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Excited states dynamics in time-dependent density functional theory: high-field

molecular dissociation and harmonic generation.
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We present a theoretical description of femtosecond laser induced dynamics of the hydrogen
molecule and of singly ionised sodium dimers, based on a real-space, real-time, implementation of
time-dependent density functional theory (TDDFT). High harmonic generation, Coulomb explosion
and laser induced photo-dissociation are observed. The scheme also describes non-adiabatic effects,
such as the appearance of even harmonics for homopolar but isotopically asymmetric dimers, even
if the ions were treated classically. This TDDFT-based method is reliable, scalable, and extensible
to other phenomena such as photoisomerization, molecular transport and chemical reactivity.
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It is now possible to study electron and molecular dy-
namics in real time using various experimental techniques
employing intense ultra-short laser sources [1]. Some ex-
amples of such investigations include X-ray photoelec-
tron spectroscopy of molecules [2], pump-probe ionisa-
tion measurements [3], production of high harmonics as
a source of soft X-rays [4], the measurement of electron-
phonon interactions in thin films [5], and the estimation
of the onset of Coulomb screening [6]. A technologically
important and very active field of research is the appli-
cation of ultra-short laser pulses to induce, control and
monitor chemical reactions [7, 8, 9]. Whenever the in-
tensity of the laser field is comparable to the molecular
electronic fields, perturbative expansions break down and
new processes appear, which are not fully understood
from a microscopical point of view [10]. A practical and
accurate computational framework to descibe excited-
state electron-ion dynamics is therefore still needed.

Not surprisingly, the smallest systems have attracted
particular attention from both experimentalists and theo-
reticians, as a bench-horse to improve our understanding
of electron dynamics at the femtosecond scale [11, 12].
However, the methods used in these calculations can not
be easily extended to larger and more realistic systems.
The exact quantum mechanical solution of a 3D system
of more than three particles is certainly not feasible with
state-of-the-art computers. 1D models are much easier to
handle, but they can not really be used as predictive tools
for problems involving the interaction of lasers with large
clusters or solid-state systems of technological relevance.

To tackle such a problem, time-dependent density
functional theory (TDDFT) [18] appears as a valuable
tool. Even with the simplest approximation to the
exchange-correlation potential, the adiabatic local den-
sity approximation (ALDA), one obtains a very good
compromise between computational ease and accuracy
[19]. TDDFT can certainly be applied to large systems
in non perturbative regimes, while providing a consistent
treatment of electron correlation. It has been well tested

in the study of electron excitations, like the optical ab-
sorption spectra in the linear regime [20, 21]. Although
almost all applications of TDDFT in the field of laser
physics have only involved electronic dynamics, recent
attempts have also been made at describing the coupled
nuclear and electronic motion in laser fields [22], account-
ing for the nuclear motion classically. A full quantum
mechanical treatment of the system could in principle be
done within a multi-component TDDFT, although it has
not been tried for more than three particles [23]. How-
ever, since many vibrational quanta are coherently ex-
cited, there is good motivation for the classical treatment
of the nuclei. The purpose of this work is to illustrate a
general method to study many-electron systems subject
to strong laser fields. It is based on the quantum mechan-
ical propagation of the electronic wave packet – described
within TDDFT – combined with classical motion of the
nuclei. As the laser field populates the excited Born-
Oppenheimer surfaces, this scheme includes diabatic ef-
fects, while maintaining a good scaling with the size of
the system. As an illustration we focused on one and two
electron dimers, namely Na+

2 and the hydrogen molecule.
The equations of motion may be derived from the La-

grangian:

L =
∑

α

[
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∂
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− e ~x · ~E(t)|φi〉 − EDFT ({φ}, { ~R}) ,(1)

where EDFT is the usual Kohn-Sham density functional,
depending on the electron orbitals {φ} and the nuclear

coordinates { ~R}, and ~E(t) is the time-dependent electric
field from the laser pulse. Variation of the Lagrangian
then yields Newton’s equations for the nuclear coordi-
nates,

mα
d2 ~Rα

dt2
= −~∇Rα

EDFT
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−
∑

α′

(~Rα − ~Rα′)ZαZα′

|~Rα − ~Rα′ |3
+ Zα

~E(t), (2)

and the usual TDDFT equations for the orbital variables
[18]. We solved these equations in real time, following the
method of Yabana and Bertsch [20], using a real-space
grid representation of the orbitals [24, 25]. This scheme
has the advantage that the Kohn-Sham Hamiltonian is
a very sparse matrix. The forces in Eq. (2) are calcu-
lated with the help of a generalised Hellmann-Feynman
theorem,

− ~∇~Rα

EDFT = −
∑

i

〈φi|~∇αHKS |φi〉. (3)

where HKS = δEDFT /δn(r, t) is the Kohn-Sham Hamil-
tonian. For numerical reasons we represent the electron-
ion interaction by norm-conserving non-local Troullier-
Martins pseudopotentials [26].

We have studied two different classes of time-
dependent problems: photofragmentation and high har-
monic generation. We now discuss the first case, the Na+

2

dimer in a femtosecond laser field. It is a good test, since
it has been exhaustively studied using a diverseness of
approaches [8, 14, 27]. In particular, a recent experi-
ment [8] focused on the photofragmentation of Na+

2 in
intense femtosecond laser fields. Using a pump-probe
technique, the authors discovered that Na+

2 dissociated
in four different channels, ranging from simple field ioni-
sation followed by Coulomb explosion, to photodissocia-
tion on light-induced potentials. For these calculations,
we used an uniform grid spacing of 0.3 Å, and the sys-
tem was confined to a sphere of radius 10 Å. In these
one-electron calculations, we omitted the core-valence
exchange-correlation. In this case the total electronic
energy is given by the Kohn-Sham eigenvalues, and they
can be used to compute the adiabatic potential energy
surfaces shown in Fig. 1. The two lowest single-photon
transitions from the 12Σ+

g ground state are at 2.5 eV

(to the 12Σ+
u state) and at 3.2 eV (to the 12Πu state).

The latter is achieved by a laser polarized perpendicu-
larly to the internuclear axis. These energies accord well
with the observed single-photon transitions [28]. For the
time-dependent calculations, we start with the dimer in
its ground state, which is then propagated with a modi-
fied Krank-Nicholson scheme [24]. The time step for the
time integration was 0.005 h̄ eV−1 ≈ 0.003 fs. A simple
check on the implementation of the time evolution op-
erator consists of calculating the linear photo-absorption
spectrum, using a weak δ-function external field, as in
Ref. [20]. Almost all the spectral weight is concentrated
in two peaks (see inset in Fig. 1), which are at energies
corresponding exactly to the vertical transitions between
energy surfaces. We note that this exact correspondance
is only obtained for one-electron systems: in general the
TDDFT spectra will have shifts from the energy surfaces
determined by the Kohn-Sham eigenvalues.

Next we examine the evolution of the dimer under
high-field excitation. We consider external fields of the
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FIG. 1: Adiabatic energy surfaces of the Na+

2 dimer, as
obtained by our three-dimensional real-space code. Similar
results can be found in Ref. [29]. In the inset, the computed
photoabsorption cross-section of the same molecule.

form:

~E(t) =

(

8π

c
I0

)(1/2)

sin

(

π
t

τ

)

sin(ωt)ê, 0 < t < τ,

(4)
where I0 is the maximum intensity of the pulse, ê is the
polarization vector, and τ is the pulse duration, taken as
τ = 80 fs. As a first case, we examine the effect of excita-
tion at the lower resonant frequency, ω = 2.5 eV. In Fig.
2(a), we present a series of runs at different intensities,
ranging from weak (1010 W/cm2) to moderate (2.1×1012

W/cm2). Since the 12Σ+
u surface is anti-bonding, exci-

tation at this resonant frequency should lead to dissoci-
ation, even at moderate intensities. This is indeed con-
firmed by our calculations. The upper panel depicts the
internuclear separation of the dimer, which exhibits an
acceleration during the laser pulse and a nearly constant
velocity expansion thereafter. Clearly, the dimer disso-
ciates at all field levels that we applied. To examine
the ionisation of the dimer, we assumed that any den-
sity reaching the edges of the simulation box corresponds
to unbound electrons. By absorbing this density at the
boundaries, we can thus define the ionisation probability
as I(t) = 1−N(t), where N(t) is the charge that remains
inside the simulation box at time t. The lower panel of
Fig. 2(a) shows N as a function of t. We see that there is
practically no ionisation for the lower fields, and only a
20% ionization probability for the 2.1×1012 W/cm2 field.



3

FIG. 2: Evolution of internuclear distance (top panel) and electronic charge in simulation region (bottom panel) for the Na+

2

molecule. The dimers are excited with laser pulses of 2.5, 3.2 and 1.57 eV in columns (a), (b) and (c) respectively.

Thus, in this range of intensities, the laser dissociates the
dimer without ionising it.

We next consider the excitation at the upper resonance
frequency, ω = 3.2 eV, corresponding to an electric field
perpendicular to the dimer axis. Since the 12Πu surface
is bonding, [see Fig. 2 (b)] no dissociation is expected
unless the Coulomb explosion channel is opened through
ionisation. We see that the dimer remains bound over
the entire range of intensities that produced dissociation
at the lower resonant frequency.

Finally, we also performed simulations at the non-
resonant frequency ω = 1.57 eV, the one used in Ref.
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FIG. 3: Harmonic spectra of HD (left panels) and H2 (right
panels). The nuclear masses used in the calculation are m

′ =
αm, being m the real mass. In this way, top plots were made
using for the nuclear masses their real values whereas bottom
plots were made using a hundredth of their real values.

[8]. Fig. 2 (c) shows how dissociation now occurs only at
much higher intensities, and it is mainly due to ionisation
(almost absent in the resonant calculations for the range
of intensities used): since Na2+

2 has no bonding states,
ionisation is followed by Coulomb explosion.

Another process in which the nuclear motion may play
an important role is high harmonic generation. Even har-
monics may be created by irradiating HD with an intense
laser pulse, but not by irradiating H2: even harmonic
generation is forbidden for a centrosymmetric molecule.
In an adiabatic treatment of the nuclear coordinates, the
nuclear masses play no role and the even harmonics can
not appear. This is no longer the case if non-adiabatic
effects are taken into account, for the different masses of
H and D break the symmetry. Kreibich et al. [17] studied
this process in a 1-D model with a full quantum mechan-
ical treatment of the nuclear motion, finding strong even
harmonics at high harmonic number. To discern whether
the classical treatment of nuclear motion also produces
these harmonics, we studied the same 1D problem within
our framework. As in Ref. [17], we took the laser field
to have a frequency of 1.6 eV, and an intensity that rises
linearly to 1014 W/cm2 over an interval of 10 optical cy-
cles, and is held constant thereafter. We then calculated
the spectral intensity of the generated harmonics, H(ω):

H(ω) ∼

∣

∣

∣

∣

∫

dt eiω t d2

dt2
〈Ψ(t)| ê · ~D |Ψ(t)〉

∣

∣

∣

∣

2

. (5)

We find that the classical treatment does indeed produce
even harmonics, but much smaller than the quantum
treatment. The results are shown in Fig. 3. The top
left panel depicts the harmonic spectrum for HD, and
only odd harmonics are apparent. However, it may be
proved that the HD Hamiltonian already violates cen-
trosymmetry within our classical treatment, through a
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term of the form:

−
1

2

(

1

MH
−

1

MD

)

P (t) (p̂1 + p̂2) ,

where P (t) = 1
2 (PH(t) − PD(t)) is the relative time-

dependent nuclear momentum and p̂i are the electronic
momentum operators [30]. Its effect can be enhanced by
decreasing the nuclear masses. In the bottom left panel,
the H and D masses have been decreased by a factor 100,
and then the second- and fourth-order harmonics become
visible. As a qualitative check of the numerics, we also
show the same graphs for H2, in which no even harmonics
can occur.

Thus we see that on qualitative level the non-adiabatic
dynamics generating even harmonics are obtained with
the classical treatment of the nuclear coordinates. How-
ever, the quantum treatment may be needed for a quanti-
tative result. By describing the nuclei quantum mechan-
ically, the ground state violates centrosymmetry and the
even harmonics can be generated even if the nuclear mo-
tion is frozen. In contrast, in the classical treatment the
ground state is symmetric and the symmetry violation
only builds up as the nuclei move.

In summary, we have examined the computational fea-
sibility of including nuclear dynamics in time-dependent

density functional theory using a pseudopotential code
to study the femtosecond laser induced dynamics of
sodium dimers. Using this approach for treating the Na+

2

dimer, we were able to distinguish different phodissocia-
tion regimes, ranging from dissociation on light induced
potentials, to field ionisation followed by Coulomb explo-
sion. Electronic and ionic degrees of freedom are thus
coupled, so that one can observe the electron-phonon
transfer of energy. We also found, with another exam-
ple, that non-adiabatic effects are present in the general
treatment based on Eq. (1). One of the major attrac-
tivenesses of this method resides in its reasonable scaling
behaviour when applied to larger systems. We thus ex-
pect to be able to tackle problems like photoisomerization
or even photochemical reactivity in systems of dozens of
atoms in the near future.

This work was supported by the RTN program of
the European Union NANOPHASE (contract HPRN-
CT-2000-00167), Basque Country University, Iberdrola
S.A. and DGESIC (PB98-0345). GB acknowledges sup-
port by the US Department of Energy under Contract
Nr. E-FG-06-90ER-411132. Computer time was kindly
provided by the CEPBA. We thank E. K. U. Gross for
enlightenment discussions. AC thanks the University of
Washington and the DIPC for kind hospitality.

[1] For a review, see T. Brabec and F. Krausz,
Rev. Mod. Phys. 72, 545 (2000). For recent develop-
ments, see M. Drescher et al., Science 291, 1923 (2001)
and M. Hentschel et al., Nature 414, 509 (2001).

[2] L. N.-Glandorf et al., Phys. Rev. A 62, 023812 (2000);
Phys. Rev. Lett. 87, 193002 (2001).

[3] See, for example, articles in Faraday Discussions 115

(2000).
[4] Z. Chang et al, Phys. Rev. Lett. 79, 2967 (1997); C.

Spiedelmann et al, Science 278, 671 (1997).
[5] M. Probst and R. Haight, Appl. Phys. Lett. 71, 202

(1997).
[6] R. Huber et al., Nature 414, 286 (2001).
[7] C. Dion et al., J. Chem. Phys. 105, 9083 (1996); R. W.

Shoenlein et al., Science 254, 412 (1991).
[8] A. Assion, T. Baumert, U. Weichmann, and G. Gerber,

Phys. Rev. Lett. 86, 5695 (2001).
[9] K. Yamanouchi, Science 295, 1659 (2002).

[10] Examples commonly invoked are bond softening, vi-
brational population trapping, molecular alignment and
above threshold dissociation.

[11] M. Protopapas, C. H. Keitel, and P. L. Knight, Rep.
Prog. Phys. 60, 389 (1997).

[12] Some of the works include exact 3D calculations for one
and two electron atoms [13], for one electron dimers [14],
and 1D models for two electron systems [15, 16, 17].

[13] J. Parker et al.,J. Phys. B 29, L33 (1996).
[14] S. Magnier, M. Persico, and N. Rahman,

J. Phys. Chem. A 103, 10691 (1999).
[15] R. Grobe and J. H. Eberly, Phys. Rev. A 48, 4664 (1993);

D. G. Lappas et al, J. Phys. B 29, L619 (1996).

[16] M. Lein, E. K. U. Gross, and V. Engel, Phys. Rev. A 64,
023406 (2001).

[17] T. Kreibich et al., Phys. Rev. Lett. 87, 103901 (2001).
[18] E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997

(1984); E. K. U. Gross, J. F. Dobson, and M. Petersilka,
in Density Functional Theory II, edited by R.F. Nalewa-
jski, “Topics in Current Chemistry”, Vol 181 (Springer,
Berlin, 1996).

[19] The ALDA has nevertheless some well known prob-
lems, but most of them can be solved by the swarm of
exchange-correlation potential now available – see, for
example, M. A. L. Marques, A. Castro, and A. Rubio,
J. Chem. Phys. 115, 3006 (2001), and references therein.

[20] K. Yabana and G. F. Bertsch, Phys. Rev. B 54, 4484
(1996); Int. J. Quantum Chem. 75, 55 (1999).

[21] G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys.
(2002) and references therein.

[22] F. Calvayrac et al., Phys. Rep. 337, 493 (2000); E.
Suraud and P. G. Reinhard, Phys. Rev. Lett. 85, 2296
(2000).

[23] T. Kreibich and E. K. U. Gross, Phys. Rev. Lett. 86,
2984 (2001).

[24] H. Flocard, S. E. Koonin, and M. S. Weiss, Phys. Rev. C
17, 1682 (1978).

[25] J. R. Chelikowsky, N. Trouiller, and Y. Saad,
Phys. Rev. Lett. 72, 1240 (1994); A. Rubio et al., Phys.
Rev. Lett. 77 247 (1996); T. L. Beck, Rev. Mod. Phys.
72, 1041 (2000).

[26] N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993
(1991).

[27] S. Magnier, M. Persico, and N. Rahman,



5

Chem. Phys. Lett. 262, 747 (1996); M. Machholm
and A. Suzor-Weiner, J. Chem. Phys. 105, 971 (1996).
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