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EXCITED YOUNG DIAGRAMS
AND EQUIVARIANT SCHUBERT CALCULUS

TAKESHI IKEDA AND HIROSHI NARUSE

Abstract. We describe the torus-equivariant cohomology ring of isotropic
Grassmannians by using a localization map to the torus fixed points. We
present two types of formulas for equivariant Schubert classes of these homo-
geneous spaces. The first formula involves combinatorial objects which we call
“excited Young diagrams”, and the second one is written in terms of factorial
Schur Q- or P -functions. As an application, we give a Giambelli-type formula
for the equivariant Schubert classes. We also give combinatorial and Pfaffian
formulas for the multiplicity of a singular point in a Schubert variety.

1. Introduction

In this paper, we give explicit descriptions of the Schubert classes in the (torus)
equivariant cohomology ring of the Grassmannians as well as the maximal isotropic
Grassmannians of both symplectic and orthogonal types. Our main results express
the image of an equivariant Schubert class under the localization map to the torus
fixed points.

Now let us fix some notation. Let G be a complex semisimple connected algebraic
group. Choose a maximal torus T of G and a Borel subgroup B containing T. Let
P be a maximal parabolic subgroup of G containing B. We are interested in the
(integral) T -equivariant cohomology ring H∗

T (G/P ) of the homogeneous space G/P.
The equivariant Schubert classes are parametrized by the set WP of minimal length
representatives for W/WP , where W is the Weyl group of G and WP is the parabolic
subgroup associated to P. The set WP also parametrizes the T -fixed points (G/P )T

in G/P. In fact if we put ev = vP (v ∈ WP ), then (G/P )T = {ev}v∈W P . Let B−
denote the opposite Borel subgroup such that B− ∩ B = T. Define the Schubert
variety Xw associated to the element w ∈ WP to be the closure of B−-orbit B−ew

of ew. Note that the codimension of Xw in G/P is �(w), the length of w, and
ev ∈ Xw if and only if w ≤ v, where ≤ is the partial order on WP induced by
the Bruhat-Chevalley ordering of W. Since Xw is a T -stable subvariety in G/P, it
induces a T -equivariant fundamental class, the equivariant Schubert class, denoted
by [Xw] ∈ H

2�(w)
T (G/P ). Our main goal is to describe [Xw] explicitly.

In this paper, we consider G/P in the following list:
• Type An−1: SL(n)/Pd (1 ≤ d ≤ n − 1),
• Type Bn: SO(2n + 1)/Pn,
• Type Cn: Sp(2n)/Pn,
• Type Dn: SO(2n)/Pd (d = n − 1, n),
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5194 TAKESHI IKEDA AND HIROSHI NARUSE

where we denote by Pd the maximal parabolic subgroup associated to the d-th
simple root (the simple roots being indexed as in [6]). It is well known that the space
SL(n)/Pd can be identified with the Grassmannian Gd,n of d-dimensional subspaces
in Cn. Any other G/P in the above list is a maximal isotropic Grassmannian with
respect to an orthogonal or symplectic form (see Section 6.4 for details).

Our description is based on the ring homomorphism

ι∗ : H∗
T (G/P ) −→ H∗

T ((G/P )T ) =
⊕

v∈W P

H∗
T (ev)

induced by the inclusion ι : (G/P )T ↪→ G/P. This ι∗ is known to be injective
and called the localization map. Each summand H∗

T (ev) is canonically isomorphic
to the symmetric algebra S = SymZ(T̂ ) of the character group T̂ of the torus T.
Thus the equivariant Schubert class [Xw] is described by a list {[Xw]|v}v∈W P of
polynomials in S, where [Xw]|v denote the image of the equivariant Schubert class
[Xw] under the homomorphism ι∗v : H∗

T (G/P ) −→ H∗
T (ev) induced by the inclusion

ιv : {ev} ↪→ G/P.
In the type An−1 case (cf. Section 5, Theorem 5.4), Knutson and Tao [15]

discovered that [Xw]|v can be identified with a suitably specialized ‘factorial’ Schur
function, a multi-parameter deformation of a Schur function (see Section 5 for the
definition). Their argument uses a remarkable vanishing property of the factorial
Schur function (cf. Proposition 5.1). By a totally different method, Lakshmibai,
Raghavan, and Sankaran [22] showed the same result, although they did not state
it explicitly in terms of the factorial Schur function. In fact, they started with
a combinatorial expression for [Xw]|v in terms of a set of non-intersecting paths ,
which came from a detailed analysis of the Gröbner basis of the defining ideal of
the Schubert variety due to Kreiman and Lakshmibai [19], and Kodiyalam and
Raghavan [12], and then rewrote the expression into a ratio of some determinants,
which is a form of a factorial Schur function.

Type Cn, the case of a Lagrangian Grassmannian, was studied in a paper [10]
by the first named author, where [Xw]|v is expressed in terms of factorial Schur
Q-function defined by Ivanov [11]. The proof is a comparison of Pieri-Chevalley-
type recurrence relations for both [Xw]|v and the factorial Schur Q-function. This
strategy of identification goes well for other G/P in our list above. Actually, we
prove in this paper the analogous result for types Bn and Dn, the orthogonal
Grassmannian; i.e., we present a formula for [Xw]|v in terms of a factorial Schur
P -function for these spaces (Section 3, Theorem 8.7).

As an application of these formulas, we obtained a Giambelli-type formula (Corol-
lary 8.8) for isotropic Grassmannians that expresses an arbitrary equivariant Schu-
bert class as a Pfaffian of Schubert classes associated with the ‘two-row’ (strict)
partitions. This formula is an equivariant analogue of the Giambelli formula due
to Pragacz [26] in the case of ordinary cohomology.

Another type of formula (Section 3, Theorem 3.2, Section 6, Theorem 6.4) that
we discuss in the present paper involves combinatorial objects, which we call excited
Young diagrams (EYDs for short). The idea of EYDs was inspired by the work [22]
of Lakshmibai, Raghavan, and Sankaran mentioned above. These formulas have a
‘positive’ nature in the sense that it is expressed as a sum over a set of EYDs with
each summand being a product of some positive roots.
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For an exposition, here we consider Gd,n. It is well known that the set WPd

is parametrized by the set of partitions λ = (λ1, . . . , λd) such that n − d ≥ λ1 ≥
· · · ≥ λd ≥ 0, or equivalently the Young diagrams contained in the rectangle of
shape d × (n − d). Let us denote by Dλ the Young diagram of λ. Suppose w, v
are elements of WPd such that ev ∈ Xw. Let λ, µ be the corresponding partitions
for w, v respectively. Then we have Dλ ⊂ Dµ. Our formula expresses [Xw]|v as a
weighted sum over a set Eµ(λ) (see Subsection 3.4 for the definition) of subsets of
Dµ. For example, let λ = (3, 2), µ = (4, 4, 3, 1). Some typical elements in Eµ(λ) are
illustrated below. Here we depict the Young diagrams in Russian style.
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No box can be excited

Let us imagine that each diagram labels a ‘quantum state’. Each box can be
excited (i.e., raised) to the space one unit north if the neighbors in north, northeast,
and northwest directions are all unoccupied (see Subsection 3.4 for the precise
definition of excitation). In this case, there are nine excited states obtainable by
applying successive excitations starting from the ground state, i.e., the element Dλ.

It should be mentioned that the notion of EYDs and its shifted analogue were
introduced by Kreiman [17, 18] independently. Kreiman [17] proved that the set of
non-intersecting paths that appeared in [19], [12], [22] is naturally bijective to the
set of EYDs. He also presented a combinatorial formula of [Xw]|v for the type Cn

case in terms of the shifted analogue of EYDs by using a result by Ghorpade and
Raghavan [8] analogous to [19], [12]. In this paper, we present a different proof for
these results without using the Gröbner machinery mentioned above. An advantage
of our method is that we can apply the same argument to isotropic Grassmannians
of orthogonal type, for which no explicit description of the Gröbner basis is known.
In order to deal with the case of ‘even’ orthogonal Grassmannian, we introduce
another variant of shifted EYDs.

Our method begins by identifying the localized classes [Xw]|v as ξ-functions
defined by Kostant and Kumar ([16]). Then we can make use of a well-known
formula (Proposition 2.3; cf. [4], [1]) that expresses an arbitrary ξ-function as a
sum over a set of ‘reduced subwords’, and then use a theory by Stembridge [30] on
fully commutative elements in Coxeter groups. The theory enables us to establish
a natural bijection between the set of reduced subwords appearing in the sum
formula and a certain set of EYDs. This bijection is the technical heart of our
proof of Theorem 3.2 and Theorem 6.4.

It is known that the multiplicity mv(Xw) at ev in Xw is closely related to [Xw]|v.
Such a multiplicity has been studied in detail by many authors (see [5]). By our
combinatorial formula, we can express mv(Xw) as the number of elements in a
certain set of excited Young diagrams. Also, we can obtain a closed formula for
mv(Xw), which is a specialization of a factorial Schur function. This leads to a
Pfaffian formula for the multiplicity of a singular point in a Schubert variety.
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In Section 2, we explain the relation between the polynomial [Xw]|v and the
ξ-function. Some fundamental properties of ξ-functions are presented for later use.
We discuss the case of Gd,n in Sections 3, 4, 5. We present the combinatorial
formula in Section 3, and the proof is given in Section 4. We give the closed
formula in Section 5, which can be read independently from the preceding two
sections. The isotropic Grassmannians are treated in a parallel manner in Sections
6, 7, 8. In Section 9 we discuss some application for mv(Xw). In Section 10 we
discuss a relation between two types of formulas (Theorems 6.4 and 8.7) by using
a Gessel-Viennot-type argument.

Note added.

(1) After the first version of the present paper was finished, a preprint [28]
by Raghavan and Upadhyay appeared. They compute the multiplicity, or
more generally the Hilbert function, of the local ring of a Schubert variety
at torus fixed points for the type Dn case. In particular, they proved
a combinatorial formula for the multiplicity equivalent to ours (Corollary
9.3, (9.3)). Their approach is based on standard monomial theory and is
quite different from ours.

(2) Combinatorics used in [3], [7], [13], [14] are closely connected with EYDs.
In fact “excitation” corresponds to possible moves in a diagram called an
RC-graph (or reduced pipe dreams). To any permutation, there is a double
Schubert polynomial of Lascoux and Schützenberger ([24]). In [14] the dou-
ble Schubert polynomial associated with “vexillary” permutations, a class
of permutations including the Grassmannian permutations, are expressed
as a sum over “flagged tableaux.” Combined with this result and a well-
known fact that the double Schubert polynomials indexed by Grassmannian
permutations are factorial Schur functions, one has a combinatorial formula
for [Xw]|v (in type A) quite similar to the one in Theorem 3.2, but they
are different formulas at least in the sense that the cardinalities of the
summands of both formulas are different in general.

Future problems. As an application of Theorem 8.7, one can give a ring
presentation for H∗

T (G/P ) in types B and D (see [10] for the type C case). We
will discuss the details in a separate paper. These descriptions should be related to
results in [15] on degeneracy loci.

The results on multiplicity can be extended to co-minuscule G/P ’s. We will
discuss the subject elsewhere.

2. ξ-functions of Kostant and Kumar

In this section we introduce the family of functions ξw for w ∈ W defined
by Kostant and Kumar. By virtue of the result of Arabia [2], we can identify
ξw (w ∈ WP ) with the equivariant Schubert class [Xw] in H∗

T (G/P ).
Let R+ denote the set of positive roots with respect to B. For β ∈ R+, we

denote by β∨ its dual coroot and sβ ∈ W the reflection corresponding to β. Let
{α1, . . . , αr} be the set of simple roots in R+. The Weyl group W is a Coxeter
group generated by the set of simple reflections {s1, . . . , sr}, where si = sαi

. In
particular, we can talk of the length �(w) of any element w ∈ W. For a simple
reflection α we denote by �α the corresponding fundamental weight.
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Proposition 2.1 (Kostant and Kumar [16]). There exist a family of functions
ξw : W −→ S for w ∈ W with the following properties:

(1) ξw(v) equals zero unless w ≤ v,
(2) ξw(w) =

∏
α∈R+∩wR−

α,

(3) ξe(v) = 1 for all v ∈ W, where e is the identity of W,
(4) if α is a simple root, then for all v ∈ W,

ξsα(v) = �α − v(�α),

(5) if α is a simple root, then

(ξsα − ξsα(w))ξw =
∑

w
β→w′

〈w(�α), β∨〉ξw′
,(2.1)

where we use the notation w
β→ w′ to indicate w′ = sβw for some β ∈ R+

and �(w′) = �(w) + 1,
(6) each ξw(v) with v ∈ W is homogeneous of degree �(w).

Remark. We use notation for ξ-functions in Kumar’s book, which is different from
the one used in [16].

The function ξw is directly related to the object of our main interest.

Proposition 2.2. Let w ∈ WP . We have

[Xw]|v = ξw(v)

for v ∈ WP .

Proof. Arabia [2] proved the result for the flag variety G/B (see Graham’s paper
[9] for more information). For the parabolic case, the reader can consult Kumar’s
book [21]. �

Let P = Pd denote the maximal parabolic subgroup associated to αd. Note that
we have for w ∈ WP

(ξsd − ξsd(w))ξw =
∑

w′∈W P , w
β→w′

〈w(�α), β∨〉ξw′
.(2.2)

The above relation involves only ξw (w ∈ WP ). This reflects the fact that the
Schubert classes [Xw] (w ∈ WP ) form an S-basis of H∗

T (G/P ), considered a sub-
S-algebra of H∗

T (G/B) via the projection G/B → G/P. Note that if w ∈ WP , ξw

is WP -invariant in the sense that

ξw(vu) = ξw(v) for all u ∈ WP .

We can make use of the following formula:

Proposition 2.3 ([1], [4]). Let w, v ∈ W such that w ≤ v. Fix a reduced expression
si1 · · · sik

for v. Put

βt = si1 · · · sit−1(αit
) for 1 ≤ t ≤ k.(2.3)

Then

ξw(v) =
∑

j1,...,js

βj1 · · ·βjs
,(2.4)

where the sum is over all sequences 1 ≤ j1 < · · · < js ≤ k such that sij1
· · · sijs

is
a reduced expression for w.
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5198 TAKESHI IKEDA AND HIROSHI NARUSE

Although the above formula is explicit, it still requires many calculations to get
a concrete expression for ξw(v) in general. If w is an element of WP for classical G
and P in our list (cf. Section 1), then we can give a nice combinatorial interpretation
for the right hand side of (2.4).

3. Excited Young diagrams

We fix positive integers n, d such that 1 ≤ d ≤ n. In this section, we give a
combinatorial formula (Theorem 3.2) for the restriction of the equivariant Schubert
classes in the Grassmannian Gd,n to any torus fixed points.

3.1. Schubert variety of Gd,n. Let w ∈ Sn be a Grassmannian permutation, i.e.,

w(1) < · · · < w(d), w(d + 1) < · · · < w(n).

When we identify the space SL(n)/Pd with the Grassmannian Gd,n of d-dimensional
subspaces of Cn, the Schubert variety associated with w is given by

Xw = {V ∈ Gd,n | dim(V ∩ Fn−w(d−i+1)+1) ≥ i for 1 ≤ i ≤ d},
where Fi = spanC{eeen−i+1, . . . , eeen} is the i-plane spanned by the last i vectors in
the standard T -basis eee1, . . . , eeen of Cn.

3.2. Partitions and Young diagrams. Let λ = (λ1 ≥ · · · ≥ λr ≥ 0) be a
partition. To every partition λ one associates its Young diagram Dλ which is the
set of square boxes with coordinate (i, j) ∈ Z2 such that 1 ≤ j ≤ λi :

Dλ = {(i, j) ∈ Z
2 | 1 ≤ i ≤ r, 1 ≤ j ≤ λi}.

The boxes in Dλ are arranged in a plane with matrix-style coordinates. For exam-
ple,

�

�
i

j

is the Young diagram Dλ of λ = (4, 3, 1).
Let Pd denote the set of all partitions with length at most d. If n is an integer

with n ≥ d, let Pd,n be the subset of Pd consisting of the elements whose largest
part is less than or equal to n − d. For any partition µ, let Pµ denote the set of
all partitions λ such that λ ≤ µ. In particular, if µ is the partition whose Young
diagram is the d × (n − d) rectangle, then Pµ is identical to Pd,n.

3.3. Grassmannian permutations and Young diagrams. The set WPd of
minimal length coset representatives for W/WPd

with W = Sn is identified with
the set of all Grassmannian permutations. Let w ∈ WPd . We define a partition
λ = (λ1, . . . , λd) of n by

λj = w(d − j + 1) − d + j − 1 (1 ≤ j ≤ d).

When considered as a Young diagram, λ is contained in the rectangular shape
d × (n − d). Note that we have �(w) = |λ| :=

∑d
j=1 λi, where �(w) is the length of

w.
There is a convenient way to recover the Grassmannian permutation from a

Young diagram as follows. Given a Young diagram λ contained in the rectangle
d × (n − d), write a path along the boundary of the Young diagram starting from
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the SW corner to the NE corner of the rectangle. We assign numbers to each arrow
from 1 to n. For example, for λ = (4, 3, 1, 0) with n = 9, d = 4 we have the following
picture:

�
�

�
� �

�
�

�
�

1

2 3

4 5 6

7 8

9

If the assigned numbers of the vertical arrows are i1 < · · · < id and those of
the horizontal arrows are j1 < · · · < jn−d, then the corresponding Grassmannian
permutation is

w = (i1, . . . , id, j1, . . . , jn−d).
Explicitly we have

ik = λd−k+1 + k (1 ≤ k ≤ d), jk = −λ′
k + k + d (1 ≤ k ≤ n − d),

where λ′ is the conjugate of λ. In the above example, we have w = 136824579.

3.4. Excited Young diagrams. Let λ ≤ µ be partitions. The Young diagram Dλ

of λ is a subset of Dµ. Take an arbitrary subset C of Dµ. Pick up a box x ∈ C such
that x + (1, 0), x + (0, 1), x + (1, 1) ∈ Dµ \C. Then set C ′ = C ∪ {x + (1, 1)} \ {x}.

�

The procedure C → C ′ for changing C into C ′ is called an elementary excitation
occurring at x. If a subset S of Dµ is obtained from C by applying elementary
excitations successively, i.e., there is a sequence

C = C0 → C1 → · · · → Cr−1 → Cr = S, r ≥ 0(3.1)

of elementary excitations, then we say that S is an excited state of C, or S is
obtained from C by excitation. Let Eµ(λ) denote the set of all excited states of Dλ.

Example 3.1. For example, let λ = (3, 1), µ = (5, 4, 3). Then the set Eµ(λ)
consists of the following seven elements:

It is easy to see that the number r in (3.1), the number of elementary excitations,
is well-defined for C ∈ Eµ(λ). In fact, if we define the energy E(C) of C ∈ Eµ(λ) by

E(C) =
∑

(i,j)∈C

m(i, j) −
∑

(i,j)∈Dλ

m(i, j), m(i, j) =
1
2
(i + j),

then we have E(C) = r.

Let ε1, . . . , εn be a standard basis of the lattice L = Z
n. The character group T̂

is identified with a sublattice of L spanned by εi − εi+1 (1 ≤ i ≤ n − 1). Now we
can state the first combinatorial formula.
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Theorem 3.2 ([22], [17]). Let w ≤ v ∈ WPd and λ ≤ µ ∈ Pd,n be the corresponding
partitions. Then we have

[Xw]|v =
∑

C∈Eµ(λ)

∏
(i,j)∈C

(εv(d+j) − εv(d−i+1)).

The proof of the theorem is given in the next section.

Example 3.3. If w = 124735689, v = 157923468 ∈ WPd with d = 4, then λ =
(3, 1), µ = (5, 4, 3). We fill the boxes of Dµ with positive roots as follows:

ε2−ε5

ε2−ε7 ε3−ε7

ε3−ε5 ε4−ε5

ε4−ε7

ε2−ε9 ε3−ε9 ε4−ε9 ε6−ε9

ε6−ε7

ε8−ε9

1

2

5

3 4

7

6

9

8

Then our formula reads (cf. Example 3.1):

[Xw]|v = (ε2 − ε9)(ε3 − ε9)(ε4 − ε9)(ε2 − ε7) + (ε2 − ε9)(ε3 − ε9)(ε6 − ε7)(ε2 − ε7)

+ (ε2 − ε9)(ε3 − ε9)(ε4 − ε9)(ε3 − ε5) + (ε2 − ε9)(ε3 − ε9)(ε6 − ε7)(ε3 − ε5)

+ (ε2 − ε9)(ε4 − ε7)(ε6 − ε7)(ε2 − ε7) + (ε2 − ε9)(ε4 − ε7)(ε6 − ε7)(ε3 − ε5)

+ (ε3 − ε7)(ε4 − ε7)(ε6 − ε7)(ε3 − ε5).

4. Proof of Theorem 3.2

4.1. Fully commutative elements. Let W be a Coxeter group. An element w
in W is fully commutative if any reduced expression for w can be obtained from
any other by using only the Coxeter relations that involve commuting generators.
It is known that every element w in WP for every (G, P ) in our list (cf. Section 1)
is fully commutative ([29], Theorem 6.1).

4.2. Row-reading expression for a Grassmannian permutation. Let v be a
Grassmannian permutation in WPd and µ ∈ Pd,n be the corresponding partition.
To each box (i, j) ∈ Dµ we fill in the simple reflection sd−i+j . For example, let
v = (3571246) ∈ S7 with d = 3. The corresponding partition is µ = (4, 3, 2), and
we have the following table:

s3 s4 s5 s6

s2 s3 s4

s1 s2
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We read the entry of the boxes of the Young diagram Dµ from right to left starting
from the bottom row to the top row and form a word

si1 · · · sik
(k = |µ|),(4.1)

which gives a reduced expression for v. For example we have

v = 3571246 = s2s1 · s4s3s2 · s6s5s4s3.

We call the word given by (4.1) the row-reading word of v.
The row-reading procedure gives a bijective map

ϕ : Dµ −→ {1, . . . , k}, k = |µ|.
For example, if µ = (4, 3, 1), then the map ϕ is expressed by the following tableau:

9 8 7 6
5 4 3
2 1

Now let C be an arbitrary subset of Dµ and let ϕ(C) = {j1, . . . , jr} with j1 < · · · <
jr be the image of {1, . . . , k} under the map ϕ. Let sij

be the simple reflection
assigned to the box ϕ−1(j) in Dµ for 1 ≤ j ≤ k. Then we put

wC = sij1
· · · sijr

.(4.2)

For example, if C is the subset of Dµ indicated by the following gray boxes

then wC = s4s2s3. In particular, if C = Dµ, then wC is nothing but the row-reading
word of v. Given another Grassmannian permutation w such that w ≤ v, define

Rv(w) = {C ⊂ Dµ | �C = �(w), wC = w}.
Note that if λ is the partition corresponding to w, then Dλ ⊂ Dµ and Dλ ∈ Rv(w).

Lemma 4.1. Let C, C ′ be subsets of a Young diagram Dµ such that C ′ is obtained
from C by an elementary excitation from C. If C belongs to Rv(w), then we have
C ′ ∈ Rv(w).

Proof. We may assume that C ′ is obtained from C by an elementary excitation
which occurred in the 2× 2-square of the corner (i, j). Set k := d + j − i. Consider
the following regions in the diagram Dµ:

R := {(i, a) | j ≤ a ≤ µi} ∪ {(i + 1, b) | 1 ≤ b ≤ j + 1},
R� := {(i, a) | j + 2 ≤ a ≤ µi}, R� := {(i + 1, b) | 1 ≤ b ≤ j − 1}.

If we pick up the i-th and the (i + 1)-th rows, they look like

R�

R�i + 1

j j + 1 µi

i • ◦

◦ �

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5202 TAKESHI IKEDA AND HIROSHI NARUSE

It suffices to compare the subwords corresponding to C ∩ R and C ′ ∩ R (given by
row-reading procedure). In C, we have sk at the position (i, j) indicated above by •.
The positions indicated by ◦ are vacant by definition of the elementary excitation.
Then C ′ is obtained by moving sk to the position indicated by �. Any simple
reflection sl located in C ∩ R� (resp. C ∩ R�) commutes with sk since l ≥ j + 2
(resp. l ≤ j − 2). Hence the subword corresponding to the subset C ∩ R can be
rewritten into the subword corresponding to C ′∩R using only the Coxeter relation
that involves commuting generators. �

Corollary 4.2. We have Eµ(λ) ⊂ Rv(w).

Proof. Use induction on energy E(C) of C ∈ Eµ(λ). The corollary is obvious from
Lemma 4.1. �

We would like to establish the following.

Proposition 4.3. We have Eµ(λ) = Rv(w).

In order to prove Proposition 4.3, it suffices to show the following.

Lemma 4.4. Let C ∈ Rv(w) be such that C �= Dλ. Then there exists an element
C ′ ∈ Rv(w) such that C is obtained from C ′ by a sequence of elementary excitations.

Proof. Let sij1
· · · sijr

be the row-reading word for v and sik1
· · · sikr

be the word
corresponding to C. Let a be such that ja �= ka and jt = kt for a < t ≤ r. We shall
compare the two words

sik1
· · · sika

, sij1
· · · sija

.

Note that the element, say w′, expressed by the words is fully commutative. Put
t = ija

. Since {ik1 , . . . , ika
} is equal to {ij1 , . . . , ija

} as a multi-set, we have t ∈
{ik1 , . . . , ika

}. Let b be the largest index such that ikb
= t. Since w′ is fully com-

mutative, the simple reflections adjacent to st, i.e., st+1, st−1, cannot appear in the
subword

sikb+1
· · · sika

.

This implies that a region R indicated by the picture below is unoccupied in the
diagram C :

. . .

. . .
R

. . .

. . .

�
�

�
��

So we can move the box corresponding to skb
as illustrated by the above picture to

get a subset C ′ of Dµ. Clearly C ′ belongs to Rv(w). Since C ′ has strictly smaller
energy than C, we see that C ′ belongs to Eµ(λ) by inductive hypothesis. Now by
the construction, C is obtained from C ′ by a sequence of elementary excitation. So
Lemma 4.1 implies C is also a member of Eµ(λ). �
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4.3. β-sequences. Fix a Grassmannian permutation v, and let µ ∈ Pd,n be the
corresponding partition. Let ϕ : Dµ −→ {1, 2, . . . , k} be the row-reading map of µ.
For (i, j) ∈ Dµ set βi,j = βϕ(i,j), where βt(1 ≤ t ≤ k) are defined in (2.3).

Lemma 4.5. For (i, j) ∈ Dµ, we have

βi,j = εv(d+j) − εv(d−i+1).

Proof. To prove the lemma, we proceed by induction on |µ| = �(v). In the case
�(v) = 0, there is nothing to prove. If �(v) > 0, let v = si1si2 · · · si�

be the row-
reading expressions for v. Setting v′ = si2 · · · si�

, which is the row-reading expression
for v, we have �(v′) = �(v)− 1. The corresponding shape µ′ for v′ is obtained from
µ by deleting a box of position (r, µr), the leftmost one in the bottom row, where
r is the number of rows in µ. Then we have

βr,µr
= αi1 = εd−r+µr

− εd−r+µr+1.

By definition of µr, we have µr = v(d − r + 1) − d + r − 1, so

βr,µr
= εv(d−r+1)−1 − εv(d−r+1).

Then by Lemma 4.6 below, we have βr,µr
= εv(d+µr) − εv(d−r+1).

Let (i, j) ∈ µ′. By the hypothesis of induction, we have

β′
i,j = εv′(d+j) − εv′(d−r+i).

By definition of βi,j , it is easy to see that βi,j = si1(β
′
i,j). Hence we have

βi,j = si1(β
′
i,j) = si1(εv′(d+j) − εv′(d−r+i)) = εsi1v′(d+j) − εsi1v′(d−r+i).

Since si1v
′ = v, we have the lemma. �

Lemma 4.6. Let r be the number of rows in µ. Then we have

v(d − r + 1) = v(d + µr) + 1.

Proof. For a sequence a1 < a2 < · · · < am of integers, we say ai is a “gap” if
ai−ai−1 ≥ 2. Note that µr is the largest number such that v(d+1) < · · · < v(d+µr)
has no gap. Since v is a Grassmannian permutation, the number v(d + µr) + 1
occurs as the smallest gap in 0 < v(1) < · · · < v(d). On the other hand, we
have µd = · · · = µr+1 = 0 and µr > 0, which implies that the smallest gap in
0 < v(1) < · · · < v(d) is v(d − r + 1). �

Proof of Theorem 3.2. By Proposition 2.3 together with Lemma 4.5 we have

[Xw]|v =
∑

C∈Rv(w)

∏
(i,j)∈C

(εv(d+j) − εv(d−i+1)).

Then the theorem is immediate from Proposition 4.3. �

5. Factorial Schur functions

Our main goal in this section is to express [Xw]|v for Gd,n as a specialization
of a factorial Schur function. First we recall the definition of the factorial Schur
functions.
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5.1. Definition of factorial Schur functions. Let x = (x1, . . . , xd) be a finite
sequence of variables and let a = (ai)∞i=1 be an infinite sequence of parameters.
The factorial Schur function for a partition λ of length at most d can be defined as
follows. Let

(z|a)k = (z − a1)(z − a2) · · · (z − ak)
for any k ≥ 0. Then we put

s
(d)
λ (x|a) =

det((xj |a)λi+d−i)1≤i,j≤d∏
1≤i<j≤d(xi − xj)

.

This function is actually a polynomial in x1, . . . , xd and a1, a2, . . . , aλ1+d−1, homo-
geneous of degree |λ|. In particular we have

s
(d)
1 (x|a) = x1 + · · · + xd − a1 − · · · − ad.(5.1)

For a partition λ ∈ Pd, we define a d-tuple

aλ = (aλd+1, aλd−1+2, . . . , aλ1+d).

Proposition 5.1 (Vanishing property; cf. [25]). We have s
(d)
λ (aµ|a) = 0 unless

µ ≥ λ.

Let λ ∈ Pd, and take sufficiently large n such that λ is contained in the d×(n−d)
rectangle. Define an n-tuple (w(1), . . . , w(n)) by

w(i) =

{
λd−i+1 + i for 1 ≤ i ≤ d,

−λ′
i + i for d < i ≤ n;

then w = (w(1), . . . , w(n)) is a permutation of {1, . . . , n}. If we set w(i) = i for all
i > n, then the infinite sequence (w(1), w(2), . . .) does not depend on the choice of
n.

We also need the following Pieri-type formula:

Lemma 5.2 (cf. [25]). Let λ ∈ Pd. We have(
s
(d)
1 (x|a) − s

(d)
1 (aλ|a)

)
s
(d)
λ (x|a) =

∑
ν

s(d)
ν (x|a),

where the summation on the right hand side runs through ν ∈ Pd such that ν ≥ λ
and |ν| = |λ| + 1.

5.2. Closed formulas. Let λ ∈ Pn,d. Recall that s
(d)
λ (x|a) is a polynomial in

x1, . . . , xd and a1, . . . , an−1. A specialization given by ai = εi (1 ≤ i ≤ n − 1) is
important for our geometric application below. For v ∈ WPd , we define an n-tuple
by

xv = (εv(1), . . . , εv(d)).

Lemma 5.3. Let v ∈ WPd . We have

[Xsd
]|v = −s

(d)
1 (xv|ε1, . . . , εn−1).

Proof. The d-th fundamental weight of SL(n) is given by �d = ε1 + · · · + εd. By
Proposition 2.1 (4) and formula (5.1), the lemma follows. �
Theorem 5.4 (Knutson and Tao [15], Lakshmibai, Raghavan, and Sankaran [22]).
Let w ≤ v ∈ WPd and λ ≤ µ ∈ Pd,n be the associated partitions. Then we have

[Xw]|v = (−1)�(w)s
(d)
λ (xv|ε1, . . . , εn−1).(5.2)
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Proof. Let Pµ denote the set of all partitions λ such that λ ≤ µ. Consider the
following system of equations for the functions Fλ = Fλ(ε1, . . . , εn) (λ ∈ Pµ) :

d∑
i=1

(ελd−i+1+i − εµd−i+1+i) · Fλ =
∑

ν

Fν (λ ∈ Pµ \ {µ}),(5.3)

where the summation on the right hand side runs through ν ∈ Pµ such that ν ≥ λ
and |ν| = |λ|+1. This equation together with the initial condition Fφ(ε1, . . . , εn) = 1
for the empty partition λ = φ determine the functions Fλ(ε1, . . . , εn) (λ ∈ Pµ)
uniquely.

Now we can see that equation (2.2) for [Xw]|v is identical to (5.3) above, in view
of the bijection WPd ∼= Pd,n. On the other hand, the right hand side of (5.2) satisfies
the same equation from Proposition 5.1 and Lemmas 5.2 and 5.3. In addition, both
sides of (5.2) satisfy the initial condition. Hence the theorem follows. �

6. Lagrangian and orthogonal Grassmannians

Fix a positive integer n. Here we give analogous theorems for other classical
homogeneous spaces G/P in the following types:

• Type Bn: G = SO(2n + 1, C), P = Pn,
• Type Cn: G = Sp(2n, C), P = Pn,
• Type Dn: G = SO(2n, C), P = Pn−1, Pn,

where we shall denote by Pd the maximal parabolic subgroup associated to the
simple root αd (the simple roots being indexed as in [6]).

In type Bn (resp. type Cn), the variety G/P can be identified with a closed
subvariety of Gn,2n+1 (resp. Gn,2n) parametrizing the isotropic n-spaces in C2n+1

(resp. C2n) equipped with a non-degenerate symmetric (resp. skew symmetric)
form. Our space G/P in type Cn is also called the Lagrangian Grassmannian. For
the even dimensional space C

2n equipped with a non-degenerate symmetric form,
the isotropic n-subspaces constitute a union of two closed subvarieties of Gn,2n, each
of which is isomorphic to G/P, P being one of Pn−1 and Pn. Note that the varieties
SO(2n + 1, C)/Pn, SO(2n + 2, C)/Pd (d = n, n + 1) are all isomorphic (cf. [26]),
although they are different as T -spaces.

The goal of this section is to present combinatorial formulas for the restriction
of equivariant Schubert classes to any torus fixed points for the classical Grassman-
nians G/P.

6.1. The set WP . First we fix some notation on a set WP which parametrizes the
Schubert classes and the torus fixed points.

The character group T̂ of our torus is a lattice with a standard basis {εi}r
i=1,

where r = dim(T ).
Type Cn (G = Sp(2n, C), P = Pn): We identify W with a subgroup of S2n

acting on the functionals ±ε1, . . . ,±εn. Denote εi,−εi by i and ī respectively and
define a partial order on the set In = {1, . . . , n, n, . . . , 1} by

1 < 2 < · · · < n < n < · · · < 2 < 1.

Then we have W = {w ∈ S2n | w( i ) = w(i)}, where a 
→ a is the involution on In

given by ±εi 
→ ∓εi. Then

WP = {w ∈ W | w(1) < · · · < w(n)}.
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The simple roots are

αi = εi − εi+1 (1 ≤ i ≤ n − 1), αn = 2εn,

and the corresponding simple reflections are

si = (i, i + 1)(i + 1, i) (1 ≤ i ≤ n − 1), sn = (n, n).

We have
�n = ε1 + · · · + εn.

Type Bn (G = SO(2n + 1, C), P = Pn): Since W is identical to the case Cn as
a Coxeter group, the description of WP is the same as Type Cn. The simple roots
are given by

αi = εi − εi+1 (1 ≤ i ≤ n − 1), αn = εn,

and we have
�n = 1

2 (ε1 + · · · + εn).

Type Dn+1 (G = SO(2n + 2, C), P = Pn+1): In this case, we have

W =
{

w ∈ S2n+2 |w( i ) = w(i), �N(w) is even
}

,

where we set N(w) = { i |1 ≤ i ≤ n + 1, w(i) > n + 1}. We have

WP = {w ∈ W | w(1) < · · · < w(n + 1)}.

The simple reflections are given by

si = (i, i + 1)(i + 1, i) (1 ≤ i ≤ n), sn+1 = (n, n + 1)(n + 1, n),

and we have

αi = εi − εi+1 (1 ≤ i ≤ n), αn+1 = εn + εn+1,

and

�n+1 = 1
2 (ε1 + · · · + εn+1).(6.1)

Remark 1. For type Dn+1, the result for P = Pn is obtained by simply replacing
εn+1 by −εn+1. So we only consider Pn+1.

6.2. Strict partitions and shifted Young diagrams. Next we need a descrip-
tion of the set WP in terms of strict partitions. Let λ = (λ1 > · · · > λr > 0)
be a strict partition. Then the shifted Young diagram of λ is the array of boxes
with λi boxes in the i-th row, such that each row is shifted by one position to
the right relative to the preceding row. More explicitly, given a strict partition
λ1 > λ2 > · · · > λr > 0, the shifted diagram of λ is defined to be

D′
λ := {(i, j) ∈ Z

2 | 1 ≤ i ≤ l, i ≤ j < λi + i}.

For example

�

�
i

j

is the shifted Young diagram of λ = (5, 2, 1).
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Define a partial order λ ≤ µ if and only if λi ≤ µi for all i. Denote the particular
element ρn = (n, . . . , 2, 1). Let SPµ denote the set of all strict partitions λ such
that λ ≤ µ. The cardinality of the set SPρn

is 2n.

Proposition 6.1. Let G/P be as above. There is a natural order-preserving bijec-
tion

WP ∼= SPρn
.

If λ ∈ SPρn
corresponds to w ∈ WP we have �(w) = |λ|.

Explicitly, the bijections are given as follows:
Types Bn, Cn: Let w ∈ WP . Since w is a Grassmannian permutation of 2n

letters (with d = n) we have the associated Young diagram, say Λ. It is symmetric
and contained in an n × n square. Then the associated element λ ∈ SPρn

is
the upper part of the symmetric Young diagram including the diagonal. Thus if
Λ = (Λ1, . . . , Λn), then

λi = max{Λi − i + 1, 0} (1 ≤ i ≤ n).

Type Dn+1: Let w ∈ WP . Then the associated Young diagram, say Λ, is
symmetric and contained in an (n + 1) × (n + 1) square. Then the associated
element λ ∈ SPρn

is the “strictly” upper part of the symmetric Young diagram.
Thus if Λ = (Λ1, . . . , Λn+1), then

λi = max{Λi − i, 0} (1 ≤ i ≤ n).

Example 6.2. Take w1 = 243̄1̄ for D4 and w2 = 23̄1̄ for B3 (or C3). Then the
associated strict partitions are the same and given by λ = (3, 1).

�
�

�
�

�
�

�
�

2
4
3̄
1̄

1 3 4̄ 2̄

�
�

�

�
�

�

2
3̄
1̄

1 3 2̄

D4 B3, C3

Note that w1 = s3s1s2s4 and w2 = s3s1s2s3, and these are the row-reading reduced
expressions introduced in Section 7.

6.3. Excited Young diagrams for shifted cases. The notion of excitation of
shifted Young diagrams is defined in the same way as in the case of ordinary Young
diagrams if we introduce the idea of elementary excitation.

Let µ be a strict partition, and let C be a subset of D′
µ. If a box x ∈ C satisfies

either of the following conditions:
(1) x = (i, j), i < j and x + (1, 0), x + (0, 1), x + (1, 1) ∈ D′

µ \ C,
(2) x = (i, i) and x + (0, 1), x + (1, 1) ∈ D′

µ \ C,

then we set C ′ = C∪{x+(1, 1)}\{x} and call this procedure C → C ′ an elementary
excitation of type I occurring at x ∈ C. In general if a subset S of D′

µ is obtained
from C by applying elementary excitations of type I successively, then we say that
S is an excited state of C. Suppose we are given a strict partition λ such that λ ≤ µ.
Let us denote by EI

µ(λ) the set of all excited states of D′
λ.
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We also define the set EII
µ (λ) consisting of the elements obtained from C by a

successive application of elementary excitations of “type II” defined below. Let
C be a subset of D′

µ, and suppose we take a box x ∈ C satisfying either of the
following conditions:

(1) x = (i, j), i < j and x + (1, 0), x + (0, 1), x + (1, 1) ∈ D′
µ \ C,

(2) x = (i, i) and x + (0, 1), x + (1, 1), x + (1, 2), x + (2, 2) ∈ D′
µ \ C.

In the case of (1) we set C ′ = C ∪ {x + (1, 1)} \ {x}, and in the case of (2)
C ′ = C ∪{x+(2, 2)}\{x}. We call the procedure C → C ′ an elementary excitation
of type II occurring at x ∈ C. Clearly we have EII

µ (λ) ⊂ EI
µ(λ).

�

Type I

�

Type II

Example 6.3. Let λ = (3, 1), µ = ρ4. The set EI
µ(λ) consists of the following ten

elements:

The five members in the first row form the subset EII
µ (λ). The corresponding ele-

ments in WP are as follows: for type D5 : v = 54̄3̄2̄1̄, w = 1354̄2̄, for type C4 or
B4: v = 4̄3̄2̄1̄, w = 134̄2̄.

Theorem 6.4. Let w ≤ v ∈ WP and λ ≤ µ be the corresponding strict partitions.
We have the following formulas:

(1) Type Cn: [Xw]|v =
∑

C∈EI
µ(λ)

∏
(i,j)∈C(εv(n+j) − εv(n−i+1)),

(2) Type Bn: [Xw]|v =
∑

C∈EI
µ(λ)

∏
(i,j)∈C 2−δij (εv(n+j) − εv(n−i+1)),

(3) Type Dn+1: [Xw]|v =
∑

C∈EII
µ (λ)

∏
(i,j)∈C(εv(n+j+2) − εv(n−i+2)).

Example 6.5. Let n = 4 and µ = ρ4. We arrange positive roots in D′
µ as follows:

ε1+ε2 ε1+ε3 ε1+ε4 ε1−ε5

ε2+ε3 ε2+ε4 ε2−ε5

ε3+ε4 ε3−ε5

ε4−ε5

Type D5

2ε1 ε1+ε2 ε1+ε3 ε1+ε4

2ε2 ε2+ε3 ε2+ε4

2ε3 ε3+ε4

2ε4

Type C4
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Let λ = (2). Then the set EI
µ(λ) consists of the following six elements:

The first four elements form the subset EII
µ (λ). In the type D5 case we have

[Xw]|v = (ε1+ε2)(ε1+ε3)+(ε1+ε2)(ε2+ε4)+(ε1+ε2)(ε3−ε5)+(ε3+ε4)(ε3−ε5),

in the type C4 case we have

[Xw]|v = 2ε1(ε1 + ε2) + 2ε1(ε2 + ε3) + 2ε1(ε3 + ε4)

+ 2ε3(ε3 + ε4) + 2ε2(ε3 + ε4) + 2ε2(ε2 + ε3).

7. Proof of Theorem 6.4

This section is devoted to the proof of Theorem 6.4. Our strategy is the same
as in Section 4.

We shall give the notion of a row-reading expression for each element of WP .
First we fill in the diagram D′

ρn
the simple reflections.

Types Bn, Cn: We define a map s : D′
ρn

→ {s1, . . . , sn} by

s(i, j) =

{
sn (i = j),
sn+i−j (i < j),

where 1 ≤ i < j ≤ n.
Type Dn+1: We define a map s : D′

ρn
→ {s1, . . . , sn+1} by

s(i, j) =

⎧⎪⎨
⎪⎩

sn+1 (i = j, i : odd),
sn (i = j, i : even),
sn+i−j (i < j),

where 1 ≤ i < j ≤ n.

Example 7.1. Let n = 4. The map s is illustrated as follows:

s4

s5

s4

s5 s3

s3

s3

s2

s2

s1

D5

s4

s4

s4

s4 s3

s3

s3

s2

s2

s1

C4 or B4

Let λ be the strict partition associated to w ∈ WP . We define the row-reading
map ϕ : D′

λ → {1, 2, . . . , k} as in Section 4. We define the word

si1 · · · sik
,

where sij
= s(ϕ−1(j)). Then we have w = si1 · · · sik

, which is a reduced expression
for w ∈ WP . For each subset C of D′

µ, we define an element wC ∈ W in the same
way in Section 4. Let w ≤ v ∈ WP . The set

{C ⊂ D′
µ | �C = �(w), wC = w}

is denoted by RI
v(w) (resp. RII

v (w)) for types Cn, Bn (type Dn+1).
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The key result to prove Theorem 6.4 is the following.

Proposition 7.2. Let w ≤ v ∈ WP and λ ≤ µ be the associated strict partitions.
Then we have E∗

µ(λ) = R∗
v(w) for ∗ = I, II.

Lemma 7.3. Let C, C ′ be subsets of a shifted Young diagram D′
µ such that C ′

is obtained from C by an elementary excitation of type ∗ = I, II. If C belongs to
R∗

v(w), then we also have C ′ ∈ R∗
v(w).

Proof. Suppose C ′ is obtained from C by an elementary excitation of Type II
occurring at (i, i). Any simple reflection contained in the region R� ∩ C are one of
s1, . . . , sn−2, each of which commutes with sn+1 and sn.

�

• ◦

◦ ◦
R�

The positions indicated by ◦ are vacant by the definition of elementary excitation.
Therefore the word wC′ can be obtained from wC by using only commuting rela-
tions. Hence we have C ′ ∈ Rv(w). The arguments for the other cases are simpler
than this, and we leave them to the reader. �

Lemma 7.4. Let C ∈ R∗
v(w) be such that D′

λ �= C. Then there exists C ′ ∈ R∗
v(w)

such that C is obtained from C ′ by excitation of type ∗.

Proof. Similar to the proof of Lemma 4.4. �

Proof of Proposition 7.2. This is immediate from Lemmas 7.3, 7.4. �

Now we calculate the β-sequence in Proposition 2.3.

Lemma 7.5. Let µ ∈ SPρn
and v be the associated element of WP . Denote by

ϕ : µ −→ {1, 2, . . . , k} the row-reading map of µ. For (i, j) ∈ D′
µ set βi,j = βϕ(i,j),

where βt(1 ≤ t ≤ l) are defined in (2.3). We have the following formulas:

(1) Type Cn: βi,j = εv(n+j) − εv(n−i+1),

(2) Type Bn: βi,j = 2−δij (εv(n+j) − εv(n−i+1)),
(3) Type Dn+1: βi,j = εv(n+2+j) − εv(n−i+2).

Proof. Similar to the proof of Lemmas 4.5 and 4.6. �

Proof of Theorem 6.4. The same as the proof of Theorem 3.2. �

8. Factorial Q- and P -functions

In this section, we first define the factorial Q- and P -functions and present
some fundamental properties. Then we use them to express the restriction of the
equivariant Schubert classes for the Lagrangian and orthogonal Grassmannians. As
an application we give the equivariant Giambelli formula.
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8.1. Factorial Q- and P -functions. We first recall the definition of factorial Q-
and P -functions due to Ivanov [11]. Let SP(n) denote the set of strict partitions
λ = (λ1 > · · · > λr > 0) with r ≤ n.

Definition 8.1. Let λ ∈ SP(n). Put

P
(n)
λ (x|a) =

1
(n − r)!

∑
w∈Sn

w

⎛
⎝(x1|a)λ1 · · · (xr|a)λr

∏
1≤i≤r, i<j≤n

xi + xj

xi − xj

⎞
⎠ ,(8.1)

where w ∈ Sn acts as a permutation of variables x1, . . . , xn. We also put Q
(n)
λ (x|a) =

2rP
(n)
λ (x|a).

The rational expression on the right hand side of (8.1) is actually a polynomial
in x1, . . . , xn and a1, a2, . . . , aλ1 , homogeneous of degree |λ|. In particular we have

P
(n)
1 (x|a) =

{
x1 + · · · + xn if n is even,

x1 + · · · + xn − a1 if n is odd.
(8.2)

In [11], the first parameter a1 is assumed to be zero in most of the argument.
However, we need a1 for later use. In order to generalize Ivanov’s results to the
case of non-zero a1 the following is fundamental (cf. [11], Proposition 2.6).

Proposition 8.2 (Stability mod 2). For any λ ∈ SP(n), we have

P
(n+2)
λ (x1, . . . , xn, 0, 0|a) = P

(n)
λ (x1, . . . , xn|a).(8.3)

Proof. We set

Fn = (x1|a)λ1 · · · (xr|a)λr

∏
1≤i≤r, i<j≤n

xi + xj

xi − xj
.

Let w ∈ Sn+2, and consider the term w(Fn+2). If w(i) �= n + 1, n + 2 for all
i = 1, . . . , r, then the rational function w(Fn+2) has no pole along the hyperplane
xn+1−xn+2 = 0. So we can substitute xn+1 = xn+2 = 0 to such a rational function.
As the result of the substitution we have w′(Fn) for some w′ ∈ Sn. In fact, w′ is
obtained by eliminating n + 1, n + 2 from the sequence w(1), . . . , w(n + 2). By this
correspondence, there are (n − r + 2)(n − r + 1) elements of Sn+2 giving the same
w′ ∈ Sn. Thus our task is to show that all the remaining terms cancel out.

Let i = w−1(n + 1), j = w−1(n + 2). Suppose i ≤ r or j ≤ r. We set w′ =
w ·(i, j). Then both w(Fn+2) and w′(Fn+2) have a simple pole along xn+1−xn+2 =
0; however, the sum w(Fn+2) + w′(Fn+2) has no pole along xn+1 − xn+2 = 0.
Substituting xn+1 = xn+2 = 0 to the sum, we obtain zero. �

8.2. Vanishing property. Here we present a vanishing property of P
(n)
λ (x|a). For

a strict partition λ = (λ1 > · · · > λr > 0) with r ≤ n define an n-tuple

aλ =

{
(aλ1+1, . . . , aλr+1, 0, . . . , 0) if n − r is even,

(aλ1+1, . . . , aλr+1, a1, 0, . . . , 0) if n − r is odd.

Proposition 8.3. We have P
(n)
λ (aµ|a) = 0 unless µ ≥ λ.

Proof. By Proposition 8.2, we may assume aµ has no zero entries. Then the propo-
sition follows from the definition. �
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8.3. Pieri’s rule and Pfaffian formulas. Here we collect some basic facts on the
factorial P -Schur functions, which we shall make use of in the next subsection. The
proof for the a1 = 0 case is given in [11]. The same proof works for the general a1

case using the vanishing property.

Proposition 8.4 ([11]). For a strict partition λ ∈ SP(n) we have(
P

(n)
1 (x|a) − P

(n)
1 (aλ|a)

)
P

(n)
λ (x|a) =

∑
λ→ν

P (n)
ν (x|a),

where the sum is over ν ∈ SP(n) such that ν ≥ λ and |ν| = |λ| + 1.

For any λ = (λ1 > · · · > λr > 0) ∈ SP(n), set r0(λ) = r if r is even and
r0(λ) = r + 1 if r is odd, and then we put λr+1 = 0.

Lemma 8.5 ([11]). For a strict partition λ ∈ SP(n) we have

P
(n)
λ (x|a) = Pf(P (n)

λi,λj
(x|a))1≤i<j≤r0(λ).

8.4. Closed formula for [Xw]|v and the equivariant Giambelli formula. For
each v ∈ WP , we shall define an n-tuple xv in the following way:

Types Cn and Bn: Let v ∈ WP , and

{i | 1 ≤ i ≤ n, v(i) > n} = {j̄1, . . . , j̄k},
where 1 ≤ j1 < · · · < jk ≤ n. Then we put

xv = (εj1 , . . . , εjk
, 0, . . . , 0).

Type Dn+1: Let v ∈ WP , and

{i | 1 ≤ i ≤ n + 1, v(i) > n + 1} = {j̄1, . . . , j̄k},
where 1 ≤ j1 < · · · < jk ≤ n + 1. Note that k is even. If n is even we put

xv = (εj1 , . . . , εjk
, 0, . . . , 0).

If n is odd, let r = r(λ), where λ is the strict partition corresponding to v, and put

xv =

{
(εj1 , . . . , εjr

, 0, . . . , 0) if n − r is odd,

(εj1 , . . . , εjr
,−εn+1, 0, . . . , 0) if n − r is even.

Lemma 8.6. Let v ∈ WP . We have
(1) Type Cn: [Xsn

]|v = Q
(n)
1 (xv|0, εn, . . . , ε2),

(2) Type Bn: [Xsn
]|v = P

(n)
1 (xv|0, εn, . . . , ε2),

(3) Type Dn+1: [Xsn+1 ]|v = P
(n)
1 (xv|(−1)nεn+1, εn, . . . , ε2).

Proof. Consider Type Dn+1. By Proposition 2.1 (4), and (6.1), we have

[Xsn+1 ]|v = �n+1 − v(�n+1) =
∑

1≤i≤n+1, v(i)>n+1

εi.

Now recall the form of P1(x|a) given by (8.2). Then it is easy to check our formula.
Types Cn and Bn are similar and much simpler. �

Now we can state the main result of this section.

Theorem 8.7. Let w ≤ v ∈ WP and λ ≤ µ be the corresponding strict partitions.
We have the following formulas:

(1) Type Cn ([10]): [Xw]|v = Q
(n)
λ (xv|0, εn, . . . , ε2),
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(2) Type Bn: [Xw]|v = P
(n)
λ (xv|0, εn, . . . , ε2),

(3) Type Dn+1: [Xw]|v = P
(n)
λ (xv|(−1)nεn+1, εn, . . . , ε2).

Proof. The result for Type Cn has been proved in [10]. We consider Type Dn+1.
Assume n is even for simplicity. The odd case is left for the reader. Fix µ ∈
SPρn

. Consider the following system of equations for the functions Fλ(ε1, . . . , εn+1)
(λ ∈ SPµ) :⎛

⎝r0(µ)∑
i=1

εn−µi+1 −
r0(λ)∑
i=1

εn−λi+1

⎞
⎠ Fλ(ε) =

∑
ν

Fν(ε) for all λ ∈ SPµ \ {µ},(8.4)

where the summation on the right hand side runs through ν ∈ SPµ such that
ν ≥ λ and |ν| = |λ| + 1. By equation (5.3) together with the initial condition
Fφ(ε1, . . . , εn) = 1, the set of functions Fλ(ε) (λ ∈ SPµ) is characterized.

By equation (2.2) for type Dn+1, [Xw]|v = ξw(v) (cf. Proposition 2.2) satisfies
equation (8.4) as well as the initial condition (cf. Proposition 2.1 (1)). Note that
the coefficients 〈w(�n+1), β∨〉, the Chevalley multiplicity, is equal to one on the
right hand side of equation (2.2), i.e., G/P in this case is ‘minuscule’. On the other
hand, the functions on the right hand side of the formula in the theorem also satisfy
(8.4). This fact is a consequence of Proposition 8.4 and the vanishing property
(Proposition 8.3) of P

(n)
λ (x|a). The initial condition is also satisfied. Therefore we

have the theorem. The type Bn case is quite similar to the case of type Dn+1. �
The following result is a direct consequence of Theorem 8.7 and Lemma 8.5.

Corollary 8.8 (Equivariant Giambelli). Let G/P be of type Cn, Bn, Dn+1. For any
λ ∈ SPρn

, we have
[Xλ] = Pf

(
[Xλi,λj

]
)
1≤i<j≤r0(λ)

,

where we denote by Xλ the Schubert variety corresponding to λ.

Proof. The proof is the same as that given in [10]. �

9. Multiplicity of a singular point in a Schubert variety

Another application is to the multiplicity of a singular point in a Schubert variety.
We denote the multiplicity of the variety Xw at ev by mv(Xw). We will explain
the relationship between [Xw]|v and mv(Xw). Then we discuss some implications
of our result on mv(Xw).

Let Runi(P ) be the unipotent radical of P , and let R+
P be the subset of R+ defined

by R+
P = {β ∈ R | Uβ ⊂ Runi(P )}, where Uβ is the root subgroup associated to β.

For a given v ∈ WP , let U−
v be the subgroup of G generated by the root subgroups

U−β , β ∈ v(R+ \ R+
P ). Under the map G → G/P, U−

v is mapped isomorphically
onto its image Uv := U−

v ev, which is a canonical T -stable affine neighborhood of ev

with a coordinate system {x−β | β ∈ v(R+ \ R+
P )}.

Let G/P be either of types An−1, Cn, or Dn. For w, v ∈ WP , v ≥ w, let us denote
Yw,v = Xw∩ Uv. It is known that in these cases the defining ideal of the affine variety
Yw,v is homogeneous in our coordinate system, i.e., Yw,v is a cone in Uv. Actually
we have a one parameter subgroup φv ∈ Hom(C×, T ) where φv(t) (t ∈ C

×) acts
on Uv by dilation. Then there exists hv ∈ Lie(T ) such that hv(β) = −1 for all
β ∈ v(R+ \ R+

P ). For example, if v ∈ W (Cn)Pn , then hv is given by hv(εi) = 1
2 if

v(i) > n and −1
2 if v(i) ≤ n, for 1 ≤ i ≤ n. Note that each [Xw]|v ∈ S, being a
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polynomial function on Lie(T ), can be evaluated at hv. For background of the next
proposition we refer to [27].

Proposition 9.1. Let G/P be either of types An−1, Cn, Dn and w ≤ v ∈ WP .
The value of [Xw]|v evaluated at hv gives the multiplicity of the variety Xw at ev.

Proof. Consider the neighborhood Uv of ev. The multiplicity mv(Xw) is determined
by the Poincaré series of the coordinate ring C[Yw,v], which is given by restricting
the formal character ch C[Yw,v] as a T -module to the one parameter subgroup φv

associated with hv. Then [Xw]|v evaluated at hv is nothing but the classical multi-
plicity in the sense of Hilbert-Samuel. �
Remark. There are recurrence relations for mv(Xw) given by Lakshmibai and Wey-
man [23], which can be obtained by specializing equations (5.3), (8.4) at hv. So we
have another proof of the above proposition.

Corollary 9.2 ([19], [12], [17]). Let G/P = Gd,n, w ≤ v ∈ WPd , and λ ≤ µ ∈ Pd,n

be the corresponding partitions. Then we have

mv(Xw) = �Eµ(λ).(9.1)

Proof. This is immediate from Proposition 9.1 and Theorem 3.2, since each sum-
mand on the right hand side of the formula becomes one, when specialized at
hv. �
Remark 2. This formula can be obtained as a direct consequence of the result in
[19], [12] describing the Gröbner basis of the defining ideal of Yw,v, together with a
combinatorial argument in [17].

Corollary 9.3. Let G/P be the Grassmannian of types Cn or Dn+1. Let w ≤ v ∈
WP and λ ≤ µ ∈ SPρn

be the corresponding strict partitions. Then we have
(1) ([8], [18]) Type Cn:

mv(Xw) = �EI
µ(λ),(9.2)

(2) Type Dn+1:

mv(Xw) = �EII
µ (λ).(9.3)

Proof. The same as Corollary 9.2. �
Example 9.4 (cf. Example 6.3). Let v = 54̄3̄2̄1̄, w = 1354̄2̄ (type D5), and
v = 4̄3̄2̄1̄, w = 134̄2̄ (types B4 or C4). Then we have mv(Xw) = 10 for C4 and
mw(Xv) = 5 for B4, D5.

Remark 3. We should make a remark on (9.2) similar to Remark 2. Ghorpade and
Raghavan [8] have given a detailed description of the Gröbner basis of the defining
ideal of Yw,v for the Lagrangian Grassmannian. Then (9.2) can be derived from
a result in [18]. As for Type Dn+1, formula (9.3) seems to be new (see the note
added in Section 1).

We close this section by pointing out the following fact.

Proposition 9.5. With notation as in Corollary 9.3, we have

mv(Xw) = Pf(mv(Xλi,λj
))1≤i<j≤r0(λ).

Proof. This is immediate from Corollary 8.8 and Proposition 9.1. �
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10. Lattice paths method

As a supplementary discussion, we will show a direct combinatorial route from
the combinatorial formula (Theorem 6.4) to the equivariant Giambelli formula
(Corollary 8.8). Our argument relies on the “lattice path method” due to Stem-
bridge. In order to deal with the case of type Dn+1 also, we slightly modify the
results in [29].

10.1. Perfect matchings. Let r be a positive even integer and consider a set of r
elements Ur = {u1, . . . , ur}. A perfect matching on Ur is a partition of the set Ur

with each part consisting of two element subsets. We denote a perfect matching σ on
Ur in such a way that σ = {(uik

, ujk
)}k=1,...,r/2, where ik < jk (1 ≤ k ≤ r/2), i1 <

· · · < ir/2, and put Iσ = {i1, . . . , ir/2}. The signature sgn(σ) of σ is defined as
(−1)c(σ), where c(σ) = #{(i, j, k, l) | 1 ≤ i < j < k < l ≤ r, (ui, uk), (uj , ul) ∈ σ} is
the number of crossings in σ (which depends on the numbering of elements of Ur,
but we fix it once and for all). Denote by Mr the set of all perfect matchings on
the set Ur and let σ0 be the ‘identical’ perfect matching {(u2i−1, u2i)}r/2

i=1.

Lemma 10.1. There is an involution on Mr \ {σ0} (σ 
→ σ∗) such that sgn(σ) =
−sgn(σ∗) and Iσ = Iσ∗ .

Proof. Take the smallest number k such that (ui, u2k−1), (uj , u2k) ∈ σ. Define a
perfect matching σ′ by replacing (ui, u2k−1), (uj , u2k) in σ into (uj , u2k−1), (ui, u2k).
Then it is easy to see that σ∗ has the desired property. �

10.2. Modified version of Stembridge’s argument. Let µ = (µ1, . . . , µl) ∈
SPρn

. We define a directed graph as follows. The vertex set is

D′
µ ∪ (D′

µ + aaa),

where aaa = ( 1
2 ,−1

2 ). Direct an edge from u to v if (1) v − u = bbb, with bbb = (−1
2 ,−1

2 )
or (2) u ∈ D′

µ and v−u = aaa. If we take µ = ρn, the directed graph is the following:
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���������

������

���

v1

v2

v3

. . .

. . .

vn

Given a strict partition λ = (λ1, . . . , λr) such that λ ≤ µ, let (u1, . . . , ur) be the
r-tuple of vertices defined as follows. If µ = ρn, then we put

ui = (n + 1 − λi, n).

In general, we put ui = (i+mi, λi+i−1+mi), where mi is the largest non-negative
integer such that (i + mi, λi + i − 1 + mi) ∈ D′

µ. Define vi = (i, i) + aaa for 1 ≤ i ≤ l
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and set J = {v1, . . . , vl}, and also

J1 = {vi | i is odd}, J2 = {vi | i is even}.
For each subset I of J we denote by P(ui, I) the set of paths starting from ui to
any vertex in I. Let PI

µ(λ) denote the set of r-tuples of paths (p1, . . . , pr) such that
pi ∈ P(ui, J) for 1 ≤ i ≤ r. Let PII

µ (λ) denote the subset of PI
µ(λ) such that

pi ∈ P(ui, Ji) for all 1 ≤ i ≤ r,

where the index i in Ji is viewed as modulo 2. For ∗ = I, II, we define N ∗
µ (λ) to be

the set of r-tuples ppp = (p1, . . . , pr) of non-intersecting paths in P∗
µ(λ).

For u = (i, j) ∈ D′
µ, we assign an arbitrary weight aij (any element in a fixed

commutative ring) to the edge u → u + aaa. All the other edges are assigned the
weight 1. For the r-tuple of paths ppp = (p1, . . . , pr) in P∗

µ(λ), let w(pi) denote the
product of all weights which pi go through and put w(ppp) = w(p1) · · ·w(pr). Let

W∗
µ(λ) =

∑
ppp∈N∗

µ (λ)

w(ppp)

denote the corresponding generating function.

Proposition 10.2 ([29]). Let λ ≤ µ ∈ SPρn
. We have

W∗
µ(λ) = Pf W∗

µ(λi, λj)1≤i<j≤r0(λ).(10.1)

Proof. For the case of ∗ = I, we can apply Theorem 3.1 in [29] directly. Here we
consider the case of ∗ = II. We may assume that r = r0(λ) is even (see the Remark
after Theorem 3.1, [29]). Given a perfect matching σ of {u1, . . . , ur}, an r-tuple of
paths ppp = (p1, . . . , pr) ∈

∏r
i=1 P(ui, J) is σ-admissible if for each (ui, uj) ∈ σ with

i < j, pi and pj do not intersect and pi ∈ P(ui, J1), pj ∈ P(uj , J2). Denote the set
P̂ of pairs (σ,ppp), where σ is a perfect matching of {u1, . . . , ur}, and ppp = (p1, . . . , pr)
is an r-tuple of paths that is σ-admissible. If we assign the weight sgn(σ)w(ppp) to
(σ,ppp) ∈ P̂, then the Pfaffian on the right hand side of (10.1) is equal to the following
generating function:

G(P̂) =
∑

(σ,ppp)∈P̂

sgn(σ)w(ppp)

for P̂. Let P̂× denote the set of (σ,ppp) ∈ P̂ such that p1, . . . , pr has at least one
intersection, and let N̂ denote the complement of P̂× in P̂ . For any subset S of P̂
let G(S) denote the corresponding generating functions. Then we have

G(P̂) = G(N̂ ) + G(P̂×).

We will show that G(P̂×) = 0. The argument is similar to the one in [30].
We construct a sign-reversing involution (σ,ppp) 
→ (σ′, ppp′) on the set P̂× such that
w(ppp) = w(ppp′). The existence of such an involution implies G(P̂×) = 0.

Let v be a vertex on a path pi. We denote by pi(→ v) and pi(v →) the subpaths
of pi from ui to v and v to the end point. We say a vertex v is an intersection point
of the r-tuple ppp = (p1, . . . , pr) if there are at least one pair of paths that intersect
at v. Suppose there is an intersecting point of ppp = (p1, . . . , pr). There is an index i
that satisfies the following:

• pi intersect pi+1 at a vertex v,
• there are no intersection points of ppp on pi(→ v) and pi+1(v →).
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The existence of such an index i can be shown by introducing a total order of the
vertices (cf. [29]).

Define paths p′i = pi(→ v)pi+1(v →), p′i+1 = pi+1(→ v)pi(v →), and set p′k = pk

for k �= i, i + 1. Set ppp′ = (p′1, . . . , p′r). Also denote by σ′ the perfect matching
obtained by interchanging ui and ui+1 in σ. Then we claim that the r-tuple ppp′ is
σ′-admissible. If (uk, ul) in σ′, then the paths p′k and p′l do not intersect. For the
proof of this fact we refer to the proof of Theorem 3.1 in [29]. Next we have to
show that each path p′i (1 ≤ i ≤ r) ends at the right region specified by the perfect
matching σ′. Suppose that pi ends at a point in J1 and pi+1 ends at a point in J2.
There are indices k, l such that (ui, uk), (ul, ui+1) ∈ σ with i < k, l < i + 1. Note
that we have l < i and i + 1 < k since {i, k} and {l, i + 1} are disjoint. Now by
construction, the path p′i ends at a point in J2 and p′i+1 ends at a point in J1. Since
the paths p′k (k �= i, i + 1) are not changed we see that all the paths p′1, . . . , p

′
r end

at the right regions. Other cases are left for the reader. Thus we have an involution
(σ,ppp) 
→ (σ′, ppp′) on P× with the desired property.

Let N̂0 denote the subset of N̂ consisting of the pairs (σ0, ppp) such that ppp ∈ N II
µ (λ).

Obviously we have G(N̂0) = WII
µ (λ). It remains to show that we can delete all of

the terms corresponding to the complementary set N̂ \N̂0. To show this we define a
sign-reversing involution on the set N̂ \ N̂0 by (σ,ppp) 
→ (σ∗, ppp), where σ∗ is defined
in Lemma 10.1. Note that the condition Iσ = Iσ∗ insures that the r-tuple ppp is
σ∗-admissible. �
10.3. Bijection between N ∗

µ (λ) and E∗
µ(λ). We will establish a bijection between

N ∗
µ (λ) and E∗

µ(λ). The following is an example of a tuple of non-intersecting paths
with λ = (4, 3, 2, 1) and µ = ρ6 and the corresponding shifted EYD:
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Let ppp = (p1, . . . , pr) ∈ N ∗
µ (λ). We define a subset of D′

µ by C(ppp) =
⋃r

i=1 C(pi),
where C(pi) = {v ∈ D′

µ | pi goes through the edge from v to v + aaa}. First we claim
the following.

Proposition 10.3. Let ppp ∈ N ∗
µ (λ). Then C(ppp) is an element of E∗

µ(λ).

Proof. We use induction on the energy of C(ppp). Suppose C(ppp) has zero energy. �
Then we have C(ppp) = D′

λ and the proposition is true. Let ppp0 = (p0
1, . . . , p

0
r)

denote the corresponding r-tuple with D′
λ, the ground state. If C has an energy

> 0, then there is a path pi such that pi �= p0
i . We take the smallest index i. Let
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C(pi) = {w1, . . . , wr}, where we arrange the vertices from w1 to wr along the path.
Take the largest number k such that wk /∈ C(p0

i ) and put v = wk. First consider the
case that v is not on the diagonal. Put x1 = v−(1, 1), x2 = v−(1, 0), x3 = v−(0, 1).
Then we see that there are no paths that go through either x1 or x2 from the way of
choosing the vertex v. Next we claim that x3 does not belong to C(ppp). This is clear
because the path pi goes straight through the vertex x3 to the NW direction. Now
we deform the path pi to get p′i as in the figure, and set ppp′ = (p′1, . . . , p

′
r) with p′j = pj

for j �= i. Then we have ppp′ ∈ N ∗
µ (λ), and C(ppp) is obtained from an elementary

excitation from C(ppp′). By the hypothesis of induction we have C(ppp′) ∈ E∗
µ(λ). So

we have C(ppp) ∈ E∗
µ(λ).

pi−1
��� ��� ������ ��� ���

���
���

���
���

��� ��� pi

���
���

������ ��� ��� ��� ������ ��� ��� ��� ���

◦

◦ ◦

•x3

x1 x2

v

pi−1
��� ��� ������ ��� ���

���
���

���

���
���

���

p′i

���
���

������ ��� ��� ��� ������ ��� ��� ��� ���

◦

◦ ◦

•x3

x1 x2

v

Next we consider the case that v is on the diagonal. It is enough to consider
type II case. Put x1 = v − (1, 1), x2 = v − (2, 2), x3 = v − (1, 0), x4 = v − (2, 1).

pi−1

���
������

pi

���
���

��� ��� ��� ������ ��� ��� ���

◦◦

◦◦

•

x3x1

x4x2

v

pi−1

���
���

���
���

���
������

p′i

���
���

��� ��� ��� ������ ��� ��� ���

◦◦

◦◦

•

x3x1

x4x2

v

There are no paths going through either x1 or x2 since we have the restriction
of the end point of the paths. Next we claim that x3, x4 do not belong to C(ppp).
Suppose xk ∈ C(pi−1) for k = 3 or 4; then the path pi−1 must go through x1 or
x2. This contradicts the above assertion. Thus in particular xk for 1 ≤ k ≤ 4 are
not in C(ppp). Now we deform the path pi to p′i as indicated in the figure and set
ppp′ = (p′1, . . . , p

′
r) with p′j = pj for j �= i. Then by the same argument as in the

preceding case, we have C(ppp) ∈ EII
µ (λ). �

We shall describe the inverse map of ppp 
→ C(ppp). Let C be an element of E∗
µ(λ). For

each (i, j) ∈ C, we define its layer number as follows. Let Lm denote the diagonal
line {(i, j) ∈ Z2 | j − i = m}. If (i, j) ∈ Lm and

C ∩ Lm = {(i1, j1), . . . , (is, js)}
with i1 < · · · < is, and (i, j) = (ik, jk), then we define the layer number of (i, j) to
be k. Let b1, . . . , bm ∈ D′

µ be the boxes in C with the layer number k. It is obvious

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EYDs AND EQUIVARIANT SCHUBERT CALCULUS 5219

that there exists a unique path starting from uk and going through all the points
b1, . . . , bm. Let us denote the path by pk. Then form an r-tuple pppC = (p1, . . . , pr).

Lemma 10.4. pppC is non-intersecting.

Proof. Clear from the construction. �

Obviously if C ∈ EII
µ (λ), then pppC ∈ N II

µ (λ). For any subset C of D′
µ, we define

its weight by w(C) =
∏

(i,j)∈C aij .

Proposition 10.5. Let λ ≤ µ be strict partitions. There exists a weight preserving
bijection between N I

µ (λ) and EI
µ(λ). Moreover, this map induces a weight preserving

bijection between N II
µ (λ) and EII

µ (λ). Thus we have∑
C∈E∗

µ(λ)

w(C) =
∑

ppp∈N∗
µ (λ)

w(ppp),

for ∗ = I, II.

Let w ≤ v ∈ WP and λ ≤ µ ∈ SPρn
be the corresponding strict partitions. Then

our combinatorial formula (Theorem 6.4) reads

[Xw]|v =
∑

C∈E∗
µ(λ)

w(C),

where we choose the weights aij = βi,j which are given in Lemma 7.5. Now from
Propositions 10.2 and 10.5, we have

[Xλ]|µ = Pf
(
[Xλi,λj

]|µ
)
,

which is equal to
(
Pf [Xλi,λj

]
)
|µ since the map α 
→ α|v is a ring homomorphism.

By virtue of the injectivity of the localization map, we have the equivariant Gi-
ambelli formula.
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6. N. Bourbaki, Groupes et algèbres de Lie, Ch. IV, V, VI, Hermann, Paris, 1968. MR0240238
(39:1590)

7. S. Fomin and A. Kirillov, The Yang-Baxter equation, symmetric functions, and Schubert
polynomials, Discrete Math. 153 (1996), 123-143. MR1394950 (98b:05101)

8. S. R. Ghorpade and K. N. Raghavan, Hilbert functions of points on Schubert varieties in the
symplectic Grassmannian, Trans. Amer. Math. Soc. 358 (2006), no. 12, 5401–5423 (electronic).
MR2238920 (2007d:14088)

9. W. Graham, Positivity in equivariant Schubert calculus, Duke Math. J. 109 (2001), no. 3,
599–614. MR1853356 (2002h:14083)

10. T. Ikeda, Schubert classes in the equivariant cohomology of the Lagrangian Grassmannian,
Adv. Math. 215 (2007), 1-23. MR2354984

11. V. N. Ivanov, Interpolation analogues of Schur Q-functions, Zap. Nauchn. Sem. S.-Peterburg.
Otdel. Mat. Inst. Steklov. (POMI) 307 (2004), Teor. Predst. Din. Sist. Komb. i Algoritm.
Metody. 10, 99–119, 281–282; translation in J. Math. Sci. (N. Y.) 131 (2005), no. 2, 5495–
5507. MR2050689 (2004m:05268)

12. V. Kodiyalam and K. N. Raghavan, Hilbert functions of points on Schubert varieties in Grass-
mannians, Journal of Alg. 270 (2003), 28–54. MR2015929 (2005d:14067)
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