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Light-induced chemical processes are ubiquitous in nature and have widespread technological
applications. For example, photoisomerization can allow a drug with a photo-switchable scaffold
such as azobenzene to be activated with light. In principle, photoswitches with desired photophysical
properties like high isomerization quantum yields can be identified through virtual screening with
reactive simulations. In practice, these simulations are rarely used for screening, since they require
hundreds of trajectories and expensive quantum chemical methods to account for non-adiabatic
excited state effects. Here we introduce a diabatic artificial neural network (DANN) based on
diabatic states to accelerate such simulations for azobenzene derivatives. The network is six orders
of magnitude faster than the quantum chemistry method used for training. DANN is transferable
to azobenzene molecules outside the training set, predicting quantum yields for unseen species that
are correlated with experiment. We use the model to virtually screen 3,100 hypothetical molecules,
and identify novel species with extremely high predicted quantum yields. The model predictions
are confirmed using high-accuracy non-adiabatic dynamics. Our results pave the way for fast and
accurate virtual screening of photoactive compounds.

Light is a powerful tool for manipulating molecu-
lar systems. It can be controlled with high spatial,
spectral and temporal precision to facilitate a variety
of processes, including energy transfer, intermolecular
reactions, and photoisomerization [1]. These processes
are used in areas as diverse as synthesis, energy stor-
age, display technology, biological imaging, diagnostics
and medicine [1–3]. Photoactive drugs, for instance,
are photoswitchable compounds whose bioactivity can
be toggled through light-induced isomerization. Pre-
cise spatiotemporal control of bioactivity allows pho-
toactive drugs to be delivered in high doses with mini-
mal off-target activity and side effects. Such therapeu-
tics are a promising path for the treatment of cancer,
neurodegenerative diseases, bacterial infections, dia-
betes, and blindness [4, 5].

Theory plays a key role in explaining and predicting
photochemistry because empirical heuristics learned
from thermally activated ground state processes typ-
ically do not apply to excited states [3]. Computer
simulations based on quantum mechanics can achieve
impressive accuracy in the prediction of experimen-
tal observables. These include the isomerization ef-
ficiency and absorption spectrum of photoswitchable
compounds [6, 7], which are key quantities in the de-
sign of photoactive drugs.

∗ Corresponding author: rafagb@mit.edu

However, ab initio methods in photochemistry are
severely limited by their computational cost [8]. In or-
der to gather meaningful statistics for one molecule,
hundreds of replicate simulations are needed, each of
which involves thousands of electronic structure cal-
culations performed in series with sub-femtosecond
timesteps. The individual quantum chemical calcu-
lations are particularly demanding, requiring excited
state gradients and some treatment of multireference
effects. In some cases, both the ground- and excited-
state gradients are required at each time step [9–11].
Using ab initio methods to compute photochemical
properties of tens or hundreds molecules is impracti-
cal, and photodynamic simulations have not yet been
used for large-scale virtual screening.

Among the most accurate and expensive electronic
structure methods are multi-configuration perturba-
tion techniques [12–16], but their cost and requirement
for manual active space selection limit their use in vir-
tual screening. The photochemistry community has
made exciting developments over several years to over-
come both of these hurdles. For example, reduced scal-
ing techniques [17, 18] and graphics processing units
[19] can significantly accelerate multi-reference calcu-
lations. The density matrix renormalization group
(DMRG) [20, 21] and multi-reference density func-
tional theory (DFT) methods [22–25] have expanded
the size of systems that can be treated with high ac-
curacy. DMRG has also been used to automate the
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selection of active spaces for multi-reference methods
[26, 27]. Less accurate but more affordable black-
box methods include spin-flip time-dependent DFT
(SF-TDDFT) and hole-hole Tamm-Dancoff DFT [28],
among others [29, 30]. Despite these developments,
the cost of non-adiabatic simulations remains high. As
discussed below, even SF-TDDFT is prohibitively ex-
pensive for virtual screening. Semi-empirical methods
[31–33] are currently the only affordable approach for
large-scale screening. They provide qualitatively cor-
rect results across many systems, but are ultimately
bounded by their approximations, with average energy
errors of 15 kcal/mol [32].

A different approach is to use data-driven models
in place of quantum chemistry (QC) calculations. Ma-
chine learning (ML) models trained on quantum chem-
ical data can now routinely predict ground state en-
ergies and forces with sub-chemical accuracy [34–36],
and take only milliseconds to make predictions. These
models have been successfully used in a variety of
ground state simulations [35, 37, 38]. They have also
been used to accelerate non-adiabatic simulations in a
number of model systems [39–45]. However, excited
state ML has not yet offered affordable photodynam-
ics for hundreds of molecules of realistic size, which
is the ultimate goal for predictive simulation in pho-
topharmacology. Further, no excited-state interatomic
potentials have been developed that are transferable
to different compounds. They therefore require thou-
sands of QC calculations for every new species to serve
as training data.

Here we make significant progress toward afford-
able, large-scale photochemical simulations and virtual
screening with ML. To develop a transferable potential
we focus on molecules from the same chemical family,
studying derivatives of azobenzene, a prototypical pho-
toswitch. The derivatives studied here contain up to
100 atoms, making them the largest systems fit with
excited-state ML potentials to date. Combining an
equivariant neural network [35] and a physics-informed
diabatic model, together with data generated by com-
binatorial exploration of chemical space, and configu-
rational sampling through active learning, we produce
a model that is transferable to large, unseen deriva-
tives of azobenzene. This yields computational sav-
ings in excess of six orders of magnitude. Predicted
isomerization quantum yields of unseen species are
well-correlated with experimental values. The model
is used to predict the quantum yield for over 3,100
hypothetical species, revealing rare molecules with ex-
tremely high cis-to-trans and trans-to-cis quantum
yields.

Results

Azobenzene photoswitches. This work focuses
on the photoswitching of azobenzene derivatives, but
the methods are general and can be applied to other
chemistries and other excited state processes. Azoben-
zene derivatives can exist as cis and trans conform-
ers. The conformations are local minima in the ground
state, but not in the excited state. Photoexcitation of
either can therefore induce isomerization into the other
(see the potential energy schematics in Figs. 1(a) and
2(b)). A key experimental observable is the quantum
yield, defined as the probability that excitation leads
to isomerization. The yield depends critically on the
dynamics near conical intersections (CIs), configura-
tions in which the excitation energy is zero. In these
regions the electrons can return to the ground state
with non-zero probability.

Many approaches have been developed over sev-
eral decades to model such non-adiabatic transitions.
These include ab initio multiple spawning [11] and
cloning [46]; Ehrenfest dynamics [9, 10]; coherent
switching with decay of mixing [47]; the variantional
multi-configurational Gaussian method [48]; exact
factorization [49–53]; the multi-configuration time-
dependent Hartree (MCTDH) method [54, 55]; Gaus-
sian MCTDH [56]; and trajectory surface hopping [57].
A recent review of these methods can be found in Ref.
[3]. Surface hopping is a popular approach because of
its simplicity and efficiency. In this method, indepen-
dent trajectories are simulated with stochastic hops
between potential energy surfaces (PESs). Depend-
ing on the curvature of the PESs and the location of
the hop, a trajectory can end in the original isomer
or in a new isomer (Figs. 1(a) and 2(b)). The quan-
tum yield is the proportion of trajectories that end
in a new isomer. Our goal is to predict the quantum
yield of azobenzene derivatives after excitation from
the singlet ground state (S0) to the first singlet excited
state (S1). This can be accomplished with the surface
hopping approach described above, using a fast surro-
gate ML model to generate the PESs. The impact of
considering only the first excited state is discussed in
Supplementary Sec. IV.

ML architecture and training. Our model is
based on the PaiNN neural network [35], which
uses equivariant message-passing to predict molecular
properties. In this approach, an initial feature vector is
generated for each atom using its atomic number. The
vector is then updated through a set of neural network
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Figure 1. Depiction of the potential energy surfaces in
azobenzene derivatives. (a) S0 and S1 adiabatic energies,
with the CI region shaded in gray. Initial excitation is
shown with a vertical zigzag line. Trajectories prior to
hopping are shown in black. Reactive and unreactive tra-
jectories after hopping are shown in green and yellow, re-
spectively. (b) Diabatic energies dnm ≡ (Hd)nm. The diag-
onal diabatic elements cross and become re-ordered along
the isomerization coordinate. A CI occurs when the diag-
onal diabatic elements cross and the off-diagonal element
becomes zero.

operations involving “messages”, which incorporate the
distance, orientation, and features of atoms within a
cutoff distance. A series of updates leads to informa-
tion being aggregated from increasingly distant atoms.
Once the updates are complete, the atomic features are
mapped to molecular energies using a neural network.

This architecture can be used to predict energies
and, through automatic differentiation, the forces for
each state. However, models that predict adiabatic
energies have a basic shortcoming for non-adiabatic
molecular dynamics (NAMD). Since surface hopping is
largely controlled by the energy gap when it is close to
zero, small errors in the energies can lead to exponen-
tially large errors in the hopping probability [58, 59].
This in turn can cause large errors in observable quan-
tities like the quantum yield. This point is discussed
in further detail in Supplementary Sec. IIA. Fur-
ther, since CIs are non-differentiable cusps in the en-
ergy gap, they are difficult to fit with neural networks.
For N atoms in a molecule, the network must predict
two different energies that are exactly equal in 3N − 8
dimensions. We found this to be particularly chal-
lenging for trans species that are outside the training
set. As shown in Supplementary Sec. VII, small errors
in the gap lead to the incorrect prediction that many
species never hop to the ground state.

To remedy this issue we introduce a model based on
diabatic states, which we call DANN (diabatic artifi-
cial neural network ; Fig. 2(a)). The approach builds
on previous work using neural networks for diabatiza-

tion [60–62]. Much of the previous work could only
be used for specific system types, such as semi-rigid
molecules [61] and coupled monomers, and is thus not
applicable to azobenzene. None of the methods have
been used for large systems with significant conforma-
tional changes [60, 62], such as azobenzene derivatives.
Further, our work uses diabatization to ease the fitting
of adiabatic states across chemical space. In particu-
lar, it addresses the issue of gap overestimation near
conical intersections of unseen species, as described in
Supplementary Secs. II and VII. Our work uses dia-
batization to address this problem, whereas previous
work developed diabatic states because of their favor-
able theoretical properties. We also note that gap over-
estimation in unseen species is both a newly-identified
and newly-addressed problem, as previous work in ML-
NAMD focused on single species only [39–45].

The diabatic energies form a non-diagonal Hamilto-
nian matrix, Hd, which is diagonalized to yield adia-
batic energies. When a 2×2 sub-block of Hd has di-
agonal elements that cross, and off-diagonal elements
that pass through zero, a CI cusp is generated (Fig.
1). The diabatic energies that generate the cusp are
smooth, which makes them easier to fit with an inter-
polating function than the adiabatic energies. In the
DANN architecture, smoothness is imposed through
a loss function related to the non-adiabatic coupling
vector (NACV). The loss minimizes the value that the
NACV takes when it is rotated from the adiabatic ba-
sis (Eq. (3)) into the diabatic basis. The NACV mea-
sures the change in overlap between two wavefunctions
after a small nuclear displacement. If the NACV be-
tween two states is zero, then their wavefunctions must
change slowly in response to a nuclear perturbation.
Therefore, their energies cannot form the cusp in Fig.
1(a), and must instead resemble the smooth energies
in Fig. 1(b).

The DANN model was trained on SF-TDDFT [63]
calculations for 567,037 geometries, using the 6-31G*
basis [64] and BHHLYP [65] exchange-correlation
functional. Unlike traditional TDDFT [66], SF-
TDDFT provides an accurate description of the CI
region [67], and, unlike multi-reference methods, is
fairly fast and requires no manual parameter selection.
The configurations were sampled from 8,269 azoben-
zene derivatives, of which 164 were taken from the ex-
perimental literature. The remaining molecules were
generated from combinatorial substitution using com-
mon literature patterns (Supplementary Tables S10
and S11).

The data generation process is shown in Fig. 2. Ini-
tial data was generated through ab initio NAMD with
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Figure 2. (a) Schematic of the DANN architecture, which is based on the PaiNN model. Scalar atomic features si and
vectorial atomic features ~vi are updated through messages from neighboring atoms. The si are then mapped to atomic
energies, which are summed to produce the diabatic Hamiltonian Hd. The diabatic matrix is diagonalized to produce
adiabatic quantities. (b) Schematic of the active learning loop. Geometries and QC data are first generated through ab
initio NAMD, normal mode sampling, and inversion/rotation about the central N=N double bond. Two neural networks
are then trained on the data and used to perform DANN-NAMD. Newly generated geometries with high committee
variance and/or low predicted gaps receive QC calculations. The new calculations are added to the training data, the
networks are retrained, and the cycle is repeated until convergence.

E0 E1 ∆E01 (∆E01)small
a ~F0

~F1 ~g01

Seen species
MAE (↓) 0.86 1.01 0.75 0.47 1.00 1.17 0.87
R2 (↑) 1.00 1.00 1.00 0.97 0.99 0.99 0.84

Unseen species
MAE (↓) 3.06 3.77 1.89 0.97 1.72 2.31 1.36
R2 (↑) 0.99 0.98 0.98 0.95 0.97 0.86 0.50

a For these R2 calculations, we computed the total sum of squares using mean{∆E01} instead of mean{(∆E01)small}. The mean
predictor should not know a priori which gaps are small, and hence should predict the mean of all gaps.

Table I. MAE and coefficient of determination (R2) of the DANN model for various quantities. Units are kcal/mol for
energies and kcal/mol/Å for forces and force couplings. Ei are energies, ~Fi are forces, ∆E01 is the energy gap, and ~g01

is the force NACV. (∆E01)small denotes the energy gap when it is under 4.6 kcal/mol (0.2 eV).

164 species from the literature, together with normal-
mode sampling and distortions of the combinatorial
species to near-CI regions. The remaining data was
generated through active learning. In each cycle we
trained a committee of models, used one model to
perform NN-NAMD, and used the committee variance

and energy gap to choose NAMD geometries for new
quantum chemistry calculations. The cycle was re-
peated five times in total; further details can be found
in the Methods section.
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Validation. To test whether the model could re-
produce experimental results for unseen molecules, we
evaluated it on species that were outside the training
set. The test set contained 40 species (20 cis/trans
pairs), including 33 with experimental S1 quantum
yields in non-polar solution. Non-polar solution was
chosen because it is the closest to the gas-phase con-
ditions simulated here. Solvent effects can be easily
incorporated into the model through transfer learn-
ing to implicit solvent calculations. Previously this
was shown to require new calculations for only a small
proportion of the training set [37].

The performance of the model is summarized in
Table I. Statistics are shown for both seen and un-
seen species. The former contains species that are in
the training set, but geometries that are outside of
it. The geometries were selected with the balanced
sampling criteria described in Supplementary Sec. X.
Geometries from unseen species were generated with
DANN-NAMD using the final trained model. Half of
the DANN-NAMD geometries were selected randomly
from the full trajectory and half by proximity to a CI
(Supplementary Eq. (S13)). 100 configurations were
chosen for each molecule.

For species in the training set, all quantities are ac-
curate to within approximately 1 kcal/mol(/Å). Apart
from the NACV, all quantities have R2 correlation co-
efficients close to 1. The R2 of the NACV is 0.84. This
may be somewhat low because diabatization cannot
remove the curl component of the NACV in the dia-
batic basis [68, 69]. This would also explain the low
R2 value for the NACV in Ref. [42], which computed
it as the gradient of a scalar. For molecules outside
the training set, all quantities apart from the ener-
gies have an error below 3 kcal/mol(/Å). The energy
gaps and ground state forces have R2 correlation coef-
ficients near 1. The gap error of 1.89 kcal/mol should
be contrasted with the error of 15 kcal/mol in Ref.
[32], which applied semi-empirical methods to azoben-
zene. The errors in the excited state forces are slightly
larger, but still quite low. The correlation coefficient
for the force NACV g01 is rather poor. As described
in Supplementary Sec. VII, the yields of trans deriva-
tives are better correlated with experiment when using
Zhu-Nakamura surface hopping than Tully’s method.
The latter uses the NACV and the former does not,
so part of the difference may be explained by the high
error in the force NACV. Nevertheless, there is still
reasonable agreement between Tully’s method and ex-
periment, suggesting that errors in the force NACV do
not spoil the dynamics.

Figure 3(a) shows snapshots from an example

DANN-NAMD trajectory, and panel (b) shows ran-
dom samples of the hopping geometries. Reactive
hopping geometries are shown on top, and non-
reactive ones are shown below. The molecule is the
(aminomethyl)pyridine derivative 26, with the species
numbering given in Supplementary Tables S12 and
S13. The overlays show cis-trans isomerization pro-
ceeding through inversion-assisted rotation, consistent
with previous work [70]. The dominant motion is ro-
tation, with the CNNC dihedral angle increasing in
magnitude from −10◦ at equilibrium to −86◦ at the
hopping points. Significant changes also occur in the
CNN and NNC angles, with each transitioning from
123◦ to either 113◦ or 135◦.

The predicted PES in the branching space (~g,~h) is
shown beside the geometries. ~g is the direction of the
force coupling and ~h ∝ ∇R(∆E01) is the direction of
the gap gradient. Each vector was computed with au-
tomatic differentiation using Eq. (1). The diabatic
energies, adiabatic energies, and gap are shown from
top to bottom. We see that the model generates a
true CI, in which the S0 and S1 energies are exactly
equal. Further, the degeneracy is lifted in both the ~g-
and ~h-directions, so that the S1 energy and gap each
form a characteristic cone. These hallmarks of CIs
are built into the model because the adiabatic ener-
gies are eigenvalues of a diabatic matrix. For example,
the cone emerges from the fact that d11 − d00 and d01

each pass linearly through zero in different directions
[71].

Figure 3(c) indicates that the predicted and exper-
imental quantum yields of unseen species are corre-
lated. The yields are for the 33 cis and trans species
with experimental data in Supplementary Table S12.
The R2 value is 0.42, and the Spearman rank cor-
relation coefficient ρ is 0.74. While the R2 value is
somewhat low, the Spearman rank correlation is high.
The Spearman coefficient measures the accuracy with
which the model ranks species by quantum yield. ρ
only compares orderings, while R2 compares the model
error to the error of a mean predictor. This means that
ρ is a more forgiving metric, and also a more relevant
metric for virtual screening. Since cis isomers have
yields 2 to 3 times higher than trans isomers, the high
value of ρ means that the model properly separates the
isomers into low- and high-yield groups.

Further, as shown in Supplementary Figs. S5 and
S7, the model produces meaningful rankings among
trans species. The correlation coefficients are ρ = 0.32
using Tully’s method [57] and ρ = 0.57 using the Zhu-
Nakamura approach [72]. The model is largely able to
differentiate between high- and low-yield trans deriva-
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Figure 3. (a) Selected trajectory frames for a molecule outside the training set. The top panels show the S0 and S1 energy
as a function of time. A yellow dot indicates the time at which the snapshot below was taken. (b) Left: Overlay of selected
hopping geometries from reactive (top) and unreactive (bottom) trajectories. Right: PES as a function of branching
plane coordinates at one of the reactive hopping geometries. Diabatic energies, adiabatic energies, and adiabatic gaps
are shown from top to bottom. The diabatic coupling is shown in gray. (c) Predicted vs. experimental quantum yield
for 33 species outside the training set. The R2 value and Spearman rank correlation ρ are both shown. Color-coded data
points are defined below. (d) Node time for QC and ML calculations.

tives. Several such molecules are of interest. They
are color-coded in the plots, with the legend given
below. A full list of predictions is given in Supple-
mentary Table S12. We see, for example, that the
(aminomethyl)pyridine derivatives 1 and 35 are both
predicted to have near-zero yields. These species do
not isomerize from trans to cis, because strong N-H
hydrogen bonds lock the planar trans conformation in
place [73]. Replacing the NH group in 1 with N− CH3

gives species 25. This molecule isomerizes because
there is no hydrogen bonding. This, too, is predicted
by the model. Further, the hepta-tert-butyl derivative
17 has an experimental and predicted yield of zero.
This is likely because of steric interactions among the
bulky tert-butyl groups. While able to account for
these two different mechanisms, the model fails to pre-
dict the subtle electronic effects in species 11 and 29.
Resonance interactions between oxygen lone pairs and
the azo group modify the PES, such that there is no
rotational CI [74]. There is instead a concerted inver-
sion CI, which occurs too early along the path between
trans and cis to allow for isomerization. The changes
in the PES may either be too small or too specific
to the substituents for the model to predict without
fine tuning. Finally, derivatives with high yields are

partly distinguished from those with low but non-zero
yields. An example is 21, whose experimental yield
of 10% is half that of trans-azobenzene. The model
properly identifies this molecule as having a low yield,
but also mistakenly does the same for several high-
yield species. The accuracy for unseen species could
always be improved with transfer learning, in which
the model is fine-tuned with a small number of calcu-
lations from a single molecule (discussed below). This
would increase the computational cost, but would still
be orders of magnitude less expensive than ab initio
NAMD.

While meaningful correlations are produced for
trans species, the same is not true of cis molecules
(ρ = 0.02). This may be because there are no cis
derivatives with zero yield. Nevertheless, the model
properly identifies 20 as having the highest yield. Fur-
ther, it does not mistakenly assign a zero yield to any
derivative. This is noteworthy because, as shown in
Fig. 4(a) and (b), several hypothetical cis species
are predicted to have zero yield. Synthesis of non-
switching cis derivatives and comparison to predic-
tions could therefore be of interest in the future.

Overall, we observe moderate correlation between
predicted and experimental yields. The Spearman cor-
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relation is high when including both isomers, moder-
ate for trans isomers, and low for cis isomers. The
R2 value, a measure of numerical error compared to
that of a mean predictor, is moderate when includ-
ing both isomers and near-zero when separating them.
Indeed, the MAEs of the mean predictor are 9.5%,
10.3%, and 17.7% for trans, cis, and all species, respec-
tively. The model MAEs before (after) subtracting the
mean signed error are 14.4% (13.5%), 11.5% (11.2%)
and 13.2% (13.0%). In addition to model error, sources
of error include inaccuracies in SF-TDDFT, approxi-
mations in surface hopping, solvent effects, and exper-
imental uncertainty. These are discussed in depth in
Supplementary Sec. IV. Each source of error affects
both R2 and ρ, but is expected to have a larger effect
on R2. The rank correlation with experiment is en-
couraging given the difficulty of the task, as captured
by the sensitivity of the yield to model errors in the
PES [72], and given the sources of error outside the
model. Further, as discussed below, DANN provides
an excellent starting point for fine-tuned, molecule-
specific models that can be used for high-accuracy sim-
ulations of single species.

Figure 3(d) shows that DANN-NAMD is extremely
fast. The plot shows the node time, defined as
tcalc/ncalc, where tcalc is the calculation time per ge-
ometry, and ncalc is the number of parallel calcula-
tions that can be performed on a single node. We see
that ML speeds up calculations by five to six orders of
magnitude. The direct comparison of the pre-trained
model node times and QC node times is appropriate
because the model generalizes to unseen species. This
means that it incurs no extra QC cost for any future
simulations. The minimum speedup corresponds to
the smallest molecules (14 heavy atoms or 24 total
atoms), and the maximum to the largest molecules
(70 heavy atoms or 99 total atoms). This reflects the
different scaling of the QC and ML calculations. Em-
pirically we see that DANN scales asN0.49 forN heavy
atoms, while SF-TDDFT scales as N2.8. These values
come from fitting the timings to t = A · Nx, where
t is the computational time, A and x are fitted con-
stants, and N is the number of heavy atoms. DANN’s
apparent sub-linear scaling is an artifact of diagonal-
izing Hd; when the diagonalization is removed, the
scaling becomes linear. This is the expected scaling
for a message-passing neural network with a fixed cut-
off radius. Evidently diagonalizing Hd introduces a
large overhead with weak dependence on system size.
Nevertheless, we see that DANN is still quite fast.

Virtual screening. Having shown that the model
is fast and generalizes in the chemical and configura-
tional space of azobenzenes, we next used it for vir-
tual screening of hypothetical compounds. We first
retrained the network on all available data, includ-
ing species that were originally held out, for a to-
tal of 631,367 geometries in the training set. We
then predicted the quantum yields of 3,100 combi-
natorial species generated through literature-informed
substitution patterns, as in Ref. [75]. This screen
served two purposes. The first was to gather statistics
about the distribution of photophysical properties of
azobenzenes at a scale not accessible to experiments
or traditional simulations. The second was to identify
molecules with rare desirable properties. In particu-
lar, we sought to find molecules with high c −→ t or
t −→ c quantum yields and redshifted absorption spec-
tra. The former is important because increasing the ra-
tio QYa−→b /QYb−→a, where QY is the quantum yield,
can lead to more complete a−→b transformation under
steady state illumination. This is critical for precise
spatial control of drug activity when the two isomers
have different biological effects [76]. Redshifting is a
crucial requirement for photo-active drugs, since hu-
man tissue is transparent only in the near-IR [76].

The results are shown in Fig. 4. Panels (a) and
(c) show the predicted yield vs. mean gap. For each
species we averaged the gap over the configurations
sampled during neural network ground state MD. The
thermal averaging led to a typical blueshift of 0.2-0.3
eV relative to the gaps of single equilibrium geome-
tries. The mean excitation energies are 2.95 eV for cis
derivatives and 2.84 eV for trans species; the gaps are
2.98 eV and 2.97 eV for the respective unsubstituted
compounds. The average gaps and their differences
are similar to experimental measurements for azoben-
zene [77]. The average c→ t and t→ c yields are 54%
and 24%, respectively, while those of the unsubstituted
species are 59% and 37%. These are consistent with
experimental results in non-polar solution, for which
the base compound has yields of 44-55% and 23-28%
[77]; the former is closer to 55% on average. However,
the yield of the base trans compound is overestimated
with respect to both theory and experiment [7, 72, 77].
The mean (median) proportion of trajectories ending
in the ground state after 2 ps are 92% (100%) for cis
species and 31% (17%) for trans species. The standard
deviations are 25% and 30%, respectively.

Panels (b) and (d) show the yield plotted against the
isomeric stability, defined as Etrans−Ecis for trans iso-
mers and Ecis −Etrans for cis isomers. The energy E
is the median value of the configurations sampled in
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Figure 4. Results of virtual screening. Species of interest are circled in gray and shown below the plots. (a) Predicted
yield vs. excitation energy for cis derivatives. (b) Predicted yield vs. stability for cis derivatives. (c)-(d) As in (a)-(b),
but for trans derivatives.

the ground state; we used the median to reduce the
effect of outlier geometries. On average the trans iso-
mers are more stable than the cis isomers by 0.66 eV
(15.3 kcal/mol), which is similar to experimental val-
ues over 10 kcal/mol for azobenzene [78]. The stability
is of interest for three reasons. First, a large absolute
value indicates that one isomer is dominant at room
temperature. This is essential for photoactive drugs,
and is the case for regular azobenzene. Second, an in-
verted stability, in which cis is more stable than trans,
allows for stronger absorption at longer wavelengths.
This is because the dipole-forbidden n−π∗ (S1) transi-
tion is significantly stronger for cis than for trans [77].
Third, in photopharmacology, one often wants to de-
liver a drug in inactive form, and activate it with light
in a localized region. If trans happens to be active and
cis inactive, then localized activation is only possible
if cis is more stable.

Several species of interest are shown in Fig. 4. The
molecules 165 and 166 have predicted c → t yields
of 75 ± 6% and 72 ± 6%, respectively, which are well
above the cis average of 55%. The species 169 and 170
have predicted t→ c yields of 66 ± 7% and 63 ± 10%,
respectively, which are three times the average trans
yield. Molecule 167 is highly redshifted, with a mean
predicted gap of 2.26 eV (548 nm), and a standard de-
viation of 0.87 eV. QC calculations on the geometries
sampled with DANN gave a gap of 2.26 ± 0.61 eV,
in good agreement with predictions. The mean gap is
lower than the median of 2.52 eV, which reflects the

presence of several ultra-low gap structures. The low
gap and large variance mean that 167 may be able to
absorb in the near IR. The redshifting is likely because
of the six electron donating groups, which increase the
HOMO energy, together with the crowding of the four
ortho substituents. The latter distorts the molecule,
leading to twisted configurations with smaller gaps.
Finally, species 168 is more stable in cis form than
trans form. The predicted cis stability is −0.79 eV
(−18 kcal/mol), in good agreement with the QC pre-
diction of −0.92 eV (−21 kcal/mol). As mentioned
above, this inverted stability can be a desirable prop-
erty for photopharmacology.

To validate the yield results, we performed DANN-
NAMD using highly accurate species-specific models.
As described in Supplementary Sec. XIVB, we gen-
erated a model for each species by refining the base
network with data from that species alone. The data
was generated through several active learning cycles,
resulting in 1,200 to 2,500 training geometries for each
compound. We used this approach in place of ab initio
NAMD because of the latter’s prohibitive cost for large
molecules. The QC computational cost for fine-tuning
was at most 3% of that of an ab initio simulation,
and hence far less demanding. The average gradient
calculation for a molecule with 50 atoms took 58 min-
utes for two surfaces using 8 cores, and the average
NACV calculation took 55 minutes. Fine-tuning with
2,000 geometries for a medium-sized molecule would
thus take 30,000 core hours. For ab initio NAMD,
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Figure 5. Visualization of high-accuracy non-adiabatic dynamics for several compounds of interest. (a)-(b), (d)-(e) Violin
plots showing the CNNC dihedral angle vs. time. Reactive and non-reactive NAMD trajectories are shown in red and
blue, respectively. The violin width at a given dihedral angle indicates the density of trajectories with that angle. The
yield of each compound is shown above the plots. For ease of visualization we have used the range [−180, 180] for cis
dihedral angles and [0, 360] for trans dihedral angles. (c) Distribution of hopping geometries for trans azobenzene. (f)
As in (c), but for the derivative 169. The density is visualized with kernel density estimation as a function of the CNNC
dihedral and max(αCNN, αNNC), where α is an angle. Yellow corresponds to the highest density and blue to the lowest.
The marginal distributions over single coordinates are shown above and to the right of each plot.

a conservative estimate of 100 trajectories run for 1
ps each, with only one gradient computed per frame,
would take 780,000 core hours.

We also computed the yields of cis and trans
azobenzene for comparison. For these species we used
full ab initio simulations, because of the central role
of the unsubstituted compound as a reference point
and because simulations were fairly affordable for such
small molecules. Issues with spin contamination also
hampered the fine-tuning process for these compounds
(see Supplementary Sec. XIVB).

Initially we generated refined models for species
165, 167, 169 and 170. It became clear early on that
only 165 and 169 had high yields, and so we focused
on those molecules thereafter. Using molecule-specific
models, we computed the quantum yields of 165 and
169 to be 66±1% and 37±1%, respectively. The com-
puted yields for cis and trans azobenzene are 60± 4%
and 26±3%, respectively, which are in excellent agree-
ment with experiment [77]. Both of the new molecules
have higher quantum yields than the associated base
compounds. The improvement is particularly large for
species 169: its yield is 11 points higher than trans

azobenzene, which is a relative enhancement of 42 per-
cent. We argue below that that this significant increase
has an intuitive physical explanation.

The dynamics of the four molecules are shown in
Fig. 5. Panels (a) and (b) show the CNNC dihe-
dral angle vs. time for azobenzene, and panels (d)
and (e) show the same for the derivatives. Both the
substituted and unsubstituted cis isomers rapidly pro-
ceed through a rotational CI, but the derivative rotates
much more quickly. Indeed, we see that the isomeriza-
tion of the derivative is complete within 75 fs, while
the base compound takes nearly 130 fs. The excited
state lifetimes are 34.2 ± 0.3 fs and 63 ± 3 fs for the
derivative and base compound, respectively, indicating
that the former reaches the CI earlier than the latter.
These observations may explain the enhanced yield,
since a higher rotational velocity leads to more efficient
isomerization [79]. We also note that the derivative ro-
tates in only the counter-clockwise direction, while cis
azobenzene rotates in both directions, but this is not
expected to affect the yield.

The two trans molecules behave in qualitatively dif-
ferent ways. In trans azobenzene, the distribution of
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dihedral angles slowly widens with time (Fig. 5(b)).
This is consistent with a rotational barrier [7, 72], as
different trajectories overcome the barrier at different
times, and so the torsion angle becomes uniformly dis-
tributed. Additionally, as seen in the marginal dihe-
dral distribution of Fig. 5(c), many of the geometries
hop near 180◦. This agrees with Ref. [7], which identi-
fied a non-reactive planar CI and a reactive twisted CI
as the main hopping points for trans azobenzene. The
non-reactive CI leads exclusively back to trans, while
the reactive CI leads to cis and trans in different pro-
portions. Using the method described in Supplemen-
tary Sec. XIVC, we found that 26% of the trajectories
proceed through the planar CI and 74% through the
rotational CI. This is the same distribution reported
in Ref. [72]. Approximately 36% of the rotational
trajectories generate cis azobenzene, giving an overall
yield of 26%. This is in good agreement with previous
computational and experimental values [7].

By contrast, nearly all trajectories of 169, including
non-reactive trajectories, rotate significantly. This can
be seen in the marginal dihedral distribution in Fig.
5(f), in which the hops are tightly localized around
180± 77◦. Only 5% of the trajectories hop at the pla-
nar CI, which is five times lower than the base com-
pound. Additionally, the yield of the rotational trajec-
tories increases from 36% to 40%. The inhibition of the
planar CI pathway, together with the enhancement of
the rotational yield, leads to an overall yield increase
from 26% to 37%. While the enhanced reactive yield
does not have a simple explanation, the reason for the
planar pathway inhibition can be clearly seen in Fig.
5(e). Whereas the rotation of 51 is stochastic, leading
to a uniform distribution of angles, the rotation of 169
is initially concerted. Nearly all trajectories rotate in
unison to a dihedral angle of 180± 45◦ at 300 fs. Past
300 fs, hopping begins and the trajectories separate
from each other. Hence they proceed through the rota-
tional reactive CI, and become distributed between 0◦

and 360◦ after hopping. The planar non-reactive CI is
avoided because of the molecule’s initial rotation. This
explanation is consistent with the presence of bulky or-
tho groups, which twist the equilibrium structure and
hence weaken the N=N double bond. This lowers the
excited state barrier to rotation, which leads to an ini-
tial torsion and hence increases the yield.

Discussion

The DANN model shows high accuracy and trans-
ferability among azobenzene derivatives. One limita-

tion is that the unseen species contained functional
groups that were present to some degree in the train-
ing set. Model performance was generally higher for
more highly represented functional groups, though
some groups were highly represented yet difficult to
fit, while others were weakly represented and well-fit
(Supplementary Sec. V). Moreover, the model can-
not be applied to other chemical families without ad-
ditional training data. Further, as shown in Supple-
mentary Sec. VII, it substantially overestimates the
excited state lifetime for a number of trans deriva-
tives. On the other hand, semi-empirical methods
provide qualitatively correct predictions across a va-
riety of chemistries, but cannot match DANN’s in-
domain accuracy, and cannot be improved with more
reference data. Adding features from semi-empirical
calculations, as done in the OrbNet model [80], may
therefore prove useful in the future. Recent develop-
ments accounting for non-local effects and spin states
have improved neural network transferability [36], and
could also be beneficial for excited states. The model
could be further improved with high-accuracy multi-
reference calculations, solvent effects, and the inclu-
sion of the bright S2 state. The use of spin-complete
methods in particular is of crucial importance, since
spin contamination prevented fine-tuning the model
for the base compounds. It may also have affected
the accuracy of the DANN model in general. Thus
spin-complete, affordable alternatives are of particu-
lar interest [28]. Active learning could be accelerated
through differentiable sampling with adversarial un-
certainty attacks [81], which would improve the ex-
cited state lifetimes. Transfer learning could also be
used to improve performance for specific molecules.
Only a small number of ab initio calculations would
be required to fine-tune the model for an individual
species.

Diabatization may also prove to be useful for re-
active ground states. Reaction barriers can often be
understood as transitions from one diabatic state to
another [82]. The diabatic basis may make reactive
surfaces easier to fit with neural networks.

In conclusion, we have introduced a diabatic multi-
state neural network potential trained on over 630,000
geometries at the SF-TDDFT BHHLYP/6-31G* level
of theory, covering over 8,000 unique azobenzene
molecules. We used DANN-NAMD to predict the
isomerization quantum yields of derivatives outside
the training set, and the results were well-correlated
with experiment. We also identified several hypothet-
ical compounds with high quantum yields, redshifted
excitation energies, and inverted stabilities. The
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network architecture, diabatization approach, and
chemical and configurational diversity of the training
data allowed us to produce a robust and transferable
potential. The model can be applied off-the-shelf
to new molecules, producing results that replicate
those of SF-TDDFT at orders of magnitude lower
computational cost.
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Methods

Network and training. As explained in Supplementary
Sec. I, a unique challenge for non-adiabatic simulations is their
sensitivity to the energy difference between states. Using a typ-
ical neural network to predict energies and forces for NAMD
leads to some molecules becoming incorrectly trapped in the
excited state. This is partly caused by overestimation of the
gap and/or an incorrectly shaped PES in the vicinity of the CI.
To address this issue we introduce an architecture based on di-
abatic states, whose smooth variation leads to more accurate
neural network fitting (Fig. 1(b)).

In general diabatic states must satisfy [83]

(
U†
[
∇RHd

]
U
)
nm

=

{
−~fn, if n = m

~gnm, if n 6= m.
(1)

where ∇R is the gradient with respect to ~R, U diagonalizes the
diabatic Hamiltonian through(

U†HdU
)
nm

= En δnm, (2)

and ~fn = −∇REn is the adiabatic force for the nth state. The
dependence on ~R has been suppressed for ease of notation. ~gnm

is the force coupling,

~gnm(~R) =
〈
ψn(~r; ~R)

∣∣∣∇RĤ(~r, ~R)
∣∣∣ψm(~r; ~R)

〉
= (Em(~R)− En(~R)) ~knm(~R), (3)

where Ĥ(~r, ~R) is the clamped nucleus Hamiltonian, ψn(~r; ~R) is
the nth adiabatic wavefunction, and the matrix element is an
integral over the electronic degrees of freedom ~r. The vector
~knm(~R) is the derivative coupling:

~knm(~R) =
〈
ψn(~r; ~R)

∣∣∣∇Rψm(~r; ~R)
〉

(4)

Combined with the following reference geometry conditions
(Supplementary Sec. I),

(E0, E1) =

{
(d00, d11), if ~R ∈ trans
(d22, d00), if ~R ∈ cis,

(5)

we arrive at three sets of constraints, Eqs. (1), (2), and (5). In
principle only Eqs. (1) and (2) are required for the states to
be diabatic. However, we found the reference loss to provide a
minor improvement in the gap near CIs (Supplementary Table
S1).

We use a neural network to map the nuclear positions ~Ri and
charges Zi to the diabatic matrix elements dnm, and a loss func-
tion to impose Eqs. (1), (2) and (5). The adiabatic energies En

are generated by diagonalizing Hd, and the forces and couplings
by applying Eq. (1) and using automatic differentiation. The
design of the network is shown schematically in Fig. 2(a). The
general form of the diabatic loss function is

L = Lcore + Lref + Lnacv. (6)

Here Lcore penalizes errors in the adiabatic energies, forces, and
gaps, Lref imposes Eq. (5) and Lnacv imposes Eq. (1) for
n 6= m. The terms are defined explicitly in Supplementary Eqs.
(S1)-(S3).

For the network itself we adopt the PaiNN equivariant archi-
tecture [35]. In this approach a set of scalar and vector features

for each atom are iteratively updated through a series of convo-
lutions (Fig. 2(a)). In the message block, the features of each
atom gather information from atoms within a cutoff distance,
using the interatomic displacements. The scalar and vector fea-
tures for each atom are then mixed in the update phase. Hy-
perparameters can be found in Supplementary Table S4. Most
were taken from Ref. [35], but some were modified based on
experiments with azobenzene geometries. Further details of the
PaiNN model can be found in Ref. [35]. Once the elements ofHd

are generated, the diabatic matrix is diagonalized to yield the
transformation matrix U and the adiabatic energies En. The
vector quantities ~fn and ~gnm are given by Eq. (1). When non-
adiabatic couplings are not required, the ~fn can be calculated
by directly differentiating the En. This is more efficient than
Eq. (1), since it requires only Mad = 2 < Md(Md + 1)/2 = 6
gradient calculations. This approach was used for NAMD runs,
which required only diabatic energies, adiabatic energies, and
adiabatic forces, while Eq. (1) was used for training.

Data generation and active learning. Data was gener-
ated in two different ways. First, we searched the literature for
azobenzene derivatives that had been synthesized and tested ex-
perimentally. This yielded 164 species (82 cis and 82 trans). For
these species we performed ab initio NAMD, yielding geometries
that densely sampled configurational space. Second, to enhance
chemical diversity, we generated nearly 10,000 species through
combinatorial azobenzene substitution. This was done using
48 common literature substituents and four common substitu-
tion patterns (Supplementary Tables S10 and S11). We then
performed geometry optimizations, normal mode sampling, and
inversion/rotation about the central N=N bond to generate con-
figurations. QC calculations were performed on 25,212 combina-
torial geometries. All calculations were performed with Q-Chem
5.3 [84], using SF-TDDFT [63] with the BHHLYP functional [65]
and 6-31G* basis [64].

Two neural networks were trained on the initial data and
used to perform DANN-NAMD. Initial positions and velocities
for DANN-NAMD were generated from classical MD with the
Nosé-Hoover thermostat [85, 86]. The initial trajectories were
unstable because the networks had not been trained on high-
energy configurations. To address this issue we used active learn-
ing [37, 38] to iteratively improve the network predictions (Fig.
2(b)). After each trajectory we performed new QC calculations
on a sample of the generated geometries. For all but the last two
rounds of active learning, geometries were selected according to
the variance in predictions of two different networks, where the
networks were initialized with different parameters and trained
with different random batches. In the last two rounds, half
the geometries were selected by network variance, and half by
proximity to a CI. Further details are given in Supplementary
Sec. XIII. The new data was then added to the training set
and used to retrain the networks. The cycle was repeated three
times with all species and another two times with azobenzene
alone. In all, we computed ground-state gradients, excited-state
gradients, and NACVs with SF-TDDFT for 641,367 geometries.
96% of the geometries were from the 164 literature species. 88%
were generated through ab initio NAMD and 8% through ac-
tive learning. The remaining 4% were from the combinatorial
species. 1.5% were generated through geometry optimizations,
1.5% through inversion/rotation, and 1% through normal-mode
sampling.
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We initially set out to train a model using energies and forces
alone. Since analytic NACVs are unavailable for many ab initio
methods, an adiabatic architecture could have been used with
a wider variety of methods. NACVs also add computational
overhead, and so generating training data for an adiabatic model
would have taken less time. To this end we initially used the
Zhu-Nakamura (ZN) surface hopping method [79], which only
requires adiabatic energies and forces. However, the issues with
adiabatic models described in Supplementary Sec. VII led us to
develop the diabatic approach. Since diabatic states can be used
with any surface hopping method, we used the diabatic model to
perform Tully’s fewest switches (FS) surface hopping [57] after
the last round of active learning. All results in the main text
use the FS method. A comparison of FS and ZN results is given
in Supplementary Sec. VII.

Data availability

The quantum chemistry data is available at https://doi.
org/10.18126/unc8-336t. A detailed description of how to load
and interpret the data is given in the README file. Source data
of experimental and predicted quantum yields are provided with
this paper.

Code availability

Trained models and computer code are available in
the Neural Force Field repository at https://github.com/
learningmatter-mit/NeuralForceField. Notebook tutorials
explain how to train the models and perform DANN-NAMD.
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I. Extended methods

A. Relevance of adiabatic gap

Accurate prediction of the energy gap is crucial for generating reliable NAMD results. The gap controls
the hopping rate, and in turn observables like the photoisomerization quantum yield, excited state lifetime
and time-resolved photoelectron spectrum [87]. To understand the importance of the gap, consider that in
most approaches, the hopping rate is determined by the derivative form of the NACV [57, 88]. The derivative
coupling between states n and m can be written as ~gnm/∆Enm, where ∆Enm is the energy gap and ~gnm is the
force coupling [83, 89]. The gap in the denominator leads to singular derivative coupling at CIs, and therefore
to a guaranteed hop. The coupling can alternatively be obtained from the gap alone from through its first and
second derivatives [44]. The energy difference also features prominently in the Zhu-Nakamura method, in which
the hopping rate is approximately exponential in the square of the gap [79]. Therefore, it is crucial to accurately
predict the energy gap in any NAMD simulation.

B. Diabatization

The adiabatic energies of a system, {En(~R)}, are the energies produced by a QC calculation. They depend
on the nuclear coordinates ~R, and form the usual Born-Oppenheimer PESs. In the adiabatic basis the nuclear
kinetic energy operator, related to ∇2

R, is non-diagonal. Its off-diagonal elements are related to the NACVs,
which generate transitions between adiabatic PESs [90]. The derivative form of the NACV also becomes singular
at CIs, which is an undesirable numerical property. The diabatic basis is designed to remove this singularity
[91]. The diabatic Hamiltonian Hd(~R) is a rotation of the adiabatic energies into a new basis, given by Hd(~R) =

U(~R) diag({En(~R)})U†(~R). Here diag denotes a diagonal matrix, and U(~R) is a rotation matrix that depends
on the nuclear coordinates (see Eq. (2)). Hd can also be viewed as the clamped nucleus Hamiltonian expressed
in the basis of diabatic wave functions. These wave functions are given by ψd,n(~r; ~R) =

∑
m Unm(~R)ψad,m(~r; ~R),

where ψad,m is the mth adiabatic wave function and ~r denotes the electronic coordinates.
The diabatic states are defined such that the nuclear kinetic energy is approximately diagonal [91]. The

states are instead coupled through off-diagonal elements in the potential energy matrix, known as diabatic
couplings. The diabatic couplings are smooth functions of the nuclear coordinates. The diagonal elements are
also smooth, maintaining their orbital character and switching energy ordering through a CI (Fig. 1(b)). In
many applications, diabatic states are preferred over adiabatic ones because the singular coupling is removed.
Here we prefer them because diabatic energies are easier to fit than adiabatic energies. That is, even if one is only
interested in adiabatic energies and not NACVs, it is easier to learn the diabatic energies and then diagonalize
Hd than to learn the adiabatic energies directly. This is because the diabatic states possess no CI cusps or
avoided crossings (Fig. 1), and are thus more easily fit by interpolating functions such as neural networks. As
discussed below, diabatic states improve the model accuracy for species outside the training set.

While many diabatization methods exist, the most common ones cannot be straightforwardly applied to the
current problem. Property-based methods were developed for charge-transfer type problems [92], while orbital-
based approaches [93] are not implemented for TDDFT. Diabatic models that are parameterized by electronic
structure data [61, 83, 94] are not designed for systems undergoing large distortions. Approaches that solve for
the adiabatic-to-diabatic transformation matrix [95] are difficult to implement in practice, because the matrix
varies rapidly near a CI.

Recent work introduced neural network diabatization based on reference geometries [60, 96]. In this procedure
one assumes that the diabatic Hamiltonian is diagonal at a set of known reference geometries. At such geometries
the elements of Hd are equal to the adiabatic energies, but possibly reordered. For example, for two states and
two reference geometries, one would have Hd = diag(E0, E1) at the first geometry and Hd = diag(E1, E0) at
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the second (Fig. 1(b)). A neural network is then trained to produce Hd, such that its eigenvalues are always
equal to the adiabatic energies, and its elements are as above at the reference geometries. These two constraints
generate Hd at all intermediate geometries.

This method was successfully applied to thiophenol dissociation, yielding results consistent with the fourfold
way [60]. However, as shown by the NACV error in Table S1, this method alone does not generate true diabatic
states for azobenzene. To understand why, consider that near a CI, the true diabatic coupling d01 must closely
resemble the coupling shown in Fig. 1(b) (dnm is shorthand for (Hd)nm). This is because d01 must be linear in
displacements about a CI, and quadratic only for Renner–Teller type intersections [71]. However, for two diabatic
states, only the square of the diabatic coupling |d01|2 enters into the expression for the adiabatic energies. The
model might then generate an off-diagonal element similar to |d01|. This error would incur no penalty on the
network, because the diagonal elements would properly switch ordering and the adiabatic energies would be
correct. Hence the model would not generate smooth diabatic states.

To remedy this issue we used the combined loss described in the Methods section. The NACV component of
this loss was also used in Ref. [62]. We note that the number of diabatic states and choice of orderings in Eq.
(5) may depend on the system. For azobenzene we were interested in fitting Mad = 2 adiabatic states, and in
general one should use Md ≥Mad diabatic states. In this work chose Md = 3 because it significantly improved
on the results of Md = 2. In fact, with Md = 2, the R2 correlation of the force NACV was negative. The
orderings in Eq. (5) were chosen by taking a small sample of azobenzene configurations, training several small
models with different diabatic orderings, and picking the one with the best results. Thus no system knowledge
is required to choose the orderings. The only system knowledge required is the set of reference geometries1, but
the reference loss can be omitted with negligible impact on model performance.

The diabatic model leads to true CIs, where the ground and excited state energies are exactly equal. To see
why, consider Fig. 3(b), which shows the two diagonal diabatic elements (red and blue) and the off-diagonal
coupling (light gray). The off-diagonal element passes linearly through zero in the ~h direction. The diagonal
elements cross in the ~g direction, and so ∆ ≡ d11−d00 passes linearly through zero. Therefore, one can begin at
a geometry for which ∆ = 0, and move in the ~h direction until d01 = 0 without changing ∆. The final geometry
will therefore be a CI. The fact that both d01 and ∆ are locally linear, and hence must pass through zero, is
known theoretically [71] and properly predicted by the model.

C. Network loss

The neural network loss terms are defined as:

Lcore =
∑
n

ρEn ·mse
(
En

)
+ ρfn ·mse

(
~fn
)

+
∑
n>m

ρ∆Enm
·mse

(
∆Enm

)
(S1)

Lref =
∑
n

ρref ·mse
(
dnn(~R)

)∣∣
~R∈{cis, trans} (S2)

Lnacv =
∑
n>m

ρnacv ·mse
(
An

(
~R
)
Am

(
~R
)
~gnm(~R)

)
, (S3)

1 Typically the reference geometries are reactants and products.
For reactions in which the product is not known a priori, one
might use the following approach. First, train an adiabatic
network on a single molecule. We have found that adiabatic
models match or outperform diabatic ones for single species.
Then use the model to simulate dynamics. By using active
learning to improve the model’s coverage of configurational

space, the simulations can eventually discover the product. If
derivatives of the molecule are expected to have similar reac-
tions, then their products are also now known. With knowl-
edge of the reactants and products, and hence the reference
geometries, one can now build a diabatic model. If this is not
possible, then one can train the model without Lref . Table
S1 shows that this will likely decrease the model performance
near CIs by a small amount.
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where ∆Enm = En −Em is the energy gap. Each loss function is a sum over mean squared error (MSE) terms
scaled by different weights ρ. For scalar molecular quantities X the loss is given by MSE(X) =

∑M
j=1(Xj −

X̂j)
2/M , where X̂ is the predicted quantity and the sum is over M geometries in a batch. For atomic vectorial

quantities the mean is additionally over the 3Lj vector components, where Lj is the number of atoms in the jth

geometry.
The loss term Lcore contains the usual energy and force losses, plus an additional term for gap errors. While

the gap term was not used in previous work, we found it to be crucial for the systems studied here. Indeed,
without this loss term, one would expect the gap MAE in adiabatic models to be the geometric sum of the
energy MAEs. This is what we found when using Lcore without the gap loss. Table S1 shows that, when using
the full core loss, the gap MAE is actually lower than each individual energy MAE.

The reference loss, Lref , is a sum over geometries ~R which are considered to be cis or trans. At these geometries
the target dnn are given by Eq. (5). A geometry is considered to be cis or trans if its central CNNC atoms
deviate from those of the equilibrium structure by <0.15 Å. The distance is computed as the root-mean-square
deviation (RMSD) among the atoms after alignment.

The NACV loss imposes diabaticity. It involves the force NACV ~gnm, and a phase correction An(~R) = ±1.
The phase correction is chosen separately for each geometry to minimize the error between the predicted and
target force coupling. This factor is necessary because each adiabatic wavefunction can have an arbitrary sign
[97]. The signs cancel for diagonal terms like En and ~fn, but not for off-diagonal terms like ~gnm. The An

account for these arbitrary sign changes.

D. Data generation

To train a useful model one must generate reliable QC data. TDDFT [98] typically offers a good compromise
between speed and accuracy for modeling excited states. However, it has known instabilities near CIs [66], and,
as a result of the Brillouin theorem, produces the wrong branching space dimensionality for S0/S1 intersections
[99]. These issues, which can be traced back to the single-reference description of the excitation, can be partially
alleviated with SF-TDDFT [63]. In this approach the excitation is performed with respect to a high-spin
reference state. This yields some transitions that have double-excitation character with respect to the singlet
ground state. Here we used SF-TDDFT with the BHHLYP functional [65] and the 6-31G* basis [64]. SF-
TDDFT/BHHLYP is well-benchmarked for CIs in a number of molecules [67, 100]. Because SF is not spin
complete, the singlet states must be identified based on their square spins 〈S2〉. We used the approach of Ref.
[72], which identifies singlets as the two states with the lowest 〈S2〉 from the three excitations of lowest energy.
Calculations were performed with the Q-Chem package [84].

Near-CI regions of the combinatorial species were sampled by setting the central CNNC dihedral angle of
relaxed geometries to ±90 degrees and/or the CNN/NNC angles to 180 degrees. The other internal coordinates
were not changed. The former corresponds to the rotation pathway and the latter to inversion. This led to
11 possible combinations of rotation and inversion, including pure rotation, pure inversion, concerted inversion,
and inversion-assisted rotation [77].

II. Model accuracy and ablation studies

Here we compare the DANN model to a model trained without a NACV loss (“−Lnacv”), a model trained
without a reference geometry loss (“−Lref ”), an adiabatic model, and a median predictor. The latter predicts
the median ground- and excited-state energy for each species, and the median value among all species for other
quantities. The MAEs for unseen species are compared in Table S1. Half the geometries were sampled randomly
and half by proximity to a CI, as described in Supplementary Sec. IX. Of particular interest are (∆E)small, the
MAE of the gap when it is under 0.2 eV, and sgn(∆E)small, the average overestimation of small gaps by the
model. DANN actually underestimates the small gaps, indicating that it does not “miss” conical intersections.
Using an adiabatic model or removing the NACV loss increases both the error and overestimation of (∆E)small.
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E0 E1 ∆E01 (∆E)small sgn(∆E)small
~F0

~F1 ~g01

DANN 3.06 3.77 1.89 0.97 -0.29 1.72 2.31 1.36
−Lnacv 2.31 2.49 1.65 1.22 0.52 1.72 2.39 2.21
−Lref 2.21 2.58 1.68 1.06 0.16 1.72 2.32 1.37

adiabat 2.11 3.24 2.43 1.24 0.60 1.69 2.31 —
adiabat (st. 1) 3.28 2.99 1.88 1.49 0.95 1.67 2.30 —

median 16.86 19.04 22.80 36.04 -36.04 17.27 17.18 2.05

Table S1. Performance of different ablated models. Each column, apart from sgn(∆E)small, shows the MAE of a different
quantity. sgn(∆E)small is the mean signed error of (∆E)small, given by mean{(E)pred

small − (∆E)target
small }. “st. 1” indicates

the first stage of training of the adiabatic model, as described in Supplementary Sec. IX. The best score in each category
is shown in bold.

E0 E1 ∆E01 (∆E01)small
~F0

~F1 ~g01

MAE (↓) 0.75 0.96 0.72 0.40 0.94 1.13 0.87
R2 (↑) 1.00 0.99 0.99 0.97 1.00 0.99 0.88

Table S2. Test set MAE for the DANN model trained on all species.

The same is true of removing Lref , but the effect is smaller. While the changes in (∆E)small appear minor, we
show in Supplementary Sec. VII that they lead to noticeable quantum yield differences for a number of species.

Also of note is the difference in NACV error among the different models. Removing Lnacv substantially
increases the NACV error, even when Lref is used. Since Lnacv imposes diabaticity, this shows that the reference
loss alone does not give accurate diabatic states. We also see that the adiabatic model is much worse at predicting
∆E away from the CI than the diabatic model. This is because of the large loss weight used for (∆E)small in
the second stage of adiabatic training (see Supplementary Sec. IX). Indeed, the results after the first stage are
much better for ∆E, but far worse for (∆E)small. Finally, the models without reference or NACV losses have
far lower energy errors than DANN. It may be possible to decrease DANN’s energy errors by increasing the
weight of the energy loss.

A key benefit of the diabatic model is that it accurately predicts the gap near CIs. It also produces the
NACVs, adiabatic energies, and forces all with one model. Without the diabatic model, one might learn the
force coupling as a separate property. This has been done in other work by taking the gradient of a learnable
scalar [42, 44]. However, one would still have to divide by the adiabatic gap to obtain the derivative coupling.
Thus gap prediction errors from an adiabatic model would still be problematic. A separate option would be to
compute the NACV through the Hessian of the gap [44]. This is quite slow, and would have similar problems
with the gap.

Table S2 shows the test set statistics for the DANN model trained on all species. This model was used for
virtual screening, as described in the main text. Here the test set simply consists of 5,000 held-out geometries.
Unlike in Table S1, the test set contains mostly seen species, and the geometries were not generated from
DANN-NAMD with the trained model. The results are quite similar to the “seen species” rows in Table I.

III. Experimental data

We performed an extensive literature search to find quantum yields of azobenzene derivatives. To best
compare to the vacuum conditions simulated here, we chose quantum yields measured in non-polar solvents.
When multiple results were available in different non-polar solvents, we computed the prediction error relative
to the mean experimental value. To compare to the simulated S1 dynamics, we selected yields measured at the
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peak of the highest-wavelength absorption band, which is a dipole-forbidden n− π∗ transition in unsubstituted
azobenzene. All sources used here specifically reported yields at wavelengths close to the n − π∗ and π − π∗
absorption peaks, so it was straightforward to choose the appropriate wavelength. Lastly, we only selected yields
at or around room temperature, since yields can have a strong temperature dependence [101].

IV. Sources of error

A. Experimental error

There are two main sources of uncertainty in the experimental quantum yield results. The first is the error in
the absorption coefficients ε of the two isomers. The absorption strengths are used in standard rate equations
to compute the yield; see, for example, Refs. [102, 103] and the supplementary of Refs. [104, 105]. The error
can be traced back to the overlapping absorption spectra of the two isomers, which must be disentangled.
The magnitude of the error depends on the method used to compute ε, which itself is related to the year of
publication. For example, Ref. [102], published in 1988, indicated that the absorption coefficients were the
primary source of error, but did not give an estimate for their uncertainty. They isolated the different isomers
using chromatography and computed their absorption coefficients separately. When the isomers could not be
isolated in sufficient amounts, the authors used the time-dependent absorption approach of Ref. [106]. This
method had relative errors of of ±25% for n − π∗ quantum yields [106] (i.e, yield → yield × (1 ± 0.25)). Ref.
[103], published in 2004, reported a yield of 0.7 to 1.0 for compound 20, a large range stemming from the overlap
of the isomers’ spectra and the method used to separate them [107]. More modern methods have lower errors;
for example, Ref. [105], published in 2015, reported a relative error of only ±10% in the supplementary.

The second important source of error is the overlap of the n − π∗ and π − π∗ absorption bands. The more
strongly the two bands overlap, the higher the error of using only the S1 state in the dynamics. Moreover,
many experiments do not irradiate at the precise maximum of the n− π∗ band. Often a representative n− π∗
or π − π∗ wavelength is chosen, and then used for each derivative [101, 104], even though the derivatives have
different absorption peaks.

To get an idea of the range of errors this could introduce, consider the results of Ref. [108] from 1958. This
work computed the quantum yield of unsubstituted azobenzene over several wavelengths. The trans to cis yield
was measured as 21% at 405 nm and 27% at 436 nm (10−3 M solution). The difference is because 405 nm light
excites more of the π − π∗ band (313 nm) than 436 nm light. 405 nm excitation leads to a lower yield because
the π − π∗ yield is only 11%. The difference is even more pronounced for the cis quantum yield, which drops
from 55% to 40% moving from 436 nm to 546 nm. This result does not have a simple explanation, as there is
no lower energy band beyond 436 nm. In principle, the error due to overlapping bands could be mitigated with
an explicit dipole-electric field coupling term [109], which would excite multiple states in different proportions.
For derivatives with completely overlapping n − π∗ and π − π∗ bands, the S1 approximation would incur a
maximum error of the S2 yield minus the S1 yield. This is because the S2 state is much brighter than S1, and
would therefore dominate the experimental yield. The yield difference is about 10 percentage points for both cis
and trans unsubstituted azobenzene [110, 111]. Therefore, in the worst case scenario, we would expect an error
of about 10 percentage points from the S1 approximation. The error would likely be closer to the 6% reported
in Ref. [108] at wavelengths of moderate overlap.

We can further quantify these errors by computing the range of results from different studies. Measurements
of the t→ c azobenzene yield range from 20% to 28% between 1979 and 1987 [106, 110, 112], though this could
also be related to solvent effects (Sec. IVB).The yields of compounds 9 and 10 range from 16% to 24% and
44% to 50%, respectively, with references from 1962 and 1988 [101, 102]. Aggregating the results of all three
compounds gives an average yield range of 7.3 percentage points, and an average relative error of ±14%.

A final source of uncertainty is specific to Refs. [73, 74]. Several species were reported to have zero yield over
a large range of irradiation wavelengths. However, as noted in the footnote to Table S12, the dipole-allowed S2

transition was highly redshifted and thus overlapped strongly with the S1 transition. The absorbance changes
after irradiation were quite small, indicating a near-zero yield, but could have been due to the S1 transition.
Hence it is possible that the S1 yield is not precisely zero.



20

B. Computational error

There are several sources of computational error. The first is error in the PES, which can be decomposed into
error from SF-TDDFT and error from the model. While it is intractable to perform SF-TDDFT for all species
with experimental data, our results for unsubstituted azobenzene suggest that it is rather accurate. As reported
in the main text, we computed yields of 60 ± 4% and 26 ± 3% for c→ t and t→ c, respectively. Experimental
measurements between 1979 to 1987 gave t → c yields between 20% and 28% [106, 110–112]. Experimental
measurements in 1974 and 1979 gave c → t yields of 55% and 56% [110, 111], while a measurement in 1958
gave 48% ± 5% [108]. All measurements were performed in non-polar solvents. The yields computed with the
original model were 59% and 37% for c→ t and t→ c, respectively. Hence the main source of error seems to be
the model, rather than SF-TDDFT.

Solvent effects may also affect the yield. These effects can be decomposed into a systematic term and a non-
systematic term. It has been argued that non-polar solvents systematically reduce the quantum yield relative to
vacuum [113]. However, careful analysis of the experimental data reported in [114] and cited in [113] does not
support this conclusion. Indeed, given the good agreement between non-polar experimental results and both
SF-TDDFT and hh-TDA DFT [7], systematic effects of non-polar solvents are likely to be small. Solvent-specific
effects are part of the range of reported experimental values, since different works often use different non-polar
solvents. Typical ranges were discussed in Sec. IVA.

A final source of error is the approximations in surface hopping. A large body of literature has examined surface
hopping’s accuracy; see, for example, Refs. [115–118]. In this work, we can roughly evaluate its performance by
comparing its results to those of ab initio multiple spawning (AIMS) [7]. AIMS is a fully quantum mechanical
method and can thus be treated as a benchmark. We computed the t → c yield as 26 ± 3% using surface
hopping with SF-TDDFT, and Ref. [7] computed the yield as 24% ± 6% using AIMS with hh-TDA DFT.
While there may be some error cancellation from the different quantum chemistry methods, the good agreement
is still encouraging.

V. Influence of different functional groups

Here we discuss how the model transferability depends on the functional groups in a compound. To answer
this question, we analyzed each of the 40 unseen species in the test set, and computed the model error for each
geometry. As described in the main text, the geometries were taken from DANN-NAMD with the trained model;
half were selected by proximity to a CI and half selected randomly. For each functional group, we aggregated
the errors of all geometries that contained the group, and then computed the mean.

The functional groups with the lowest gap errors are shown in Fig. S1(a), and those with the highest are
shown in panel (b). Table S3 shows the number of times that each functional group appears in the training set,
together with the errors for all properties. Of the groups with the lowest errors, we see that both B and C are
well-represented in the training set, which may explain their accurate results. The other groups each have about
1,000 samples in the training set. This is smaller than that of B and C, but not negligible. The compounds are
also rather simple, which may partly explain their low error.

Of the groups with the highest gap error, only the nitro group G is well-represented in the training set. There
are almost 10,000 training geometries with nitro groups, yet the error is still quite high. This may be because
NO2 is a strong electron-withdrawing group, and can thus have a significant effect on the electronic structure
of azobenzene. Of the remaining substituents, both H and J are rather complicated, and each has only about
200 samples in the training set. Groups F and I both have about 1,000 samples in the training set, and are
thus moderately represented. I may have large errors because of the electron-withdrawing effects of the three
fluorines, or because it is found together with J in compound 20. F, the tert-butyl group, likely has large errors
simply because it is bulky and thus leads to distorted geometries.

We see that the transferability of the model depends on how well-represented a functional group is in the
training set, and how complicated its electronic effects are. The former is supported by Fig. S2, which shows
that the functional group error is anti-correlated with its prevalence in the training set. However, the effect is



21

Figure S1. Functional groups in the test set of unseen species. (a) The five functional groups with the lowest gap error.
Error increases from left to right. C is fused to a benzene ring in azobenzene. (b) The five groups with the highest gap
error. Error decreases from left to right.

Figure S2. Test set error by functional group, plotted against the number of times the group appears in the training set.
The Spearman rank correlation ρ is also shown. (a) Gap error. (b) Excited state force error.

stronger for the gap than the excited state forces (ρ = −0.35 and ρ = −0.15, respectively), and neither fully
explains the error. The remaining error can best be explained by analyzing the groups themselves.

VI. Spin contamination

Here we discuss the amount of spin contamination in the training set. Figure S3 shows the square spin, 〈S2〉,
for both the ground and excited states. The spin contamination is quite low for the ground state, with 〈S2〉
under 1.0 for 96% of geometries. It is much higher for the excited state, with 76%, 82%, and 93% of geometries
having 〈S2〉 under 1.0, 1.2, and 1.4, respectively. Most of the geometries with excited-state 〈S2〉 ' 1.2 were
near the non-reactive S1/S2 CI, characterized by near-planarity and CNN angles near 108◦ [7]. The S0/S1

CIs, on the other hand, did not have severe spin contamination. The spin-contamination near the S1/S2 CI
led to difficulty in fine-tuning the model for unsubstituted azobenzene. We also visually inspected a sample of
geometries with extreme spin contamination, 〈S2〉 > 1.8, and found that nearly all had broken apart. We kept
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Num. train E0 E1 ∆E01 (∆E)small sgn(∆E)small
~F0

~F1 ~g01

A 1,219 1.05 0.94 0.63 0.61 -0.04 1.24 1.32 1.19
B 71,940 0.95 1.02 0.81 0.52 -0.01 1.33 1.66 1.62
C 17,624 1.08 1.14 0.85 0.37 0.12 1.24 1.52 1.62
D 994 0.73 1.00 0.91 0.44 -0.07 1.18 1.70 1.54
E 1,154 1.09 1.21 0.95 0.72 -0.04 1.61 2.42 1.41
F 979 2.28 3.36 3.39 1.14 -0.31 1.53 1.53 1.96
G 9,578 0.94 3.49 2.90 0.68 -0.16 1.59 4.11 1.83
H 200 1.62 3.17 2.18 0.44 -0.13 0.99 1.67 0.68
I 1,225 1.33 2.90 2.10 0.78 -0.17 1.63 2.90 0.91
J 236 1.33 2.90 2.10 0.78 -0.17 1.63 2.90 0.91

Table S3. Test set error by functional group. The groups are divided into those with the lowest gap errors (top) and
those with the highest (bottom). “Num. train” refers to the number of geometries in the training set that contain the
functional group. While each of the functional groups is contained in the training set, the precise combinations and
arrangements of groups (and hence the molecular graphs) are unique to the test set.

(a)

(c)

(b)

(d)

Figure S3. Analysis of spin contamination in the training set. (a) Distribution of 〈S2〉 in the ground state. (b) As in (a),
but for the excited state. (c) Cumulative probability as a function of 〈S2〉 in the ground state. (d) As in (c), but for the
excited state.

these geometries in the training set so that the model could learn the high energy of bond breaking.

VII. Surface hopping results with different models

Figure S4 compares ZN hopping statistics of adiabatic and diabatic models for unseen species. Panel (a)
shows the distribution of hopping percentages among species. The hopping percentage is defined as the percent



23

Figure S4. Comparison of ZN hopping statistics in diabatic and adiabatic models. (a) Proportion of trajectories in each
species that hopped to the ground state. (b) Excited state lifetime for each species.

of trajectories for a given species that end in the ground state. The y-axis is the percent of all species that
correspond to each bin. Panel (b) has an analogous plot, but with the hopping percentage replaced by the
lifetime. The lifetime was estimated from an exponential fit of S1 population, p = exp(−(t − ton)/τ) Θ(t −
ton) + Θ(ton − t). Here p ∈ [0, 1] is the S1 population, t is the time, ton is the fitted turn-on time, τ is the fitted
lifetime, and Θ is the Heaviside step function. Trajectories that did not contain any hops were assigned the
maximum lifetime of all the other trajectories.

The cis derivatives have lifetimes around 50 fs, consistent with computational results for cis azobenzene [72].
Nearly 100% of all cis trajectories ended in the ground state. The trans derivatives have a wide distribution of
lifetimes. Some are between 1 and 2 ps, which is similar to trans azobenzene [72]. Others are in the range of
tens to hundreds of ps, which reflects the high proportion of trajectories that never returned to the ground state.
These are very likely incorrect. They may be because of barriers between S1 minima and S0/S1 CIs, which are
known to exist for trans azobenzene [7]. Relatively small errors in the barrier may lead to large over-estimations
of the lifetime.

Excited state barriers make it even more important to have accurate PESs near CIs. Since trajectories spend
little time near crossing regions, trapping becomes even more severe when the gap near CIs is overestimated.
The diabatic model helps to address this problem: in each plot we can see that the diabatic model leads to more
hopping. For example, using the adiabatic model, 21% of species have hopping percentages under 10%. This
number is reduced to 13% for the diabatic model.

The diabatic model also improves the quantum yield. Figure S5 shows the ZN quantum yields with the
diabatic model, and Fig. S7 shows the diabatic FS yields. The Spearman rank correlation for the trans species
is fairly high with both the ZN and FS methods, with the model accurately predicting low yields for a number of
species. Figure S6 shows the ZN yield with the adiabatic model. The correlation among all species is reasonable,
but for trans species is rather low. This is because of three molecules with zero predicted yield, all of which
became trapped in the excited state. The diabatic model only predicts zero yield for one of these. Further, the
diabatic model properly predicts zero yield for species 35, while the adiabatic model does not. For these reasons
the diabatic model has a fairly high correlation with experiment. Still, it is clear that excited state trapping of
trans species is not a fully solved problem. Preferential sampling of excited state barriers may help to further
address this issue in the future.

VIII. Architecture

All models were implemented in PyTorch [119]. The model hyperparameters are given in Table S4, and an
in-depth explanation of the PaiNN parameters can be found in Ref. [35]. Note that we used five convolutions
instead of the three used originally, as this substantially improved model performance. Following DimeNet
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(a) (b) (c)

Figure S5. Experimental vs. predicted ZN yields using the diabatic model. (a) Cis isomers. (b) Trans isomers. (c) All
species.

(a) (b) (c)

Figure S6. Experimental vs. predicted ZN yields using the adiabatic model. (a) Cis isomers. (b) Trans isomers. (c) All
species.

[120], we allowed the k values in the radial basis functions to be updated during training. For the adiabatic
model, we predicted each property as a sum over per-convolution properties, which was also used in DimeNet.
In particular, each convolution had a readout network to convert the atomic features to an output. The final
property was obtained by summing each of these outputs.

Several variations on the architecture were tested. For example, we trained both two- and three-state diabatic
models on 5,000 azobenzene configurations. We found that adding a third diabatic state significantly decreased
the error for all properties. We then trained models using all possible three-state reference orderings and chose
the best one. We also experimented with intensive pooling for off-diagonal energies (see Supplementary Sec.
XVI). In particular, we generated a molecular fingerprint through an attention-weighted average of atomic
fingerprints. We then mapped this fingerprint to the dnm for n 6= m. Even though the dnm are intensive for
n 6= m, this approach did not improve model predictions.

We also experimented with several adiabatic models. The model in the main text predicted E0 and E1

directly. This approach was used in previous work for single-molecule non-adiabatic dynamics [39–45] and for
the prediction of absorption spectra across chemical space [121]. We also examined three models that predicted
E0 directly and E1 as the sum of E0 and a learned gap. We tried three different pooling methods for the learned
gap ∆E: taking the mean over atomwise gaps, taking an attention-weighted average over atomwise gaps, and
applying a dense readout network to an attention-weighted sum of atomic fingerprints. All approaches performed
quite poorly compared to learning E0 and E1 separately as summed atomwise energies. This is problematic,
because only adiabatic models that predict E1 as E0 + ∆E can guarantee the positivity of the gap (e.g. by
squaring ∆E or applying a softplus function). Hence the adiabatic model in the main text sometimes generated
predictions with E1 < E0. This is impossible in the diabatic model by construction.
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(a) (b) (c)

Figure S7. Experimental vs. predicted FS yields using the diabatic model. (a) Cis isomers. (b) Trans isomers. (c) All
species.

Hyperparameter Meaning Value or name
F dimension of hidden atomic features 128

nconv number of convolutions 5
nRBF number of radial basis functions (RBF) 20
Rcut cutoff distance for convolutions 5.0 Å

activation function activation used in message-passing and readout Swish
learnable k whether k parameters in RBF are learnable true

skip output is sum of per-convolution outputs true only for adiabatic
Md number of diabatic states 3
Mad number of ground truth adiabatic states 2

Table S4. Model hyperparameters

IX. Training

The training set contained 562,037 geometries from 8,197 species. 5,000 geometries from 308 species were used
for validation. The remaining 74,322 geometries from 40 species were held out for testing, so that the predicted
yields of unseen species could be compared with experiment. A different random seed was used to determine
the training and validation splits for each committee model, and also to initialize the different models. After
training, we ran FS DANN-NAMD on 40 holdout species using the trained diabatic model. For each species
we selected 50 geometries randomly and 50 by CI proximity (Eq. (S13)), for a total of 4,000 geometries. These
geometries were used as the test set, giving the “unseen” statistics in Table I. The DANN-NAMD geometries
from the diabatic network were used for all models, including the adiabatic and ablated ones in Table S1. The
“seen” statistics were generated using the validation set. For all statistics, a phase correction was applied to ~g01

to minimize the prediction error, as in Eq. (S3).
The model for screening new azobenzene derivatives was trained on all species. Inclusion of the holdout

species provided an additional 74,322 geometries. We used 631,367 geometries for training, 5,000 for validation,
and 5,000 for testing. This corresponded to 8,215 training species, 332 validation species, and 303 test species.

Training was performed over energies and forces/force couplings in units of kcal/mol and kcal/mol/Å, re-
spectively. Per-species reference energies were subtracted from each energy. These were obtained by summing
atomic reference energies, computed using multi-variable linear regression from (atom type, count) to relaxed
geometry energy. Configurations with 10-σ energy and force outliers were removed prior to training. Those with
forces or energies ≥450 kcal/mol(/Å) from the mean were also removed. We found that more stringent removal
of outliers led to less stable trajectories. For example, removing 3-σ outliers and maximal energies/forces of
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ρE0 ρE1 ρ∆E01 ρf0 ρf1 ρref ρnacv

0.2 0.1 0.5 1 1 0.01 1

Table S5. Loss parameters used to train all diabatic models.

lr lrmin ρ∆E01 ρsmall

Stage 1 10−4 10−5 0.5 0
Stage 2 10−5 10−6 1.0 100

Table S6. Variable loss parameters used for training the adiabatic model. lr is the starting learning rate and lrmin is the
minimum learning rate, at which point training is stopped.

≥300 kcal/mol(/Å) led to unstable ground state trajectories for six of the 40 unseen species. The 10-σ and
450 kcal/mol(/Å) criteria led to no diverging ground state trajectories. A small proportion of excited state
trajectories were still unstable. We discarded all excited state trajectories that produced NaN geometries or
energies, which were at most a few percent of the trajectories for a given species.

Models were trained with the Adam algorithm using a batch size of 60. Geometries were sampled for each
batch using Eq. (S12), as described below. The loss was given by Eq. (6), using parameters in Table S5. Note
that the range of NACVs is approximately 10 times smaller than the range of forces. This means that ρnacv = 1,
ρfi = 1 gives much higher weight to the forces. We experimented with a range of NACV coefficients between
0.1 and 10, and found that ρnacv = 1 gave the best performance.

The learning rate was initialized to 10−4 and reduced by a factor of two if the validation loss had not improved
in 10 epochs. The final model was selected as the one with the lowest validation loss. Training was performed
on a single 32 GB Nvidia Volta V100 GPU, and took 13 days to complete.

For diabatic models, the training was stopped once the learning rate reached 10−5. Adiabatic models were
trained in a two-step process, using different loss functions in each stage. Each step ended once the learning
rate fell below a certain value. The following loss function was used with different loss trade-offs at different
stages:

L = Lcore + Lsmall,

Lsmall =
∑
n>m

ρsmall ·mse
(
∆E

small

nm

)
, (S4)

where Lsmall penalizes errors in gaps under 0.2 eV. The parameters for each stage are given in Table S6, and the
ρE and ρf coefficients are the same as in Table S5. The first stage emphasized energy gaps and gradients, while
the second stage emphasized small gaps to fine-tune the model near conical intersections. We also experimented
with scheduled training and using Lsmall for diabatic models, but did not find any improvements.

X. Balanced sampling

A custom data sampler was used during training because the dataset was imbalanced in the following ways.
First, the combinatorial species only had a few geometries each, and so would be very rarely sampled during
training. Second, there were more equilibrium trans geometries than cis geometries. Third, there were more
equilibrium geometries in general than near-CI configurations. Our sampler addressed these imbalances by
giving higher sampling probability to underrepresented species and/or configurations.

To explain the sampling procedure, let us define two types of sampling weights. Sampling weights that are
balanced by species are denoted by w, and those that are not are denoted by v. For example, the weights
wcluster(gi,A) and vcluster(gi,A) are both assigned to the ith geometry in species A, denoted gi,A, based on the
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(c)(b)(a)

Figure S8. Sampling probabilities for different geometries in the training set, with and without the custom sampler. (a)
Cumulative probability p(i) of sampling any species ≤ i. The species are ordered from fewest to most geometries. (b)
Probability of sampling a geometry in each of the three clusters. (c) Probability density of sampling a geometry with a
given energy gap.

cluster of configurations that it belongs to. This cluster is denoted k, where k ∈ (cis, trans, other). For a
geometry gi,A in cluster k, the weights are given as follows:

wcluster(gi,A) =

(
1

nspec · nclusters

)(
1

nk,A

)
vcluster(gi, A) =

(
1

ngeoms · nclusters

)(
nA
nk,A

)
(S5)

Here nk,A is the number of geometries of species A in cluster k, and nA is the number of geometries in species
A. nspec is the total number of species, nclusters is the total number of clusters, and ngeoms is the total number
of geometries. The above definitions ensure that there is an equal probability Pk of sampling any cluster k:

Using w : Pk =
∑
A

∑
gi,A∈ k

wcluster(gi,A) =
∑
A

1

nspec · nclusters
=

1

nclusters
(S6)

Using v : Pk =
∑
A

∑
gi,A∈ k

vcluster(gi,A) =
∑
A

nA
ngeoms · nclusters

=
1

nclusters
(S7)

Here we have used the fact that
∑

gi∈ k,A 1 = nk,A,
∑

A 1 = nspec, and
∑

A nA = ngeoms. The difference
between the two weights is that w leads to balanced sampling among species, while v does not:

Using w : PA =
∑
k

∑
gi,A∈k

wcluster(gi,A) =
∑
k

1

nspec · nclusters
=

1

nspec
(S8)

Using v : PA =
∑
k

∑
gi,A∈k

wcluster(gi,A) =
∑
k

nA
ngeoms · nclusters

=
nA

ngeoms
. (S9)

Here we have used the fact that
∑

k 1 = ncluster. We see that w gives equal weights for each species, whereas v
gives weights proportional to the number of geometries in that species.

Similarly to the cluster weights, we define Zhu-Nakamura weights wZN and vZN, such that geometries with a
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higher hopping probability pZN are sampled more often. The corresponding expressions are:

wZN(gi,A) =

(
1

nspec ·
∑

j pZN(gj,A)

)
pZN(gi,A) (S10)

vZN(gi,A) =

(
1∑

j,B pZN(gj,B)

)
pZN(gi,A). (S11)

The overall sampling weight for a given geometry is determined by each w and v, together with two user-
defined weights: Pspec ∈ [0, 1], the importance of species balance, and PZN ∈ [0, 1], the importance of sampling
geometries with high hopping rates. Pcluster = 1 − PZN is the importance of sampling different clusters in a
balanced way. The final sampling weight is then given by

p(gi,A) = PZN [Pspec · wZN(gi,A) + (1− Pspec) · vZN(gi,A)]

+ Pcluster [Pspec · wcluster(gi,A) + (1− Pspec) · vcluster(gi,A)] . (S12)

In applying Eq. (S12) we used Pspec = 0.6 and Pcluster = 0.5. We defined a geometry as cis or trans if its
RMSD with respect to the corresponding reference structure was ≤ 0.25 Å, and “other” otherwise. In contrast
to diabatic reference geometries, the RMSD was computed using all atoms, not just the central CNNC atoms.
Note that while our clustering approach was specific to cis-trans isomerization, many black-box clustering
methods exist, such as hierarchical clustering [81]. Any of these methods could have been used in place of our
user-defined clusters.

In principle pZN should depend on trajectory-specific factors such as velocity, and is therefore not a function
of geometry alone. However, during simulations, hops almost always occurred below 0.5 eV. Further, since pZN

is approximately exponential in the square of the gap, we approximated it with

pZN(∆E) ≈ exp(−∆E2/(2∆E2
0)), (S13)

where ∆E is the energy gap and ∆E0 = 0.15 eV. This choice of ∆E0 gave p(∆E = 0.5 eV) ≈ 3 × 10−3. This
meant that geometries were usually selected only if their gap was under 0.5 eV.

The sampling probabilities for the training set are shown in Fig. S8. Panel (a) shows the cumulative proba-
bility of sampling different species, with the compounds ordered from fewest to most geometries. Without the
custom sampler the probability was quite small for most molecules. This was because the majority were combi-
natorially generated and had few geometries. 90% of the probability was contained in the last 41 species. This
probability was reduced to 35% when using the balanced sampler. Panel (b) shows that most geometries were
trans isomers and few were cis. The custom sampler gave approximately equal probability to the two isomers,
and the highest probability to the other group. Most geometries in this group had small gaps, and hence were
highly weighted by wZN and vZN. This is demonstrated in panel (c), which shows that near-CI geometries had
the highest probabilities when using the balanced sampler.

XI. Dynamics

Simulations were performed in two stages. First the starting geometries and velocities were generated for
each NAMD trajectory. For ab initio simulations we optimized the ground state geometry of each species and
computed its normal modes. These modes were used to sample geometries and velocities from the harmonic
oscillator Wigner distribution at temperature T = 300 K [122]. For neural trajectories we ran classical MD for
15 ps with the Nosé-Hoover thermostat [85, 86], and selected random samples to start the NAMD trajectories.
Classical MD was implemented with ASE [123]. The effective mass Q was set to (3N − 6) · τ2kBT , where N
is the number of atoms, kB is Boltzmann’s constant, T = 300 K, and τ = 25 fs is the relaxation time. Initial
atomic velocities were sampled from a Maxwell-Boltzmann distribution at 300 K. Optimized geometries were
used for the initial atomic positions. The total linear and angular momenta of the system were set to zero, and
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the target kinetic energy was set to (3N − 6) · kBT/2. The time step of the simulation was set to 0.5 fs, and
the neighbor list of the system was updated every 10 time steps (5 fs). All pairs of atoms within with 7 Å were
considered neighbors. In each step the distance between all pairs of neighbors was computed, and only pairs
within 5 Å of each other were used in the model. This procedure meant that atoms entering the 5 Å cutoff
between neighbor list updates would not be missed (i.e., an extra 2 Å “skin” was addded). All ground state
and excited state trajectories in this work were propagated with the velocity Verlet algorithm [124]. Frames for
NAMD were taken only after the first 1 ps of ground state MD to allow for equilibration.

Next we ran ZN dynamics [72, 79, 125] using Ntrj trajectories, where Ntrj was 10 during the active learning
cycle and 500 during final inference. Hops were restricted to gaps ≤ 0.5 eV to avoid unphysical transitions,
the time step was set to 0.5 fs [72, 79, 125], and the neighbor list was again updated every 10 steps. Excited
state trajectories were run for 1.5 ps during active learning and 5 ps for final inference. All other details of
the implementation can be found in Refs. [72, 79, 125]. For each species we performed inference in parallel
over 100-250 geometries at a time, depending on the number of atoms in the molecule. This was done by
batching together geometries from 100-250 trajectories and evaluating the model on the batch. The batch size
depended on the size of the molecule, which determined the GPU memory consumption. FS simulations were
also performed for final inference. The ZN parameters above were used for FS DANN-NAMD of molecules in
the holdout set. For virtual screening we used 100 trajectories and 2 ps of excited state dynamics. Species with
a hopping rate under 10%, or with molecular graphs that changed during ground state dynamics, were deemed
unreliable. These molecules were excluded from Fig. 4, but not from the average hopping percentage reported
in the main text.

The quantum yield was calculated as Y = nR/nT , where nR is the number of reactive trajectories and nT is
the total number of trajectories. The uncertainty was computed as the standard deviation of 1,000 bootstrapped
samples. To identify reactivity, we computed the RMSD between the CNNC atoms in the final frame and the
corresponding atoms in the optimized cis/trans geometries. A trajectory was considered reactive if it started
as cis and ended closer to trans, or vice-versa. Trajectories that ended in the excited state were excluded from
nR and nT . The yield was reported as 0± 0 if all trajectories ended in the excited state.

XII. Fewest switches implementation

Tully’s surface hopping propagates the nuclei on one electronic surface at a time, called the active surface.
The expansion coefficients of the electronic wavefunction are also propagated, and are used to make stochastic
changes in the active surface. The coefficient vector c, expressed in a basis denoted by “rep”, evolves as [126]

d

dt
crep = − i

~
[Hrep − iTrep]crep. (S14)

The Hamiltonian matrix is Hrep = 〈ψrep
n |H |ψrep

m 〉, and the coupling term is

(Trep)nm =

〈
ψrep
n (~R(t))

∣∣∣∣ ∂∂t
∣∣∣∣ψrep

m (~R(t))

〉
= ~v · ~krep

nm, (S15)

where ~v is the classical velocity of the nuclei. In principle the nuclei can be propagated on a PES in any electronic
basis, and hops can be performed between states in that basis. For example, nuclei could be propagated on
diabatic PESs and hops could occur between diabatic states. However, it is well-established that surface hopping
in the adiabatic basis gives the best results [97]. Hence the nuclei should be propagated in the adiabatic basis,
and hops should be decided using cad.

While the adiabatic basis should be used for hopping, c can be propagated in the diabatic basis, and then
transformed into the adiabatic basis for all subsequent manipulations (e.g. deciding on hops, adding decoherence,
etc.). Indeed, using Eq. (S14) in the adiabatic basis can require small time steps for so-called trivial crossings,
where derivative NACVs are quite narrow and large [127]. Since global diabatic states are almost never available
in ab initio simulations, a local diabatization method is often used to propagate c [88, 127]. This method is
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very stable and can be used with a fairly large time step. In this work we have a global diabatic basis that can
replace local diabatization. Following Refs. [126, 127], we then propagate c as follows:

cad(t+ ∆t) = Pad(t, t+ ∆t)cad(t), (S16)

Pad(t, t+ ∆t) = U†(t+ ∆t)Pd(t, t+ ∆t)U(t) (S17)

Pd(t, t+ ∆t) = ΠK
k=1 exp

[
−iHd

k∆t/K
]

(S18)

Hd
k = Hd(t) +

k

K

[
Hd(t+ ∆t)−Hd(t)

]
. (S19)

Here Pad(t, t + ∆t) is the propagator of cad from t to t + ∆t (Eq. (S16)), and ∆t is the timestep. The
adiabatic propagator is a transformation of the diabatic propagator into the adiabatic basis (Eq. (S17)), using
the transformation matrix U (Eq. (2)). The diabatic propagator is a matrix product of K sub-propagators
(Eq. (S18)), where K is the number of electronic substeps for each nuclear step. “exp” denotes a matrix
exponential, not element-wise exponentiation. The kth sub-propagator uses a linear interpolation between
Hd(t) and Hd(t + ∆t) to approximate Hd(t + k∆t/K) (Eq. (S19)). The diabatic Hamiltonian is produced by
the neural network model. The probability of hopping from state n to m is [126]

pn→m =

(
1− |c

ad
n (t+ ∆t)|2

|cad
n (t)|2

) Re
[
cad
m (t+ ∆t)

(
P ad
mn

)∗ (
cad
n (t)

)∗]
|cad

n (t)|2 − Re
[
cad
n (t+ ∆t) (P ad

nn)
∗

(cad
n (t))

∗] , (S20)

where Re(x) is the real part of x. Note that while our approach follows that of SHARC [126], we have written
our own code and made it publicly available [128]. Our repository also contains code for surface-hopping with
the ZN method.

In this work we initialized cad(t = 0) = [0, 1, 0], used Eqs. (S16)-(S19) to generate cad(t+ ∆t), and computed
the hopping probability with Eq. (S20). cad was expressed in a three-state basis because our model used three
diabatic states, and hence U had three dimensions. Since the model was only trained on the first and second
adiabatic energies, we set p = 0 for all transitions to the third state. Hops to state m were performed if [126]

m−1∑
i=1

pn→i < r ≤
m−1∑
i=1

pn→i + pn→m, (S21)

where 0 ≤ r ≤ 1 is a random number. The momentum was rescaled after each hop to conserve the total energy.
The momentum was multiplied by a constant factor, rather than being re-scaled in the direction of the NACV,
to avoid the overhead of a NACV calculation (see below) [88]. If the factor was complex—a so-called “frustrated”
hop—then no transition was made [88].

We also tested propagation in the adiabatic basis. In this case we used the NACV to evaluate T, and
constructed P ad from the interpolation ofHad−iT [126]. Both Eq. (S20) and Tully’s original hopping expression
[57] were used. The momentum was re-scaled in the direction of the NACV [115]. In all cases the results were
very similar to those of the diabatic basis. Diabatic propagation was ultimately chosen because of its reported
stability [127], and because of its computational efficiency. In particular, the diabatic propagation requires only
diabatic energies and one adiabatic gradient. It therefore uses only one forward and one backward pass through
the neural network. By contrast, constructing the NACVs requires gradients for each diabatic element (Eq.
(1)). For three diabatic states, this corresponds to one forward pass and six backward passes. While shared
convolution layers and caching mean that N gradients do not take N× as long as one gradient, we found that
they still added significant time. Hence diabatic propagation was chosen as the most efficient method.

The decoherence correction of Ref. [129] was used to counter the over-coherence of Tully’s original method.
A sign correction was also used to remove random sign changes in the eigenvectors of Hd. The sign correction
Am for the mth eigenvector vm was computed as

Am = sgn(Sn′m) (S22)

Snm = v†n(t)vm(t+ ∆t) = [U†(t)U(t+ ∆t)]nm (S23)
n′ = argmaxn{|Snm|}. (S24)



31

The transformation matrix and NACVs were corrected through

Unm(t+ ∆t)→ AmUnm(t+ ∆t) (S25)
~knm(t+ ∆t)→ AnAm

~knm(t+ ∆t) (S26)
~gnm(t+ ∆t)→ AnAm~gnm(t+ ∆t). (S27)

Note also that Snm ≈
〈
ψad
n (t)

∣∣ψad
m (t+ ∆t)

〉
:〈

ψad
n (t)

∣∣ψad
m (t+ ∆t)

〉
=
∑
ij

U∗in(t)Ujm(t+ ∆t)
〈
ψd
i (t)

∣∣ψd
j (t+ ∆t)

〉
≈
∑
ij

U†ni(t)Ujm(t+ ∆t)
〈
ψd
i (t)

∣∣ [(1− (~v∆t) · ∇R)
∣∣ψd

j (t)
〉
]

=
∑
ij

U†ni(t)Ujm(t+ ∆t)
〈
ψd
n(t)

∣∣ψd
m(t)

〉
= [U†(t)U(t+ ∆t)]nm = Snm. (S28)

Here we used the fact that there is no derivative coupling between diabatic states, and that the diabatic states
at a given time are orthonormal (Eq. (S35)).

All simulations were performed with a time step of 0.5 fs and K = 25 substeps for electronic propagation.
Unlike in ZN dynamics, hops were not restricted to gaps under 0.5 eV. We found that restricting hops improved
the ZN results but hurt the FS results. For example, with no maximum gap, most neural ZN trajectories starting
from trans-azobenzene hopped at ∼ 1.5 eV. This did not match the results of Ref. [72], which used ab initio
ZN with the same level of DFT theory. After adding the restriction, most hops occurred at gaps under 0.1
eV, in agreement with Ref. [72]. By contrast, most FS hops occurred under 0.1 eV even without a maximum
restriction, though some still occurred at large gaps. The lifetime and yield without a maximum also better
matched previous calculations.

XIII. Active learning

New geometries were selected for QC calculations using two different criteria. In the first three active learning
loops, new geometries were chosen based on the prediction variance of two neural networks. Our aim was to
select geometries with fairly uncertain predictions. We did not want geometries with extremely high uncertainty,
as these usually corresponded to broken graphs that were outside the target learning space for the model. We
therefore used a log-normal target distribution for the uncertainty. Target uncertainties were randomly sampled
from this distribution, and geometries with the closest variance to the targets were selected. The log-normal
probability of obtaining a sample x is given by P (x) = exp

[
−(ln(x/s)− µ)2/2σ2

]
/(xσ

√
2π), where s, σ and

µ are positive numbers. Under this distribution, both completely certain and completely uncertain predictions
have zero probability, with a peak for predictions with medium uncertainty. The decay of the probability at
large uncertainty is slow, such that highly uncertain geometries can still be selected with reasonable probability.
We set µ = 0, σ = 1, and s = 7, giving a target distribution with a mode of 2.5 kcal/mol(/Å) and a mean of 11.5
kcal/mol(/Å). Committee variances were computed for both forces and energies for each electronic state, and
the largest variance was compared with the target variance from the distribution. For each species we selected
16 geometries from ground state MD and 33 from surface hopping. Only geometries from the 164 literature
species were chosen. This led to approximately 8,000 new data points in each active learning cycle. Other,
simpler methods of geometry selection are certainly possible; for example, random selection is also known to
work quite well [37, 38]. Our approach successfully increased the model quality throughout active learning, but
we did not thoroughly compare it to other methods. Such a comparison may be of interest in the future.

In the next two loops we used only azobenzene, with the goal of densely sampling the CI region. Half the
geometries were selected randomly from the excited state dynamics, and half were selected based on the gap.
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Because the model overestimated the gap in uncertain regions, we did not want to simply select geometries
with low predicted gap. Rather, in each trajectory we identified avoided crossing geometries, and assigned equal
sampling probability to all geometries before and after that crossing, up to a maximum predicted gap of 1.7 eV.
An avoided crossing geometry was defined as having a gap that was lower than in the previous and subsequent
time step. In this way we aimed to identify regions that could have small gaps, even if the model did not predict
them to be so.

XIV. Validation

A. Ab initio NAMD

Ab initio simulations were used for unsubstituted cis and trans azobenzene. Starting configurations and
velocities were generated with ab initio MD using Q-Chem to drive the dynamics. Ten MD simulations were
performed for each species. Each simulation was initiated with a different geometry produced by ground-state
neural network MD. The simulations were run for 10 ps each using a time step of 0.5 fs, with the the BP86
functional [130, 131] and 6-31G* basis [64]. Initial velocities were sampled from a thermal distribution at 300
K, with rotation and translation projected out. The nuclei were propagated with the Velocity Verlet algorithm.
A Nosé-Hoover chain of length 5, timescale τ = 25 fs, and temperature T = 300 K was used as a thermostat.
The Fock extrapolation order was set to six, and twelve Fock matrices from previous steps were used in the
extrapolation.

167 and 178 excited state trajectories were generated for trans and cis azobenzene, respectively. Each tra-
jectory was initialized with a different set of coordinates and velocities, randomly sampled from the ten ground
state simulations after 1 ps of equilibration. Spin-flip TDDFT was used with the BHHLYP functional [65] and
6-31G* basis. DIIS with geometric direct minimization (GDM) [132] was used to improve SCF convergence. We
found this to be critical: with the usual DIIS algorithm, the SCF cycle failed to converge for 36% of trajectories.
This usually occurred within the first 200 fs.

The dynamics were run with in-house scripts, which can be found at https://github.com/
learningmatter-mit/NeuralForceField. We propagated the elements of the electronic wavefunction in the
adiabatic basis, and corrected the sign of the force NACV by minimizing its change from the previous step. The
momentum was re-scaled in the direction of the NACV after a hop [115]. All other parameters were unchanged
from the DANN-NAMD simulations. Cis trajectories were propagated for 200 fs, and trans trajectories for a
maximum of 1.5 ps. For the former, we extended trajectories that had hopped within the last 50 fs, or not
hopped at all, until at least 50 fs had passed since they hopped. For the latter, we stopped a trajectory if it had
lasted at least 500 fs and had hopped more than 300 fs earlier.

B. Transfer learning

To validate the yield results for substituted compounds, we performed DANN-NAMD for the top candidates
using a set of highly accurate models. Each model was fine-tuned for a single species only, which allowed it
to achieve high accuracy on that one molecule. This transfer learning strategy was used in place of ab initio
NAMD because the latter would be prohibitively slow for all but the smallest molecules. For example, consider
molecule 169, which has only 54 atoms. We found that a single gradient or NACV calculation for this species
took approximately 50 minutes with 8 CPU cores. Since trans derivatives must be simulated for at least 1 ps,
and since the time step must be no larger than 0.5 fs, we would need to perform 2,000 QC calculations for
each trajectory. Assuming parallel calculation of the NACVs and gradients at each step, an ab initio simulation
would take 70 days. By contrast, the fine-tuning approach allows us to perform highly accurate simulations for
tens to hundreds of species.

Each new model was refined from the original network using QC data from a single species. The initial training
geometries were sampled from DANN-NAMD simulations with the original DANN model. A committee of three

https://github.com/learningmatter-mit/NeuralForceField
https://github.com/learningmatter-mit/NeuralForceField


33

lr lrmin patience factor batch size ρE0 ρE1 ρ∆E01 ρf0 ρf1 ρref ρnacv

10−4 10−5 50 0.5 1 0.3 0.3 0.5 1 1 0 1

Table S7. Training parameters used for transfer learning. “Patience” refers to the number of epochs without an im-
provement in validation loss before the learning rate is reduced. “Factor” is the amount by which the learning rate is
lowered.

DANN models, each trained on the entire dataset, was used to select the initial geometries (see below). Three
fine-tuned models were then trained. Each was initialized with a different random seed and trained with different
data splits. 90% of the data was used for training and 10% for validation. The first model was subsequently
used for DANN-NAMD. Geometries were selected from these simulations using the newly-trained committee,
and each geometry received QC calculations. This data was added to the training set, each committee model
was re-trained, and the cycle was repeated as in Fig. 2(b). After each cycle we evaluated the model accuracy
using the geometries generated by DANN-NAMD.

Initially we selected only 50 geometries in each round of active learning. Once we narrowed our focus to two
species, we sampled 500 geometries in each round. The geometries were sampled according to the following four
strategies. One third was sampled randomly. One third was chosen by the prediction variance in the excited
state forces. Those with the highest variance were selected. We used only the uncertainty in the forces, and
not the energies, because the former is a better indicator of trajectory instability [81]. One sixth was chosen by
proximity to a CI (Eq. (S13) with ∆E = 0.2 eV). The final sixth was chosen to sample excited-state barriers.
In particular, we sampled geometries with probability

p ∝ exp [(E − Emin)/(kBT )] . (S29)

Here E is the excited state energy, Emin is the minimum excited sate energy in the trajectory, and T = 300
K. We only sampled configurations from 50 fs or later in the simulations. This was done to avoid the initial
high-energy geometries encountered before relaxation. Equation (S29) is inversely proportional to the room-
temperature Boltzmann probability, and thus assigns the highest weight to the highest-energy configurations.

Transfer learning has previously been used to account for solvent effects [37] and to reach higher levels of QC
theory [37, 133] with only a small portion of the training set. Typically the majority of the network weights
are frozen during re-training. This leaves modifiable parameters in only the final few layers. However, we found
that the best results were obtained without any parameter freezing. We therefore allowed all parameters to
be modified during re-training. Further, we found it best to start with the normal learning rate rather than a
reduced one. We also did not use a reference loss, as its effect on the original DANN results was minor, and
possibly even harmful. The full set of training parameters can be found in Table S7. All trajectory parameters
were unchanged from the screening phase. For final inference we performed DANN-NAMD for 5 ps with 2,000
trajectories, using 500 ps of ground state MD.

The accuracy of the fine-tuned networks is shown in Tables S8 and S9. Statistics are shown for 500 geometries
that were sampled from DANN-NAMD for each molecule using the final trained networks. The model errors
are well below 1 kcal/mol(/Å) for geometries sampled by all methods other than uncertainty. The error on the
uncertainty-selected configurations is under 2 kcal/mol(/Å) in all cases. Since these geometries are specifically
chosen to have the highest error, and since their errors are still rather small, we can be confident in the accuracy
of the models. We note, however, that the average error for the uncertain geometries depends on how many
trajectories are run. Running more trajectories means sampling more configurations, and hence finding more
geometries with high uncertainty. As mentioned above, we ran 100 trajectories for 5 ps each for both screening
and transfer learning (2,000 trajectories were used for the final predictions). We saved frames every 15 fs, leading
to 33,333 geometries in total. Since we picked the 167 most uncertain frames, our sample is roughly the same
as choosing the top 0.5% of all geometries with the highest error.

One reason that we did not use transfer learning for the unsubstituted compounds was severe spin contami-
nation. This is an artifact of unrestricted SF-TDDFT, and is a well-documented problem in NAMD for trans
azobenzene [72]. After the first round of active learning, we found that the force error for the unsubstituted
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Sampled by Metric E0 E1 ∆E01
~F0

~F1 ~g01

ZN MAE (↓) 0.48 0.42 0.44 0.83 0.82 0.52
R2 (↑) 1.00 1.00 0.96 0.99 0.99 0.86

Barrier MAE (↓) 0.62 0.93 0.86 0.67 0.82 0.66
R2 (↑) 0.99 0.99 0.99 1.00 0.99 0.88

Random MAE (↓) 0.74 0.80 0.86 0.71 0.77 0.89
R2 (↑) 0.99 0.99 0.98 1.00 1.00 0.88

Uncertainty MAE (↓) 0.74 1.26 1.09 0.83 1.36 1.04
R2 (↑) 0.99 0.99 0.99 0.99 0.97 0.73

Table S8. Test set statistics for the final TL model of species 165. Results are divided by the method used to select
samples. “ZN” uses Zhu-Nakamura gap-based sampling [Eq. (S13)] and “barrier” uses Eq. (S29). 1,244 geometries were
used for fine-tuning.

Sampled by Metric E0 E1 ∆E01
~F0

~F1 ~g01

ZN MAE (↓) 0.67 0.54 0.39 0.87 0.84 0.64
R2 (↑) 0.98 0.98 0.99 0.99 0.99 0.82

Barrier MAE (↓) 0.89 0.74 0.41 0.61 0.57 0.51
R2 (↑) 0.99 0.95 1.00 1.00 1.00 0.98

Random MAE (↓) 0.58 0.66 0.51 0.67 0.70 0.78
R2 (↑) 0.99 1.00 1.00 1.00 1.00 0.96

Uncertainty MAE (↓) 0.72 1.66 1.90 0.83 1.53 1.01
R2 (↑) 0.99 0.93 0.97 0.99 0.95 0.92

Table S9. As in Table S8, but for species 169. 2,445 geometries were used for fine-tuning.

models increased to 8 kcal/mol/Å. This error did not drop significantly with more data, even though the new
geometries were fairly close to the Franck-Condon region. This issue did not occur with any of the derivatives.
We found that the error was correlated with 〈S2〉, and reasoned that our method of singlet selection (Sec. IID)
was likely choosing triplet excited states. This highlights the issues inherent in SF-TDDFT, and reinforces the
need for low-cost, spin-complete alternatives [28–30].

Lastly, we note that both the ab initio and transfer-learned cis quantum yields were noticeably higher than
in other SF-TDDFT studies [72]. This is likely because we used MD to initiate the trajectories, rather than
normal-mode or Wigner sampling based on the harmonic approximation. Our experiments showed that normal-
mode sampling led to decreased cis yields, closer to those reported in Ref. [72]. Unlike the trans isomer, cis
azobenzene is somewhat flexible, with significant torsions occurring during ground-state MD. This indicates
that the harmonic approximation should be avoided when possible. Indeed, using MD ground state sampling
together with FS dynamics for cis azobenzene, we obtained a yield of 60 ± 4%; this is in excellent agreement
with experimental values in non-polar solution, which are close to 55% on average [73]. It is in much better
agreement than the value of 34% obtained with FS surface hopping in Ref. [72]. Since we used the same
electronic structure method and the same surface hopping approach, we can be confident that the difference is
mainly due to MD sampling.
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C. Conical intersection pathways

We labeled the CI pathway of each trans trajectory according to its last hopping geometry. Each geometry
was compared to two reference planar CIs and two reference rotational CIs. The trajectory was labeled by the
reference CI that was the closest to the hopping geometry. That is, if a trajectory hopped at a geometry closer
to one of the rotational CIs, it was labeled a rotational trajectory, and similarly for the planar CI.

The reference CIs were chosen from the set of all hopping geometries in the trajectories. The two rotational
CIs were those with dihedral angles closest to 90◦ and 270◦, respectively, and max(αCNN, αNNC) closest to 138◦.
The two planar CIs were those with dihedral angles closest to 186◦ and 174◦, respectively, and both max(αCNN

and αNNC) closest to 148◦. The angles are those of the optimized CI geometries in Ref. [7]. For the derivative
169, we further optimized each of the reference structures to minimize the gap and hence obtain a true CI. For
each trajectory we computed the RMSD between the CNNC atoms of the hopping geometry and the CNNC
atoms of the reference CIs.

We additionally enforced that a hopping geometry could only be considered planar if |180−θ| ≤ θ0, where θ is
the CNNC dihedral angle and θ0 is a cutoff value. We chose θ0 = 75◦ for azobenzene and 65◦ for 169. Without
this constraint, many of the hopping geometries labeled “planar” in 169 actually led to isomerization. This made
a dihedral constraint necessary. On the other hand, when we only labeled all geometries with |θ − 180| ≤ 45◦

as planar [7], we found through visual inspection that many non-reactive CI geometries were mislabeled as
rotational. Using the minimal distance to a reference CI, together with a modest dihedral constraint, led to the
most qualitatively reasonable results. We confirmed that none of the geometries labeled as “planar CI” with our
metric led to switching, which further reinforced the soundness of our approach.

XV. Figure details

A. Computational speed-up

Here we describe how the speeds of ML and QC calculations were computed. For QC, we first computed the
run time of one gradient calculation on a single geometry, denoted tcalc. The node time was then calculated as
tnode = tcalc/ncalc, with ncalc = (cores per node)/(cores per job). We assumed 40 cores per node. All QC jobs
were performed with 8 cores, and so ncalc was equal to 5.

For ML we performed a batched calculation on ten copies of each geometry, and computed
one gradient. The node time was computed as tnode = tcalc/ncalc, with ncalc = 10 ·
(total memory per gpu)/(memory used in calculation) · (GPUs per node). We set (total memory per gpu) = 32
GB and (GPUs per node) = 2. We used a script that performed one batched calculation on ten copies of a
random geometry, and re-ran it 7,000 times. For each iteration we used the nvidia-smi command with the
PID of the current job to access the GPU memory. We re-ran the script many times, rather than running many
calculations in one script, because nvidia-smi does not account for all freed memory until a job is finished.
That is, after one calculation is finished, nvidia-smi shows that GPU memory is still being occupied by the
job. This occurs even after all local variables are deleted. Hence running multiple calculations in one script
would yield an overestimated GPU memory.

In the above calculation, we implicitly assumed that multiplying the batch size by x would lead to an x-fold
increase in memory. In practice we have found that the memory is increased by less than that. This means that
the ML speedup in Fig. 3 is a conservative estimate.

B. Diabatic energies

Since three diabatic states were used in the DANN model, and since all three were coupled near the CI, it
would be incorrect to plot only two states in Fig. 3(b). We therefore applied a fixed rotation matrix, U 6= U(~R),
to generate a new diabatic Hamiltonian with only two coupled states. The new diabatic Hamiltonian was given



36

by H′d(~R) = U†Hd(~R)U. Note that any position-independent rotation matrix can be brought outside the
gradient in Eq. (1), and so H′d is still diabatic. The rotation matrix was chosen to diagonalize Hd at the CI,
so that U†Hd(~RCI)U = diag({E}). This led to d′00 = d′11 and d′01 = 0 at the CI. Hence the lowest two rotated
states were the most important contributors to E0 and E1, and were therefore used in Fig. 3(b).

XVI. Intensive and extensive quantities

The DANN model predicts each property by summing over atomic contributions, just as in the PaiNN
model. This guarantees size-extensivity. However, as explained below, the off-diagonal elements of Hd should
be intensive, in the sense that atoms not involved in the excitation should not contribute to these values.
Nonetheless, we found that summation for these terms gave better results than averaging. This was true even
when using a learnable weighted average. Atom-wise summation can still generate accurate dnm, because the
readout network can simply map unimportant atoms to zero.

To demonstrate extensivity and intensivity, consider two uncoupled subsystems, A and B. The total clamped
nucleus Hamiltonian is H(~r, ~R) = HA(~r, ~R) + HB(~r, ~R). Let the excitation of interest be in subsystem A. In
this case the adiabatic states involve only excitations in subsystem A, so that the nth diabatic wave function is
written as

ψd,n(~r; ~R) = ψB
ad,0(~r; ~R)

∑
k

Unkψ
A
ad,k(~r; ~R). (S30)

The diabatic state is a direct product of the ground state wave function of system B, ψB
ad,0(~r; ~R), and a rotation

of the adiabatic states of system A, ψA
ad,k(~r; ~R). The matrix elements of Hd are then given by

(Hd)nm = 〈ψd,n|H(~r, ~R)|ψd,m〉

=
∑
kl

U∗nkUml〈ψB
ad,0ψ

A
ad,k| HA(~r, ~R) +HB(~r, ~R) |ψB

ad,0ψ
A
ad,l〉

=
∑
kl

U∗nkUml

(
Ek,A + EB

)
δkl

=
∑
k

U∗inUmkEk,A + EB

(
UU†

)
mn

= HA
d,nm + EB δnm. (S31)

Hence the diagonal elements of Hd each gain the adiabatic energy of B, while the off-diagonal elements remain
the same. To understand this result physically, consider that adding a scalar multiplied by the identity yields
eigenvalues that are each shifted by the scalar. This means that the eigenvalues of Hd are each shifted by
EB . Therefore the excitation energy is unchanged, which is the expected behavior upon adding an uncoupled
system. Note also that extensivity is sometimes described as doubling the energy when the system size is doubled.
However, this definition is too narrow, as it applies to only one adiabatic energy at a time. For example, if
subsystem B is a copy of subsystem A, then EB = E0,A, meaning that E0 = E0,A + EB = 2E0,A, and so the
ground state energy is indeed doubled. However, E1 = E1,A + EB = 2E1,A − gap, where gap = E1,A − E0,A.
Therefore, the excited state energy is not doubled. A more general definition is that the energy of the second
subsystem is added to each adiabatic energy.

This analysis shows that the off-diagonal elements of Hd are intensive. The adiabatic energy gap is also
intensive. Intensive here means that adding a subsystem that does not participate in the excitation does not
modify the quantity. Such properties can naturally be modeled with an attention mechanism [134–137] that
learns the importance of each atom to the excitation. For example, the excitation energy can be modeled as
an attention-weighted sum over atomwise quantities. However, as discussed in Supplementary Sec. IX, this
approach led to worse performance than simply predicting extensive energies for each state.



37

XVII. Proof of diabaticity

Here we prove Eq. (1) in the main text. Using bra-ket notation for the wave functions, we define the diabatic
states as a linear combination of adiabatic states,

|ψd,n〉 =
∑
m

|ψad,m〉V ∗nm, (S32)

where V is a unitary matrix. Multiplying each side by Vnn′ and summing over n yields

|ψad,n〉 =
∑
m

|ψd,m〉Vmn, (S33)

where we have renamed the dummy indices, n→ m and n′ → n. We have also used the fact that (V†V)nm = δnm
for any unitary matrix, where δnm is the Kronecker delta. Given the connection between diabatic and adiabatic
states, we can relate V to the derivative coupling ~k:

~knm ≡ 〈ψad,n| ∇R |ψad,m〉

=
∑
ij

V ∗jn (∇RVim 〈ψd,j |ψd,i〉+ Vim 〈ψd,j | ∇R |ψd,i〉)

=
∑
i

V ∗in∇RVim. (S34)

We have used the fact that, by definition, the derivative coupling between any two diabatic states is zero. We
have also used the orthonormality of the diabatic states:

〈ψd,j |ψd,i〉 =
∑
nm

VjnV
∗
im 〈ψad,n|ψad,m〉 =

∑
nm

VjnV
∗
imδnm =

(
VV†

)
ij

= δij , (S35)

which follows from the orthonormality of the adiabatic wave functions. Meanwhile, by construction, the Hamil-
tonian produced by the model has eigenvalues equal to the adiabatic energies:

(Hd)nm =
(
Udiag({E})U†

)
nm

=
∑
ij

Uni (Eiδij)U
∗
mj

=

(∑
i

Uni 〈ψad,i|

)
Ĥ

∑
j

U∗mj |ψad,j〉

 , (S36)

where U is the unitary matrix that diagonalizes Hd, Ĥ is the Hamiltonian operator, and we have used the
relation 〈ψad,j | Ĥ |ψad,i〉 = Ei 〈ψad,j |ψad,i〉 = Eiδij . Comparing Eqs. (S36) and (S32), we see that Hd is the
representation of Ĥ in a different electronic basis. In particular, if we choose U = V, such that U satisfies Eq.
(S34), then Hd is the representation of Ĥ in the diabatic basis.

The model could be trained directly with Eq. (S34). However, the equation is numerically ill-posed because
~knm diverges at conical intersections. It is preferable to work instead with the force coupling, ~gnm. We now
show that Eq. (1), which is defined in terms of ~gnm, holds only if (S34) is satisfied. The left-hand side of Eq.
(1) can be written as∑

ij

U∗in∇R

(
Udiag({E})U†

)
ij
Ujm

=
∑
ijk

U∗in
[
(∇REk)UikU

∗
jk + Ek (∇RUik)U∗jk + Ek Uik(∇RU

∗
jk)
]
Ujm. (S37)
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The first term is ∑
k

(U†U)nk (∇REk) (U†U)km = (∇REn)δnm, (S38)

where we have used the fact that (U†U)nm = δnm. Substituting Eq. (S34) with V = U, the second term is∑
k

~knk(U†U)kmEk = ~knmEm. (S39)

Performing the same substitution for the third term gives∑
k

~k∗mk(U†U)nkEk = −~knmEn, (S40)

where we have used the anti-Hermitian property ~k∗mn = −~knm. Adding the three terms gives

(
U†(∇RHd)U

)
nm

=

{
∇REn, if n = m,

(Em − En)~knm, if n 6= m.
(S41)

Noting that ~fn = −∇REn and ~gnm = (Em − En)~knm gives Eq. (1) in the main text. Hence Eq. (1) can only
hold if Eq. (S34) is true. Therefore, enforcing Eq. (1) ensures that there is no derivative coupling between any
pair of diabatic states. Note that in the main text we used three diabatic states, and trained only on energies
and couplings between the first two adiabatic states. This still means that all three diabatic states are properly
diabatic: if Eq. (1) is satisfied for even one pair of adiabatic states, then the derivative coupling must be zero
between all pairs of diabatic states.
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XVIII. Training species

Here we provide the motifs and substituents used for combinatorial molecule generation, together with a list
of the literature species used for dense configurational sampling. Species with a net charge were excluded from
training but are given here for completeness. In some cases only the cis or trans isomer was actually investigated
experimentally, but in all cases we reference the publication for both isomers.

Many species in both the training and test set had experimental S1 yields in non-polar solution. We did
not put all such molecules in the test set, because this would mean losing hundreds of thousands of training
geometries. Instead we used the 40 species with the fewest QC calculations.

Table S10. Motifs used for combinatorial species generation. Examples of literature species for each motif are also given.
The species numbers are those in Tables S12 and S13.

Graphs Literature species

N
N

X

X

NN XX

1, 2, 25, 26, 63, 64, 125, 126

N
N

X

Y

NN

Y X

19, 20, 27, 28, 37, 38, 39, 40, 61, 62, 69, 70, 73, 74, 75, 76, 83, 84,
97, 98, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 127, 128,

129, 130, 147, 148, 155, 156, 157, 158, 163, 164

N
N

Y

Y X

X

NN

Y Y

X X

67, 68, 87, 88, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108

N
N

Y

Y X

X

X

X

NN

Y
Y

X
X

X
X

9, 10, 13, 14, 15, 16, 17, 18, 21, 22, 95, 96, 131, 132, 133, 134, 135,
136, 137, 138, 139, 140, 161, 162
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Table S11. Substituents used for combinatorial species generation. “Azo” denotes the azobenzene attachment site.

SMILES Graph

[Azo]N(C)Cc1ccccn1 Azo

N

N

[Azo]N Azo NH2

[Azo]N(CC)Cc1ccccc1 Azo

N

[Azo]C(N)=O
Azo NH2

O

[Azo]OCc1cc(OCc2ccccc2)cc(OCc2ccccc2)c1

Azo
O

O

O

[Azo]N1CCCCC1
Azo

N

[Azo]c1ccccc1
Azo

[Azo]NC(=O)CCl Azo
N
H

O

Cl

[Azo]OC(C)=O
Azo

O

O

[Azo]N1CCN(C(C)=O)CC1

Azo
N

N

O

[Azo]NC(=O)C[N+](CC)(CC)CC
Azo

N
H

O

N+

[Azo]Cl Azo Cl

[Azo]CO
Azo OH

[Azo]C(=O)OCC
Azo

O

O

[Azo]CC
Azo

[Azo]C(=O)O
Azo

O

OH

[Azo]C#C Azo
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[Azo]NC(=O)CN1C(=O)C=CC1=O Azo
N
H

O

N

O

O

[Azo][N+](=O)[O-]
Azo

N+

O

O-

[Azo][N+](C)(C)C Azo N+

[Azo]O Azo OH

[Azo]Oc1c(N)cccc1CC(C)C
Azo

O

NH2

[Azo]F Azo F

[Azo]N1CCN(C(=O)CCl)CC1

Azo
N

N

O

Cl

[Azo]Oc1c(N)cccc1C(C)C
Azo

O

NH2

[Azo]NCc1ccccn1
Azo

H
N

N

[Azo]OCc1ccccc1
Azo

O

[Azo]NC(C)=O Azo
N
H

O

[Azo]c1cn(-c2ccc3cc4ccccc4cc3c2)nn1 AzoN

N N

[Azo]C Azo

[Azo]C(=O)C(F)(F)F
Azo

O

F

F
F

[Azo]N1CCN(C)CC1
Azo

N

N

[Azo]c1cn(-c2cccc3ccccc23)nn1

Azo

N
N

N

[Azo]c1cn(-c2ccccc2)nn1 AzoN

N N
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[Azo]C(C)C Azo

[Azo]C(=O)OC
Azo

O

O

[Azo]N1CCOCC1
Azo

N

O

[Azo]N(CC)c1ccccc1

Azo

N

[Azo]N(C)C
Azo

N

[Azo]N1CCCC1 Azo
N

[Azo]N1CC2CN(C(C)=O)CC2C1 AzoNN

O

[Azo]C(C)(C)C
Azo

[Azo]NC(=O)C=C Azo
N
H

O

[Azo]N(CCCCCCCC)CCCCCCCC AzoN

[Azo]OCC Azo
O

[Azo]N(CC)CC Azo

N

[Azo]N(c1ccc2c(c1)C(C)(C)c1ccccc1-
2)c1ccc2c(c1)C(C)(C)c1ccccc1-2

Azo

N

[Azo]NC(=O)CCC[C@H](C[C@H]
(N)C(=O)O)C(=O)O Azo

N
H

O NH2

O

OH

O OH
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Table S12. Test set species and literature quantum yields. For papers that reported the yield at different wavelengths,
we chose the wavelength closest to the n − π∗ (S1) absorption maximum. Quantum yields computed with FS surface
hopping using the diabatic model are also shown.

# SMILES Graph Ref. (S1 yield, solvent)

1
c1ccc(CNc2ccccc2/N=N/
c2ccccc2NCc2ccccn2)nc1

N
H

N
N

H
N

N

N

[73]
Exp: (02, many)

Calc: 0 ± 0

2
c1ccc(CNc2ccccc2/N=N\
c2ccccc2NCc2ccccn2)nc1

NH

N

N

H
N

N

N

[73]
Exp: None

Calc: 0.51 ± 0.02

3 c1ccc(/N=N/c2cccc3ccccc23)cc1 N
N [101]

Exp: (0.25, methyl
cyclopentane)
Calc: 0.43 ± 0.02

4 c1ccc(/N=N\c2cccc3ccccc23)cc1

N
N

[101]

Exp: (0.49, methyl
cyclopentane)
Calc: 0.57 ± 0.02

5

CC1(C)c2ccccc2-
c2ccc(N(c3ccc(/N=N/

c4ccccc4)cc3)c3ccc4c(c3)C(C)(C)
c3ccccc3-4)cc21

N

N N

[138]
Exp: (0.29, toluene)
Calc: 0.19 ± 0.05

6

CC1(C)c2ccccc2-
c2ccc(N(c3ccc(/N=N\

c4ccccc4)cc3)c3ccc4c(c3)C(C)(C)
c3ccccc3-4)cc21 N

N N

[138]
Exp: (0.31, toluene)
Calc: 0.55 ± 0.02
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7 Cc1cc(C)c(/N=N/c2ccccc2)c(C)c1 N
N

[139]

Exp: (0.16,
methylcyclohexane
and isohexane)
Calc: 0.34 ± 0.03

8 Cc1cc(C)c(/N=N\c2ccccc2)c(C)c1
N

N

[139]

Exp: (0.38,
methylcyclohexane
and isohexane)
Calc: 0.60 ± 0.02

9
Cc1cc(C)c(/N=N/c2c(C)

cc(C)cc2C)c(C)c1 N
N

[102,
139]

Exp: (0.16-0.22,
methylcyclohexane
and isohexane) [139],
(0.24, n-hexane) [102]

Calc: 0.41 ± 0.02

10
Cc1cc(C)c(/N=N\

c2c(C)cc(C)cc2C)c(C)c1

N
N [102,

139]

Exp: (0.44,
methylcyclohexane
and isohexane) [139],
(0.5, n-hexane) [102]
Calc: 0.59 ± 0.02

11
Cc1cc(/N=N/c2ccccc2N

(C)Cc2ccccn2)c(N(C)Cc2ccccn2)cc1O N
N

N

N

N

N

OH

[74]
Exp: (02, many)
Calc: 0.33 ± 0.04

12
Cc1cc(/N=N\c2ccccc2N

(C)Cc2ccccn2)c(N(C)Cc2ccccn2)cc1O
N

N

N
N

N

N

OH

[74]
Exp: None

Calc: 0.53 ± 0.02

13
CCc1cc(CC)c(/N=N/

c2c(CC)cc(CC)cc2CC)c(CC)c1 N
N

[102]

Exp: (0.25,
n-hexane)

Calc: 0.32 ± 0.02

14
CCc1cc(CC)c(/N=N\

c2c(CC)cc(CC)cc2CC)c(CC)c1
N

N

[102]
Exp: (0.5, n-hexane)
Calc: 0.49 ± 0.02
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15
CC(C)c1cc(C(C)C)c(/N=N/c2c(C

(C)C)cc(C(C)C)cc2C(C)C)c(C(C)C)c1 N
N [102]

Exp: (0.19,
n-hexane)

Calc: 0.27 ± 0.02

16
CC(C)c1cc(C(C)C)c(/N=N\c2c(C

(C)C)cc(C(C)C)cc2C(C)C)c(C(C)C)c1

N

N

[102]

Exp: (0.55,
n-hexane)

Calc: 0.53 ± 0.02

17

CC(C)(C)c1cc(C(C)(C)C)c(/N=N/
c2c(C(C)(C)C)cc(C(C)(C)C)cc2C

(C)(C)C)c(C(C)(C)C)c1 N
N [102]

Exp: (0, n-hexane)
Calc: 0.01 ± 0.00

18

CC(C)(C)c1cc(C(C)(C)C)c(/N=N\
c2c(C(C)(C)C)cc(C(C)(C)C)cc2C

(C)(C)C)c(C(C)(C)C)c1

N

N

[102]
Exp: None

Calc: 0.78 ± 0.02

19
CCCCCCCCN(CCCCCCCC)c1ccc

(/N=N/c2ccc(C(=O)C(F)(F)F)cc2)cc1

N

N
N

O
F

F

F

[103]
Exp: (0.163, toluene)

Calc: 0.08 ± 0.04

20
CCCCCCCCN(CCCCCCCC)c1ccc

(/N=N\c2ccc(C(=O)C(F)(F)F)cc2)cc1

N

N
N

O

F
F

F
[103]

Exp: (0.7-13,
toluene)

Calc: 0.66 ± 0.02

21
CCOC(=O)c1cc(F)c(/N=N/c2c
(F)cc(C(=O)OCC)cc2F)c(F)c1

O

O

F

N
N

F

O

O
F

F

[104]
Exp: (0.1, hexane)
Calc: 0.08 ± 0.02
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22
CCOC(=O)c1cc(F)c(/N=N\c2c
(F)cc(C(=O)OCC)cc2F)c(F)c1

O

O

F

N
N

F

OO

F F

[104]
Exp: (0.53, hexane)
Calc: 0.44 ± 0.02

23
CC(=O)Oc1cc(N(C)Cc2ccccn2)c

(/N=N/c2ccccc2N(C)Cc2ccccn2)cc1C O

ON
N

N
N

N
N

[74]
Exp: (0.17, C6D6)
Calc: 0.30 ± 0.04

24
CC(=O)Oc1cc(N(C)Cc2ccccn2)c

(/N=N\c2ccccc2N(C)Cc2ccccn2)cc1C
O

ON
N

N

N

N

N

[74]
Exp: None

Calc: 0.51 ± 0.02

25
CN(Cc1ccccn1)c1ccccc1

/N=N/c1ccccc1N(C)Cc1ccccn1

N

N

N
N

N

N

[73]
Exp: (0.19, CDCl3)
Calc: 0.37 ± 0.03

26
CN(Cc1ccccn1)c1ccccc1

/N=N\c1ccccc1N(C)Cc1ccccn1

N

N

N

N

N
N

[73]
Exp: None

Calc: 0.48 ± 0.02

27
COc1ccc(/N=N/c2ccc
([N+](=O)[O-])cc2)cc1

O

N
N

N+

O

O-

[139]

Exp: (0.17,
methylcyclohexane
and isohexane)
Calc: 0.05 ± 0.02

28
COc1ccc(/N=N\c2ccc
([N+](=O)[O-])cc2)cc1

O

N
N

N+

O

O-

[139]

Exp: (0.55,
methylcyclohexane
and isohexane)
Calc: 0.46 ± 0.02
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29
COc1cc(N(C)Cc2ccccn2)

c(/N=N/c2ccccc2N(C)Cc2ccccn2)cc1C

ON
N

N
N

N
N

[74]
Exp: (02, many)
Calc: 0.35 ± 0.03

30
COc1cc(N(C)Cc2ccccn2)

c(/N=N\c2ccccc2N(C)Cc2ccccn2)cc1C

ON
N

N

N

N

N

[74]
Exp: None

Calc: 0.54 ± 0.02

31 Fc1cccc(F)c1/N=N/c1ccccc1

F

F

N
N [104]

Exp: (0.32, hexane)
Calc: 0.36 ± 0.02

32 Fc1cccc(F)c1/N=N\c1ccccc1
F

F

N

N [104]
Exp: (0.55, hexane)
Calc: 0.53 ± 0.02

33
Fc1cccc(F)c1/N=N/c1c(F)cc(-

c2ccccc2)cc1F

F

F

N
N

F

F

[105]

Exp: (0.15 ± 0.015,
n-hexane)

Calc: 0.41 ± 0.02

34
Fc1cccc(F)c1/N=N\c1c(F)cc(-

c2ccccc2)cc1F
FF

N
N

F

F

[105]

Exp: (0.28 ± 0.028,
n-hexane)

Calc: 0.51 ± 0.02

35 Nc1ccccc1/N=N/c1ccccc1NCc1ccccn1

H2N

N
N

H
N

N

[73]
Exp: (02, many)
Calc: 0.04 ± 0.04

36 Nc1ccccc1/N=N\c1ccccc1NCc1ccccn1

NH2

N

N

NH

N

[73]
Exp: None

Calc: 0.54 ± 0.02

37
OCc1ccc(/N=N/c2ccc
(OCc3ccccc3)cc2)cc1

OH

N
N

O

[140]

Exp: (0.4,
dichloromethane)
Calc: 0.13 ± 0.03
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38
OCc1ccc(/N=N\c2ccc
(OCc3ccccc3)cc2)cc1

OH

N
N

O [140]

Exp: (0.61,
dichloromethane)
Calc: 0.53 ± 0.02

39

OCc1ccc(/N=N/c2ccc
(OCc3cc(OCc4ccccc4)cc
(OCc4ccccc4)c3)cc2)cc1

OH

N
N

O

O

O

[140]

Exp: (0.36,
dichloromethane)
Calc: 0.13 ± 0.03

40

OCc1ccc(/N=N\c2ccc
(OCc3cc(OCc4ccccc4)cc
(OCc4ccccc4)c3)cc2)cc1

OH

N
N

O

O

O

[140]

Exp: (0.64,
dichloromethane)
Calc: 0.54 ± 0.02

2 In Refs. [73, 74], the non-reactive azobenzene derivatives
were irradiated from 300 to 600 nm. This range covered
both S0 → S1 and S0 → S2 excitation. Only small changes
in absorbance were observed, indicating minimal trans→cis
isomerization. However, the S2 transition was highly red-
shifted, and thus had significant overlap with the S1 tran-

sition. The S2 transition also had a much higher oscillator
strength. Hence the small absorbance changes could have
been due to the S1 transition, and so the S1 yield may not
have been precisely 0. The S1 yield should therefore be inter-
preted as “small”, rather than exactly zero.

3 Averaged over excitations at 313, 436, and 546 nm.
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Table S13. Training and validation set literature species used for dense configurational sampling.

# SMILES Graph Ref.

41 c1ccc2c(c1)CCc1ccccc1/N=N/2
N
N

[141]

42 c1ccc2c(c1)CCc1ccccc1/N=N\2
N N

[141]

43 c1ccc2c(c1)CNc1ccccc1/N=N/2
H
N

N
N

[142]

44 c1ccc2c(c1)CNc1ccccc1/N=N\2
H
N

N N

[142]

45 c1ccc2c(c1)COc1ccccc1/N=N/2
O

N
N

[142]

46 c1ccc2c(c1)COc1ccccc1/N=N\2
O

N N

[142]

47 c1ccc2c(c1)CSc1ccccc1/N=N/2
S

N
N

[142]

48 c1ccc2c(c1)CSc1ccccc1/N=N\2
S

N N

[142]

49 c1ccc2cc(/N=N/c3ccc4ccccc4c3)ccc2c1
N

N [101]

50 c1ccc2cc(/N=N\c3ccc4ccccc4c3)ccc2c1

N
N

[101]

51 c1ccc(/N=N/c2ccccc2)cc1 N
N

[102, 105,
106, 108,
110, 139,

143]

52 c1ccc(/N=N\c2ccccc2)cc1

N
N

[102, 105,
106, 108,
110, 139,

143]
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53
CC1(C)c2cccc(N)c2Oc2c(/N=N/

c3cccc4c3Oc3c(N)cccc3C4(C)C)cccc21 NH2

O

N
N

O

NH2 [144]

54
CC1(C)c2cccc(N)c2Oc2c(/N=N\

c3cccc4c3Oc3c(N)cccc3C4(C)C)cccc21 NH2

O

N
N

O

NH2

[144]

55 Cc1cccc(C)c1/N=N/c1c(C)cccc1C N
N

[145]

56 Cc1cccc(C)c1/N=N\c1c(C)cccc1C

N
N

[145]

57 Cc1cccc(C)c1/N=N/c1ccc(C(=O)O)cc1
N
N

O

OH
[146]

58 Cc1cccc(C)c1/N=N\c1ccc(C(=O)O)cc1

N

N

O OH

[146]

59 Cc1ccc(/N=N/c2ccccc2)cc1
N

N [143]

60 Cc1ccc(/N=N\c2ccccc2)cc1

N
N

[143]

61 Cc1ccc(/N=N/c2ccc(C)cc2)cc1
N

N [143]

62 Cc1ccc(/N=N\c2ccc(C)cc2)cc1

N
N

[143]
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63 CCc1ccccc1/N=N/c1ccccc1CC N
N

[145]

64 CCc1ccccc1/N=N\c1ccccc1CC
N
N [145]

65
C#Cc1ccc(/N=N/c2ccc

(N(CC)CC)cc2)c([N+](=O)[O-])c1 N
N

N

N+

O

O-

[147]

66
C#Cc1ccc(/N=N\c2ccc

(N(CC)CC)cc2)c([N+](=O)[O-])c1

N
N

N

N+
O-O

[147]

67
CC(C)c1ccc(/N=N/c2ccc

(C(C)C)cc2C(C)C)c(C(C)C)c1 N
N [102]

68
CC(C)c1ccc(/N=N\c2ccc

(C(C)C)cc2C(C)C)c(C(C)C)c1
N

N
[102]

69

C=CC(=O)Nc1ccc(/N=N/c2ccc
(NC(=O)C[N+](CC)(CC)CC)cc2)cc1

O

H
N

N
N

N
H

O

N+

[148]

70
C=CC(=O)Nc1ccc(/N=N\c2ccc

(NC(=O)C[N+](CC)(CC)CC)cc2)cc1

O

H
N

N
N

HN

O

N+

[148]
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71 CCN1Cc2ccccc2/N=N/c2ccccc21 N

N
N

[142]

72 CCN1Cc2ccccc2/N=N\c2ccccc21
N

NN

[142]

73
CCN(c1ccccc1)c1ccc(/N=N/

c2ccc(NC(=O)C[N+](CC)(CC)CC)cc2)cc1
N

N
N

N
H

O

N+

[148]

74
CCN(c1ccccc1)c1ccc(/N=N\

c2ccc(NC(=O)C[N+](CC)(CC)CC)cc2)cc1

N

N
N

H
N

O

N+

[148]

75
CCN(Cc1ccccc1)c1ccc(/N=N/

c2ccc(NC(=O)C[N+](CC)(CC)CC)cc2)cc1

N

N
N

NH

O

N+

[148]

76
CCN(Cc1ccccc1)c1ccc(/N=N\

c2ccc(NC(=O)C[N+](CC)(CC)CC)cc2)cc1

N

N
N

H
N

O

N+
[148]
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77

CCN(CC)c1ccc(/N=N/c2ccc
(-c3cn(-c4ccc5cc6ccccc6cc5c4)nn3)cc2

[N+](=O)[O-])cc1

N

N
N

N N

N

N+
O

-O

[147]

78

CCN(CC)c1ccc(/N=N\c2ccc
(-c3cn(-c4ccc5cc6ccccc6cc5c4)nn3)cc2

[N+](=O)[O-])cc1

N

N

NN

N N

N+

O

O-

[147]

79
CCN(CC)c1ccc(/N=N/c2ccc(-c3cn

(-c4cccc5ccccc45)nn3)cc2[N+](=O)[O-])cc1

N

NN

N
N

N

N+

O

O-

[147]

80
CCN(CC)c1ccc(/N=N\c2ccc(-c3cn

(-c4cccc5ccccc45)nn3)cc2[N+](=O)[O-])cc1

N
N

N

N
N

N

N+

O

O-

[147]
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81
CCN(CC)c1ccc(/N=N/c2ccc

(-c3cn(-c4ccccc4)nn3)cc2[N+](=O)[O-])cc1

N

N
N

NN

N

N+

O

-O [147]

82
CCN(CC)c1ccc(/N=N\c2ccc

(-c3cn(-c4ccccc4)nn3)cc2[N+](=O)[O-])cc1

N

N
N

N

N N

N+
O-O

[147]

83
CCN(CC)c1ccc(/N=N/c2ccc

(NC(=O)C[N+](CC)(CC)CC)cc2)cc1

N

N
N

NH

O

N+

[148]

84
CCN(CC)c1ccc(/N=N\c2ccc

(NC(=O)C[N+](CC)(CC)CC)cc2)cc1

N

N
N

H
N

O

N+
[148]

85
CCN(CC)c1ccc(/N=N/c2c(F)

c(F)c(NC(=O)C[N+](CC)(CC)CC)c(F)c2F)cc1

N

N
N

F

F

NH

O

N+

F

F [148]
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86
CCN(CC)c1ccc(/N=N\c2c(F)

c(F)c(NC(=O)C[N+](CC)(CC)CC)c(F)c2F)cc1

N

N
N

F

F

NH

O

N+

F

F [148]

87
CCN(CC)c1cc(NC(C)=O)ccc1/N=N/

c1ccc(NC(C)=O)cc1N(CC)CC
N

N
H

O
N

N

H
N

O

N

[149]

88
CCN(CC)c1cc(NC(C)=O)ccc1/N=N\

c1ccc(NC(C)=O)cc1N(CC)CC

N

H
N

O
N
N

HN

O

N

[149]

89 CCOc1ccc(/N=N/c2ccccc2)cc1

O

N
N [143]

90 CCOc1ccc(/N=N\c2ccccc2)cc1 O

N
N

[143]

91 CC(=O)N1Cc2ccccc2/N=N/c2ccccc21

O

N

N
N

[142]

92 CC(=O)N1Cc2ccccc2/N=N\c2ccccc21

O

N

NN

[142]

93
CC(=O)Nc1ccc2c(c1)CCc1cc
(NC(C)=O)ccc1/N=N/2 O

H
N

H
N

O

N
N

[150]

94
CC(=O)Nc1ccc2c(c1)CCc1cc
(NC(C)=O)ccc1/N=N\2

O

H
N

H
N

O

N N

[150]
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95
CC(=O)Nc1cc(Cl)c(/N=N/c2c
(Cl)cc(NC(C)=O)cc2Cl)c(Cl)c1 O

N
H

Cl

N
N

Cl
H
N

O

Cl
Cl

[151]

96
CC(=O)Nc1cc(Cl)c(/N=N\c2c
(Cl)cc(NC(C)=O)cc2Cl)c(Cl)c1

O

N
H

Cl

N
N

Cl

HN

O

Cl

Cl [151]

97 CC(=O)Nc1ccc(/N=N/c2ccc(NC(C)=O)cc2)cc1 O

H
N

N
N

N
H

O [152]

98 CC(=O)Nc1ccc(/N=N\c2ccc(NC(C)=O)cc2)cc1

O

H
N

N
N

NH

O

[152]

99
CC(=O)Nc1ccc(/N=N/c2ccc

(NC(C)=O)cc2N2CCCC2)c(N2CCCC2)c1 O

H
N

N
N

N
H

O

N

N

[149]

100
CC(=O)Nc1ccc(/N=N\c2ccc

(NC(C)=O)cc2N2CCCC2)c(N2CCCC2)c1
O

H
N

N

N

N
H

O

N

N

[149]

101
CC(=O)Nc1ccc(/N=N/c2ccc

(NC(C)=O)cc2N2CCCCC2)c(N2CCCCC2)c1 O

H
N

N
N

N
H

O

N

N

[149]
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102
CC(=O)Nc1ccc(/N=N\c2ccc

(NC(C)=O)cc2N2CCCCC2)c(N2CCCCC2)c1
O

H
N

N

N

N
H

O

N

N

[149]

103

CC(=O)Nc1ccc(/N=N/c2ccc
(NC(C)=O)cc2N2CCN(C)CC2)

c(N2CCN(C)CC2)c1 O

H
N

N
N

N
H

O

N

N

N

N

[149]

104

CC(=O)Nc1ccc(/N=N\c2ccc
(NC(C)=O)cc2N2CCN(C)CC2)

c(N2CCN(C)CC2)c1
O

H
N

N

N

N
H

O

N

N

N

N

[149]

105
CC(=O)Nc1ccc(/N=N/c2ccc

(NC(C)=O)cc2N2CCOCC2)c(N2CCOCC2)c1 O

H
N

N
N

N
H

O

N

O

N

O

[149]

106
CC(=O)Nc1ccc(/N=N\c2ccc

(NC(C)=O)cc2N2CCOCC2)c(N2CCOCC2)c1
O

H
N

N

N

N
H

O

N

O

N

O

[149]

107
CC(=O)Nc1ccc(/N=N/c2ccc(NC
(C)=O)cc2N(C)C)c(N(C)C)c1 O

H
N

N
N

N
H

O

N

N

[149]

108
CC(=O)Nc1ccc(/N=N\c2ccc(NC
(C)=O)cc2N(C)C)c(N(C)C)c1

O

H
N

N

N

N
H

O

N

N

[149]



58

109 Clc1ccc(/N=N/c2ccccc2)cc1

Cl

N
N [143]

110 Clc1ccc(/N=N\c2ccccc2)cc1 Cl

N
N

[143]

111 CN1Cc2ccccc2/N=N/c2ccccc21
N

N
N

[142]

112 CN1Cc2ccccc2/N=N\c2ccccc21
N

NN

[142]

113 CN(C)c1ccc(/N=N/c2ccccc2)cc1
N

N
N [153, 154]

114 CN(C)c1ccc(/N=N\c2ccccc2)cc1 N

N
N

[153, 154]

115 CN(C)c1ccc(/N=N/c2cccc([N+](=O)[O-])c2)cc1
N

N
N N+

O

O-

[145]

116 CN(C)c1ccc(/N=N\c2cccc([N+](=O)[O-])c2)cc1

N

N
N N+

O

O-

[145]

117 CN(C)c1ccc(/N=N/c2ccc(C(=O)O)cc2)cc1

N

N
N

O

OH

[155]

118 CN(C)c1ccc(/N=N\c2ccc(C(=O)O)cc2)cc1

N

N
N

O

OH

[155]

119 CN(C)c1ccc(/N=N/c2ccc([N+](=O)[O-])cc2)cc1

N

N
N

N+

O

O-

[156]
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120 CN(C)c1ccc(/N=N\c2ccc([N+](=O)[O-])cc2)cc1

N

N
N

N+

O

O-

[156]

121 CN(C)c1ccc(/N=N/c2ccc(S(=O)(=O)O)cc2)cc1

N

N
N

S

O

O
OH

[145]

122 CN(C)c1ccc(/N=N\c2ccc(S(=O)(=O)O)cc2)cc1

N

N
N

S

O

O
OH [145]

123
C[N+](C)(C)c1ccc(/N=N/c2ccc

([N+](C)(C)C)cc2)cc1

N
+

N
N

N
+

[157]

124
C[N+](C)(C)c1ccc(/N=N\c2ccc

([N+](C)(C)C)cc2)cc1
N
+

N
N

N
+

[157]

125 COc1ccccc1/N=N/c1ccccc1OC

O

N
N

O

[145, 158]

126 COc1ccccc1/N=N\c1ccccc1OC

O

N
N

O
[145, 158]

127 COc1ccc(/N=N/c2ccc(CO)cc2)cc1

O

N
N

HO

[140]

128 COc1ccc(/N=N\c2ccc(CO)cc2)cc1
O

N
N

HO

[140]

129 COc1ccc(/N=N/c2ccc(OC)cc2)cc1

O

N
N

O

[145]
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130 COc1ccc(/N=N\c2ccc(OC)cc2)cc1
O

N
N

O

[145]

131

COc1cc(N2CC3CN(C(C)=O)CC3C2)
c(OC)cc1/N=[NH+]/c1cc(OC)c

(N2CC3CN(C(C)=O)CC3C2)cc1OC

O

N

N

O

O

N
NH+

O

N

N

O

O
[159]

132

COc1cc(N2CC3CN(C(C)=O)CC3C2)
c(OC)cc1/N=[NH+]\c1cc(OC)c

(N2CC3CN(C(C)=O)CC3C2)cc1OC

O

NN

O

O

N

NH+

O

N

N

O

O
[159]

133

COc1cc(N2CCN(C(C)=O)CC2)c(OC)
cc1/N=[NH+]/c1cc(OC)c(N2CCN(C

(C)=O)CC2)cc1OC

ON

N

O

O N
N
H
+

O

N

N

O

O

[159]

134

COc1cc(N2CCN(C(C)=O)CC2)c(OC)
cc1/N=[NH+]\c1cc(OC)c(N2CCN(C

(C)=O)CC2)cc1OC

ON

N

O

O N

NH+O

N

N

O

O

[159]
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135

COc1cc(N2CCN(C(=O)CCl)CC2)
cc(OC)c1/N=N/c1c(OC)cc(N2CCN

(C(=O)CCl)CC2)cc1OC

O

N

N

O

Cl

O

N
N

O

N

N

O

Cl

O
[160]

136

COc1cc(N2CCN(C(=O)CCl)CC2)
cc(OC)c1/N=N\c1c(OC)cc(N2CCN

(C(=O)CCl)CC2)cc1OC

O

N
N

O

Cl

O

N

N
O

N

N

O
Cl

O

[160]

137
COc1cc(NC(C)=O)cc(OC)c1/N=N/

c1c(OC)cc(NC(C)=O)cc1OC

ON
H

O

O

N
N

O
H
N

O

O

[151]

138
COc1cc(NC(C)=O)cc(OC)c1/N=N\

c1c(OC)cc(NC(C)=O)cc1OC O

N
H

O
O

N

N
O

HN

O

O
[151]

139
COc1cc(NC(=O)CCl)cc(OC)c1

/N=N/c1c(OC)cc(NC(=O)CCl)cc1OC
O

N
H

O

Cl
O

N
N

O
H
N

O

Cl

O

[151]

140
COc1cc(NC(=O)CCl)cc(OC)c1

/N=N\c1c(OC)cc(NC(=O)CCl)cc1OC

O

N
H

O

Cl
O

N
N O

N
H O

ClO

[151]
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141 COC(=O)c1ccc(/N=N/c2ccccc2)cc1
O

O

N
N

[143]

142 COC(=O)c1ccc(/N=N\c2ccccc2)cc1 O

O

N
N

[143]

143 Fc1cccc(F)c1/N=N/c1c(F)cccc1F

F

F

N
N

F

F

[104]

144 Fc1cccc(F)c1/N=N\c1c(F)cccc1F
F

F

N
N

FF
[104]

145 Fc1ccc(/N=N/c2ccccc2)cc1

F

N
N [143]

146 Fc1ccc(/N=N\c2ccccc2)cc1 F

N
N

[143]

147

N[C@@H](C[C@@H](CCCC(=O)
Nc1ccc(/N=N/c2ccc(NC(=O)CN3

C(=O)C=CC3=O)cc2)cc1) C(=O)O)C(=O)O

NH2

OHN

N
N

NHO

N

O

O

O

OH

O OH

[161]
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148

N[C@@H](C[C@@H](CCCC(=O)
Nc1ccc(/N=N\c2ccc(NC(=O)CN3

C(=O)C=CC3=O)cc2)cc1) C(=O)O)C(=O)O

H2N

O

NH

N

N

NH

O

N
O O

O

OH O

OH

[161]

149 NC(=O)c1cccc(/N=N/c2ccccc2)c1
NH2

O

N
N

[162]

150 NC(=O)c1cccc(/N=N\c2ccccc2)c1
NH2

O

N
N

[162]

151 NC(=O)c1ccc(/N=N/c2ccccc2)cc1
NH2

O

N
N

[162]

152 NC(=O)c1ccc(/N=N\c2ccccc2)cc1 NH2

O

N
N

[162]

153
O=C1c2cccc(c2)/N=N/

c2cccc(c2)C(=O)N2CCOCCOCCN1CCOCCOCC2

O

N

N
O

N

O

O

N
O

O

[106, 163]

154
O=C1c2cccc(c2)/N=N\

c2cccc(c2)C(=O)N2CCOCCOCCN1CCOCCOCC2 O

N
N

ON

O
O N

O
O

[106, 163]

155 OCc1ccc(/N=N/c2ccc(O)cc2)cc1
OH

N
N

HO

[140]



64

156 OCc1ccc(/N=N\c2ccc(O)cc2)cc1
OH

N
N

OH

[140]

157

O=C(CCl)N1CCN(c2ccc
(/N=N/c3ccc(N4CCN(C(=O)

CCl)CC4)cc3)cc2)CC1

O

Cl

N

N

N
N

N

N

O

Cl

[164]

158

O=C(CCl)N1CCN(c2ccc
(/N=N\c3ccc(N4CCN(C(=O)

CCl)CC4)cc3)cc2)CC1

O

Cl

N

N

N
N

N

N

O

Cl

[164]

159
O=C(CCl)Nc1ccc2c(c1)CC

c1cc(NC(=O)CCl)ccc1/N=N/2 O

Cl
H
N

H
N

O
Cl

N
N

[150]

160
O=C(CCl)Nc1ccc2c(c1)CC

c1cc(NC(=O)CCl)ccc1/N=N\2
O

Cl

H
N

H
N

O

Cl

N N

[150]

161
O=C(CCl)Nc1cc(Cl)c(/N=N/

c2c(Cl)cc(NC(=O)CCl)cc2Cl)c(Cl)c1 O

Cl
N
H

Cl

N
N

Cl

H
N

O

Cl
Cl

Cl

[151]
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162
O=C(CCl)Nc1cc(Cl)c(/N=N\

c2c(Cl)cc(NC(=O)CCl)cc2Cl)c(Cl)c1

O

Cl

H
N

Cl

N
N

Cl

HN

O

Cl

ClCl
[151]

163 CCN(CC)c1ccc(/N=N/c2ccc(OC)cc2)cc1

N

N
N

O

[154]

164 CCN(CC)c1ccc(/N=N\c2ccc(OC)cc2)cc1

N

N
N

O
[154]
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