathway by twisting is due to Tsai et al., who disclosed the presence of accessible TICT-like
forms on the potential energy surface of two HBI dyes using TD-DFT [94]. Several studies
obtained similar conclusions for a variety of ESIPT systems, confirming that twisting
should be limited in solution to obtain bright fluorescence, and therefore to allow the
design of DSE dyes [95–98]. Let us now turn to the modelling of solvent effects, that are
most of the time accounted for using continuum models, which advantageously allow
neglecting the atomic structures of the solvent molecules. First, let us briefly evoke a specific
methodological aspect. In most ESIPT compounds, the main characteristics of the E* and
K* forms strongly differ. The former typically presents a larger oscillator strength and a
larger excited-state dipole than the latter. This means that it is not straightforward to have
a solvent model that is adequate for both tautomeric species, at least at the TD-DFT level.
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Indeed, one needs to consider that both the so-called linear-response and state-specific
solvation contributions are larger in the enol than keto structure, and one should ideally
account for both effects to obtain an accurate description of both species [99,100]. This
can be achieved with the so-called cLR2 model proposed by Guido et al., that has been
successfully applied to some challenging ESIPT dyes [101,102]. Second, we wish to point
out that several studies used a PCM-TD-DFT approach to assess the correlation between
the computed barrier for the twist separating the K* minimum to the twisted CI, and the
experimentally measured quantum yield of emission [62,67,69]. For instance, it was shown
that the relative measured quantum yields of 7f (0.28) and 7g (0.11) are directly related
to a higher barrier to the CI for the former (0.12 eV) than the latter (0.06 eV), therefore
confirming the RACI analysis [70]. Similarly, a cLR2 study of the barriers in the HBO, HBI,
and HBT analogues 7e, 2d, and 11b, led the authors to conclude that the computed barrier
heights are roughly proportional to the observed quantum yields [62]. More refined studies
in which the solvent dynamics is explicitly investigated through QM/MM approaches
are also available accounting for polarization [103,104]. Although, one should certainly
be cautious in applying TD-DFT for such twisting case or generalizing these works to
other classes of fluorophores, these examples illustrate that there is hope in estimating the
emission yields using readily accessible with theoretical data. Theoretical studies of the
AIE effect for ESIPT dyes in the solid state have been mainly but not exclusively achieved
for compact derivatives (salicylaldehyde, chalcone, quinazoline . . . ), that do not strictly
fall in the DSE category as the emission is typically very weak in solution [105–111]. Again,
we wish to start here with a methodological note: adequate theoretical schemes have to
be set up to allow accurate estimates of the impact of the environment on the computed
emission wavelengths for ESIPT dyes embedded in crystalline or amorphous solids. To this
end, the Adamo [107,111,112] and Crespo-Otero [113,114] groups came out with refined
protocols that likely stand today as the most elegant and refined available. In what concerns
the intensity of the emission in the solid-state, several studies clearly confirmed that
RACI explains the strong increase of emission intensity in the more constrained solid-
state [105,106,108–110]. Whilst these works provide quantitative estimates of the increased
energetical cost of the twisting in going from the solvent to the solution, quantitative
estimates of the emission quantum yield in the solid state remains typically beyond reach
today. Nevertheless, one should certainly point out the very neat 2020 study of Dommett
et al., who investigated a series of eleven crystals containing ESIPT dyes and obtained
impressive correlation between experimental and computed data, allowing them to propose
design rules for ESIPT emitters in the solid state [115].

6. Conclusions

This article briefly describes the database of the so far reported organic fluorophores
which show (1) a full or partial ESIPT emission due to the presence of an intramolecular
H-bond in their structure and (2) fluorescence intensity (QY > 10%) both in solution and
in the solid-state. The variety of chromophores reported is already important but many
involve benzazole or oxazole rings as proton acceptor and phenol as proton donor. There
is no doubt that in the near future, many more elegant examples will be added to this
attractive class of compounds. Within the global context of sustainable development, it is of
upmost importance to construct accessible probes which can target as many applications as
possible. DSE dyes can be simultaneously applied to various luminescent displays working
in solution (sensing, imaging) or as solids (optoelectronic devices, inks) and therefore
appear as bright alternatives to current luminescent probes.
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