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The usual approach to the problem of excitons in semiconductor quan-
tum wells is to assume that both the electron or the hole are primarily
localized in the potential well regions defined by the band offsets, i.e., that
the quantum wells are deep. We re-examine the problem of the exciton in the
presence of a very shallow square well potential due to the (small) conduc-
tion and valence band offsets in a semiconducting heterostructure. We show
that the combined effects of the shallow well and the Coulomb interaction
between the electron and the hole are equivalent to an effective potential
acting on the center-of-mass of a three-dimensional exciton. We calculate
the shape of such a potential and show it to be satisfactorily approximated
by the potential of a parabolic well.
PACS numbers: 73.20.Dx; 71.36.+c, 73.61.Ga

The existing variational theories of excitons in quasi two-dimensional semi-
conductor structures most often rely on the assumption that the exciton wave
function is primarily localized in the quantum well (usually taken as a square
well) region defined by the conduction and the valence band offsets. Consequently,
the trial wave function of an exciton in a quasi two-dimensional structure is as-
sumed to have a general form proportional to a product of x(ze ) and x(zh), where
x(ze ) represents the wave function of the (ground) state of an electron localized in
the square potential well, and x(zh) — that of the valence band hole. This product
is then multiplied by an excitonic ground state envelope factor e - "/", where r is
the relative coordinate of the electron and the hole, and λ is a two-dimensional
exciton radius treated as a variational parameter [1].

If the wells for either the holes or for the electrons are shallow, the valid-
ity of the above assumption — and thus the applicability of the above simple
trial wave function — break down. In many realistic situations involving II-VI
semiconductors this is actually the case. In particular, in studies of spin superlat-
tices [2] — by the very design of these structures — the "deep well" approach just

(528)



Exciton Binding Energy in Extremely Shallow ... 529

described is not applicable. Various ways out of this difficulty were proposed in
the literature [3-7]. The majority of them are formulated for the case where one
of the particles forming the exciton (e.g., the electron) is still strongly localized,
while the other (e.g., the hole) is not. Quite recently, a more general approach was
constructed, where neither the hole nor the electron are strongly bound by the
confining potentials due to the band discontinuities [8]. Unfortunately, the latter
approach relies on a lengthy variational self-consistent calculation that is physi-
cally not very transparent. Therefore, in the present paper, an attempt is made
to find an analytical solution of the problem keeping the physics of the situation
explicitly in focus.

In our analysis we will specifically consider the type I configuration. For sim-
plicity, we shall consider only heavy holes. The masses of the particles in question
are denoted by me and my,. The Hamiltonian of the problem reads

We denoted the value of the energy gap in the barrier material by E g . The poten-
tialS due to band edge discontinuities are

(w being the width of quantum well) and

We assume that e° and Vh° are positive quantities.
Introducing, as usually, the center-of-mass and the relative position variables

and Substituting them in Eq. (1) we obtain

where M and p is the center-of-mass and reduced mass of the exciton, respectively.
In the above expression ir denotes the momentum operator corresponding to the
relative variable r, while P ┴andPzare the components (two-dimensional and
one-dimensional, respectively) of the momentum corresponding to the center-of-
-mass variable. The second term describes the kinetic energy of the center-of-mass
motion in the layer plane, while the third — that of the motion normal plane of
the well. The term in parentheses corresponds to the three-dimensional relative
motion of an exciton. The two remaining terms mix the center-of-maSs and the
relative position variables. If theSe two terms are "weak" (we shall discuSs later
this assumption in more quantitative terms), one can expect the three-dimensional
character of the exciton wave function to be only slightly perturbed. It is, therefore,
reasonable to asSume the approximate ground state solutions of Eq. (4) in the form

where S is the area of the sample, αB is the radius of a three-dimenSional exciton,
A is the two-dimensional coordinate vector for the free-like in-plane motion of the
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exciton center-of-mass and K1 is the corresponding momentum vector. The func-
tion F(Z) (yet to be determined) is normalized to unity. Calculating (ψex|Hex|ψex),

one obtains for the energy of an exciton

Here ε3D is the energy of the three-dimensional exciton ( ε3D = —μe4 /2ε2h2 )
and αB = ħ2e/μe 2 is its radius. After performing the integration over the three-
-dimensional relative variable r the operators in the last term in Eq. (6) can be
treated as an effective Hamiltonian which determines the function F(Z),

where e' gives the correction to the exciton energy due to the weak perturbation
by the quantum well potentials. For the effective potential Ken* originating in the
square quantum well in the conduction band explicit integration gives

Similarly, for the valence band component of the effective potential we have
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It is interesting to note that the effective potential can be approximated quite
accurately by a parabolic potential whose solutions can be easily found (strictly
speaking, the approximation is valid if w/α B is small; however, direct inspection
shows that even for w ≈ αB the approximation is still quite accurate and physically
realistic):

and

The correction (close to the bottom of the bands) to the lowest energy of the nearly
three-dimensional exciton weakly perturbed by the potential of the quantum well
can be compactly expressed by

where

and

Substituting typical values of the material and structure parameters:
m e = 0.1m°, mh = 0.6m0, e = 10 and e° = Vh = 10 meV we obtain for a
50 A quantum well eó = —14.2 meV and hiω = 2.3 meV. The assumed depths of
the quantum well in the valence and the conduction band are smaller than the
effective rydbergs for these bands (respectively, 81.6 meV and 13.6 meV), which
justifies the entire approach.
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