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Excited state nuclear forces from the Tamm–Dancoff approximation
to time-dependent density functional theory within the plane wave
basis set framework

Jürg Huttera)

Physical Chemistry Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

~Received 17 October 2002; accepted 3 December 2002!

An efficient formulation of time-dependent linear response density functional theory for the use
within the plane wave basis set framework is presented. The method avoids the transformation of
the Kohn–Sham matrix into the canonical basis and references virtual orbitals only through a
projection operator. Using a Lagrangian formulation nuclear derivatives of excited state energies
within the Tamm–Dancoff approximation are derived. The algorithms were implemented into a
pseudo potential/plane wave code and applied to the calculation of adiabatic excitation energies,
optimized geometries and vibrational frequencies of three low lying states of formaldehyde. An
overall good agreement with other time-dependent density functional calculations, multireference
configuration interaction calculations and experimental data was found. © 2003 American Institute

of Physics. @DOI: 10.1063/1.1540109#

I. INTRODUCTION

In the last several years time-dependent density func-
tional theory ~TDDFT!1 has replaced Hartree–Fock based
single-excitation theories as the method of choice for the
calculation of vertical excitation energies of medium to large
sized molecules.2,3 Many efficient implementations4–9 using
localized orbital basis sets have been reported. The methods
have been tested10–15 on a wide range of systems and de-
tailed knowledge of the performance of TDDFT for different
type of excitations was acquired.

Only recently, Van Caillie and Amos16,17 have reported
the first implementation of property calculations for excited
states derived from TDDFT. Their work was followed and
extended by Furche and Ahlrichs18 and Amos.19 These works
state an important starting point for the direct calculation of
many experimental quantities. The possibility to efficiently
explore excited state surfaces is of key importance for fluo-
rescence spectra and the understanding of photochemical
pathways and allows the calculation of vibrational spectra in
the harmonic approximation.

Together with the Car–Parrinello20 method plane waves
were recognized as an alternative basis set not only in solid
state calculations but also for problems in chemistry.21 Being
an orthogonal, atomic position independent basis plane
waves allow for an efficient calculation of nuclear gradients,
are not plagued by basis set superposition errors and allow
for an unbiased description of the electronic density. This is
an especially interesting feature for excited states where of-
ten diffuse functions have to be added to localized basis sets.
However, all of these advantages come at the cost of a
largely increased number of basis functions. Even with the
use of pseudopotentials that eliminate the highly localized
core functions one to two orders of magnitude larger basis

sets are encountered. The shear size of the plane wave basis
set makes it necessary to develop specially adapted algo-
rithms. Only then, additional approximations22 can be
avoided and a reasonable computational efficiency achieved.
Another advantage of plane wave basis sets is that they natu-
rally include periodic boundary conditions and therefore lead
to algorithms for condensed systems. The application of
TDDFT to periodic systems is by no means trivial.23 Never-
theless, having efficient general algorithms available will be
very useful for testing new theoretical developments.

In the present paper methods for the calculation of ex-
cited states from time-dependent linear response density
functional theory are developed. Previous work24–27 on den-
sity functional perturbation theory in the pseudopotential/
plane wave basis set framework is adapted for this use. De-
rivatives of the excited state energy are derived from a
Lagrangian formulation28 and applied to nuclear gradients
within the Tamm–Dancoff approximation.29,30

II. THEORY

Time-dependent density functional theory has been re-
viewed by Gross et al.31 and Casida.2,3 The reader is referred
to these articles for the foundations and further details of the
theory. In the following the basic equations are given as
starting point for the derivation of the algebraic formulas
needed for the implementation of the methods within the
present framework, i.e., finite set of orthonormal basis func-
tions independent of atomic positions.

A. Time-dependent Kohn–Sham „TDKS… method

Like in the Kohn–Sham ~KS! formulation of ground
state density functional theory, the density n(r,t) of N inter-
acting electrons in a time-dependent external potential
Vext(r,t) is written in terms of single-particle wave functions
$F i(r,t)%. For the case of spin-dependent KS theory we
havea!Electronic mail: hutter@pci.unizh.ch
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ns~r,t !5(
i51

Ns

^F isur&^ruF is&, ~1!

where s5$a ,b% labels spin and N5Na1Nb . The KS or-
bitals $F(r,t)% have to fulfill an orthonormality constraint

^F isuF js&5d i j . ~2!

The KS orbitals satisfy the time-dependent KS equations

F2

1

2
¹2

1Veff
s ~r,t !GF is~r,t !5i

]

]t
F is~r,t !, ~3!

where Veff
s is the local, single-particle potential usually writ-

ten as

Veff
s ~r,t !5Vext~r,t !1E dr8

n~r8,t !

ur2r8u
1Vxc

s @na ,nb#~r,t !.

~4!

The exchange–correlation potential Vxc is defined as the
functional derivative of the exchange–correlation action
Axc , which will be used in the adiabatic approximation32 and
further approximated by the exchange–correlation functional
Exc from time-independent KS theory,

Vxc
s @na ,nb#~r!5

dExc@na ,nb#

dns
. ~5!

B. Linear response and excitation energies in TDKS

Consider a system described in the ground state by the
KS orbitals $F i

$0%% and the KS potential Veff(r). The corre-
sponding KS equations are

FsuF is
$0%&5(

j51

Ns

e i jsuF js
$0%&, ~6!

where F is the KS Hamiltonian,

Fs~r!52
1
2 ¹2

1Veff
s ~r!, ~7!

and e the matrix of Lagrange multipliers,

e i js5^F is
$0%uFsuF js

$0%&. ~8!

The ground state density is defined by

ns
$0%~r!5(

i51

Ns

^F is
$0%ur&^ruF is

$0%&. ~9!

The effect of a harmonic perturbation of frequency v

dV~r,t !5dV1~r!e ivt
1dV2~r!e2ivt, ~10!

on this system is described to first order by

dVeff~r,t !5dV~r,t !1dVSCF~r,t !, ~11!

where dVSCF is the linear response of the self-consistent field
to the change in the charge density dns ~in the frequency
domain!

ns
$1%~r,6v !5(

i51

Ns

^F is
$7%ur&^ruF is

$0%&1^F is
$0%ur&^ruF is

$6%&.

~12!

The functions $F i
$6%% are the linear response orbitals and can

be chosen orthogonal to the subspace of the ground state
orbitals

^F i
$6%uF j

$0%&50. ~13!

This choice corresponds to the parallel transport gauge in
time-independent density functional perturbation theory. The
self-consistent-field response is calculated from the defini-
tion of the KS potential,

dVSCF
s ~r,6v !5 (

t5$a ,b%
E dr8H nt

$1%~r8,6v !

ur2r8u

1

d2Exc

dns~r!dnt~r8!
U

n$0
J nt

$1%~r8,6v !.

~14!

Using results from time-dependent perturbation theory one
arrives at the coupled perturbed KS equations

(
i , j51

Ns

~e i js2~Fs
6v !d i j!uF js

$6%&

5Qs~dV $1%
1dVSCF

s ~6v !!uF is
$0%&, ~15!

where Qs is the projector on the subspace of unperturbed
unoccupied states

Qs
512 (

k51

Ns

uFks
$0%&^Fks

$0%u. ~16!

The evaluation of Eq. ~15! requires only the occupied unper-
turbed functions uF i

$0%& and their linear response functions
uF i

$6%&. The unoccupied space is only referenced through the
projectors Qs. In addition, the KS orbitals do not have to be
in canonical form. This form of the coupled perturbed KS
equations has long been recognized as essential in the appli-
cations of plane wave based algorithms in density functional
perturbation theory.24

Excitation energies are determined as poles of the re-
sponse functions2 leading to a singular Eq. ~15!. Therefore,
the excitation energies are the solutions to the equations

(
i , j51

Ns

~Fsd i j2e i js!uF js
$6%&1QsdVSCF

s ~6v !uF is
$0%&

57vuF is
$6%&. ~17!

Note that the Eqs. ~15! and ~17! for F is
$6% are each coupled

through the definition of dVSCF .

C. Basis set expansion

Expanding the ground state KS orbitals and the linear
response orbitals in an orthogonal finite basis set $wp(r)%

^wpuwq&5dpq , ~18!

defines the expansion coefficients $cpis
$0% % and $cpis

$6%%,

F is
$0%~r!5 (

p51

M

cpis
$0% wp~r!, ~19!
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F is
$6%~r!5 (

p51

M

cpis
$6%wp~r!. ~20!

For the remainder of this paper sums over orbital indices i ,
j , k , . . . run over the range 1,...,Ns and sums over the indices
p , q , r , . . . depicting basis function indices run over all func-
tions 1,...,M .

Using the basis set expansion the operators in Eq. ~17!
are cast into matrix form

Fpqs5^wpuFsuwq&, ~21!

e i js5(
pq

~cpis
$0% !!Fpqscq js

$0% , ~22!

Ppqs5(
i

cpis
$0% ~cqis

$0% !!, ~23!

Qpqs5dpq2Ppqs , ~24!

Wpqs5^wpudVSCF
s uwq&. ~25!

It is convenient to introduce the new coefficients x and y ,

xpis5
1
2 ~cpis

$1%
1cpis

$2%!, ~26!

y pis5
1
2 ~cpis

$1%
2cpis

$2%!. ~27!

In the absence of magnetic fields the orbitals can be chosen
to be real, therefore ns

$1%(1v)5ns
$1%(2v) and dVSCF

s (1v)
5dVSCF

s (2v). Taking suitable linear combinations of Eq.
~17! one arrives at a system of equations for the vectors x

and y ,

(
q j

~Fpqsd i j2e i jsdpq!xq js1(
qr

QprsWrqs@n $1%#cqis
$0%

52vy pis , ~28!

(
q j

~Fpqsd i j2e i jsdpq!yq js52vxpis . ~29!

Equations ~28! and ~29! can be cast into the form of a non-
Hermitian eigenvalue equation with eigenvalues v2 and left
and right eigenvectors y and x , respectively,

A~A1B!x5v2x, ~30!

~A1B!Ay5v2y. ~31!

The ~super-! operators A and B in Eqs. ~30! and ~31! are
defined as

Apis ,q jt5~Fpqsd i j2e i jsdpq!dst , ~32!

Bpis ,q jt5 (
rsuv

Qprscuis
$0%

Krus ,svt~c
v jt
$0% !!Qsqt , ~33!

where K is the response kernel in the basis set representation

Kpus ,qvt5E dr dr8 wp
!~r!wu~r!F 1

ur2r8u

1

d2Exc

dns~r!dnt~r8!
U

n$0%
Gw

v

!~r8!wq~r8!. ~34!

Note that both operators A and B are also projectors on the
virtual states and therefore the orthogonality constraint for
the solution vectors is fulfilled by construction.

D. Tamm–Dancoff approximation

The Tamm–Dancoff approximation ~TDA!29 leads to the
CIS method33 within time-dependent Hartree–Fock theory. It
was first used by Hirata and Head–Gordon30 within TDDFT
and they showed that excitation energies are of the same
quality as in full linear response calculations. The TDA re-
sults in a Hermitian eigenvalue equation that can be solved
using standard iterative techniques. The simpler form of the
TDA equations leads to algorithms that have the advantage
of better convergence, lower memory requiremnets and only
two instead of three superoperator-vector products per itera-
tion. A disadvantage of the TDA is that sum rules are no
longer fulfilled34 leading to poor results for oscillator
strength and other related quantities.

The TDA is recovered most easily by setting cuis
$1%

50
and therefore x52y in Eq. ~28!,

(
q j

~Fpqsd i j2e i jsdpq!xq js1(
qr

QprsWrqs@n $1%#cqis
$0%

5vxpis , ~35!

or in superoperator form

~A1B!x5vx. ~36!

Equation ~36! is a Hermitian eigenvalue equation that is re-
lated to the extended energy functional

LTDA@c $0%,x ,v#5x†~A1B!x2v~x†x21 !. ~37!

LTDA is variational in x and v and Eq. ~36! is obtained from
the variation with respect to x†.

E. Nuclear forces

The calculation of nuclear forces has a long tradition in
quantum chemistry.35 Special techniques have been devel-
oped for the cases of nonvariational energy expressions. The
Lagrangian method28 allows for the most compact derivation
and will be applied in the following section. The derivative
of the total energy of an excited state with respect to an
external parameter

dE total@c $0%,x#

dh
5

dEKS@c $0%#

dh
1

dETDA@c $0%,x#

dh
, ~38!

where EKS is the Kohn–Sham energy and ETDA the TDA
excitation energy, has to be calculated taking into account all
constraints of the wave-function parameters. The Lagrangian
function that is variational in all wave-function parameters is

Ltotal@c $0%,x ,L ,Z ,v#

5LKS@c $0%,L#1LTDA@c $0%,x ,v#

1(
pis

ZpisH(
q

Fpqscqis
$0%

2(
j

cq js
$0% L j isJ , ~39!

where LKS is the Lagrange function of the time-independent
Kohn–Sham equations,
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LKS@c $0%,L#5EKS@c $0%#2(
i js

L i jsH(
p

~cpis
$0% !!cp js

$0%
2d i jJ ,

~40!

LTDA was defined in Eq. ~37!, and Z is the matrix of
Lagrange multipliers associated with the stationarity of the
Kohn–Sham orbitals. The orthogonality constraint of x with
respect to the ground state orbitals is not associated with
Lagrange multipliers, but is handled by the projector func-
tions in LTDA .

It is now assumed that the ground state orbitals are op-
timized KS orbitals and that x is a solution to Eq. ~36!. Then
the derivative of Ltotal with respect to h is

Ltotal
(h)

5

]EKS

]h
1

]ETDA

]h
1 (

pqis
Zpis

]Fpqs

]h
cqis

$0% . ~41!

In Eq. ~41! it was assumed that the orthogonality and nor-
malization constraints for the KS and response orbitals is
independent from the parameter h. This is true for plane
wave basis sets for all of the most important types of pertur-
bations, especially for nuclear displacements.

Using the properties of the target basis set and assuming
that h represents a nuclear displacement, Eq. ~41! can be
further specialized

Ltotal
(h)

5 (
pqis

~cpis
$0% !!Fpqs

(h) cqis
$0%

1(
pis

(
q jt

~xpis!!
A pis ,q jt

(h) xq jt

1 (
pqis

ZpisFpqs
(h) cqis

$0% , ~42!

where B
(h)

50 has been used. This holds again due to the
special properties of plane waves. However, if an exchange–
correlation functional with nonlinear core corrections is
used, there will be a contribution from B

(h) that is easily
added to Eq. ~42!. The derivative of the TDA energy can be
further simplified,

]ETDA

]h
5(

pis
(
q jt

~xpis!!
A pis ,q jt

(h) xq jt

5 (
pqis

~xpis!!Fpqs
(h) xqis

2 (
p jis

(
uv

~xpis!!~cuis
$0% !!Fuvs

(h) c
v js
$0% xp js . ~43!

Introducing the density matrices P(x) and P(z),

Pqps
(x)

5(
i

xqis~xpis!!
1(

ri j
xr jscp js

$0% ~cqis
$0% !!~xris!!, ~44!

Pqps
(z)

5(
i

Zpiscqis
$0% , ~45!

and the corresponding densities ns
(x) and ns

(z) the total force
can be written in compact form as

Ltotal
(h)

5(
pqs

Fpqs
(h) ~Pqps1Pqps

(x)
1Pqps

(z) !. ~46!

What still needs to be done is the calculation of the
Lagrange multipliers Z . They can be determined from the

stationarity condition of the total Lagrange function @Eq.
~39!# with respect to variations of the KS orbitals,

]Ltotal

]c $0% 50. ~47!

Making again use of the fact that the derivatives are taken at
the point of optimized KS orbitals one arrives at a system of
linear equations for Z ,

(
q j

~Fpqsd i j2e i jsdpq!Zq js
!

1(
qr

QprsWrqs@n (z)#cqis
$0%

5upis . ~48!

Equation ~48! has the same form as the coupled perturbed
KS equations from static density functional perturbation
theory. It only differs from these equations by its right-hand
side u to be derived below. From Eq. ~48! it also becomes
clear that Z fulfills the same orthogonality constraint as a
linear response orbital,

(
p

Zpiscp js
$0%

50, ~49!

and therefore has the correct number of degrees of freedom.
Equation ~48! is known as the Handy–Schaefer Z vector
equation.36 The vector u is calculated from

upis5(
rkk

(
q jt

~xrkk!!
]~A1B!rkk ,q jt

]~cpis
$0% !!

xq jt . ~50!

Special care has to be taken to include the projections on the
virtual states correctly. The final result is

upis5(
rq

QprsH Wrqs@n (x)#cqis
$0%

1Wrqs@n $1%#xqis

1xr js(
s

((cq js
$0% )!Wqss[n $1%]csis

$0% )

1Wrqs
(2) [n $1%]cqis

$0% J , ~51!

where W(2) is the matrix representation of the potential from
the third functional derivative of the exchange–correlation
energy,

Wpqs
(2) ~dn !5E dr wp

!~r!wq~r!(
t ,k

E dr8 dr9

3

d3Exc

dns~r!dnt~r8!dnk~r9!
U

n$0%

nt
$1%~r8!nk

$1%~r9!.

~52!

III. EXAMPLE CALCULATIONS

Calculations of excited state geometries and harmonic
vibrational spectra of formaldehyde have been performed.
This molecule was chosen as it has been extensively used as
a benchmark in excited state calculations at various levels of
theory.

The methods described in the preceding section have
been implemented into the Car–Parrinello molecular dynam-
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ics code CPMD37 version 3.6. The calculations have been
performed at a plane wave cutoff of 90 Rydberg within a
cubic computational box of 25 Bohr length. The method of
Martyna and Tuckerman38 was used to decouple periodic im-
ages in the electrostatic potential. Pseudopotentials of the
Troullier–Martins39 type within the Kleinman–Bylander40

scheme have been employed to eliminate core electrons and
the cusp at the hydrogen nuclei. Cutoff radii for the pseudo-
potentials were 0.5, 1.05, and 1.23 Bohr for hydrogen, oxy-
gen, and carbon, respectively. Nonlocal pseudopotentials
were used for s angular momentum for carbon and oxygen
only. All calculations were done using the PBE41 gradient
corrected exchange and correlation functional. Harmonic vi-
brational frequencies were calculated by two point finite dif-
ferences using a step length of 1022 a.u.

In Table I optimized geometries and adiabatic excitation

energies for the 1A9, 1B2 , and the first triplet state 3A9 are
presented. Results for the ground state geometry are included
for comparison. Table II shows harmonic vibrational fre-
quencies for the same states. All results are compared to
other calculations based on linear response to time-
dependent density functional theory or high-level wave-
function based methods and experiments. The calculated
TDA adiabatic excitation energies are close to the results
from TDDFT and MRCI. Due to the fact that no asymptotic
correction42 to the exchange and correlation potential was
applied to the excitation energy of the Rydberg state 1B2 is
largely underestimated ~1.3 eV!. However, the optimized ge-
ometry in this state does not show this pathology. Deviations
from the MR–CI values are slightly larger than for the other
states but still within acceptable range. That the asymptotic
behavior of the functional only affects the excitation energy,

TABLE I. Calculated equilibrium structures and adiabatic excitation energies ~eV! compared to experiment and calculations from literature. All density
functional based values calculated with the PBE ~Ref. 41! functional. Bond lengths are given in Å, angles in degrees. F denotes the out-of-plane angle.

Method RCO RCH /HCH F DE Reference

State 1A1

DFT 1.211 1.118 116.1 0 This work
CCSD~T! 1.2075 1.1008 116.3 0 43
MR–AQCC 1.206 1.099 116.7 0 45
Expt. 1.2033 1.1005 116.2 0 47

State 1A9(n2p*)
TDA 1.308 1.103 116.8 30.0 3.53 This work
TDDFT 1.31 1.10 116 33 3.42 18
TDDFT 1.308 1.106 116.2 34.3 3.50a 17
MRDCI 1.334 1.116 120.2 34.5 3.50 44
Expt. 1.323 1.098 118.4 34.0 3.49 47

State 1B2(n23s)
TDA 1.204 1.115 119.0 0 5.70 This work
MR–CISD 1.216 1.131 125.2 0 7.09 46
MRD–CI 1.243 1.140 123.9 0 7.00 44

State 3A9

TDA 1.305 1.108 113.7 43.2 2.67 This work
TDDFT 1.31 1.11 111 48 2.53a 18
Expt. 1.307 1.084 121.8 41.1 3.12 47

aValues include ZPE differences.

TABLE II. Calculated harmonic vibrational frequencies (cm21) compared to experiment and calculations from literature. All density functional based values
calculated with the PBE ~Ref. 41! functional. Experimental frequencies for the ground state are corrected for anharmonicity.

Method n1 n2 n3 n4 n5 n6 Reference

State 1A1

DFT 1146 1236 1472 1749 2781 2840 This work
MR–CISD 1176 1250 1534 1720 3005 3088 46
Expt. 1191 1288 1563 1764 2944 3009 48

State 1A9(n2p*)
TDA 524 1111 1230 1280 2910 3065 This work
TDDFT 855 1254 1294 2916 3016 18
TDDFT 619 853 1246 1288 2905 3008 17
Expt. 904 1183 1293 2846 2968 47

State 1B2(n23s)
TDA 870 1084 1183 1612 2709 2984 This work
MR–CISD 868 1070 1097 1602 2562 2858 46
Expt. 822 1577 2275 47

State 3A9

TDA 713 970 1210 1289 2843 2975 This work
TDDFT 1261 18
Expt. 1283 47

3932 J. Chem. Phys., Vol. 118, No. 9, 1 March 2003 Jürg Hutter

Downloaded 30 Jul 2008 to 130.60.136.208. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



not the optimized geometries was already found in Ref. 49.
The only noticeable differences in the optimized TDA and
TDDFT structures are for the out-of-plane dihedral angles of
the 1A9 and 3A9 states and for the HCH angle in the triplet
state. For the triplet state the TDA values are slightly closer
to the experimental values. It is noticed that the symmetric
and antisymmetric stretch vibration for the ground state are
underestimated by about 200 cm21. It was verified by an
independent calculation that this is a feature of the PBE
functional and not due to the pseudopotentials or plane wave
basis set. However, for the Rydberg 1B2 state the same vi-
brations are too large by about 100 cm21. If this is due to the
TDA it cannot be concluded from the present calculation.
There is one other vibration where the TDA calculation re-
sults in a substantially higher frequency than the correspond-
ing TDDFT calculations. The CH2 rocking mode (n2) of the
n – p* state is overestimated by 250 cm21. However, the
experimental value for this vibration, including anharmonic-
ity effects, is lying in between the calculated TDDFT and
TDA values.

Compared to other theoretical methods and experimental
values an overall good agreement for the structural features
of three excited states of formaldehyde was achieved with
the TDA within the pseudopotential/ plane wave framework.

IV. DISCUSSION AND SUMMARY

A computationally efficient method for the calculation of
excitation energies from time-dependent density functional
theory has been presented. The method is specially adapted
to the needs of calculations within the pseudopotential/plane
wave basis set framework. In contrast to earlier methods the
transformation of the Kohn–Sham matrix into a diagonal
representation is avoided. Instead projection operators on the
virtual space are used. This technique has been in use in
density functional perturbation theory24,25 using plane wave
basis sets for some time now. Similar methods have been
proposed for linear scaling algorithms.34,50

Using a Lagrangian technique derivatives to the excita-
tion energies in the Tamm–Dancoff approximation have
been calculated. This method has been applied to calculate
the nuclear gradients of the excited state hypersurface. As a
first application the adiabatic excitation energies, optimized
geometries and harmonic vibrations of three states of form-
aldehyde have been calculated. Good agreement to other TD-
DFT calculations and multireference CI calculations as well
as experiments was achieved. As was found for vertical ex-
citation energies, the Tamm–Dancoff approximation has the
potential to be a useful alternative to the TDDFT for explor-
ing excited state surfaces and the calculation of excited state
properties. However, calculations on more systems and a
wider set of excited states have to be performed to verify
this.

The methods presented in this paper will serve as a start-
ing point for many different applications. The use of a plane
wave basis set allows for an easy extension to the condensed
phase. The application of TDDFT within solid state theory is
by no means trivial23 and a lot of work needs to be done.
However, for special applications like localized excitations
of molecules in solution the current theoretical status should

be sufficient and allow for interesting applications. In addi-
tion, the use of TDDFT methods in QM/MM frameworks51,52

is straightforward, at least for the calculation of vertical ex-
citation energies.

APPENDIX A: FORCES IN THE PLANE WAVEÕ

PSEUDOPOTENTIAL FRAMEWORK

Plane waves are defined with respect to a periodic com-
putational box with volume V,

wp~r!5

1

V
exp@ iGp•r# , ~A1!

where Gp denotes a reciprocal lattice vector. A basis set com-
prises all plane waves with a kinetic energy smaller than a
given energy cutoff

1
2 G2<Ecutoff . ~A2!

In order to keep the basis set at a manageable size, pseudo-
potentials have to be used to remove highly localized core
orbitals. For computational reasons the pseudopotentials are
used in a fully separable form. Within this framework the
Kohn–Sham matrix reads

Fpqs5

1

2
Gp

2dpq1V loc
s ~Gp2Gq!

1(
I

(
s ,t

P I ,s
! ~Gp!S I

!~Gp!hst
I P I ,t~Gq!S I~Gq!, ~A3!

where the local potential is

V loc
s ~G !5(

I
V loc

pp ~G !S I~G !1Vxc~G !14p
n tot~G !

G2 , ~A4!

with V loc
pp the local pseudopotential functions, S I(G)

5exp@2iG•RI# the structure factor, and n tot the sum of the
electron density and the nuclear compensation charges,

n tot~G !5n~G !1(
I

n I
core~G !S I~G !. ~A5!

The Kohn–Sham matrix depends on the nuclear positions
only through the structure factors S I . The derivative of S I

with respect to R I is easily calculated in reciprocal space

]S I~G !

]R I ,u
52iGuS I~G !. ~A6!

Therefore the derivatives of the Kohn–Sham matrix can be
written as ~using G5Gp2Gq)

]Fpqs

]R I ,u
52iGuV loc

pp ~G !S I~G !24piGu

n I
core~G !

G2 S I~G !

1iGp(
s ,t

P I ,s
! ~Gp!S I

!~Gp!hst
I P I ,t~Gq!S I~Gq!

2iGq(
s ,t

P I ,s
! ~Gp!S I

!~Gp!hst
I P I ,t~Gq!S I~Gq!.

~A7!
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All densities (n , n $1%, n (x), n (z)) can be calculated effi-
ciently using standard Fourier transform techniques. The po-
tentials are calculated either on the corresponding real space
grid or in Fourier space.

APPENDIX B: DERIVATIVES OF THE
EXCHANGE–CORRELATION FUNCTIONAL

The algorithms presented need higher derivatives of the
exchange–correlation energy to be calculated. This leads to
complicated but manageable expressions in the case of gra-
dient corrected functionals. In plane wave calculations it is
common usage to evaluate the exchange–correlation energy
and potentials on the same real space grid as used in Fourier
transforms. Even for the standard potential care has to be
taken as not to introduce high Fourier components in inter-
mediate quantities. This problem is even worse for the higher
derivatives needed in TDKS. However, as mentioned in Ref.
53 the necessary potentials can also be calculated using finite
difference techniques. This can be done efficiently as the
potentials are only needed along the linear response density.

The potentials needed in the force calculation of the
Tamm–Dancoff energy surface are

Ws
(1)~r!5(

t
E dr8

d2Exc

dns~r!dnt~r8!
U

n$0%

nt
$1%~r8! ~B1!

and

Ws
(2)~r!5(

t ,k
E dr8 dr9

d3Exc

dns~r!dnt~r8!dnk~r9!
U

n$0%

3nt
$1%~r8!nk

$1%~r9!. ~B2!

Finite difference approximations to W (1) and W (2) can be
calculated using central difference formulas

Ws
(1)~r!'(

k

ak

e
Vxc

s ~n $0%
1ken $1%!, ~B3!

Ws
(2)~r!'(

l

b l

e2 Vxc
s ~n $0%

1len $1%!. ~B4!

Numerical tests have shown that stable results can be
achieved with e5531024 with a three point formula for
W (1) (ak51,0,1 for k521,0,1) and a five point formula for
W (2) (b l521,16,230,16,21 for l522,21,0,1,2).
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Chem. Phys. 110, 2785 ~1999!.
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