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Exciton-migration and three-pulse femtosecond optical spectroscopies
of photosynthetic antenna complexes
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University of Rochester, P.O. Box RC 270216, Rochester, New York 14627-0216
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A theory for four-wave-mixing signals from molecular aggregates, which includes effects of
two-exciton states, static disorder, and coupling to a phonon bath with an arbitrary spectral density,
is developed. The third-order polarization is rigorously partitioned into a coherent and a sequential
contribution. The latter is given by a sum of an exciton-hopping and a ground state~bleaching!
terms, both expressed using the doorway-window representation. Applications are made to
photon-echo and pump-probe spectroscopies of the B850 system of the LH2 antenna in purple
bacteria. ©1998 American Institute of Physics.@S0021-9606~98!02913-4#
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I. INTRODUCTION

Biological antenna complexes have recently become
object of extensive studies using a variety of ultrafast n
linear spectroscopic techniques.1–3 Coherent and incoheren
exciton dynamics in light harvesting complexes1,2 has been
probed by various time-domain optical measurements. Th
include fluorescence depolarization,4,5 hole burning,6–9

pump-probe,10–13 and photon echoes.14–16 The interpretation
of these experiments requires a theory which incorpora
exciton-exciton interactions, strong exciton-phonon co
pling, and static disorder.

Theories of nonlinear optical response in molecular
gregates are usually based on the Frenkel exc
Hamiltonian17,18 which describes an aggregate made out
two- or three-level molecules. These theories can be cla
fied according to the level of reduction with respect
nuclear~phonon! degrees of freedom.19 At the simplest level,
the coupling to nuclei is incorporated via relaxation super
erators calculated perturbatively in exciton-phonon coupli
Such theories apply for weak exciton-phonon coupling a
do not take the detailed form of nuclear spectral densi
into account. The pump-probe signal, the frequency reso
fluorescence, and the superradiance have been analyze
cently using this approach.20~a! These studies focused on th
long-time limit of the signals and did not calculate the ev
lution of exciton populations. Strong exciton-phonon co
pling may lead to the formation of polarons~excitons dressed
by a phonon cloud!. In Ref. 20~b! the cooperative spontane
ous emission~superradiance! of the LH2 antenna has bee
calculated by incorporating polaron effects using differe
Ansätze for the polaron wave functions. Localization of th
exciton density matrix due to polaron formation was found
strongly influence the radiative decay. An alternative a
proach for incorporating strong exciton-phonon coupli
was developed in Ref. 21~a!: The Hamiltonian is first trans
formed to the exciton basis. The exciton-phonon coupl
enters both through the diagonal and the off-diagonal
ments of the Hamiltonian in this basis. The diagonal co
pling represented by arbitrary spectral densities was inclu
7760021-9606/98/108(18)/7763/12/$15.00
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exactly, whereas the phonon-dependence of the off-diag
coupling~which is responsible for exciton hopping! has been
neglected. This approximation may be used in the calcula
of two-pulse four-wave-mixing signals which are not sen
tive to exciton migration.

In this paper we extend the theory of Ref. 21~a! to in-
clude exciton transfer. The effect of strong exciton-phon
coupling is described using an exciton-hopping superop
tor calculated perturbatively in the off-diagonal excito
phonon coupling. Since the diagonal exciton-phonon c
pling is treated nonperturbatively, polaron formation and
nuclear reorganization energies are properly incorporated
full analogy with Marcus electron transfer theory.22 The sig-
natures of exciton population dynamics in three-pulse e
and pump-probe measurements in light-harvesting ante
complexes are then explored using this theory.

The paper is organized as follows: In Section II w
present the exciton Hamiltonian in the molecular~real space!
basis and partition the third order response function int
coherent and a sequential component. Exact formal exp
sions for both components are derived in Appendix A us
projection operator techniques. In Section III we transfo
the Hamiltonian into the delocalized exciton basis and cal
late both contributions perturbatively in the off-diagon
exciton-phonon coupling. Details are given in Appendices
and C. Our final expressions, summarized in Appendix
are applied in Section IV to the interpretation of photon ec
and pump-probe signals in the B850 band of LH2. Our c
culations include time-resolved and time-integrated echo
echo peak-shift14–16 ~obtained from time-integrated detec
tion!, and spectrally-resolved pump-probe signals.10–13 Fi-
nally our results are discussed in Section V.

II. THE DOORWAY/WINDOW REPRESENTATION OF
THE THIRD-ORDER RESPONSE

We describe an aggregate made out of two-level m
ecules using the Frenkel-exciton Hamiltonian17,18
3 © 1998 American Institute of Physics

to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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H5(
n

VnB̄n
†B̄n1 (

mn

mÞn

JmnB̄m
† B̄n2(

mn
qmn

~c!B̄m
† B̄n1Hph ,

~1!

whereB̄n
† (B̄n) are exciton creation~annihilation! operators

for the n’ th molecule, which satisfy the commutation rel
tions

@B̄m ,B̄n
†#5dmn~122B̄m

† B̄m!. ~2!

The polarization operatorP representing coupling of the ag
gregate to the optical field2E(t)•P has a form

P5(
m

dm~B̄m1B̄m
† !. ~3!

The system is further coupled to a bath representing the
lecular and the surrounding~solvent, protein, etc.! nuclear
degrees of freedom. We shall represent them using a
monic phonon Hamiltonian

Hph5(
j

S pj
2

2mj
1

mjv j
2qj

2 D . ~4!

qmn
(c) are collective bath coordinates, responsible for

exciton-phonon coupling

qmn
~c![(

j
mjv j

2zj ,mnqj , ~5!

wherezj ,mn is the coupling strength ofj ’ th phonon to the
exciton variableB̄m

† B̄n .
All relevant information about the exciton-phonon inte

action is contained in the following matrix of spectral den
ties

Cmn,kl~v![
i

2E2`

`

dt exp~ ivt !^@qmn
~c!~ t !,qkl

~c!~0!#&, ~6!

where the expectation value and the time evolution in
r.h.s. of Eq.~6! are taken with respect to the free phon
Hamiltonian Hph . As shown in the appendices, all effec
induced by the exciton-phonon coupling on the general th
order response may be incorporated through the matrix
line broadening functionsg(t), which are related to the pho
non spectral densities by23

gmn,kl~ t ![E
2`

` dv

2p

12cos~vt !

v2
cothS \v

2kTDCmn,kl~v!

1 i E
2`

` dv

2p

sin~vt !2vt

v2
Cmn,kl~v!. ~7!

The time-domain optical response functionR̂(t3 ,t2 ,t1)
which relates the third-order nonlinear polarizationP(3)(t) to
the driving fieldE(t) is defined by~assuming that pulse 1
comes first, then pulse 2 and pulse 3 is the last!23

P~3!~ t !5E
0

`

dt3E
0

`

dt2E
0

`

dt1R̂~ t3 ,t2 ,t1!

3E3~ t2t3!E2~ t2t32t2!E1~ t2t32t22t1!.

~8!
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Since the Hamiltonian~Eq. ~1!! conserves the number o
excitons, the electronic states of the system which particip
in the third order response are limited to the ground state
the single exciton$m% and the two-exciton$m̄% manifolds
~Fig. 1!. During thet1 period the system’s density matrix i
in an optical single-exciton coherence (r0m ,rm0), whereas
during t3 it can be inrm0 ,r0m ,rmm̄ and rm̄m . During the
time intervalt2 the system is either in the one-exciton man
fold rmn , or in the ground stater00, or in a two-exciton
coherencer0m̄ ,rm̄0.

Formal expressions for the third-order optical respon
function can be obtained using projection operator te
niques and following the procedure used in Ref. 19 to cal
late the time- and frequency-resolved fluorescence. We t
obtain ~see Appendix A for derivation!

R̂~ t3 ,t2 ,t1!5R~c!~ t3 ,t2 ,t1!

1(
mn

E
0

t2
dt9E

0

t9
dt8W̄m~ t3 ,t22t9!

3Gmn~ t92t8!D̄n~ t8,t1!1W0~ t3!D0~ t1!.

~9!

The physical significance of these three terms is as
lows: the first term represents a coherent contribut
whereby the entire optical process is completed before a
laxed exciton population is created. The following two term
represent sequential~incoherent! contributions, expressed us
ing the doorway-window representation.19,23 The second
term gives the contribution of thermally-relaxing exciton
The doorway functionD̄n represents the population of th
nth exciton created after two interactions with the radiati
field. Gmn(t92t8) is the conditional probability for thenth
exciton to hop to themth exciton state duringt92t8. W̄m is
the window function representing the contribution of themth
exciton to the signal. The third term represents a Raman-t
contribution whereby the system is back in the ground-s
(r00) during t2. D0 and W0 are the corresponding groun
state doorway and window functions. This term only giv
the contribution for longt2 ~which is independent ont2).
The short time ground-state dynamics is contained inR(c).
We shall refer to the three terms in Eq.~9! as the coherent

FIG. 1. Exciton level-structure and transition-dipoles of an aggregate m
out of an N interacting two-level molecules.u0& is the ground state,um& is
the single exciton band which hasN states andum̄& is the two-exciton band
with N(N21)/2 states. The operators inducing transitions between ba
are displayed as well.
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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the hopping and the bleaching terms respectively. Exact
mal expressions for all quantities are given in Appendix

III. EXCITON VARIABLES FOR THE NONLINEAR
RESPONSE

The eigenstates of the Hamiltonian~Eq. ~1!! consist of
well-separated manifolds ofn exciton statesn50,1,2,. . . .
As indicated earlier, the third-order response only depe
on the ground state 0, the single exciton (m) and the two-
exciton (m̄) states. To focus on these relevant states we s
recast the Hamiltonian using the exciton representation.
that end we introduce one-excitonBm

† (Bm) and two-exciton
Ym̄

† (Ym̄) creation~annihilation! operators withm51, . . . ,N

and m̄51, . . . ,N(N21)/2, whereN is the number of mol-
ecules in the aggregate. The one- and two-exciton opera
are defined by24

Bm
† u0&[(

n
wm~n!B̄n

†u0&, Bm
† B̄m

† u0&50,

~10!

Ym̄
† u0&[(

mn
Cm̄~m,n!B̄m

† B̄n
†u0&, Ym̄

†
B̄m

† u0&50.

u0& is the electronic ground state.wm(n) andCm̄(m,n) rep-
resent the one- and two-exciton eigenstates of the exc
Hamiltonian, with energiesem and em̄ respectively, and
B̄m

† (B̄m) is the creation~annihilation! operator for an exciton
at sitem. It follows from Eq. ~10! that Bm

† Bn
†u0&50, which

implies that two-exciton states are obtained from the grou
state by acting with two-exciton creation operatorsYm̄

† rather
than using bilinear combinations of one-exciton creation
erators. The one- and two-exciton operators are defined
that Bm and Bm

† have nonzero matrix elements between
ground and the one-exciton states whereasYm̄ andYm̄

† only
couple the ground and two-exciton states. Operators wh
create two-exciton states by acting on one-exciton states
represented byYm̄

†
Bm ~see Fig. 1!.

Using these operators, the material Hamiltonian~Eq. ~1!!
assumes the form

H5H01H1 , ~11!

with

H0[(
m

emBm
† Bm1(

m̄

em̄Ym̄
†
Ym̄1(

m
qm

~c!Bm
† Bm

1(
m̄

qm̄
~c!Ym̄

†
Ym̄1Hph ,

H1[ (
mn

mÞn

qmn
~c!Bm

† Bn1 (
m̄n̄

m̄Þn̄

qm̄n̄
~c!Ym̄

†
Yn̄ . ~12!

The first two terms inH0 represent one-exciton and two
exciton energies, the following two terms are related to
agonal coupling of the bath to one- and two-exciton sta
whereasHph is the bath~phonon! Hamiltonian.H1 denotes
off-diagonal coupling of the bath to one- and two-excit
states.
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Using these exciton variables, the polarization opera
P ~Eq. ~3!! is given by

P5(
m

dm~Bm1Bm
† !1(

mm̄

dm,m̄~Ym̄
†
Bm1Bm

† Ym̄!, ~13!

with the transition dipole matrix elements21~a!

dm5(
m

dmwm~m!,

dm,m̄5(
mn

Cm̄~m,n!@wm~m!dn1wm~n!dm#. ~14!

The collective coordinatesqmn
(c) have now been trans

formed intoqm
(c) , qm̄

(c) , qmn
(c) , andqm̄n̄

(c) . We shall denote these

new collective variables asqm̄
(c) wherem̄ assumes the value

m, m̄, mn, andm̄n̄. Similarly the matrix of spectral densitie
Eq. ~6! is now transformed into

Cm̄n̄~v![
i

2E2`

`

dtexp~ ivt !^@qm̄
~c!

~ t !,qn̄
~c!

~0!#&, ~15!

where the expectation value and the time evolution in
r.h.s. of Eq.~15! are taken with respect to the phonon Ham
tonianHph . The transformation fromqmn

(c) andCmn,kl(v) to
qm̄

(c) and Cm̄n̄(v) is given by Eqs.~A1! and ~A5! of Ref.
21~a!.

Starting with Eq.~9!, we have calculated all quantities t
lowest order inH1 and obtained

R̂~ t3 ,t2 ,t1!5R~c!~ t3 ,t2 ,t1!1(
mn

Wm~ t3!Gmn~ t2!Dn~ t1!

1W0~ t3!D0~ t1!. ~16!

A closed expression forR(c) is derived in Appendix B by
starting with its exact formal expression~Eq. ~A13!! and
expanding it to zeroth order inH1.21~a! Turning now to the
second term, exact formal definitions ofD̄ andW̄ are given
by Eqs.~A14! and~A17!. To zeroth order inH1, they can be
expressed in terms of correlation functions~Eqs. ~C3! and
~C4!!. These correlation functions are then evaluated us
the second-order cumulant expansion and finally assume
forms of Eqs.~C2!, ~C12! and~C13!. Gmn(t2) in the second
term is the Green function of the generalized master equa
for exciton-hopping~Eq. ~A23!!. Assuming short memory o
the bath,Gmn(t) satisfies the ordinary master equation~see
Appendix A!

d

dt
Gmn~ t !5 (

a

aÞm

@KmaGan~ t !2KamGmn~ t !#, ~17!

with the initial conditionGmn(0)5dmn . The kernelKmn ~Eq.
~A24! together with Eq.~A22!! is evaluated to second orde
in H1, resulting in Eqs.~C6! and ~C7!. These correlation
functions can then be evaluated using the second-order
mulant expansion, resulting finally in Eqs.~C17!–~C19!.

The last term in Eq.~9! may be calculated from Eq
~C5!. Note that this term may be canceled by an identi
term that appears inR(c) ~Eq. ~B9!!. This could result in a
more compact final expression. However, with the pres
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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partitioning,R(c) vanishes for larget2 and the second and th
third term represent the long-time response.

IV. APPLICATION TO THE B850 SYSTEM OF LH2

Hereafter we consider a three-pulse experiment, wh
the incoming field is given by25,26

E~ t !5E1~ t !~eik1•r2 iv1t1e2 ik1•r1 iv1t!1E2~ t !~eik2•r2 iv2t

1e2 ik2•r1 iv2t!1E3~ t !~eik3•r2 iv3t1e2 ik3•r1 iv3t!

[E1
1~ t !e2 iv1t1E1

2~ t !eiv1t1E2
1~ t !e2 iv2t1E2

2~ t !eiv2t

1E3
1~ t !e2 iv3t1E3

2~ t !eiv3t, ~18!

whereEi(t) are the real pulse envelopes.Ei
1 (Ei

2) refer to
the components ofE with directions1k i (2k i). In the fol-
lowing we focus on impulsive three-pulse four-wave mixi
~FWM! experiments where pulse 1 comes at time2t12t2,
pulse 2 comes at time2t2, and pulse 3 at time 0. The sign
is observed in the directionks5k31k22k1. For pulses short
compared with all molecular time scales~except for the op-
tical frequencies!, we can replace the pulse envelopes in E
~8! by d functions and eliminate the time integrations, pr
vided we invoke the rotating-wave-approximation~RWA!,
i.e. neglect highly oscillating terms inR̂.23 We finally obtain

FIG. 2. Top: Excitonic four-level system consisting a ground (g), two one-
exciton (e,e8), and one two-exciton states (f ). The third-order response o
an aggregate is a sum of contributions from various groups of four-le
systems. Bottom: The three double-sided Feynman-diagrams represe
the time domain four-wave mixing~three-pulse echo! within the rotating
wave approximation. The bleaching term in Eq.~16! @Eq. ~D6!# is repre-
sented by~b!. The hopping term in Eq.~16! @Eq. ~D7!# is represented by~a!
and ~c!. The coherent termR(c) has five contributions@Eq. ~B9! together
with Eq. ~D1!#. The first threeRI , RII andRIII @Eqs.~D2!–~D4!# are repre-
sented by~a!, ~b!, ~c! respectively. The other two are the exciton hopping
t2→` and the bleaching term.
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P~3!~ t3!5E1
2E2

1E3
1u~ t3!u~ t2!u~ t1!R̂~ t3 ,t2 ,t1!, ~19!

whereR̂(t3 ,t2 ,t1) within the RWA is given in Appendix D.
The polarization now depends on three positive time va
ables: the time delayt1 between pulses 1 and 2, the tim
delayt2 between pulses 2 and 3, and the time of observa
t3.

All numerical calculations were performed using E
~19!, whereR̂(t3 ,t2 ,t1) is given by Eq.~16! with all neces-
sary quantities collected in Appendix D.R(c) is calculated
using Eqs.~D1!–~D6!. The exciton-hopping term~the second
term of Eq.~16!! was evaluated using Eq.~D7!. The bleach-
ing contribution~the last term of Eq.~16!! was calculated
using Eq.~D6!.

We consider a cyclic aggregate made out ofN molecules
with nearest-neighbor intermolecular interactions. T
model describes light-harvesting LH1 antenna complexes
well as the B850 and B800 bands of LH2, which are high
symmetric circular one-dimensional aggregates withN532,
18, and 9, respectively. It further representsJ-aggregates
which have a linear geometry and largeN. We have used the
couplingJ between adjacent chlorophyll molecules as det
mined in Ref. 272273 cm21 and 2291 cm21 for the
B850 system of LH2, which is a ring consisting of 18 Bchl
monomers.28 For nearest-neighbor intermolecular couplin
the many-exciton states are represented by the B
Ansatz21~a!,29 and can be expressed in terms of two sets
one-exciton states: ordinary one-exciton stateswm(n) satis-
fying periodic boundary conditionswm(n1N)5wm(n), and
auxiliary one-exciton statesw̄m(n) with antiperiodic bound-
ary conditionsw̄m(n1N)52w̄m(n), both are eigenstates o
the one-exciton Hamiltonian with energiesem and ē m ,
respectively.21~a! We assume that all the collective phono
variables acting on different molecules are uncorrelated
have the same spectral density. This gives

Cmn,kl~v!5dmkdnldmnC~v!. ~20!

The combined effects of disorder and exciton-phon
coupling characterized by the nuclear spectral densities
two-pulse echoes were analyzed in Ref. 21~a! using five
models involving different spectral densities and differe
models of disorder. Hereafter we use the spectral densit
model I in Ref. 21~a!, corresponding to an overdampe
Brownian oscillator.

C~v!52l
vt1

v2t1
211

, ~21!

with t15130 fs. We further include disorder by assuming
Gaussian distribution of molecular frequenciesVn with a
FWHM of s. The linear absorption linewidth is determine
by homogeneous and inhomogeneous contributions, re
sented byl ands, respectively. This linewidth as well as th
long-time pump-probe signal do not carry enough inform
tion to determine these parameters uniquely, and may

el
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t
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reproduced with different choices.20~b! The parameters use
l5240 cm21 ands5600 cm21, reproduce the experimen
tal G'470 cm21 ~FWHM! linear absorption linewidth, and
the three-pulse echo peak-shift,15 as will be shown below.
All calculations were performed forT5300 K. The calcu-
lated signals have been averaged over 1000 realization
static disorder, which is sufficient for the short-times a
time-delays considered here. Considerably more exten
sampling is required for longer times or time-delays.

A. Time-resolved three pulse echoes

The time-resolved four-wave-mixing signal is given b

S3PE~ t3 ,t2 ,t1!}uR̂~ t3 ,t2 ,t1!u2. ~22!

The absolute value ofR̂(t3 ,t2 ,t1) for different t2 andt1

is displayed in Fig. 3. Fort15t250 ~Fig. 3~a!! there are
large, initially almost canceling, contributions from th
bleaching and the term involving exciton hopping. This ca
cellation comes from the fact that the two-exciton contrib
tions dominate the latter term whereas the bleaching invo
only single-exciton states, which have a different sign21~a!

~see also the pump probe signal displayed in Fig. 6~a!!. With
increasingt3 this strong cancellation is partially eroded, d
to the different frequencies of the ground state to one-exc
compared to the single-exciton to two-exciton transitio
The total signal therefore reaches its maximum arou
t3'17 fs and subsequently decays due to homogeneous
inhomogeneous dephasing. The coherent component is r
weak in Fig. 3~a!. With increasingt1, ~see Fig. 3~b! for t250

FIG. 3. Square root of time-resolved echo signalsuR(t3 ,t2 ,t1)u ~Eq. ~22!!
versus the observation timet3, ~a! t25t150, ~b! t250, t15100 fs, ~c!
t25200 fs, t150, and ~d! t25200 fs, t15100 fs. Total signal~solid!,
bleaching ~dashed!, exciton-hopping term~dotted!, coherent componen
~dashed-dotted!. In ~c! and ~d! we also show the sum of the coherent a
bleaching term~dash-dot-dot!.
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and t15100 fs!, both the bleaching and the exciton hoppin
term vanish rapidly. Also the coherent component decay
with t1, but not as rapidly as the other terms, since it evolv
into a photon echo. The total signal which is much wea
than for t150 closely resembles to the coherent compone

The echo signal reaches a maximum at about 80
which is shorter than the ideal value oft15100 fs expected
for a two-level model. This difference is due to the fact th
in addition to the disorder-induced inhomogeneous broad
ing which results in the echo, phonon-induced homogene
dephasing is present as well. Homogeneous dephasing l
to a decay of the signal which pushes the echo towards
lier times.21~a! With increasingt2, ~see Fig. 3~c! for t25200
fs andt150 fs! the bleaching does not change at all, and
term involving exciton-hopping changes only slightly. How
ever the coherent component decays rapidly witht2, which is
to be expected since it vanishes for longt2. In Fig. 3~c! the
total signal and, the signal calculated by neglecting exci
hopping are quite close, and both are smaller than the t
signal calculated fort250 fs ~see Fig. 3~a!!.

Figure 3~d! displays the signals fort25200 fs and
t15100 fs. For these time delays the two contributions
comparable, but due to cancellations between the bleac
and the exciton hopping term, the shape of the total signa
similar to the coherent component. Both total signals cal
lated with and without exciton hopping show a photon ec
with a maximum at about 63 fs and 65 fs, respectively. T
is earlier than the 80 fs maximum shown in Fig. 3~b!. There-
fore during the time periodt2 the relative magnitude of the
inhomogeneous broadening compared with the homogen
dephasing decreases; this effect is stronger if exciton h
ping is included. Due to the strong overall decay of the c
herent component duringt2, the total signal shown in Fig
3~d! is also weaker than that shown in Fig. 3~b!.

B. Time-integrated echoes and peak-shift signals

The photon echo technique does not always produce
echo signal: this depends on the nature of the system and
line broadening mechanism.23 The echo can be observed b
time-resolved detection as shown in the previous subsec
However, characteristic signatures of the echo are conta
in the simpler~and more common! time-integrated detection
The time-integrated signal is given by

SINT~ t1 ,t2!5E
2`

`

uR̂~ t3 ,t2 ,t1!u2dt3 . ~23!

In Fig. 4 we display this signal as a function oft1 for
different values oft2. For a homogeneously-broadened tw
level system, whose real-time signal is characterized by
exponential decay, this signal reaches its maximum att150
irrespective of the value oft2 and then decays exponentially
For an ensemble of inhomogeneously broadened two-le
systems, the real-time signal appears as a photon echo
has its maximum att35t1.23,30 In the absence of homoge
neous dephasing, the time-integrated signal will start w
some value att150 and then as function oft1 will rise to a
constant value, which is reached whent1 becomes larger
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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than the temporal width of the time-resolved echo sign
This behavior comes from the fact that for an inhomog
neously broadened system, for time-delayst1 which are
shorter than the temporal width of the echo signal, part of
photon echo is cut off and does not contribute to the sig
which only starts after the last pulse. With increasingt1, a
larger portion of the echo signal contributes, and the tim
integrated signal rises. Including homogeneous dephas
the time-integrated signal will eventually decay to zero. T
signal will therefore show a maximum at somet1* ~denoted
the peak-shift! equal to or smaller than the temporal width
the echo. The precise value oft1* is determined by the ratio
of the width of the echo~inhomogeneous broadening! and
the homogeneous dephasing time, as well as the delay pe
t2. Peak-shift measurements provide some valuable infor
tion about the temporal behavior of the time-resolved sign
even though a time-integrated detection is used.14–16

Peak-shift signals have been reported for LH1, for
B850 band of LH2, and for the B800 band of LH2 as fun
tion of the time-delayt2. In Ref. 15 it was found that for both
LH1 and LH2 it decays as function oft2, and experiments
could be fitted by using a simple model where the en
aggregate is represented by a two electronic level sys
coupled to a complex spectral density representing se
nuclear modes. Peak-shift measurements for the B820 d
subunit of LH115~c! could then be fitted with the same co
pling to nuclear modes, neglecting one term associated
energy-transfer. The larger values of the peak-shift of
dimer compared to LH1 were explained by assuming tha
LH1 the peak-shift is destroyed by energy transfer proces

FIG. 4. Time-integrated echo signalsSINT ~Eq. ~23!! versust1 for ~a! t250,
~b! t2550 fs, ~c! t25100 fs,~d! t25150 fs, and~e! t25200 fs. Shown are
the total signals~solid line! and the sum of the coherent and bleaching te
~dashed line!.
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject 
l.
-

e
l,

-
g,

e

iod
a-
l,

e
-

e
m

en
er

th
e
n
s,

which are negligible in the dimer. This simple model com
pletely neglects the detailed structure of the excitonic ma
fold and the influence of two-exciton states. It further i
cludes relaxation as well as disorder effects only throug
line shape function introduced phenomenologically.

In Fig. 4 we display the calculated time-integrated sign
as a function oft1 for different t2. For t250 we find the
maximum of the time-integrated signal att1525(62.5) fs
~the uncertainty represents the finite grid oft1 values used in
the calculation!. With increasingt2 the maximum shifts to-
wards shortert1. We further display the signals obtained b
neglecting exciton hopping altogether~note that for impul-
sive excitation, no exciton hopping takes place fort250),
i.e. by settingGmn(t)5dmn in Eq. ~16!. Without exciton-
hopping we notice somewhat stronger signals, and the m
mum shifts towards larger values oft1.

The calculated peak-shifts fort250, 50, 100, 150, 200 fs
are displayed in Fig. 5. These values are very close
experiment.15~b! This agreement is encouraging, despite s
eral approximations made: We have used a very simple s
tral density of a single overdamped Brownian oscillator a
neglected the effects of the finite pulse durations. In additi
a more realistic model should consider an aggregate m
out of three level~rather than two level! chromophores. The
doubly-excited~third! molecular state may couple strongly
the two-exciton manifold and influence the third-ord
response.10 A unified description of all spectroscopic me
surements~including pump-probe, hole-burning, etc.! may
require relaxing some of these approximations. Figure 5 a
shows that exciton-hopping reduces the magnitude of
peak-shift, especially for longt2. We therefore conclude tha
the general idea that exciton-hopping is responsible for
ducing the peak-shift to small values at long times as o
lined in Ref. 16 is qualitatively correct. As shown in th
previous section, even for a larget2, and t1 larger thant1*
~see Fig. 3~d!! the time-resolved signals are still emitted
echoes with a width much larger thant1* . Therefore the de-
cay of t1* betweent250 to 200 fs is rather related to a
increase of the overall dephasing and not so much to a
of rephasing capability~effective inhomogeneous broade

FIG. 5. Echo peak shiftt1* as function of the delayt2. Circles—calculated
peak shifts; uptriangles—calculated peak shifts if the exciton-hopping t
is neglected~keeping only the coherent and bleaching components in
~16!!; squares—experiment~Ref. 15~b!!.
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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ing!. This is illustrated by the decay of the time-integrat
signal~see Fig. 4! and the similar echo structure of the tim
resolved signals shown in Figs. 3~b! and ~d!, as discussed
above.

C. Pump-probe spectroscopy

Pump-probe measurements can be viewed as a spe
four-wave-mixing process whereby pulses 1 and 2 coinc
and the frequency-dispersed signal is measured. Assum
that both the pump and the probe are impulsive~very short!,
the signal is obtained by settingt150 in Eq. ~19! and per-
forming a Fourier transform with respect tot3:

Spp~v,t2!5ImE
0

`

dt3 exp~ ivt3!R̂~ t3 ,t2,0!. ~24!

Figure 6 displays the various contributions to the pum
probe signals fort250 ~solid line! and t25200 fs ~dashed
line!. In panel~a! we plot the exciton-hopping and bleachin
term @Eq. ~16!#, and panel~b! shows the coherent contribu
tion. The total signal is displayed in panel~c!. We find a
strong negative bleaching contribution, which is independ
of t2 ~dashed-dotted line in Fig. 6~a!!. The hopping compo-
nent is strong and positive, which shows that excited-s
absorption representing transitions from one-exciton to tw
exciton states dominates this component. The red-shift of
peak reflects the exciton-hopping during thet2 period. The
coherent component strongly depends ont2 ~see Fig. 6~b!!,
which reflects polaron formation, and almost vanishes a
200 fs. This component includes contributions from bo
bleaching and excited-state absorption. Their interference
sults in a strong negative signal with positive wings in t

FIG. 6. Impulsive pump-probe signalsSpp ~Eq. ~24!!. Panel ~a!: dotted-
dashed line—bleaching term; solid line—exciton-hopping term whent250;
dashed line—exciton-hopping term whent25200 fs. Panel~b!: solid line—
coherent term,t250; dashed line—coherent term,t25200 fs. Panel~c!:
solid line—total signal,t250; dashed line—total signal,t25200 fs; dotted
line—sum of the coherent and bleaching term,t25200 fs.
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blue and in the red, indicating the broader spectral width
the one- to two-exciton transition compared to the grou
state to single-exciton transition.

The total signal displayed in Fig. 6~c! is weak compared
to the individual contributions because of the strong canc
lation between the negative bleaching term and the posi
excited-state absorption. Since the positive~excited-state ab-
sorption! peak is shifted toward the blue compared to t
minimum of the bleaching, the total signal shows a negat
component at lower energies and a positive feature at hig
energies~see Fig. 6~c!!. Upon increasingt2 the positive and
negative peaks of the total signal slightly decrease~due to
the coherent component! and shift toward the red~due to
exciton-hopping!. The dotted line in Fig. 6~c! is the total
signal calculated by neglecting exciton-hopping. The diff
ence from the actual signal~dashed-line! illustrates the im-
portance of incorporating the hopping term, as shown in F
4, Fig. 5, and Fig. 6~a!.

V. DISCUSSION

The theory presented in this paper incorporates exc
relaxation processes in nonlinear spectroscopies of molec
aggregates. The theory accounts for strong energetic diso
and exciton-phonon coupling and applies when the disord
induced exciton localization length is shorter than t
phonon-induced exciton self-trapping length~polaron size!
in the absence of disorder. Exciton transport is described
a master equation. The present theory generalizes our ea
calculations: the two-pulse echo is related toR̂(t3,0,t1),
which has been calculated previously in Ref. 21~a! by ne-
glecting H1 and including effects of polaron formation
However, sinceH0 conserves exciton populations, it com
pletely neglects exciton-hopping, which takes place dur
the t2 period and may not be neglected for longt2, even
when H1 is weak. In this article we have extended the
results to three-pulse measurements with finitet2, by treating
H1 perturbatively.

We have applied this theory to calculate the four wa
mixing signal in LH2. The total signal consists of three term
denoted the coherent, exciton-hopping and bleaching co
butions. Our calculations show that polaron formation a
hopping occur during the time delay periodt2, which can be
controlled in three-pulse-echo and pump-probe meas
ments. The results for the peak-shift measurements ar
good agreement with recent experiments.15 In addition this
approach can be extended for calculating the time-
frequency-resolved spontaneous emission using the form
ism of Ref. 19.

All calculations were performed for LH2 in one particu
lar species of bacteriumRhodopseudomonas (Rps.) acid
phila where B850 system hasN518 chlorophylls. This num-
ber varies for different species~e.g. forRhodospirillum (Rs.)
molischianum it is 16!. The precise shape of the time
resolved signals will depend onN, since it affects the nature
of the exciton states, as well as the influence of the disor
and effective exciton phonon coupling. However the gene
expressions and the existence of almost canceling terms~see
also Ref. 21~a!! apply for anyN. Since for the parameter
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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used in the present paper, the exciton states are localized
to static disorder on a small number of sites~compared to
N), we do not expect strong changes by varyingN, as long
as it is larger than the exciton localization length of appro
mately 4 chlorophylls.

The calculations presented here and in Ref. 21~a! dem-
onstrate that time-resolved FWM signals from ligh
harvesting aggregates should be most valuable and pro
direct information about the relative roles of homogeneo
and inhomogeneous dephasing. This information is not av
able from time-integrated measurements.

In the present calculations we used a three band m
~Fig. 1! to represent the system, and included excito
phonon coupling as well as static-disorder. This mo
should apply to a broad class of organic and semicondu
excitonic materials; these include molecular aggrega
crystals and superlattice,23 as well as semiconductors an
semiconductor nanostructure.31
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APPENDIX A: COHERENT AND SEQUENTIAL
COMPONENTS OF THE THIRD ORDER RESPONSE

In this Appendix we derive the doorway-window repr
sentation for the optical response function~Eq. ~9!!, using
projection operator techniques.32

We start with the formal expression for the nonline
response function23

R̂~ t3 ,t2 ,t1!5 i 3Tr@P1G ~ t3!P2G ~ t2!P2G ~ t1!P2r̄0#,
~A1!

wherep̄0 is the equilibrium density matrix and

G ~ t ![exp~2 iLt !, ~A2!

with the Liouville operatorL defined asLA5@H,A#, A be-
ing an arbitrary operator.P6 are Liouville space dipole op
erators~superoperators!. They are defined by their actions o
an arbitrary operatorA

P2A[PA2AP

P1A[
1

2
@PA1AP#. ~A3!

For calculating the third-order response we need to
low the evolution of the wave packetsr0m(q), r0m̄(q),
rmn̄(q), r00(q), and rmn(q), where q represents all the
nuclear degrees of freedom. We shall introduce the follow
projection operator:P m projects the density matrix onto th
manifold of single-exciton populations

P mr[r̄m~q!Trq~rmm!, ~A4!
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wherer̄m(q) is the equilibrium density matrix for the Hamil
tonianH0 when themth exciton is excited. We further intro
duce the operatorP 0 which projects the density matrix ont
the ground state

P 0r[r̄0~q!Trq~r00!, ~A5!

and r00(q) is the equilibrium density matrix in the groun
state. Them-dependence ofr̄m(q) reflects the different
nuclear equilibrium for each electronic state and retains
laron effects.33 ~These are neglected in the standard deri
tion of master equations where weak exciton-phonon c
pling is assumed andr̄m(q) is replaced by am-independent
nuclear density matrix!.

Our total projection operator is defined by

P 5(
m

P m1P 0 . ~A6!

P projects the density matrix onto the manifold of singl
exciton populations as well as the ground state.P r50 for
all components exceptrmm(q) andr00(q). Using this projec-
tion, we can partition the density matrixr as r5P r1Qr,
whereQ[(I2P ) is the complementary projection toP .

P represents our slow dynamical variables which
wish to follow explicitly. Acting with the unit operator
P 1Q on G (t2) in Eq. ~A1!, we obtain

G ~ t2!5~P 1Q !G ~ t2!~P 1Q !

[G P P~ t2!1G QQ~ t2!1G P Q~ t2!1G QP~ t2!,

~A7!

where we have introduced the abbreviated notation

G AB~ t ![A exp~2 iLt !B, ~A8!

andA,B5P ,Q .
We shall partition the Liouville operator asL5L01L1,

where L0P 5P L050, @P ,L#50 and P L1P 50. We can
then use standard projection operator identities:

G P Q~ t2!52 i E
0

t2
dtG P P~ t22t !L1QG̃ ~ t !, ~A9!

G QP~ t2!52 i E
0

t2
dtG̃ ~ t22t !QL1G P P~ t !, ~A10!

G QQ~ t2!5QG̃ ~ t2!Q1~2 i !2E
0

t2
dt9E

0

t9
dt8G̃ ~ t22t9!

3QL1G P P~ t92t8!L1QG̃ ~ t8!, ~A11!

whereG̃ (t) is defined as

G̃ ~ t ![exp~2 i QLQ t !. ~A12!

Equations~A9!–~A11! are the Fourier transforms of Eqs
~2.89b!–~2.89d! of Ref. 23. Substituting Eqs.~A7!, and
~A9!–~A11! into Eq.~A1! and representingP in the form of
Eqs.~A4! and~A5! we obtain the DW representation for th
nonlinear response functionR̂. It has the form of Eq.~9!,
where the coherent component is given by
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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R~c!~ t3 ,t2 ,t1!5 i 3 Tr@P1G̃ ~ t3!P2G̃ ~ t2!Q P2G̃ ~ t1!P2r̄0#.
~A13!

Given the dipole operators~Eq. ~A3!, it is clear that during
the period oft1 and t3 the density matrix is in an optica
coherence~i.e., r0m). These states belong to theQ space
since the projection operatorP only includes populations
We can thus replaceG (t3) by G̃ (t3) andG (t1) by G̃ (t1).

The doorway function can be represented formally
follows

D̄n~t,t !5Dn~ t !d~t!1Dn
~1!~t,t !, ~A14!

with

Dn~ t ![Tr@P nP2G̃ ~ t !P2r̄0#, ~A15!

Dn
~1!~t,t ![2 i Tr@P nL1G̃ ~t!P2G̃ ~ t !P2r̄0#. ~A16!

Similarly, the window function is given by

W̄m~ t,t!5Wm~ t !d~t!1Wm
~1!~ t,t!, ~A17!

with

Wm~ t ![2 i Tr@P1G̃ ~ t !P2r̄m#, ~A18!

Wm
~1!~ t,t![2Tr@P1G̃ ~ t !P2G̃ ~t!L1r̄m#. ~A19!

The Green functionG represents the matrix elements
G P P ,

Gmn~ t ![P m exp~2 iLt !P n , ~A20!

Gmn(t) is the conditional probability for the population to b
in the statem at timet given that it started at staten at t50.
It satisfies the generalized master equation.

d

dt
Gmn~ t !5(

a
E

0

t

dt8K̄ma~ t2t8!Gan~ t8!, ~A21!

with initial conditionGan(0)5dan . The kernel of this equa
tion is given by:

K̄mn~ t ![2Tr@P mL1G̃ ~ t !L1r̄n#. ~A22!

Conservation of the total polaron population allows to rec
Eq. ~A21! in a form

d

dt
Gmn~ t !5 (

a

aÞm E
0

t

dt8@K̄ma~ t2t8!Gan~ t8!

2K̄an~ t2t8!Gmn~ t8!#. ~A23!

Invoking the Markovian approximation we obtain Eq.~17!
with

Kmn[E
0

`

dtK̄mn~ t !. ~A24!

D0 andW0 in Eq. ~9! are given by

D0~ t !5Tr@P 0P2G̃ ~t!P2r̄0#, ~A25!

W0~ t !52 i Tr@P1G̃ ~t!P2r̄0#. ~A26!
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject 
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Equation~9! together with Eqs.~A13!–~A26! constitute
an exact closed formal expression for the third-order
sponse function.

APPENDIX B: THE COHERENT COMPONENT OF THE
THIRD-ORDER RESPONSE

In this and in the following Appendices we derive pe
turbative expressions for all quantities which appear in E
~9!. To that end, we setG̃ (t)>G̃ 0(t) in the formal expres-
sions given by Eqs.~A13!–~A19! and ~A22!, where

G̃ 0~ t ![exp~2 i QL0Q t !. ~B1!

Exact calculations can be performed sinceG̃ 0(t) is defined
in the system withH150. RepresentingQ in Eq. ~A13! in a
form Q5I2P we obtain

R~c!~ t3 ,t2 ,t1!5R~ t3 ,t2 ,t1!2R~ t3 ,`,t1!, ~B2!

whereR(t3 ,t2 ,t1) is the response function forH150. For-
mal expressions forR derived in Ref. 21~a! have the form

R~ t3 ,t2 ,t1!5 (
a51

4

(
j 51

2

@Ra j~ t3 ,t2 ,t1!2Ra j* ~ t3 ,t2 ,t1!#,

~B3!

with

R1 j~ t3 ,t2 ,t1!5F j~ t1 ,t11t2 ,t11t21t3,0!,

R2 j~ t3 ,t2 ,t1!5F j~0,t11t2 ,t11t21t3 ,t1!,

R3 j~ t3 ,t2 ,t1!5F j~0,t1 ,t11t21t3 ,t11t2!,

R4 j~ t3 ,t2 ,t1!5F j~ t11t21t3 ,t11t2 ,t1,0!. ~B4!

The correlation functionsF j can be evaluated exactly, usin
the matrix of line broadening functions and have t
form21~a!,34

F1~t4 ,t3 ,t2 ,t1!5(
mn

dm
2 dn

2 exp@2 f mn
~1!~t4 ,t3 ,t2 ,t1!

2 i em~t22t1!2 i en~t42t3!#,

F2~t4 ,t3 ,t2 ,t1!5 (
mnā

dmdndm,ādn,ā

3exp@2 f mn,ā
~2!

~t4 ,t3 ,t2 ,t1!

2 i em~t22t1!2 i eā~t32t2!

2 i en~t42t3!#, ~B5!

where f (1) and f (2) are given by

f mn
~1!~t4 ,t3 ,t2 ,t1![gmm~t22t1!2gmn~t32t1!

1gmn~t42t1!1gmn~t32t2!

2gmn~t42t2!1gnn~t42t3!, ~B6!
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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f mn,ā
~2!

~t4 ,t3 ,t2 ,t1!

[gmm~t22t1!2gmā~t22t1!1gmā~t32t1!

2gmn~t32t1!1gmn~t42t1!2gmā~t32t2!

1gmn~t32t2!2gmn~t42t2!1gāā~t32t2!

2gān~t32t2!1gān~t42t2!2gān~t42t3!

1gnn~t42t3!. ~B7!

The line broadening functionsgm̄n̄(t) where Latin indices
assume the valuesm, m̄, mn, andm̄n̄ are expressed in term
of spectral densitiesCm̄n̄(v) using Eq.~7!.

R(t3 ,`,t1) in Eq. ~B2! can be expressed in terms of th
doorway and windows functionsDm(t) andWm(t) which are
calculated in Appendix C:

R~ t3 ,`,t1!5(
m

Wm~ t3!Dm~ t1!1W0~ t3!D0~ t1!. ~B8!

Combining Eqs.~B2! and ~B8! yields the first term in Eq.
~16!

R~c!~ t3 ,t2 ,t1!5R~ t3 ,t2 ,t1!2(
m

Wm~ t3!Dm~ t1!

2W0~ t3!D0~ t1!. ~B9!

APPENDIX C: THE SEQUENTIAL COMPONENT

In this Appendix we calculate the function
Dm(t), Wm(t), andKmn(t) introduced in Eq.~16!. Using a
perturbative expansion inH1, we note that the leading con
tribution to Dm(t) andWm(t) is the zeroth order. Equation
~A16! and ~A19! show that the expansion ofDn

(1)(t,t) and
Wm

(1)(t,t) starts with first-order terms. Using our prescriptio
of evaluating all quantities to lowest order inH1, we can
neglect the latter term and obtain

D̄n~t,t !5Dn~ t !d~t!,

W̄m~ t,t!5Wm~ t !d~t!. ~C1!

Starting with Eqs.~A15!, ~A18!, ~A25! and ~A26! Dn , Wm

as well asD0, andW0 ~in Eq. ~9!! can be represented in
form

Dn~ t !5Dn
L~ t !1Dn

L~2t !,

Wm~ t !5Wm
L ~ t !2Wm

L ~2t !, ~C2!

with

Dn
L~ t ![2dn

2Tr@Bn~ t !Bn
†~0!r̄0#, ~C3!

Wm
L ~ t ![ idm

2 Tr@Bm
† ~0!Bm~ t !r̄m#

2 i(
n̄

dm,n̄
2 Tr@Bm

† ~ t !Yn̄~ t !Yn̄
†
~0!Bm~0!r̄m#,

~C4!

and
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject 
D0~ t !52(
n

Dn~ t !.

W0~ t !5 i(
m

@Dm
L ~ t !2Dm

L ~2t !#}. ~C5!

The kernelK̄mn(t) is calculated in second order inH1, in
this case Eq.~A22! yields

K̄mn~ t !5Kmn
L ~ t !1Kmn

L ~2t !, ~C6!

with

Kmn
L ~t!5Tr@Bn

†~t!Bm~t!qnm
~c!~t !Bm

† ~0!Bn~0!

3qmn
~c!~0!r̄n#, ~C7!

for t.0 and fort,0 we have

Kmn
L ~t!5@Kmn

L ~2t!#* . ~C8!

Equation ~C3! representsDn
L(t) in terms of a correlation

function with respect tor̄0.
Equations~C4! and~C7! can be transformed to a simila

form using the relation

r̄m5 lim
t→`

exp~2 iL 0t !Bm
† r̄0Bm . ~C9!

Substituting Eq.~C9! into Eqs.~C4! and ~C7! yields

Wm
L ~t!5 idm

2 lim
t→`

Tr@Bm~2t !Bm
† ~0!Bm~t!Bm

† ~2t !r̄0#

2(
n̄

idm,n̄
2 lim

t→`

Tr@Bm~2t !Bm
† ~t!Yn̄~t !Yn̄

†
~0!

3Bm~0!Bm
† ~2t !r̄0#, ~C10!

Kmn
L ~t!5 lim

t→`

Tr@Bn~2t !Bn
†~t!Bm~t!qnm

~c!~t !Bm
† ~0!

3Bn~0!qmn
~c!~0!Bn

†~2t !r̄0#. ~C11!

Equation~C9!, used in the derivation of Eqs.~C10! and
~C11!, may be interpreted as follows: We start with the sy
tem in the ground electronic state, at thermal equilibriu
with the density matrixr̄0, and excite themth exciton. The
system will reach equilibrium for themth exciton, i.e.r̄m

after large enough timet. Formally the limit in the r.h.s. of
Eq. ~C9! does not exist since the full density matrix of
closed system does not equilibrate. However, this limit ex
in a weak sense, i.e. we can use Eq.~C9! to calculate expec-
tation values which are related to reduced variables which
equilibrate. This implies that the limits in Eqs.~C10! and
~C11! do exist in the full sense.

The correlation functions in Eqs.~C3! and~C10!, can be
evaluated using the second order cumulant expansion~which
is exact for this model! using the procedure described in Re
33. A straightforward calculation yields

Dn
L~ t !52dn

2 exp@2 i ent2gnn~ t !#, ~C12!
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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Wm
L ~t!5 lim

t→`
H idm

2 exp@2 f mm
~1! ~2t,0,t,2t !#exp@2 i emt#

2(
n̄

idm,n̄
2 exp@2 f mm,n̄

~2!
~2t,t,0,2t !#

3exp@2 i ~en̄2em!t#J . ~C13!

Explicit expressions forWm
L (t) are obtained by substitutin

the following identities into Eq.~C13!

lim
t→`

f mm
~1! ~2t,0,t,2t !5gmm* ~t!22ilmmt, ~C14!

lim
t→`

f mm,n̄
~2!

~2t,t,0,2t !5gmm~t!1gn̄ n̄~t !22gmn̄~t!

22i ~lmn̄2lmm!t. ~C15!

To evaluateKmn
L (t) we first represent Eq.~C11! in a form

Kmn
L ~t!5

]2

]a]b
lim
t→`

Tr$Bn~2t !Bn
†~t!Bm~t!

3exp@ iaqnm
~c!~t !#Bm

† ~0!Bn~0!

3exp@2 ibqmn
~c!~0!#Bn

†~2t !r̄0%ua5b50 .

~C16!

The correlation function in the r.h.s. of Eq.~C16! was evalu-
ated using the second order cumulant. A similar calculat
has been performed in Ref. 35 where the terms exp(iaq)
appeared due to non-Condon effects. A straightforward
tedious calculation yields

Kmn
L ~t!5Kmn

F ~t!$g̈mn,nm~t!2@ ġnm,nn~t!2ġnm,mm~t!

12ilnm,nn#@ ġnn,mn~t!2ġmm,mn~t!

12ilmn,nn#% for t.0. ~C17!

Here dots stand for time derivative, and

Kmn
F ~t![exp@2 i ~em2en!t2gmm,mm~t!2gnn,nn~t!

1gnn,mm~t!1gmm,nn~t!22i ~lnn,nn2lmm,nn!t#,

~C18!

where we have used the notation

lmn,m8n8[2 lim
t→`

ImFdgmn,m8n8~t!

dt G . ~C19!

The terms withġ(t) andg̈(t) in Eq. ~C17! have the follow-
ing origin. In the absence of the exp(iaq) and exp(2ibq)
terms, the second-order cumulant contains double time i
grals of the collective coordinate correlation function whi
yields the line broadening functionsg(t).23,34 The term in
the second-order cumulant which originates fromqnm

(c)(t) and
qmn

(c)(0) has the form̂ qnm
(c)(t)qmn

(c)(0)& and is naturally repre-
sented by the second time derivative of the line broaden
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject 
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function,g̈(t). The mixed terms contain single time integra
of the coordinate correlation functions are represented
ġ(t).

APPENDIX D: FINAL EXPRESSIONS FOR THE
RESPONSE FUNCTION; THE ROTATING
WAVE APPROXIMATION

In this Appendix we summarize all quantities used in t
numerical calculations of Eq.~16!.

First we calculateR(c): Starting from Eq.~B9!, for the
pulse configuration of Eq.~19!, only three out of 16 terms
~see Eq.~B3!! contribute toR(t3 ,t2 ,t1) within the rotating
wave approximation. The corresponding double-sided Fe
man diagrams are given in Fig. 2.

R~ t3 ,t2 ,t1!5RI~ t3 ,t2 ,t1!1RII ~ t3 ,t2 ,t1!

1RIII ~ t3 ,t2 ,t1!, ~D1!

RI~ t3 ,t2 ,t1!52 i(
mn

dmdmdndn exp@2 f mn
~1!~0,t21t1 ,t3

1t21t1 ,t1!#exp@2 i em~ t31t2!

1 i en~ t21t1!#, ~D2!

RII ~ t3 ,t2 ,t1!52 i(
mn

dmdmdndn exp@2 f mn
~1!~0,t1 ,t31t2

1t1 ,t21t1!#exp@2 i emt31 i ent1#, ~D3!

RIII ~ t3 ,t2 ,t1!52 i H (
mnā

dmādnādndm exp@2 f mn,ā
~2!

3~ t1 ,t21t1 ,t31t21t1,0!#exp@2 i em~ t3

1t21t1!1 i en̄t31 i ent2#J *
. ~D4!

In terms of Eq. ~B3! we have RI5R21, RII 5R31, and
RIII 52R12* .

The other terms in Eq.~B9! are given by

(
m

Wm~ t3!Dm~ t1!

52 i(
m

dm
2 exp@ i emt12gmm* ~ t1!#H dm

2 exp@2 i emt3

2gmm* ~ t3!12ilmmt3# 2(
n̄

dm,n̄
2

3exp@2 i ~en̄2em!t32gmm~ t3!2gn̄ n̄~ t3!12gmn̄~ t3!

12i ~lmn̄2lmm!t3#J , ~D5!

and

W0~ t3!D0~ t1!52 i(
mn

dn
2dm

2 exp@ i ent12gnn* ~ t1!#

3exp@2 i emt32gmm~ t3!#. ~D6!
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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Combining these terms we finally have for the second te
in Eq. ~16!: where Eq.~D6! also defines the bleaching,~see
Eq. ~16!!.

(
mn

Wm~ t3!Gmn~ t2!Dn~ t1!

52 i(
mn

dn
2exp@ i ent12gnn* ~ t1!#Gmn~ t2!

3H dm
2 exp@2 i emt32gmm* ~ t3!12ilmmt3#

2(
n̄

dm,n̄
2 exp@2 i ~en̄2em!t32gmm~ t3!2gn̄ n̄~ t3!

12gmn̄~ t3!12i ~lmn̄2lmm!t3#J , ~D7!

where Gmn(t2) is calculated numerically by solving Eq
~A23!.

Finally, the bleaching contribution is given by Eq.~D6!.
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