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Exciton–exciton annihilation and biexciton
stimulated emission in graphene nanoribbons
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Graphene nanoribbons display extraordinary optical properties due to one-dimensional

quantum-confinement, such as width-dependent bandgap and strong electron–hole interac-

tions, responsible for the formation of excitons with extremely high binding energies. Here we

use femtosecond transient absorption spectroscopy to explore the ultrafast optical properties

of ultranarrow, structurally well-defined graphene nanoribbons as a function of the excitation

fluence, and the impact of enhanced Coulomb interaction on their excited states dynamics.

We show that in the high-excitation regime biexcitons are formed by nonlinear exciton–

exciton annihilation, and that they radiatively recombine via stimulated emission.

We obtain a biexciton binding energy of E250meV, in very good agreement with theoretical

results from quantum Monte Carlo simulations. These observations pave the way for the

application of graphene nanoribbons in photonics and optoelectronics.
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S
licing graphene into nanoribbons (GNRs) allows to open a
bandgap in the graphene electronic structure, owing to the
quasi-one-dimensional confinement1. This has important

implications for electronic devices, such as GNR transistors2,
and forms the basis of the emerging field of graphene
nanoplasmonics3,4. Especially appealing is also the possibility to
additionally tailor specific properties through edge-structure
engineering, such as magnetic ordering in zigzag terminated
GNRs5,6. Further improvements along these lines are envisaged
on the basis of recent advances in fabrication7–10 and processing
routes11,12. In particular, the bottom-up synthesis7,8 of GNRs
based on molecular precursors designed on purpose has proven
capable of reaching nanometric widths with atomically precise
edges, a regime where the GNR properties are widely tunable1.
While single-walled carbon nanotubes (SWNTs) cannot be
prepared with single chirality and require further processing
with surfactants for the sorting13,14, the bottom-up synthesis
directly affords GNRs with a uniform chemical structure with
100% selectivity. Thus, prepared GNRs show well-defined
electronic and optical properties, which are fully determined by
their specific structure and can be further tuned by modulation of
their width and edge configuration10,15,16 as well as by atomically
controlled doping12,17. All of this holds promise for application
in next-generation optoelectronic and photonic devices,
as recently suggested by the realization of all-GNR-based
heterojunctions12,18 and by other proposals for photovoltaic
applications16,19,20.

In spite of this interest, the field of GNRs is still in its infancy
and little is known about their photophysical properties,
especially in the non-equilibrium regime. Extraordinary optical
properties were predicted21–23, such as width-dependent bandgap
and the formation of excitons with extremely high binding
energies, which have been only recently demonstrated in
bottom-up GNRs15,24–26. In particular, the pronounced
excitonic effects26 are accompanied by a significant increase of
the optical absorbance, as compared with graphene, for light that
is linearly polarized along the ribbon axis. At this stage, the
understanding of the excited-state relaxation dynamics of GNRs
would offer not only a deeper insight into the fundamental
physics of these ideal one-dimensional systems but also a
benchmark for their integration in advanced optoelectronic
devices27.

In the following, we apply resonant ultrafast pump–probe
spectroscopy to nanometre-wide atomically precise GNRs
obtained by a bottom-up solution synthesis8 to study the
kinetics of excitons and their interactions in the saturation (that
is, nonlinear) excitation regime. For high-excitation fluences, we
observe bimolecular exciton annihilation and the concomitant
ultrafast (E1 ps) buildup of a stimulated emission (SE) signal
from an excited biexciton state that is populated via a nonlinear
process, a result that is extremely promising in view of
applications of GNRs as tuneable active materials in lasers and
light-emitting diodes.

Results
Linear absorption of GNRs. The GNRs studied here, char-
acterized by cove-shaped edge morphology and hereafter labelled
4CNR (following the notation in ref. 16), were chemically
synthesized as described in ref. 8. Their aromatic core structure,
displayed in Fig. 1a (inset), features a modulated width of
0.7–1.1 nm, and is functionalized with long and branched alkyl
chains (2-decyltetradecyl) at the outer benzene rings to guarantee
dispersibility in organic solvents. The linear absorption spectrum
of the GNR sample in tetrahydrofuran (THF) dispersion is shown
in Fig. 1a (black curve), and compared with the simulated

gas-phase spectrum obtained from ab initio GW plus
Bethe–Salpeter (GW-BS) calculations (blue arrows), performed
on H-passivated 4CNR (details concerning the calculations are
reported in the Methods section). THF was chosen as a solvent to
minimize aggregation of GNRs, which would significantly alter
their optical properties. The effect of the solvent on the spectrum
is instead expected to be minor (see, for example, ref. 28). The
experimental spectrum is dominated by an optical transition of
excitonic origin located at E570 nm, in good agreement with
simulations. According to our GW-BS results, the first two
excitons both arise from the linear combination of transitions
among the two highest valence and two lowest conduction bands
around the G point (mainly E12 and E21 transitions for the first
and second exciton, respectively, as indicated in the band
structure of Fig. 1b). In vacuum, excitons are tightly bound,
with a giant binding energy of B1.5 eV (defined as the difference
between the quasi-particle gap and the energy of the excitonic
states), which is expected to diminish in presence of a dielectric
environment.

Ultrafast pump–probe spectroscopy of GNRs. We performed
broadband pump–probe spectroscopy of the 4CNR samples using
resonant excitation at 570 nm and white-light probing covering
the 500–700 nm range, with an overall temporal resolution of
E100 fs (see Methods for details of the experimental setup).
Figure 2 shows the differential transmission (DT/T) spectra for
different pump–probe delays (Fig. 2a), and the DT/T dynamics at
600 nm probe wavelength (Fig. 2b), when the sample is excited
with a low fluence of E100 mJ cm� 2. In the DT/T spectra we
clearly distinguish two bands: (i) an intense photo-bleaching (PB)
of the excitonic transition peaked at E570 nm, which we assign
to ground-state depletion and/or phase space filling of the excited
state; (ii) a relatively weak red-shifted photo-induced absorption
(PA) band starting from E620 nm. Since these two bands have
the same decay kinetics (Fig. 2b), we attribute the PA signal to
excited-state absorption from the exciton to higher energy states
or to the e–h continuum. The comparison of the DT/T spectra
(Fig. 2a) for different pump–probe delays (from 500 fs to 50 ps)
also highlights that the signal decays without any significant
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Figure 1 | Linear absorption and excitons in GNRs. (a) Linear absorption

spectrum of the 4CNR sample in THF solution (black curve). A ball-and-

stick model of the GNR without alkyl chains at the edges is shown in the

inset. The experimental spectrum is compared with the result of GW-BS

calculations, with excitonic transitions indicated by blue arrows. (b) GW

quasi-particle band structure. The lines indicate the transitions that are

mainly contributing to the first and second exciton. The 1.5 eV difference

between the GW gap (b; grey area) and the excitonic transition reported in

a defines the exciton binding energy in vacuum.
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spectral evolution at this excitation fluence, thus indicating a
simple relaxation mechanism of the excited state (either radiative
via emission of photons and/or non-radiative via interaction with
phonons).

To understand the carrier relaxation process, we can take as a
reference the large amount of experimental results on SWNTs,
since we expect them to display similar recombination dynamics.
SWNTs also show complex, multi-component decay kinetics.
In the low-excitation fluence regime, the long-lived (45 ps)
decay components in SWNTs have been reproduced with a
bi-exponential model, which includes both the radiative and
non-radiative lifetime29–32. Other studies describe these decay
dynamics by a model for a diffusion-limited regime33,34 or
geminate e–h recombination in one dimension35, thus leading to
a power law (Et� 0.5) kinetics. Since a detailed study of the
dynamics of these long-lived photoexcitations for GNRs is
beyond the scope of this paper, we fit the kinetics of the PB
signal at 600 nm probe wavelength with a simple bi-exponential
decay model (Fig. 2b), which gives us the timescale of the
relaxation processes. From the fit we obtain t1E6 ps and
t2E330 ps, in good agreement with the results obtained for
SWNTs30.

Instead, we concentrate on the ultrafast (o5 ps) decay
dynamics, and in particular on their dependence on the excitation
fluence, as we show in Fig. 3. The normalized DT/T spectra at
different excitation fluences for a 1 ps pump–probe delay (Fig. 3a)
display very similar, fluence-independent PB and PA spectral
features, while for a 5 ps pump–probe delay (Fig. 3b) we
unambiguously observe the buildup, with increasing fluence, of
a positive and red-shifted DT/T peak, at E650 nm. From a
general point of view, a positive DT/T signal in pump–probe
experiments describes either a PB or a SE process. We here assign
the peak at E650 nm to a SE process, since (i) it does not
correspond to any resonant feature in the linear absorption
spectrum (Fig. 1a), as also confirmed by simulations, being
instead red-shifted with respect to the main excitonic transition
(at E570 nm); and (ii) it appears with a Eps delay with respect
to the pump pulse and only at high-excitation fluences. We note
that photons produced by SE are identical (phase, energy and
momentum) to the probe photons and thus can be detected in
pump–probe experiments, at variance with those produced by
spontaneous emission.

Exciton–exciton annihilation and biexciton formation in GNRs.
To clarify the origin of this SE signal, we concentrate on the
fluence-dependent dynamics at the probe wavelengths of 600 nm,
that is, the PB signal, and 650 nm, that is, the SE signal (Fig. 3c
and d, respectively). We immediately observe that, for increasing

fluence, the PB signal (Fig. 3c) displays a faster decay, while,
correspondingly, the signal at 650 nm (Fig. 3d) undergoes a clear
change in sign (from negative to positive) that corresponds to the
delayed formation of the SE signal. First, let us analyse the fast PB
decay at 600-nm probe wavelength (Fig. 3c). In semiconducting
SWNTs the appearance of an ultrafast fluence-dependent decay
component is explained by exciton–exciton annihilation, a two-
exciton interaction process, in which one exciton recombines to
the ground state and the other either dissociates into a free e–h
pair or is promoted into a higher energy level36–38. Such process
is also commonly observed in other one-dimensional
semiconductors, such as conjugated polymers39,40, and it has
been recently observed also in monolayer MoS2 (ref. 41).
Theoretical calculations42 also predict that an Auger-like
mechanism occurs in semiconducting armchair GNRs because
of effectively enhanced Coulomb interaction. In their work,
Konabe et al.42 find an exciton–exciton annihilation time in the
order of few ps for 1.2–2.5 nm wide GNRs. After the initial
ultrafast nonlinear decay process, the dynamics at all pump
fluences are instead the same. This can be noticed by comparing
the kinetics of the PB signal at high and low fluences over the full
temporal range (inset in Fig. 3c). Being a two-body interaction
process, exciton–exciton annihilation is expected to display a
nonlinear dependence on the exciton density (see Methods for
details) and/or the excitation fluence37, in agreement with our
experimental results (inset in Fig. 3a).

Second, we need to understand the origin of the delayed
formation of the SE signal at 650 nm (Fig. 3d). As we have already
discussed, following exciton–exciton annihilation both free e–h
pairs and/or higher energy-excited states can be formed. The first
scenario has been observed in SWNTs, where the creation of
charges in the high-excitation regime leads to the formation of
trions43,44, which are detected as a negative (PA) and red-shifted
DT/T signal. Clearly, this scenario is in contrast with our
experimental results, which present a positive (SE) signal. Instead,
the formation of a delayed and red-shifted SE signal in the high-
excitation regime was observed in semiconducting quantum-dots
(QDs)45–48, another prototype of quantum-confined systems. In
the case of QDs, the SE signal was explained in terms of emission
from biexcitons and the energy distance between the main
exciton PB signal and the biexciton SE signal gives the biexciton
binding energy, which is typically of the order of few tens of meV.
For our GNRs, the SE peak corresponds to a much larger value
for the biexciton binding energy, that is, EbE250meV. This value
is in accordance with the comparably larger exciton binding
energies in GNRs, that are at least one order of magnitude larger
than in QDs due to the reduced screening as well as the extreme
two-dimensional and transversal confinements. The following
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Figure 2 | Transient absorption spectra and dynamics at low fluence. (a) DT/T spectra of 4CNRs at different pump–probe delays and (b) decay

dynamics at 600- (green circles) and 650- (red diamonds) nm probe wavelengths for an excitation fluence of E100 mJ cm� 2. The fit (blue line)

in b correspond to a bi-exponential function with time constants t1E6 ps and t2E330 ps.
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photoexcitation scenario in GNRs thus emerges: at high-
excitation fluences, exciton–exciton annihilation leads to the
population of a radiative biexciton state, which then undergoes SE
to the one-exciton level upon interaction with the probe pulse
(Fig. 4a).

Discussion
To support our assignment, we first compute the biexciton binding
energy in GNRs by means of guide-function quantumMonte Carlo

(QMC) simulations, using an envelope function approach with
effective masses, as previously reported in ref. 49 for SWNTs. Full
description of the method is reported in the Methods section. In
Fig. 4b, we show the biexciton binding energy dependence on the
lateral confinement in dimensionless exciton units, that is,
distances are measured in units of the effective Bohr radius

a�B¼aBe=m and energies in units of the effective Rydberg Ry�¼ e2

2ea�
B
,

where m is the reduced e–h mass, e is the dielectric constant, aB is
the Bohr radius and e is the electron charge. By considering an
average reduced mass as obtained from ab initio calculations
(computed as the weighted average relative to the E21 and E12
transitions, that is, m¼ 0.22), the average width of the 4CNR
(w¼ 0.84nm), and the dielectric constant of the solvent (e¼ 7.5),
we obtain a biexciton binding energy of 180meV, in good
agreement with the experimental result of 250meV. The
discrepancy with respect to experiments is reasonable in view of
the simplified description scheme used here, which is not expected
to capture all microscopic details.

In Fig. 4b, we also report the biexciton binding energy for
SWNTs, calculated by the same approach49: for a SWNT of
similar lateral dimension, we find a binding energy that is less
than one-half of that of the 4CNR in dimensionless units. This
can be understood by considering the different biexciton
confinement, since in the case of SWNTs the biexciton
wavefunction is delocalized over the whole circumference,
whereas in GNRs it becomes strongly confined in the
transversal direction. The value obtained for GNRs is quite
large also in comparison with the biexciton binding energy
EbE50meV of different monolayer transition metal
dichalcogenides obtained by recent transient absorption50 and
photoluminescence experiments51.

To further confirm our interpretation, we finally reproduce the
temporal evolution of the exciton (that is, decay of the PB signal)
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and the biexciton (that is, formation of the SE signal) populations
with the following coupled rate-equations52–54:

dnE

dt
¼ � k10nE � ke� e

n2E
ffiffi

t
p þ k21nB ð1Þ

dnB

dt
¼ þ 1

2
ke� e

n2E
ffiffi

t
p � k21nB ð2Þ

where nE and nB are the exciton and biexciton population,
respectively, k10 is the decay rate from the exciton to the ground
state, k21 is the radiative decay rate from the biexciton to the
exciton producing the SE signal and ke–e is the exciton
annihilation rate constant (see Fig. 4a for the adopted model).
The t� 0.5 dependence of the exciton annihilation rate arises from
the one-dimensional diffusion mechanism of excitons, and its
divergence for t-0 is cured by truncating it for times shorter
than the width of the instrumental response function (IRF)
(E100 fs in our case). The quality of the fit (Fig. 3c,d) further
confirms the validity of our model. From the fit we find that
k10E0 ps and k21E0.15 ps� 1, meaning that both mechanisms
occur on a timescale that is longer with respect to the temporal
window (5 ps) that we use for this analysis.

It is worth noting that we can fit our experimental data
considering that all the excitons that undergo exciton–exciton
annihilation form biexcitons. In particular, we can exclude that
the observed SE signal is because of the dissociation of excitons
into free e–h carriers, since SE from electrons in the continuum is
not expected. Another possibility is that free e–h pairs get trapped
into low-energy states; for example, due to defects. Nevertheless,
since the selection rules for emission and absorption of photons
are the same, the presence of such bright low-energy states should
be detectable also in the linear absorption spectrum, and thus this
scenario can be also excluded by looking at the absorption
spectrum and theoretical simulations in Fig. 1. Thus, although we
cannot exclude that free e–h carriers are formed, we can strongly
assert that the observed SE arises from biexcitons. Since our
model is able to correctly reproduce also the amplitude of the
pump–probe signal without additional loss channels, we conclude
that biexciton formation upon exciton–exciton annihilation is
extremely efficient. Finally, for a fixed pump–probe delay we can
also evaluate the annihilation rate ka¼ ke� e

ffiffi

t
p , which corresponds to

an initial kaE2 ps� 1 for a pump–probe delay of 180 fs, close to
our temporal resolution, and thus to an annihilation lifetime of
E0.5 ps, in excellent agreement with experimental results on
SWNTs54 and theoretical calculations on GNRs42.

In conclusion, we studied the transient photophysical
properties of ultranarrow structurally well-defined GNRs by
means of ultrafast pump–probe spectroscopy. We show that a
nonlinear decay channel for the main excitonic transition sets
in at high excitation densities, and, correspondingly, we
unambiguously observe a red-shifted SE signal. Our experiments
demonstrate that exciton–exciton annihilation populates a
radiative biexciton state, with an extremely high binding energy
E250meV, in agreement with estimates from QMC simulations.
The high efficiency we find for both exciton–exciton annihilation
and biexciton formation is of great importance, not only
for gaining fundamental understanding on strongly enhanced
quantum effects in low-dimensional materials but also for its
implications in GNR-based optoelectronic devices. Indeed, the
clear observation of a strong SE is extremely promising in view of
using GNRs as active light-amplifying materials in tuneable lasers
and light-emitting diodes. Moreover, our results suggest that also
multiple-exciton generation55–57 can be extremely efficient in
GNRs since it is governed by the same exciton–exciton
annihilation rate. A detailed understanding of the photophysics
of biexcitons and the mechanism of multiple-exciton generation

will help to improve the efficiency of photovoltaic devices, with
GNRs acting as light absorbers.

Methods
Pump–probe experimental setup. The experimental setup used for pump–probe
measurements has been described in detail elsewhere58. In brief, the setup is based
on a regeneratively amplified Ti:sapphire laser (Coherent, Libra) producing 100 fs,
4mJ pulses at 800 nm wavelength and 1 kHz repetition rate. The probe pulse is
obtained by focusing a fraction of the laser beam in a 2-mm-thick sapphire plate to
generate a broadband single-filament white-light continuum. The pump pulse,
generated by an optical parametric amplifier, is centred at 570 nm (at resonance
with the main excitonic transition) with a bandwidth of E10 nm, corresponding to
E70 fs duration. The probe light transmitted by the sample is dispersed on an
optical multichannel analyser equipped with fast electronics, allowing single-shot
recording of the probe spectrum at the full 1 kHz repetition rate. By changing the
pump–probe delay, we record two-dimensional maps of the differential
transmission (DT/T) signal as a function of probe wavelength and delay. The
temporal resolution (taken as full-width at half-maximum of pump–probe
cross-correlation) is E100 fs over the entire probe spectrum.

Exciton linear density estimation. To estimate the exciton linear density reported
in the inset of Fig. 3a, we proceed as follows: (i) we calculate the number of
absorbed photons cm� 2 from the measured pump fluence, the measured
absorbance, and the pump photon energy (2.18 eV); (ii) we calculate the number of
excitons cm� 2 by considering an exciton photogeneration efficiency (Quantum
Yield) of 96% based on optical pump—THz probe experiments on similar
GNRs59; and (iii) we multiply this value by the concentration (0.0021 g l� 1)
of the dispersion and divide by the mass of a unit length of the GNRs
(0.83� 10� 21 g nm� 1). This estimate gives a density of B0.2–0.3 excitons nm� 1

for pump fluences below 100 mJ cm� 2, corresponding to an average distance
between excitons of B4–5 nm. Such a value appears to be sufficient to prevent
exciton–exciton interactions.

Coherent artefacts in pump–probe dynamics. The coupled-rate equations
used to model the evolution of the exciton and biexciton populations are solved
by taking into account both the IRF and possible coherent artefacts present in
pump–probe measurements. For our experimental setup the IRF is the
cross-correlation of the pump and probe pulses, and can be quite accurately
modelled by a Gaussian function with E100 fs full-width at half-maximum.
Possible coherent artefacts in pump–probe experiments are stimulated Raman
amplification and cross-phase modulation (XPM)60. We fitted the initial 100 fs of
the PB signal at 600 nm (Fig. 3c) including the IRF to reproduce the initial buildup
and a Gaussian function (the same used for the IRF) to reproduce the initial
ultrafast stimulated Raman amplification coherent artefact. For the SE dynamics at
650 nm (Fig. 3d), instead, we include also XPM, which we fit as the first derivative
of a Gaussian function (the same used for the cross-correlation). Although
extremely simple, this model correctly reproduces not only the evolution but also
the initial steps of the pump–probe signal.

Thermal effects and sample heating. Time-resolved experiments were carried
out at room temperature, assuming negligible temperature effects on the spectra on
the basis of previous results on SWNTs (see, for example, ref. 61). Regarding the
sample heating during experiments, we also expect negligible temperature changes
upon photoexcitation. In fact, we can estimate a maximum increase in temperature
of B0.1 K, based on a comparison with the work of Abdelsayed et al.62, and by
considering the following parameters: volume of the sample (0.3ml), THF heat
capacity (123 Jmol� 1 K� 1), density (889 kgm� 3), molar mass (72 gmol� 1)
and laser total energy (B100 nJ per pulse at 500Hz for 10min of irradiation,
corresponding to 30mJ). This indicates that we are working in a perturbative
regime for what concerns thermal effects.

GW-BS calculations for the static absorption. The ground-state atomic structure
of the 4CNR was optimized by using the PWscf code of the Quantum ESPRESSO
package (ref. 63), which is based on a plane-wave pseudopotential implementation
of density functional theory. Calculations were performed by employing local
density approximation exchange correlation (xc) functional and norm-conserving
pseudopotentials, with a cutoff energy for the wavefunctions of 60Ry. The atomic
positions within the cell were fully relaxed until forces were o5� 10� 4Ry bohr� 1,
while the lattice constant along the periodic direction was optimized separately.
The Brillouin zone was sampled with 16 k-points along the periodic direction.
The Kohn-Sham band structure obtained for the optimized geometry was
improved by introducing many-body corrections within the G0W0 approximation
for the self-energy operator. Here, the dynamic dielectric function was obtained
within the plasmon-pole approximation, by employing a box-shaped truncation of
the Coulomb potential64 to remove the long-range interaction between periodic
images. The optical absorption spectrum was then computed as the imaginary part
of the macroscopic dielectric function starting from the solution of the BS equation,
which allows for the inclusion of e–h interaction effects.
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The static screening in the direct term was calculated within the random-phase
approximation with inclusion of local field effects; the Tamm–Dancoff
approximation for the BS Hamiltonian was employed. The aforementioned GW-BS
calculations, performed by using the YAMBO code (ref. 65), were carried out for
the fully H-passivated 4CNR, that is, by removing the alkyl side chains, in order to
make them computationally affordable. We have checked that the different
passivation does not affect the band structure properties at the density functional
theory and local density approximation level in the energy window of interest for
the determination of the optical absorption. Similar results were reported in ref. 66.

The guide function quantum Monte Carlo approach. Atomistic simulations as
the ones described above are presently unfeasible for the investigation of biexcitons
in realistic systems. Here we resort to an effective model based on guide function
QMC simulations, as previously reported in ref. 49 for SWNTs. For the
(unnormalized) guide function we use

CT r1; r2; ra; rbð Þ ¼ exp � r1a þ r1b þ r2a þ r2bð Þ½ � ð3Þ
where r1,2 (ra,b) are the dimensionless positions of the two electrons (holes), and

ri;j¼ xi � xj
� �2 þðyi � yjÞ2
h i1=2

is the distance between particles confined to the

two-dimensional nanoribbon. The Monte Carlo simulation approach is the same as
in ref. 49 with the only exception that we add a box-like confinement potential

V yð Þ ¼ V0= eb 0:5� yj j
wð Þ þ 1

h i

ð4Þ

along the transversal direction, with V0¼ 1,000, b¼ 20 and w the GNR width. In
the simulations we use 20,000 walkers67, a time step of Dt¼ 0.25� 10� 4, an
equilibration interval of 20,000 and a measurement interval of 30,000 time steps.
The smoothed confinement potential and the time step were chosen such that for
‘typical’ paths the inequality V ytð Þ�V ytþ 1ð Þj j � yt � ytþ 1ð Þ= 2Dt2ð Þj j holds68.
We checked that the biexciton binding energy did not change substantially upon
modifying Dt or other simulation parameters. The QMC approach has been able to
predict quite accurately the biexciton binding energy of SWNTs. In fact, Colombier
et al.69 detected the presence of biexcitons in SWNTs embedded in a gelatine
matrix by means of nonlinear optical spectroscopy, reporting a binding of 106meV
energy for the (9, 7) tube. The QMC model predicts a value of the binding energy
of E100meV assuming a dielectric constant of e¼ 3 (instead of 2.3 as appropriate
for a gelatin matrix). Such an overestimation in the case of small values of e is
known for phenomenological models, whereas for larger values of e (like the one
considered in this work, i.e., e¼ 7.5) the QMC model is expected to give results
similar to more refined (though not yet atomistic) approaches, as discussed
in ref. 70.
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