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A theory for four-wave-mixing signals from molecular aggregates, which includes effects of
two-exciton states, static disorder, and coupling to a phonon bath with an arbitrary spectral density,
is developed. The third-order polarization is rigorously partitioned into a coherent and a sequential
contribution. The latter is given by a sum of an exciton-hopping and a ground (btaehing

terms, both expressed using the doorway-window representation. Applications are made to
photon-echo and pump-probe spectroscopies of the B850 system of the LH2 antenna in purple
bacteria. ©1998 American Institute of Physids$$0021-9608)02913-4

I. INTRODUCTION exactly, whereas the phonon-dependence of the off-diagonal
coupling(which is responsible for exciton hoppinigas been
Biological antenna complexes have recently become aneglected. This approximation may be used in the calculation
object of extensive studies using a variety of ultrafast nonof two-pulse four-wave-mixing signals which are not sensi-
linear spectroscopic techniquEs. Coherent and incoherent tive to exciton migration.
exciton dynamics in light harvesting complekXé$as been In this paper we extend the theory of Ref.(@1to in-
probed by various time-domain optical measurements. Thesslude exciton transfer. The effect of strong exciton-phonon
include fluorescence depolarizatidn, hole burning™  coupling is described using an exciton-hopping superopera-
pump-probe?*3and photon echodé® The interpretation tor calculated perturbatively in the off-diagonal exciton-
of these experiments requires a theory which incorporategphonon coupling. Since the diagonal exciton-phonon cou-
exciton-exciton interactions, strong exciton-phonon cou-ling is treated nonperturbatively, polaron formation and the
pling, and static disorder. nuclear reorganization energies are properly incorporated, in
Theories of nonlinear optical response in molecular agfull analogy with Marcus electron transfer theGAThe sig-
gregates are usually based on the Frenkel excitomatures of exciton population dynamics in three-pulse echo
Hamiltoniart”*® which describes an aggregate made out ofand pump-probe measurements in light-harvesting antenna
two- or three-level molecules. These theories can be classtomplexes are then explored using this theory.
fied according to the level of reduction with respect to  The paper is organized as follows: In Section Il we
nuclear(phonon degrees of freedort?. At the simplest level, present the exciton Hamiltonian in the moleculiaal space
the coupling to nuclei is incorporated via relaxation superopbasis and partition the third order response function into a
erators calculated perturbatively in exciton-phonon couplingcoherent and a sequential component. Exact formal expres-
Such theories apply for weak exciton-phonon coupling andions for both components are derived in Appendix A using
do not take the detailed form of nuclear spectral densitieprojection operator techniques. In Section Ill we transform
into account. The pump-probe signal, the frequency resolvethe Hamiltonian into the delocalized exciton basis and calcu-
fluorescence, and the superradiance have been analyzed fgte both contributions perturbatively in the off-diagonal
cently using this approadi® These studies focused on the exciton-phonon coupling. Details are given in Appendices B
long-time limit of the signals and did not calculate the evo-and C. Our final expressions, summarized in Appendix D,
lution of exciton populations. Strong exciton-phonon cou-are applied in Section IV to the interpretation of photon echo
pling may lead to the formation of polarofexcitons dressed and pump-probe signals in the B850 band of LH2. Our cal-
by a phonon cloud In Ref. 2ab) the cooperative spontane- culations include time-resolved and time-integrated echoes,
ous emissior(superradiangeof the LH2 antenna has been echo peak-shitf~1® (obtained from time-integrated detec-
calculated by incorporating polaron effects using differenttion), and spectrally-resolved pump-probe sigrtdfs? Fi-
Ansaze for the polaron wave functions. Localization of the nally our results are discussed in Section V.
exciton density matrix due to polaron formation was found to
strongly influence the radiative decay. An alternative ap-
proach for incorporating strong exciton-phonon coupling
was developed in Ref. 24): The Hamiltonian is first trans- || THE DOORWAY/WINDOW REPRESENTATION OF
formed to the exciton basis. The exciton-phonon couplingTHE THIRD-ORDER RESPONSE
enters both through the diagonal and the off-diagonal ele-
ments of the Hamiltonian in this basis. The diagonal cou- We describe an aggregate made out of two-level mol-
pling represented by arbitrary spectral densities was includedcules using the Frenkel-exciton Hamiltorfiatf
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where@n (B,) are exciton creatiofannihilation operators Vi =
for the n’th molecule, which satisfy the commutation rela- | =g
tions
_ _ B,
[Bm.B1]= Omn(1-2B]Bpy). )
The polarization operatd? representing coupling of the ag- [0)

gregate to the optical fiele- E(t) - P has a form , o
FIG. 1. Exciton level-structure and transition-dipoles of an aggregate made

— = out of an N interacting two-level moleculg®) is the ground statdu) is
P= 2 dm(Bm+Bpy)- 3 the single exciton band which haéstates andy) is the two-exciton band
m with N(N—1)/2 states. The operators inducing transitions between bands

The system is further coupled to a bath representing the md*® displayed as well

lecular and the surroundingsolvent, protein, etg.nuclear
degrees of freedom. We shall represent them using a har-

; UV Since the HamiltoniafEq. (1)) conserves the number of
monic phonon Hamiltonian

excitons, the electronic states of the system which participate
2 w20 in the third order response are limited to the ground state O,
_ Pi | Mj@jq; : _ L — .
th—zj: 2_mj+ — 4 the single exciton{u} and the two-excitor{x} manifolds
(Fig. 1). During thet, period the system’s density matrix is
qish are collective bath coordinates, responsible for then an optical single-exciton coherencgof, ,p,0), Whereas

exciton-phonon coupling during t3 it can be inp,q,po,.pu, and p,, . During the
time intervalt, the system is either in the one-exciton mani-
%EE mjwjzzj,mnqj! (5) fold p,,, or in the ground stat@y, or in a two-exciton
! coherencepg,,,p0- . . .
where Zj,mn is the Coup“ng Strength Ojf’th phonon to the Formal expressions for the third-order 0pt|CaI response

function can be obtained using projection operator tech-
nigques and following the procedure used in Ref. 19 to calcu-
late the time- and frequency-resolved fluorescence. We then
obtain (see Appendix A for derivation

exciton variable§LBn.

All relevant information about the exciton-phonon inter-
action is contained in the following matrix of spectral densi-
ties

i (= R(ts,tz,t) =R(t3,t2,ty)
Comuit) =5 _dt expliat (40,000, © o
+> 2dt"ft dt'W,(t5,t,—t")
where the expectation value and the time evolution in the wr JO 0
r.h.s. of Eq.(6) are taken with respect to the free phonon y o=
HamiltonianH,,. As shown in the appendices, all effects X G, (T" =)D (17, t1) + Wo(t3) Do(ty).
induced by the exciton-phonon coupling on the general third- (9)
order response may be incorporated through the matrix of
line broadening functiong(t), which are related to the pho-
non spectral densities B

_f“ dw 1—coq wt) how
k()= _OCETCO KT

F do sin(wt) - ot

+1

The physical significance of these three terms is as fol-
lows: the first term represents a coherent contribution
whereby the entire optical process is completed before a re-
laxed exciton population is created. The following two terms
) Chnki(w) represent sequentighcoherent contributions, expressed us-
ing the doorway-window representatibt?® The second
term gives the contribution of thermally-relaxing excitons.
Chnki(w). (7)  The doorway functiorD, represents the population of the
vth exciton created after two interactions with the radiation

The time-domain optical response functi(ts,t,,t;) field. G,,(t"—1") is the conditional probability for t_he/th

which relates the third-order nonlinear polarizatii(t) to ~ €xciton to hop to theuth exciton state during’—t'. W, is
the driving fieldE(t) is defined by(assuming that pulse 1 the window function representing the contribution of yté

2T w2

comes first, then pulse 2 and pulse 3 is the)fast exciton to the signal. The third term represents a Raman-type
contribution whereby the system is back in the ground-state
PO (t)= Jwdtgjwdtzfmdtlf?(tg,tz,tl) (poo) duringt,. Dyg and W, are the corre_sponding grou.nd
0 0 0 state doorway and window functions. This term only gives

the contribution for longt, (which is independent omy).
X Ba(t=ta) Bp(t =t = 1) Ba(t =t =t~ 1y). The short time ground-state dynamics is containedRiA.
(8 We shall refer to the three terms in E§) as the coherent,
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the hopping and the bleaching terms respectively. Exact for- Using these exciton variables, the polarization operator
mal expressions for all quantities are given in Appendix A. P (Eq. (3)) is given by

T T
P= 2 d,(B,+B )+2 d,. Y—B +BlY,), (13
Ill. EXCITON VARIABLES FOR THE NONLINEAR

RESPONSE with the transition dipole matrix elemeRt§
The eigenstates of the Hamiltonigakq. (1)) consist of _Z
well-separated manifolds aof exciton statem=0,1,2,. ... d,= = dme,(m),
As indicated earlier, the third-order response only depends
on the ground state 0, the single excitqum)(and the two-
— = d,+ d 14
exciton (u) states. To focus on these relevant states we shall ; Mg, (m) #u(M) ). 14

recast the Hamiltonian using the exciton representation. To
that end we introduce one- exmtcﬁi (B,) and two-exciton
Y (Y,) creation(annihilation operators withu=1,... N

and,u 1,... N(N—-1)/2, whereN is the number of mol-

ecules in the aggregate. The one- and two-exciton operators, &, 4 v, anduv. Similarly the matrix of spectral densities
are defined b3} Eq. (6) is now transformed into

The collective coordinates®) have now been trans-

formed intog® q(c) q'?), andq(c) We shall denote these

new ¢ collective varlables aq;— Wherem assumes the values

i [ i
B,10)=2 ¢,(n)B;[0), BB}J0)=0, Com(©)=5 f _dtexgiot)([a;'(1),67(0)]), (19
(10)
+ — = - where the expectation value and the time evolution in the

Y O>E§F\ W (mn)ByB,[0), Y, B |0)=0. r.h.s. of Eq(15) are taken with respect to the phonon Hamil-

_ . tonianH ,;,. The transformation frong($, and Cpyp () to
|0) is the electronic ground state,,(n) and ¥ ,(m,n) rep- © and C_(w) is given by Egs.(Al) and (A5) of Ref.
resent the one- and two-exciton eigenstates of the exmtogl(a)
Hamiltonian, with energiese, and e, respectively, and Starting with Eq(9), we have calculated all quantities to

B/ (Bn) is the creatior(annihilation operator for an exciton |owest order inH, and obtained
at sitem. It follows from Eq.(10) that B’ BT|O>=0, which
implies that_two eXC|t0n states are obta|ned from the ground- R(ts,ty,t])=RO(ts,ty,ty) + 2 W,,(t3)G . (t2)D,(ty)
state by acting with two-exciton creation operatwﬁsrather
than using bilinear combinations of one-exciton creation op-
) i +Wo(t3)Do(t 1

erators. The one- and two-exciton operators are defined such o(ts)Do(ty) (16
thatB, and BT have nonzero matrix elements between theA closed expression foR(® is derived in Appendix B by
ground and the one-exciton states Wher‘égsandY only  starting with its exact formal eXZPl{aeSSIC(lEq (A13)) and
couple the ground and two-exciton states. Operators whicRXPanding it to zeroth order if;.*® Tuming now to the
create two- ex0|t0n states by acting on one-exciton states agecond term, exact formal definitions pfandW are given

represented by;B# (see Fig. 1 by Egs. (Alé_l) and(A17). To zereth order _|rH 1, they can be
Using these operators, the material Hamiltorig. (1)) ~ €xPressed in terms of correlation functiofisgs. (C3) and
assumes the form (C4)). These correlation functions are then evaluated using
the second-order cumulant expansion and finally assume the
H=Ho+H,, (11) forms of Egs.(C2), (C12 and(C13. G,,(t,) in the second
i term is the Green function of the generalized master equation
with is the G functi f th lized [
for exciton-hopping Eq. (A23)). Assuming short memory of
Ho=>, ¢,B' Bu+2 .Y Yﬂrz q<c>Bt the bath,G,,(t) satisfies the ordinary master equatieee
Appendix A
(O T d g
22 6,7, Hon, §iGuV= 2 [KuGu()-KuGpu(Dl, (D)
ntv nEv with the initial conditionG ,,(0)= &, . The kerneK ,, (Eq.
. ©)pt @ -L . X 1 . M I
Hi= > q,,B,B,+ > a,,Y, Y (120 (A24) together with Eq(A22)) is evaluated to second order
My mv

in Hy, resulting in Eqs.(C6) and (C7). These correlation
The first two terms inH, represent one-exciton and two- functions can then be evaluated using the second-order cu-
exciton energies, the following two terms are related to di-mulant expansion, resulting finally in Eq€17)—(C19).
agonal coupling of the bath to one- and two-exciton states, The last term in Eq(9) may be calculated from Eq.
whereasH , is the bath(phonon Hamiltonian.H; denotes  (C5). Note that this term may be canceled by an identical
off-diagonal coupling of the bath to one- and two-excitonterm that appears iR(® (Eq. (B9)). This could result in a
states. more compact final expression. However, with the present
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= PO)(t3)=E; E; EJ 0(t3) 6(t2) 0(t)R(t3,t,t1), (19

whereR(t3,t,,t;) within the RWA is given in Appendix D.

- le'> The polarization now depends on three positive time vari-

e g, ables: the time delay, between pulses 1 and 2, the time
delayt, between pulses 2 and 3, and the time of observation
ts.

Ig> All numerical calculations were performed using Eq.
(19), whereR(t3,t,,t;) is given by Eq.(16) with all neces-
sary quantities collected in Appendix R(® is calculated

Kw 19> <ql Kow o> <g] Ko lo> <el using Eqs(D1)—(D6). The excﬂon-hopplng terrtthe second
"\ ‘L, term of Eq.(16)) was evaluated using EQD7). The bleach-
; It ing contribution (the last term of Eq(16)) was calculated
3 |e> > .
JJ" using Eq.(D6).
o> ki‘_ﬂ kyﬂ We consider a cyclic aggregate made oulaholecules
K, , with nearest-neighbor intermolecular interactions. This
kﬂ <e| J"‘ _r"l model describes light-harvesting LH1 antenna complexes, as
f, : <e| k; well as the B850 and B800 bands of LH2, which are highly
F-. I‘L;k symmetric circular one-dimensional aggregates Wth 32,

ki ki ! 18, and 9, respectively. It further represedtaggregates

which have a linear geometry and laigeWe have used the

couplingJ between adjacent chlorophyll molecules as deter-
; ; =1 -1

FIG. 2. Top: Excitonic four-level system consisting a grougdl, two one- mined in Ref. 27— 273_ Cm_ a'_qd - 291_ (_:m for the

exciton (,e'), and one two-exciton state$)( The third-order response of B850 system of LH2, which is a ring consisting of 18 Bchl-a

an aggregate is a sum of contributions from various groups of four-levemonomer<® Eor nearest-neighbor intermolecular coupling,
systems. Bottom: The three double-sided Feynman-diagrams representi:fﬁe many-exciton states are represented by the Bethe

the time domain four-wave mixindthree-pulse echowithin the rotating fl(a)’zg .

wave approximation. The bleaching term in Ed6) [Eq. (D6)] is repre- Ansat . and can b? expressed 'n terms of two S{ets of

sented byb). The hopping term in Eq16) [Eq. (D7)] is represented bgg) one-exciton states: ordinary one-exciton stap(;;$n) satis-

and (c). The coherent ternR(® has five contributiongEq. (B9) together fying periodic boundary condition$ﬂ(n+ N)= ‘P,u(n)y and

with Eq. (D1)]. The first threeR,, R, andR,;, [Egs.(D2)—(D4)] are repre- . . . . L
sented bya), (b), (c) respectively. The other two are the exciton hopping at auxiliary One'e_XC'ton Stat%#_(n) with antiperiodic bound-

t,— and the bleaching term. ary conditionse,(n+N)=—¢,(n), both are eigenstates of
the one-exciton Hamiltonian with energies, and ¢, ,
respectively’!® We assume that all the collective phonon

partitioning,R( vanishes for large, and the second and the variables acting on different molecules are uncorrelated and

third term represent the long-time response. have the same spectral density. This gives

|e>

lg> <gl lg> <9l lg> <gl
(@) (o) (€

IV. APPLICATION TO THE B850 SYSTEM OF LH2 Connki (@)= 81 OmnC(@). (20)

Hereafter we consider a three-pulse experiment, where ] ] ]
the incoming field is given 5726 The combined effects of disorder and exciton-phonon

. . . . . _ coupling characterized by the nuclear spectral densities on
E(t)=Ey(t) (e et emlMarrient) + Ey()(elfe T ient two-pulse echoes were analyzed in Ref(&2lusing five
+eikeTHioaty L B (1) (gika T i0at 4 g ks THiogt models invo_lving different spectral densities and diﬁerent
_ _ _ _ models of disorder. Hereafter we use the spectral density of
=E/ (e "'+ E (H)e'1'+E; (t)e w2+ E, (t)e'w2! model | in Ref. 21a), corresponding to an overdamped
Brownian oscillator.

+E5 (He e+ E5 (t)eles, (18)
whereE;(t) are the real pulse envelopds’ (E;) refer to 0T
the components dt with directions+k; (—k;). In the fol- C(w)zz)\le, (21
lowing we focus on impulsive three-pulse four-wave mixing i+l

(FWM) experiments where pulse 1 comes at timg, —t5,

pulse 2 comes at time t,, and pulse 3 at time 0. The signal with ;=130 fs. We further include disorder by assuming a
is observed in the directioky=ksz+k,—Kk;. For pulses short  Gaussian distribution of molecular frequenci@s with a
compared with all molecular time scalésxcept for the op-  FWHM of ¢. The linear absorption linewidth is determined
tical frequencies we can replace the pulse envelopes in Eqby homogeneous and inhomogeneous contributions, repre-
(8) by ¢ functions and eliminate the time integrations, pro-sented by ando, respectively. This linewidth as well as the
vided we invoke the rotating-wave-approximati@®RWA),  |ong-time pump-probe signal do not carry enough informa-
i.e. neglect highly oscillating terms iR.23 We finally obtain  tion to determine these parameters uniquely, and may be
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- andt,; =100 fg, both the bleaching and the exciton hopping
40 @ term vanish rapidly. Also the coherent component decays as
" with t4, but not as rapidly as the other terms, since it evolves
into a photon echo. The total signal which is much weaker
than fort;=0 closely resembles to the coherent component.

The echo signal reaches a maximum at about 80 fs,
which is shorter than the ideal value gf=100 fs expected
for a two-level model. This difference is due to the fact that
in addition to the disorder-induced inhomogeneous broaden-
ing which results in the echo, phonon-induced homogeneous
dephasing is present as well. Homogeneous dephasing leads
to a decay of the signal which pushes the echo towards ear-
lier times?*® With increasingt,, (see Fig. &) for t,=200
fs andt,=0 fs) the bleaching does not change at all, and the
term involving exciton-hopping changes only slightly. How-
ever the coherent component decays rapidly withwhich is
to be expected since it vanishes for long In Fig. 3c) the
total signal and, the signal calculated by neglecting exciton
hopping are quite close, and both are smaller than the total
signal calculated fot,=0 fs (see Fig. 8a)).

Figure 3d) displays the signals fot,=200 fs and
t,=100 fs. For these time delays the two contributions are
comparable, but due to cancellations between the bleaching
FIG. 3. Square root of time-resolved echo sign&éts,t,,t;)| (Eq. (22) and the exciton hopping term, the shape of the total signal is
versus the observation tintg, (a) t,=t;=0, (b) t,=0, ;=100 fs,(c)  similar to the coherent component. Both total signals calcu-
;=200 fs, t,=0, and (d) t,=200 fs, t,=100 fs. Total signalisolid, |ated with and without exciton hopping show a photon echo
bleaching (dashed, exciton-hopping term(dotted, coherent component . . . .
(dashed-dotted In (c) and (d) we also show the sum of the coherent and with a maximum at about 63 fs and 65 fs, respectlvely. This
bleaching term(dash-dot-dot is earlier than the 80 fs maximum shown in Figb8 There-
fore during the time period, the relative magnitude of the
inhomogeneous broadening compared with the homogeneous
dephasing decreases; this effect is stronger if exciton hop-
ping is included. Due to the strong overall decay of the co-
herent component during, the total signal shown in Fig.
3(d) is also weaker than that shown in FigbB

IRI

1, (fs)

reproduced with different choicé&” The parameters used
A=240 cm ! ando=600 cm %, reproduce the experimen-
tal '~470 cm ! (FWHM) linear absorption linewidth, and
the three-pulse echo peak-shiftas will be shown below.

All calculations were performed fof =300 K. The calcu-

lated signals have been averaged over 1000 realizations of

static disorder, which is sufficient for the short-times and

time-delays considered here. Considerably more extensiv@. Time-integrated echoes and peak-shift signals

sampling is required for longer times or time-delays. The photon echo technique does not always produce an
. echo signal: this depends on the nature of the system and the
A. Time-resolved three pulse echoes line broadening mechanisfi.The echo can be observed by

The time-resolved four-wave-mixing signal is given by time-resolved detection as shown in the previous subsection.
R However, characteristic signatures of the echo are contained
Sspe(ta.ta ty)|R(ts, 5, ty)]2 (22)  in the simpleriand more commortime-integrated detection.

The absolute value d®(ts,t,,t;) for differentt, andt, The time-integrated signal is given by

is displayed in Fig. 3. Fot,=t,=0 (Fig. 3(a)) there are ©

large, initially almost canceling, contributions from the  Sint(t1,t2)= f_m|R(t3,t2-t1)|2dt3- (23
bleaching and the term involving exciton hopping. This can-

cellation comes from the fact that the two-exciton contribu-  In Fig. 4 we display this signal as a function of for

tions dominate the latter term whereas the bleaching involvedifferent values ot,. For a homogeneously-broadened two-
only single-exciton states, which have a different &fh level system, whose real-time signal is characterized by an
(see also the pump probe signal displayed in Fig))6With  exponential decay, this signal reaches its maximui a
increasingts this strong cancellation is partially eroded, due irrespective of the value df, and then decays exponentially.

to the different frequencies of the ground state to one-excitofror an ensemble of inhomogeneously broadened two-level
compared to the single-exciton to two-exciton transitionssystems, the real-time signal appears as a photon echo, i.e.
The total signal therefore reaches its maximum aroundhas its maximum at;=t;.2>%° In the absence of homoge-
t3~17 fs and subsequently decays due to homogeneous anéous dephasing, the time-integrated signal will start with
inhomogeneous dephasing. The coherent component is rathewme value at;=0 and then as function df will rise to a
weak in Fig. 3a). With increasing 4, (see Fig. &) for t,=0 constant value, which is reached whenbecomes larger
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£ % 0 50 100 150 200
]
- _ t, (fs)
10000 @ . . .
e FIG. 5. Echo peak shift] as function of the delay,. Circles—calculated
g peak shifts; uptriangles—calculated peak shifts if the exciton-hopping term
5000 is neglectedkeeping only the coherent and bleaching components in Eq.
________ (16)); squares—experimeriRef. 15h)).
o
"""" (e)
5000 which are negligible in the dimer. This simple model com-
. pletely neglects the detailed structure of the excitonic mani-
o5 = = a— e 00 fold and the influence of two-exciton states. It further in-
t, (fs) cludes relaxation as well as disorder effects only through a
FIG. 4. Time-integrated echo sign&g,t (Eq. (23)) versust, for (a) t,=0, line sha_pe funcﬂo_n introduced phenomen0|.09lca”y' .
(b) t,=50 fs, (c) t,=100 fs, (d) t,= 150 fs, and(e) t,=200 fs. Shown are In Fig. 4 we display the calculated time-integrated signal
the total signalgsolid line) and the sum of the coherent and bleaching term as a function oft, for differentt,. For t,=0 we find the
(dashed ling maximum of the time-integrated signal gt=25(*+2.5) fs

(the uncertainty represents the finite gridtpfvalues used in

the calculation With increasingt, the maximum shifts to-
than the temporal width of the time-resolved echo signalwards shortet,. We further display the signals obtained by
This behavior comes from the fact that for an inhomoge-eglecting exciton hopping altogeth@rote that for impul-
neously broadened system, for time-deldyswhich are sive excitation, no exciton hopping takes place g+ 0),
shorter than the temporal width of the echo signal, part of the.e. by settingG,,,(t)=4,, in Eq. (16). Without exciton-
photon echo is cut off and does not contribute to the signalhopping we notice somewhat stronger signals, and the maxi-
which only starts after the last pulse. With increastpga  mum shifts towards larger values tf.
larger portion of the echo signal contributes, and the time-  The calculated peak-shifts fby=0, 50, 100, 150, 200 fs
integrated signal rises. Including homogeneous dephasingye displayed in Fig. 5. These values are very close to
the time-integrated signal will eventually decay to zero. Theexperiment®® This agreement is encouraging, despite sev-
signal will therefore show a maximum at sortie (denoted  eral approximations made: We have used a very simple spec-
the peak-shiftequal to or smaller than the temporal width of tral density of a single overdamped Brownian oscillator and
the echo. The precise value df is determined by the ratio neglected the effects of the finite pulse durations. In addition,
of the width of the echqinhomogeneous broadeningnd a more realistic model should consider an aggregate made
the homogeneous dephasing time, as well as the delay periauit of three levelrather than two levglchromophores. The
t,. Peak-shift measurements provide some valuable informadoubly-excitedthird) molecular state may couple strongly to
tion about the temporal behavior of the time-resolved signalthe two-exciton manifold and influence the third-order
even though a time-integrated detection is u$edf response® A unified description of all spectroscopic mea-

Peak-shift signals have been reported for LH1, for thesurements(including pump-probe, hole-burning, etanay

B850 band of LH2, and for the B800 band of LH2 as func- require relaxing some of these approximations. Figure 5 also
tion of the time-delay,. In Ref. 15 it was found that for both shows that exciton-hopping reduces the magnitude of the
LH1 and LH2 it decays as function ¢f, and experiments peak-shift, especially for lonty. We therefore conclude that
could be fitted by using a simple model where the entirethe general idea that exciton-hopping is responsible for re-
aggregate is represented by a two electronic level systemucing the peak-shift to small values at long times as out-
coupled to a complex spectral density representing sevelned in Ref. 16 is qualitatively correct. As shown in the
nuclear modes. Peak-shift measurements for the B820 dim@revious section, even for a largg andt, larger thant}
subunit of LHEY® could then be fitted with the same cou- (see Fig. &)) the time-resolved signals are still emitted as
pling to nuclear modes, neglecting one term associated witBchoes with a width much larger théh. Therefore the de-
energy-transfer. The larger values of the peak-shift of theay of t7 betweent,=0 to 200 fs is rather related to an
dimer compared to LH1 were explained by assuming that irincrease of the overall dephasing and not so much to a loss
LH1 the peak-shift is destroyed by energy transfer processesf rephasing capabilityeffective inhomogeneous broaden-
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blue and in the red, indicating the broader spectral width of
the one- to two-exciton transition compared to the ground
state to single-exciton transition.

The total signal displayed in Fig(® is weak compared
to the individual contributions because of the strong cancel-
lation between the negative bleaching term and the positive
excited-state absorption. Since the posiiigecited-state ab-
sorption peak is shifted toward the blue compared to the
minimum of the bleaching, the total signal shows a negative
component at lower energies and a positive feature at higher
energieqsee Fig. €c)). Upon increasind, the positive and
negative peaks of the total signal slightly decreédee to
the coherent componenand shift toward the reddue to
exciton-hopping The dotted line in Fig. @) is the total
signal calculated by neglecting exciton-hopping. The differ-
ence from the actual signétlashed-lingillustrates the im-
portance of incorporating the hopping term, as shown in Fig.
4, Fig. 5, and Fig. &).

pump-probe signal
2
o

200

200}
-a00}
-600|

-0‘.2 -0‘.1 010 011
@-9,) (eV)

FIG. 6. Impulsive pump-probe signat,, (Eq. (24)). Panel(a): dotted-
dashed line—bleaching term; solid line—exciton-hopping term wtherD; V. DISCUSSION

dashed line—exciton-hopping term whien= 200 fs. Pane(b): solid line— . . . .
coherent termf,=0; dashed line—coherent terrh,=200 fs. Panel(c): The theory presentEd in this paper incorporates exciton

solid line—total signalf,=0; dashed line—total signaly=200 fs; dotted ~ '€laxation processes in nonlinear spectroscopies of molecular

line—sum of the coherent and bleaching tetg¥: 200 fs. aggregates. The theory accounts for strong energetic disorder
and exciton-phonon coupling and applies when the disorder-
induced exciton localization length is shorter than the

ing). This is illustrated by the decay of the time-integratedPonon-induced exciton self-trapping lengipolaron size

signal(see Fig. 4and the similar echo structure of the time- in the absence.of disorder. Exciton transport is described py

resolved signals shown in Figs(i8 and (d), as discussed a master equation. The present theory generallzes our earlier

above. calculations: the two-pulse echo is related Rt3,01t,),
which has been calculated previously in Ref(81by ne-
glecting H; and including effects of polaron formation.

C. Pump-probe spectroscopy However, sinceH, conserves exciton populations, it com-

pletely neglects exciton-hopping, which takes place during

Pump-probe measurements can be viewed as a specitike t, period and may not be neglected for lohg even
four-wave-mixing process whereby pulses 1 and 2 coincidgyhen H, is weak. In this article we have extended these

and the frequency-dispersed signal is measured. Assumingsuits to three-pulse measurements with fitjtdy treating
that both the pump and the probe are impuldivery shor},  H, perturbatively.

the signal is obtained by settirtg=0 in Eg. (19) and per- We have applied this theory to calculate the four wave
forming a Fourier transform with respect tgr mixing signal in LH2. The total signal consists of three terms
w R denoted the coherent, exciton-hopping and bleaching contri-

Spp(w.tz)=|mf0 dt; expliwtz)R(t3,t2,0). (24)  butions. Our calculations show that polaron formation and

hopping occur during the time delay peribg which can be

Figure 6 displays the various contributions to the pump-controlled in three-pulse-echo and pump-probe measure-
probe signals fot,=0 (solid line) andt,=200 fs(dashed ments. The results for the peak-shift measurements are in
line). In panel(a) we plot the exciton-hopping and bleaching good agreement with recent experimelitén addition this
term [Eq. (16)], and panelb) shows the coherent contribu- approach can be extended for calculating the time- and
tion. The total signal is displayed in pan@). We find a  frequency-resolved spontaneous emission using the formal-
strong negative bleaching contribution, which is independenism of Ref. 19.
of t, (dashed-dotted line in Fig.(). The hopping compo- All calculations were performed for LH2 in one particu-
nent is strong and positive, which shows that excited-statéar species of bacteriurRhodopseudomonas (Rps.) acido-
absorption representing transitions from one-exciton to twophila where B850 system ha$=18 chlorophylls. This num-
exciton states dominates this component. The red-shift of theer varies for different speciés.g. forRhodospirillum (Rs.)
peak reflects the exciton-hopping during theperiod. The  molischianumit is 16). The precise shape of the time-
coherent component strongly dependsterisee Fig. &)), resolved signals will depend adw, since it affects the nature
which reflects polaron formation, and almost vanishes afteof the exciton states, as well as the influence of the disorder
200 fs. This component includes contributions from bothand effective exciton phonon coupling. However the general
bleaching and excited-state absorption. Their interference rexpressions and the existence of almost canceling tésees
sults in a strong negative signal with positive wings in thealso Ref. 21a)) apply for anyN. Since for the parameters
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used in the present paper, the exciton states are localized dWherep (q) is the equilibrium density matrix for the Hamil-
to static disorder on a small number of site®mpared to tonlanHO when theuth exciton is excited. We further intro-

N), we do not expect strong changes by varyhigas long  duce the operato?’, which projects the density matrix onto
as it is larger than the exciton localization length of approxi-the ground state

mately 4 chlorophylls. _

The calculations presented here and in RefaRtlem- Zo0p=po(Q) Try(poo), (A5)
onstrate that time-resolved FWM signals from light-
harvesting aggregates should be most valuable and provide
direct information about the relative roles of homogeneou
and inhomogeneous dephasing. This information is not avail

nd poo(Q) is the equilibrium densny matrix in the ground

State. Theu-dependence ofp (q) reflects the different
nuclear equilibrium for each electronlc state and retains po-
able from time-integrated measurements. laron effects’® (These are neglected in the standard deriva-

In the present calculations we used a three band moddie of master equations where weak exciton-phonon cou-
(Fig. 1) to represent the system, and included excitonPling is assumed ang,(q) is replaced by au-independent
phonon coupling as well as static-disorder. This modenuclear density matr)x
should apply to a broad class of organic and semiconductor Our total projection operator is defined by
excitonic materials; these include molecular aggregates,
crystals and superlattiéd,as well as semiconductors and P=> Pyt 7. (AB)
semiconductor nanostructute.

2 projects the density matrix onto the manifold of single-

exciton populations as well as the ground state.=0 for
ACKNOWLEDGMENTS all components except, ,(q) andpgo(d). Using this projec-

tion, we can partition the density matrixas p=%p+ Cp,

We wish to thank G. R. Fleming and M. Yang for useful where=(1—2) is the complementary projection 1&.

comments. The support of the Air Force Office of Scientific 2 represents our slow dynamical variables which we
Research, through Grant AFOSR-95-F49620-96-1-0030, andlish to follow explicitly. Acting with the unit operator
the National Science Foundation through Grants No. CHE=+ 2 on ¥(t,) in Eq. (A1), we obtain

9526125 and No. PHY94-15583 is gratefully acknowledged. o -
o) =(P+ D) L (t)(P+ 0)

=0 A1)+ 1)+ (1) + A1),
APPENDIX A: COHERENT AND SEQUENTIAL (A7)
COMPONENTS OF THE THIRD ORDER RESPONSE
where we have introduced the abbreviated notation
In this Appendix we derive the doorway-window repre-

sentation for the optical response functitiq. (9)), using L sAN=7 exp(—iLt).7, (A8)
projection operator techniqués. and. 2. 5= 0.
We start with the formal expression for the nonlinear  \ye shall Bartition the Liouville operator ds=L+L;
response functict where Ly7’=71,=0, [°,L]=0 and 7L,7’=0. We can
R(ts,ty,ty) =i3TH P, S(ts)P_ L(t)P_ Z(t1)P_pol, then use standard projection operator identities:
wherepy is the equilibrium density matrix and T ordty)=—1 fo dt.o At~ )L &2 (1), (A9)
Lt)y=exp —ilLt), (A2) t,
with the Liouville operatoriL defined as.A=[H,A], A be- LoAty)=—i jo dto(t,—t) L1 2 A1), (A10)

ing an arbitrary operatoP .. are Liouville space dipole op-

erators(superoperatojsThey are defined by their actions on _ oy N (LT b .
an arbitrary operatoA Coty) =0 (ty) O+ (—1i) JO dt JO dt’ Z(t,—t")
P_A=PA-AP - =
XOL G oAU =)L 0 (t), (Al1)
P A=3 [PA+AP] (A3)  whereZ(t) is defined as
For calculating the third-order response we need to fol- 5"(t)Eexq—iQLQt). (A12)

low the evolution of the wave packeigy,(d), po.(d),
p.(d), poo(q), and p,,(q), where q represents all the
nuclear degrees of freedom. We shall introduce the followin
projection operator”’, projects the density matrix onto the
manifold of single-exciton populations

Equations(A9)—(Al1l) are the Fourier transforms of Egs.
2.89h—(2.899 of Ref. 23. Substituting Eqs(A7), and
A9)—(A11l) into Eq.(Al) and representing” in the form of
Egs.(A4) and(A5) we obtain the DW representation for the
o nonlinear response functioR. It has the form of Eq(9),
Dup=p (DTrg(puu), (A4)  where the coherent component is given by

Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html



J. Chem. Phys., Vol. 108, No. 18, 8 May 1998

RO(tg,ty,t)=i% TI P, Z(ts) P_ Z(t) OP_Z(t1)P_po).
(A13)

Given the dipole operatorEq. (A3), it is clear that during
the period oft; andt; the density matrix is in an optical
coherenceli.e., po,). These states belong to tiig space
since the projection operater’ only includes populations.

We can thus replac&(ts) by Z{(ts) and £{(t,) by Z{(t,).

The doorway function can be represented formally as

follows

D,(7,t)=D,(t)8(7)+ DY (r1), (A14)
with

D, ()=THZ,P_Z(t)P_pol, (A15)

DY (rt)=—i THZ,L, Z(1)P_Z()P_pol.  (Al6)
Similarly, the window function is given by

W,,(t,7) =W, (1) 8(7) + W, (t,7), (A17)
with

W, ()y=—i TP, Z(P_p,], (A18)

W(t, 1) =—TI{P. Z()P_Z(1)L1p,,]. (A19)

The Green functionG represents the matrix elements of

G,.()=7, exg—iLt).7,, (A20)

G,.(1) is the conditional probability for the population to be

in the stateu at timet given that it started at stateatt=0.
It satisfies the generalized master equation.

d t_
GG (=2 fodt Koua(t=t")G,, (1), (A21)

with initial conditionG,,(0)=§,, . The kernel of this equa-
tion is given by:

K(O=—THZ,L Z(t)Lyp,]. (A22)

Conservation of the total polaron population allows to recast

Eqg. (A21) in a form
aFu

d t
GCu(0=2 Jodt [Kualt=t)Gau(t')

—Ka(t=t")G, ()], (A23)

Invoking the Markovian approximation we obtain EG.7)
with

K= f;dt@v(t). (A24)
Dy andW, in Eqg. (9) are given by

Do(t)=THZP_Z(1)P_pol, (A25)

Wo(t)=—i TI[P.Z(7)P_pol. (A26)
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Equation(9) together with Eqs(A13)—(A26) constitute

an exact closed formal expression for the third-order re-

sponse function.

APPENDIX B: THE COHERENT COMPONENT OF THE
THIRD-ORDER RESPONSE

In this and in the following Appendices we derive per-
turbative expressions for all quantities which appear in Eq.
(9). To that end, we set(t)=Z(t) in the formal expres-
sions given by Eqs(A13)—(A19) and (A22), where

Zo(h)y=exp —iLolh). (B1)
Exact calculations can be performed sirgg(t) is defined
in the system wittH,=0. Representing’ in Eq. (A13) in a
form £=1—-2" we obtain

R (tg,t,,t1) =R(tg,t5,t1) —R(t3,%,ty), (B2)

whereR(t3,t,,t;1) is the response function fad,=0. For-
mal expressions foR derived in Ref. 2(a) have the form

4 2
R(ts,to,t1)= 21 J_Zl [Ryj(ts,tz,t1) — RE;(ts,t2,t1)],

(B3)
with
le(t3,t2,t1) = Fj(tl,t1+t2,tl+t2+t3,0),
sz(t3 Aot = Fj(O,tl-l-tz i+t +ta,ty),
R3j(t3,t2,t1) = Fj(O,tl,t1+t2+t3,t1+t2),
Ryj(ts 1o, 1) =Fj(ty +tr+t3,t+15,14,0). (B4)

The correlation function§; can be evaluated exactly, using

the matrix of line broadening functions and have the
form?21@.34

F1(7'4,T3,Tz,7'1)22 d,idrzj eXF{—leZ(m,Tg,Tz,Tl)
%
—i€, (mo— 1) —l€, (14— 73)],

FZ( T41T31721Tl): 27 d,U,dVd,LL,;dV,;
mva
Xexq — ff:;( T4,T3,To,T1)
—iEM(Tz_ 71) —i€,(T3— T2)
—ie (14— 73)], (BS)

wheref® andf(® are given by
leJ(TA17'3,7'2'7'1)59“”(7'2_Tl)‘QMu(Ts_Tl)
+gMV(T4_ Tl)+g,u,v( 7-3_7-2)

- g/.LV( Ta— 7-2) + gVV( T4~ 7-3)1 (BG)
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@
o Ta:73:7271) Do()=— 3 D,(0).
Eg/.L,u( T2 Tl) - g/.L;( T2 Tl) + gp,;( 737 Tl)

=0, 737 7))+ 9,(74— T1) — 9l T3~ T2) Wo(t) =i > [D';L(t)—D';L(—t)]}. (CH
N

+g;LV(T3_7-2)_gMV(T4_ 7'2)+ng3_7'2) o
_ _ _ The kerneK ,,(t) is calculated in second order iy, in
— — + — — — 2%
gav( 73 7-2) gav( T4 7-2) gav( Ty T3) this case Eq(AZZ) erIdS
+gvv( Ta— 7-3)- (B7)

The line broadening functlonng) where Latin indices
assume the values, u, uv, and,uv are expressed in terms With
of spectral densitie€ () using Eq.(7). + +
R(t3,,t;) in Eq. (B2) can be expressed in terms of the Klau(1)=TI[B}(7)B,(7)d};)(7)B,(0)B,(0)
doorway and windows functiori3,,(t) andW ,(t) which are

KD =K5 (0 +KE,(—1), (C6)

(C)
calculated in Appendix C: (o)p”] €7
for >0 and for7<<O we have
R(ts,%,t1)= 2, W,(t3)D ,(t;) +Wy(t3)Do(ty). (B8
(t3,,t1) ; (t3)D (1)) +Wo(ts)Do(ty).  (BY) N .

Combining Egs.(B2) and (B8) yields the first term in Eq.  Equation (C3) representsD}(t) in terms of a correlation

(16 function with respect tgp,.
Equationg(C4) and(C7) can be transformed to a similar
RO (tg,t5,t;) = R(ts,tz,t) = 2, W, (t3)D ,(ty) form using the relation
y73
— . —
—Wj(t3)Do(ty). (B9) pﬂ—tlll”rolc exp(—iLot)B,poB,, - (C9
APPENDIX C: THE SEQUENTIAL COMPONENT Substituting Eq{(C9) into Egs.(C4) and(C7) yields
In this Appendix we calcullate the fu_nctions W,LL(T):id,ZL“m TV[BM(—'E)BL(O)B,L(T)BL(—t)P_o]
D (1), W,(1), andK,,(t) introduced in Eq(16). Using a t—oo
perturbative expansion iH;, we note that the leading con-
tribution to D ,(t) andW,(t) is the zeroth order. Equations _E |d ~fim Tr[BM(—t)BT(T)Y—(T)Y{O)
(A16) and(A19) show that the expansion tﬁi(l)(r t) and "t
WE})(T t) starts with first-order terms. Using our prescription " —
of evaluating all quantities to lowest order h;, we can XBL(0)BL(—Vpol, (C10

neglect the latter term and obtain N © +
(7)—I|m Tr[B,(—t)B,(7)B,(7)q,,(7)B,(0)

D,(,t)=D,(t)&(7), o

_ to_

(1,7 =W, (037, 1 XB,(0)g(0)B](~t)pol. (C11
Starting with Eqs(A15), (A18), (A25) and(A26) D,, W,

as well asD,, andW, (in Eq. (9)) can be represented |n a
form

Equation(C9), used in the derivation of Eq$C10 and
(C11), may be interpreted as follows: We start with the sys-
tem in the ground electronic state, at thermal equilibrium
with the density matrixp,, and excite theuth exciton. The
D,(t)=D}(t)+D5(~1), system will reach equilibrium for thecth exciton, i.e.p,,
after large enough time Formally the limit in the r.h.s. of

—_\£L VY
W (D) =W, (1) =W, (1), (€2 Eqg. (C9 does not exist since the full density matrix of a
with closed system does not equilibrate. However, this limit exists
o in a weak sense, i.e. we can use Eg9) to calculate expec-
DL(t)=—d?Tr[B,(t)B!(0)p,], (c3 tation values which are related to reduced variables which do
- equilibrate. This implies that the limits in Eq8C10 and
WL () =id2TI[B(0)B,(t)p,,] (C1D) do exist in the full sense.
The correlation functions in Eq§C3) and(C10), can be
_iz di;Tr[BL(t)th)Y%(O)B#(O)p_ﬂ] evaluated using the second order cumulant expargibith

is exact for this modelusing the procedure described in Ref.
(Ca) 33. A straightforward calculation yields

and Dy(t)=—d2 exfd —ie,t—g,.(1)], (C12
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L i iq2 _f(_ — —j
W/L(T)—thn’;[ idy, exd —f . (=t,0,7,—t)Jexd —ie,7]
N ig?— _f@ _
2;: id) sexd —f, (—t,7,0-1)]

xXexd —i(e,— EM)T]J. (C13

Explicit expressions fOWll;(T) are obtained by substituting

the following identities into Eq(C13)

t|im f (=107, —t)=g% (1) = 2i\,,™, (C14

i (2) —
fim £ {6700 =0uu(7) + 01 = 20,,(7)
—2i(\ N, (C15

To evaluateK,Lw(r) we first represent EqC11) in a form

2

KL, ()= lim Tr{B,(—t)B}(7)B,(7)

t—oo

dadp
xexfiaq()(7)]BL(0)B,(0)

xexf —iBd\$)(0)IBY(—1)po} a=p-0-
(C16

The correlation function in the r.h.s. of EqC16) was evalu-

ated using the second order cumulant. A similar calculation

has been performed in Ref. 35 where the terms iexgp)

appeared due to non-Condon effects. A straightforward but

tedious calculation yields

K/ITLV( T) = K;'iy( T){gp.v,v#( T) - ['gV/.L,VV( T) - .gV,u.,,u,,u,( T)

+2i )\VM,VV][.gVV,MV( T) - -gp,,u,y,v( T)
+2iN .1} for 7>0.

(C17)
Here dots stand for time derivative, and
K/.FLV( T) EeXF{ =i (e,u,_ EV) T g,u/.t,,u/.L( T) - gVV,VV( T)

+ gVV,,LL/.L( T) + g/.L/.L,VV( T) —2i ()\VV,VV_ )\,U,/.L,VV) T]v

(C18
where we have used the notation
. dg,uv,,u,’v’(T)
AMV'#’V,E_lmIm T . (Clg)

The terms withg(7) andg(7) in Eq. (C17) have the follow-
ing origin. In the absence of the exp@) and exp{iBq)

terms, the second-order cumulant contains double time inte-
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function,g(7). The mixed terms contain single time integrals
of the coordinate correlation functions are represented by

9(7).

APPENDIX D: FINAL EXPRESSIONS FOR THE
RESPONSE FUNCTION; THE ROTATING
WAVE APPROXIMATION

In this Appendix we summarize all quantities used in the
numerical calculations of Eq16).

First we calculateR(®): Starting from Eq.(B9), for the
pulse configuration of Eq19), only three out of 16 terms
(see EQq.B3)) contribute toR(t3,t,,t;) within the rotating
wave approximation. The corresponding double-sided Feyn-
man diagrams are given in Fig. 2.

R(t3,t5,t1)=R(t3,t5,t) + Ry (t3,15,t1)

+ Ry (ts,ta,ty), (D1)

14

Ri(ta,to t)=—1> dd,d,d, exd— f;l)(O,t2+tl 13
wv

+t2+t1,tl)]exq_iE#(t3+t2)
+iEV(t2+tl)], (DZ)
Ri(ts tp,t)=—i> d,d,d,d, exg— (01 tz+t,
y72%
+t1,t2+t1)]eXF[—ieMt3+iE,,t1], (D3)
R...(ts,tz,m:—i[ >, duod,q0,d, exd — )~
nra
><(t1,t2+t1,t3+t2+t1,0)]exq—iEM(t3
*
+t2+t1)+i6;t3+ifyt2]] . (D4)
In terms of Eq.(B3) we have R =R,;, R,=R3;, and
Ry =—RL.
The other terms in EqB9) are given by

; W, (t5)D ,(ty)
=—i§ d? ex;{ie#tl—gzu(tl)]’di exp —ie,ts

— k(1) + 20N, 0] -2

Xexg —i(e,—€,)t3—0,,(t3) —95,(t3) +29,5(t3)

grals of the collective coordinate correlation function whichand

yields the line broadening functiorgy 7).234 The term in
the second-order cumulant which originates frqﬁi(r) and

qifz(O) has the forrr(q(c)(r)qﬁfy(o» and is naturally repre-

Vi

sented by the second time derivative of the line broadening

+2i()\M;—)\W)t3]J, (D5)
vvo<t3>Do<t1>=—i§ d’d? exdie,t;—gk,(t)]
xexd —ie,t3—g,.(t3)] (D6)
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