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VISCOSITY

present calculations is at least as good as obtained with
the assumptions of Singh et al. The results are of course
somewhat sensitive to the potential parameters used,
but the present experimental uncertainty is too large
to justify any definite conclusions. For instance, if the
preaveraged potential parameters for NH; obtained®
from viscosity are used (e/k=340°K, 0o=3.13 &,
8=0.7), the values of RT«a/b; in Table II are changed
to —2.72 and — 2.50, respectively.

Iv. CONCLUDING REMARKS

The treatment of Stogryn and Hirschfelder makes
several approximations which are valid only for (12-6)
potentials, such as Eq. (12). Singh et al. assume that
such approximations are also valid for their potential.
Values of « are very sensitive to the parameter ratios
given by Eq. (12), for instance. Since the averaged
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potential preserves the (12-6) form, no new assump-
tions are necessary, and since its use is relatively simple,
it could also be extended for any type of angular-
dependent potential.
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The migration of Frenkel excitons in molecular crystals is studied theoretically, starting from the micro-
scopic equations of motion for the exciton density. The migration process is found to be diffusionlike on a
long time scale for all temperatures as long as the exciton—phonon coupling is present. If there is no exciton—
phonon coupling, the migration is wavelike. A discussion of the relevant time scales for the wavelike (co-
herent) process and the diffusion (incoherent) process is given. Several different approximation techniques,
based on the cumulant expansion, projection operator, and functional derivative methods, are shown to be

mathematically equivalent as applied to this problem.

I. INTRODUCTION

The migration of Frenkel excitons in molecular
crystals has been the subject of investigation in recent
vears.! In those cases studied over a wide temperature,
the exciton mobility has been found experimentally to
have a rather involved temperature dependence,
decreasing rapidly at first as the temperature increases
from 0°K then becoming constant and finally exhibiting
a very gradual increase with temperature, usually in
the range 200-400°K. It has also been established that
the exciton density mayv be fitted to a macroscopic
diffusion equation in the high temperature region and
that, under these conditions, the exciton migration is
probably best regarded as a form of random walk.
Such observations, of course, relate only to the macro-
scopic properties of inevitably impure and imperfectly
crystalline substances. The fundamental processes
involved in this energy transport are still not well
understood theoretically.

A number of theoretical approaches to this problem

have already been reported.? Many of these investiga-
tions are limited by the assumption of a specific model
for the migration process. In a more general treatment,
Haken and Strobl® have introduced a stochastic model
for the exciton Hamiltonian which leads to an exact
solution and which describes, in different limits, both
coherent and incoherent (hopping) motion. Perhaps
even more informative, however, has been the per-
turbation-theoretic approach adopted by several
authorst in the study of both exciton and polaron
migration. Beginning with a model Hamiltonian,
ordinary time dependent perturbation theory is used to
obtain a formal expression for the probability of an
exciton moving between two different lattice sites.
It is found that the terms in this expression corre-
sponding to coherent motion, in which an exciton
moves without disturbing the thermal equilibrium of
the lattice, decrease in importance with increasing
temperature while the terms corresponding to in-
coherent motion, in which exciton migration is always
accompanied by a change in the thermal phonon dis-’
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tribution, increase in importance as the temperature is
raised. Unfortunately, the perturbation theory diverges
in practice and one is ultimately forced to treat these
two forms of motion separately by adopting a model of
purely coherent migration in the low temperature limit
and a hopping model in the limit of high temperatures.
Even in this approach the coherent motion has been
treated phenomenologically as a diffusion process,
although, as we shall see, it is actually quite different
in nature; and the incoherent motion has tvpically been
treated in a manner which is inappropriate for the
high temperature range where this form of exciton
transport is apparently most significant.

Tn order to overcome these difficulties and to improve
upon the theoretical basis of our understanding of
these processes, we present in this article an approach
to the exciton migration problem which is not subject
to the limitations of perturbation theory, in its usual
form, and which does not require the assumption of a
specific model for the migration process. The paper is
set out as follows. In Sec. IT we describe a model
exciton-phonon Hamiltonian which is identical to that
discussed in an earlier article® on the optical properties
of molecular crystals. We also obtain at this point a
formal expression for the microscopic exciton density,
the evaluation of which will form the basis of our
analysis. In Sec. III we use the cumulant expansion
techniques of Kubo® to obtain an approximate solution
to the equations of motion for exciton density. In Sec.
IV the dependence of this solution upon the details of
the phonon dispersion relation is discussed, and in
Sec. V the results of this analysis are applied to the
problem of exciton migration. Section VI contains a
discussion of some of the assumptions involved in our
approach and some further conclusions which may be
drawn regarding the relationship between the present
study and earlier investigations of this problem. In a
series of appendices it is shown that our results may
also be obtained in a more general form through a
number of other common approximation techniques.

II. FORMULATION OF THE PROBLEM

We will consider a model system with one band of
Frenkel excitons and several bands of optical phonons.
The model Hamiltonian, which has been discussed at
length in an earlier article,> may be written as

3 =3Cox+3Con 43¢, (1
where
Hex= 2 e(k)aitay, (2)
%
JCph: Z w)\ab)\a+b)\a7 (3)
A
and

3'=N"12 3 (kN @Dapptar(batbaa). (4)

kA a

Here a:+, a; are the creation and annihilation operators
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for an exciton of wave vectors k. Similarly, &, . and
br.« create and destroy, respectively, a phonon of wave
vector A in band «. Both the exciton and phonon
operators are assumed to satisfy Bose-Einstein com-
mutation relations. For notational convenience we
will drop the phonon band indices throughout most of
the following and will discuss at a later point the
generalization of our results to systems with several
bands of optical phonons (a qualitative discussion of
the effects of acoustic phonons is given in Sec. V).

For optical phonons in molecular crystals the
exciton—phonon interaction term, 3¢/, cannot generally
be treated as a small perturbation. On the other hand,
the dispersion of ey, the free exciton energy, is usually
very small due to the weak intermolecular forces. We
may take advantage of this fact by introducing a new
set of operators (we assume periodic boundary condi-
tions for the crystal) :

A,=e SN2 Y exp(—ikn)ae’=e5a,e5  (5)
1

and
By=e"3heS, (6)
where
S: J\’T—UZ Z X)\ndn+an (b)\+— b—)\) (7)
7N
and

Xy»=N""exp(i\n) % Lk, N) aon]=exp(id) Cr. (8)
In terms of these new operators, we may write
L= z? (Ey— N ; | Xom o) At At ; Byt By

4+ > Tundn 4,810,

nm

+I\T—]/2 Z F)\nmen+<B)\++ B—)\)emA n+Am, (9)

nmi
nEmM
where
f,=exp[ — N2 3 Xy*(Byt—Bo) ], (10)
A
e(k) =Eot+ > e, (11)
n#o
and
Fym= N1 e=#n exp[i(k+N)m] f(k,\), nzm.
k
(12)

In obtaining Eq. (9) we have restricted ourselves to
the space of states with total exciton number zero or
one. This is a reasonable approach to the study of
processes which occur at low exciton densities in real
crystals. Because of this restriction the exciton statistics
are no longer a factor, and our model hecomes formally
identical to the small polaron model used to study
electron migration in insulators.?
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It is this representation of the exciton-phonon
Hamiltonian which will form the basis of our approach.
The operators 4,+, 4, create and destroy at lattice site
n an excitation described as a “clothed” exciton, i.e.,
an electronic excitation accompanied by a vibrational
distortion which changes the center of nuclear motion
of the crystal from that of the ground state vibrational
potential to that of the excited state potential. This new
excitation is stationary with respect to the major part
of the exciton—-phonon interaction. In this representation
both the third and fourth terms on the right-hand side
of Eq. (9) are nondiagonal and may, in some manner,
be treated as perturbations. In the following analysis,
however, we will only deal explicitly with the third
term. The fourth term, which describes a vibratienally
induced interaction between different lattice sites, has
little effect if the intermolecular forces are weak, and
will be neglected in the present study. We have also
neglected exciton—-phonon interaction terms which are
quadratic in the phonon operators.’® Some of these
terms can be included in an analogous fashion to the
linear terms and will lead to slightly different Franck-
Condon factors. Because optical mode frequency shifts
on excitation are usually small in molecular crystals of
benzene, etc., these terms also lead to very small
effects in the limit of weak intermolecular interactions
and will be neglected.

We may then write the Hamiltonian in the clothed
exciton representation as
= Z (k) ArtA+ Z Byt Byt Z ka'Ak+Akf,

k A k k!
(13)
where
Ap=N"12%" exp(ikn) A, (14)

E(R) =Eo—N"137 | Xor Pant X exp (k1) Ju{0nimtOn),
1y

740
(15)
and
Vi =N 3 exp(ikn)
e
X exp(— k') T nem (B 0— (6.46,)).  (16)

The angle brackets around the phonon operators
denote an average with respect to the thermal free
phonon ensemble (3Con=2 x txnBxtB)). In this form the
major part of both the exciton-phonon interaction and
the intermolecular electronic interaction are included
in the diagonal part of the Hamiltonian. The terms
{ Viw}, which correspond to fluctuations of the exciton
bandwidth about its value in the equilibrium free
phonon ensemble, must still be treated as a per-
turbation in this representation; however, it will be
possible to do this in a manner which entirely avoids

IN MOLECULAR CRYSTALS

4845

the divergences encountered in ordinary perturbation
theory.

The object of principal interest to us will be the
microscopic exciton density. More specifically, if one
knows that an exciton has been created by an optical
transition at time # and lattice site m in a crystal
which was initially at thermal equilibrium, then we
wish to know the probability of finding an exciton at
any lattice site 7’ at any later time £,. This probability
is just the microscopic exciton density and will be
denoted P,.(£) (n=m'—m;t=4—1b).

To calculate P.(t), we must first discuss the nature
of the species which is moving through the crystal.
Clearly, if the exciting quantum of light is equal in
energy to the clothed exciton energy, then the transport
will be initiated by that species. However if the crystal
is illuminated by a broad source, then by the Franck-
Condon principle the most likely state to which the
crystal is excited is that due to a vertical excitation.
The crystal becomes excited without any change in its
vibrational motion, which is therefore determined by
the ground state potential and the temperature. This is
precisely the kind of electronic excitation which is
created by the operator a," defined in Eq. (5). How-
ever, this type of excitation will rapidly (in times like
1071 sec”) exchange phonons with the bath via the
exciton—phonon interaction, and thereby reaching
vibrational equilibrium with the potential of the
excited state, thus becoming clothed. Thus, the species
which is migrating (at least on a long time scale)
through the crystal is the clothed exciton; hence in
order to discuss the nature of energy transfer, the
microscopic exciton density is taken to be

Pn(l) = <A0An+<t)An(t)A0+>7 (17)

where the operators 4,.(f) and A,*(f) are in the
Heisenberg representation and the bracket represents a
thermal average over the canonical ensemble. We have
also taken m=0 and =0 for convenience. It is this
expression which we will attempt to calculate in order
to learn about the process of energy transport in
molecular crystals.

III. APPROXIMATION TECHNIQUES

In this section we will consider a method for obtaining
an approximation to the exciton density which is based
upon a truncated cumulant expansion of the time
evolution operator as it appears in P,(¢). Whenever
kT =B 1< Fy, we may write Eq. (17) as

Po(t) = (0] 4o(AF () Au(£) )46 1 0),  (18)

where the inner angle brackets again denote a thermal
phonon average and the ket vector | 0) represents the
electronic and vibrational ground state of our model
system. If we define an operator superscript “x” ¢ so
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that for any two opcrators 1, 3
A*B=[A, Bl=48—B4, (19)
then we may write

AT DA y=lexpIT™) YA, T4, (20)

and if
(}COI Z E(k) A /,+A /.:—*— Z w)\BﬁB)\
d X
and V = Z VVM\:’ ‘1 I;+A k!
k., k!
- Z Jnfm (6n+am - <0n+0m >) A n+A my (21>
we get the result
12
AN DAY= <expT (/i / V"(-r)dr>>
0
XC\p[?[ Z E(k) (x4l;+Alc) x]"4n+f4n; (22)
k

where V*(7) is in the interaction representation with
respect to Hy and where the subscript “7”” means that
all products of such operators are to be time ordered
with latest times appearing to the left.

We may represent the first exponential in (22) by a
cumulant expansion®

<p ( / t Vx(rwr)) —esp[3 K2 () (0],

n=1

(23)
The first few terms in this ¢cxpansion are

le(t)=i/ (Vx(r)dr)=0,
0

Kox (1) = — ft,/n /” dr (VA () VE(r) ). (24)

0

Since we are able to treat V as a small perturbation,
we will retain in the cumulant expansion only terms up
to order V2. This yields

<exp (; /0 e :(/T>> exp[KA(0) ] (25)

For the set of functiens [G,.m(£) ], defined as
G () = (0! A, () A, (D YA 10),  (26)

we may differentiate with respect to time and obtain
the equation of motion at this level of approximation

G (D) /At =1 32 [T 1= G (1) =T G ()]
»

¢
- / dr 2. Jr—s'/pfq[g%\'zw("')_lj
0

8Py

X [Upan(7->97m (l) + U’pmrq(7>gns U!) :]
- Z {Jm—sj]i—q[:gm.wq(T) - 1]Upmq(7)grs<t)

TSpY
AT ol e (T) =130 s (TG (1)}, ‘
(27)

AND R.

STLBEY

where Usepg (1) = [exp (—13Col j Jrslexp (13Co0) T,
'in :Jn <gn+8m>
=J,exp[— N3 X 2 (1—coshi) coth(Bun/2)]
X

(28)

and
gnWPQ(t) = <07L+ (t) 9"1 (l> 071+09 >// <07"+6m> <01’+0q>
— exp{ . A\Y—l Z C)\Q[<ein)\__ 6im)\) (e—lp)\ - e-—iq)\) 1\7)\
A

Xexp(iw)\ﬂ + (e—z'n)\_ e—im)\) (61']7)\_ eiq)\) (‘, T)\+ 1‘)
Xexp(—iwd) ]},
Ny="[exp(Bewn) —17]L

The mathematical details involved in obtaining Egs.
(28) and (29) are discussed elsewhere.? We have in
(27) a closed set of integro-differential equations for the
functions {G,,.(f)}, the solution of which would vield
(for n=m) an expression for P,(¢). As we shall see in
Appendices A and B an identical set of equations may
be obtained from considerations based upon either a
projection operator® or functional derivative technique.®

In order to proceed, we make the weak coupling
approximation; that is, we assume that gump,({—7) —1
decays so quickly that we may effectively replace
Uvspg (1) by 6,8, to find:

(ignm(t> /(][:1 Z [Jn—pgpm ([) _'Tmfp‘(j)np(o]

(29)
(30)

-2 [jr-pjp—n'yrppn([) Grm (1)

+jp—7jm—p')/prmp(t) gnr (t) _'im—ﬂjpwn'Ymrpn ( t) gpr ( t)
_tfp—:z'fm—r')/pnnw(t)gpr(l) ]7 (31)

where
t
Vonse )= [ drlgamm(t=1) =11 (32)
0

The validity of this approximation will be discussed
later. We will now examine the factors yump,(£) -

In the Einstein approximation (wx=w), a limit which
is surely closely approached by real molecular crystals,
Yrmopg (1) =0 except in the following cases:

(a) bothn=gand m=p, Yemmn(l) =711(1);
(b) eithern=q ot m=p, Yompa{l) =v2(0);
(c) eithern=porm=q, Yum.n.q() =7s(1);
(d) both n=p and m=q, Vnmumxm() =7:(). (33)

Of these v1(¢) and vi(?) give the largest contribution,
and within our approximations (see later) these two
are equal. Retaining only terms of this kind, and
making the nearest neighbor approximation, we find
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(where Ja= B,L,ilj ),
dCom (1) /dt
=iJ[Gurt (1) F Gt () = Gmpr (1) = Gua (1) ]
— 2727 () [2Gum (1) =Gt i1 (1) Bm— Gt et () S
— b0 m31Gmn—Bnm1Gn ] (34)
Note that in the limit in which 7=0, y;=0, and we find:
Gun® (1) =L(2T ) 1, (=23 1) (33)

where I,, is a modified Bessel function. This agrees with
Merrifield.?» We find:

(R2(£))®

=a 3 PO =a> Y, wG..0(1)=2]%a (36)

n=—u ne=—00

where ¢ is the lattice constant. Thus, in this limit, the
transport is not diffusion like, but coherent and wave-
like.

Also, in the limit in which J can be neglected with
respect to J2y1(f) (extremely high temperature),

we find
() =1, | 4T t (7)dr | exp | —4J? t 1 (7 l"r:|
G (1) [ IR ]exp[ [
(37)
and
(R2(1) Y= =422 / tvl('r)dr. (38)

0

We will show in Sec. IV that v,(f) reaches its asymp-
totic value for ¢ small compared to exciton lifetimes,
and thus,

(R(8) )= 42ty (=) (39)
so that this process is diffusionlike with diffusion
coefficient D= 2J2%a%y,( ).

In the general case, we will be interested in the
solution of Eq. (34) for long times and general 7. We
may then replace v1(f) by vi(e). We also introduce
new functions Gum(f) =exp[4J%y1(% ) JGum(t). Then
using the fact that the Hamiltonian conserves k, we
can write

G (1) = § g, (1), (40)

where g,—.% () depends on n—m only (we are of course
considering the one dimensional case here). We find
that the equation of motion of the g (f) to be

G () =i [(eF—1) g X () + (K —1) g ¥ (1) ]
+4J%y; ()8, cosK g (£) +2J 2y, ()

X[8qae~®g o5 (1) +-8g e Fe ()] (41)
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IFrom this we can directly derive an equation for
(R2(1) )= 2., Gun(f)n?a? (see Appendix C for details).

(R2(1) Y= (2a~+4T2/3a) t4 (42/9a2) (et —1) ],

(42)
where we have written

a=2T2y (). (43)

At very low temperatures, such that a is very small and
for times such that «!f is also small, we find
(R Y= a2 (2at+2T22)=22.]%a2E, (44)

while for high temperatures, such that J is small and
a large, we find

(R(f) = 2ala®. (45)

These results agree with Eq. (36) and Eq. (38). Note,
also that at very small , such that () is small (i.e.,
1<<10712 sec, see Sec. IV), we again find

(R2(1) y=2T2¢a>4-0(8). (46)
Finally, at very large ¢, we find:
lim (R2(£) )/t = (4J%/a+2a)a?. (47)
f—>0
Thus, the diffusion coefficient is given by
D= (%.72/a+a) at. (48)

In the next section, we discuss the evaluation of y;( ).

IV. MODELS OF PHONON DISPERSION

The function v;(¢) defined in (36) depends signifi-
cantly upon the dispersion of the phonon bands. We
will consider the details of this relationship in this
section before proceeding to the discussion of exciton
transport phenomena in Sec. V. We may write that

¢
()= / dr(exp! —2N"13 Cho?
0 Ao
K [Nra explicnar) + (Mra+t1) exp(—iwmar) 1} —1),
(49)

where & is a phonon band index. The major dispersion
18 in wa,« so that if the temperature is not too low we may
take Oy ,o?C,2 and Ny N, to obtain (as N-—w)

t
vi(l) = / dr{T] exp[—2C.AN Ao (7) exp(iwar)

0

+(_—"2Ca2) (]Va+1)Aa*(T) exp(_iwaoT)]'—'l}J (50)
where
Au(t) = % /_ i i\ expli (wra—wa) ]
- /_ " dop(w) e, (51)

Here w,? is the center of the band, o (w) is the density
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of phonon states in the band, and w=wy «—w.’. We may
also note that, since we are ultimately to be concerned
only with the long time behavior of y1(¢), the purely
oscillatory terms in the integrand of (50) may be
dropped to obtain, in the absence of degeneracies,

m(t) = /

0

¢
dr(I1 1o{ 2C [ Na (Nt 1) 12 | Aa(r) [} —1)

(52)

where Iy(x) is a modified Bessel function. Note, at this
level of approximation, y1="a.

Let us now consider a few specific models of phonon
dispersion. The first model is that of a Lorentzian
density of states

p®(w) =[(a/7)/(A+uP) ], (83)
and from (51) we obtain
AW (r) =¢ar, (54)

Here A is the phonon band width, and we may generally
expect A to be 1 to 10 cm™! for optical phonons in
molecular crystals. We will consider also the case of a
Gaussian density of phonon states

p®(w) = (1/Am'2) exp(—w?/A%)

which yields

(55)

A®@ (7)) =exp(— A%?%/4). (56)

We may note at this point that whenever { is of the
order of a typical exciton lifetime or greater the quantity
Al is a very large number and e=2¢ or exp[ — (A#/2)%] is
correspondingly very small. The integrand in Eq. (52)
becomes very small for 7>1071 sec (A=1-10 cm™)
as long as 7' is not too high and we may therefore extend
the upper limit of the integral to infinity. In this way
we obtain, for a Lorentzian density of phonon states,

Nn® () = [‘% IT {[4CNa (Nat-1) I/ (L)%}
X(1/2 X labe), (57)

and in the case when only one phonon band is strongly
coupled with the exciton band, this is essentially

© [4CN (N+1) ]

() = 207 5 BETEE (58)
or

N (e0) =471 [ fo z [5&3—_—1] dx] (58)
with

z=2C? cschifu®.
Using the asymptotic form of the integral® we find
nO ()2 (04/8) (e/5). (58"

The corresponding expression to Eq. (58) for the case
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of a Gaussian density of states is just

(/)" & OV (N1 I

@) —
Y1 (00> A = ll/g(l!)2

(59)
It will be interesting to consider briefly one further
model of phonon dispersion, which is specified by

w(k) =wo+A COSk.

This occurs in the nearest-neighbor approximation,
taken to first order in (A/wo). The density of states in
this case is highly singular at the zone boundaries. It is
essentially this model of phonon dispersion which is
considered exclusively by Holstein and others.* We may
show that

A (1) = go(Ar)

Jo(x) being a Bessel function, and we have, at low
temperatures,

ya(e0) = [4C4N(N—|—1) f w;jo?(At)dt]. (61)

0

(60)

The integral in (61) is closely related to a form which
has been previously evaluated approximately by the
method of steepest descents.> However, it can be seen
here that this integral diverges and that this model of
phonon dispersion is apparently pathological when
studied by these methods.

V. APPLICATION TO EXCITON TRANSPORT

Most theoretical and experimental approaches to the
problem of exciton migration in molecular crystals
have involved the assumption that the exciton motion
is macroscopically a diffusion process. This has been
shown experimentally to be the case for triplet excitons
at room temperature. In most approaches, however,

the experimental diffusion lengths and diffusion
coefficients are measured only indirectly through

techniques which do not test this basic assumption.
Similarly, most theoretical studies of this problem
provide formal expressions for the diffusion coefficient
for a particular model of exciton migration without
directly confirming that the migration process in
question is actually diffusion like.

Using the results of Sec. III and IV, we may now
discuss the transport of excitons in molecular crystals.
Trom Eq. (48), the long time behavior is diffusive
with a diffusion coefficient consisting of two terms, one
of which (J?/a) decreases with temperature and the
other of which (a) increases with temperature and then
decreases. In Table I, we have calculated D as a function
of temperature for a typical set of parameter values in
molecular crystals. In this calculation, we have assumed
that only one band is strongly coupled. Addition of
more bands with weak coupling does not change the
qualitative behavior. The qualitative agreement with
experiment is good.
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Since the exciton will move in the crystal for a time
equal to its lifetime, some interesting effects may be
possible. For example, at very low temperatures, such
that ar (where 7 is the exciton lifetime) is small, the
behavior of the migration should be very different from
the long time or high temperature behavior. In this
case, we find that the transport has a large component
of coherent or wavelike behavior. For our simple cal-
culation in Table I and 7=10"7 sec, we find this be-
havior for Bwy>15. For a optical phonons of 500 cm™,
this corresponds to 7<40°K. However, at such low
temperatures, trapping effects will be very important.
Notice also that if the exciton phonon coupling is very
weak (C, very small), a will be small and the same
result will occur.

It is important to note that as 7—0, the expression
(52) for v1( ) gets smaller and our result for D gets
large without limit. This result would be modified had
we included exciton—acoustic-phonon interactions. Since
the acoustic bands contain states whose frequencies
vanish as the phonon wave vector goes to zero, then
exciton—acoustic-phonon scattering processes can occur
(even at T=0) which do not evolve in a purely oscil-
latory manner in time and hence may contribute to
v1(). These processes can be included within the
present formalism with little difficulty. The strength of
the exciton—phonon coupling is much less for acoustic
modes than for optical modes; thus, the effect of
acoustic modes may be neglected except at very low T.
At these low temperatures, the interaction of excitons
with Impurities and imperfections are extremely
important.

Finally, we can look at the very high temperature
results. In this case, y1(%) can be approximated as in
Eq. (58"), and we find

D« a? exp(—2C? tanhfBw/4) (2C? cschBuwg/2) 32
which is similar to Holstein.*

VI. CONCLUSIONS

In this study we have presented a discussion of the
transport properties of excitons in molecular crystals.
Using a simple model Hamiltonian for the exciton-
phonon system, we derived an expression for the
probability of excitation transport valid to second
order in the fluctuation of the intermolecular interaction
about its thermal average. The result is also exact in the
limit of zero exciton-phonon interaction. The expres-
sion exhibits the characteristics of coherent motion at
very Jow temperatures and weak exciton-phonon
coupling and that of incoherent motion at high tem-
peratures and strong coupling.

In addition to the restriction of our model to small
fluctuations in the intermolecular coupling, we have
assumed the phonon bands to be narrow. This assump-
tion may be relaxed; however, the resulting expressions
are difficult to evaluate in the simplest cases. We have

(62)
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Tasre 1. Diffusion coefficient for J(T=0)=1 cm™, a=5 A,
A=1cm™!, ¢=2.

D=2%J%C0 4 aa?

Buwp ® %ﬁaza‘l(cmZ/sec) aa?(cm?/sec)
10 3.2X102 0.75X1077
6 3.7X104 0.6X107%
5 1.1X107¢ 0.2X10°¢
4 0.4X10°¢ 0.4X10¢
3 1.0X107% 0.8X10°¢
2 2.2X10°¢ 0.9X10°¢
1.5 1.3X10°7 1.7X10°¢
1.2 1.2X10°8 1.9X107¢
1.0 1.0X10°° 2.4X10°¢

a8 =(kT) L

also neglected quadratic terms® in the exciton—phonon
coupling and acoustic mode coupling [which is usually
weak, and thus our procedure may be inappropriate
since then J,, will not be small compared to f(k, \) ].
Some of these terms will give rise to local scattering
effects (terms analagous to vummm () in Eq. 33), which
are absent in our model. Haken and Reineker® have
treated the case in which the local scattering dominates
the scattering. We have also neglected the terms Fy*"
in Eq. (9). All of these approximations are justified in
the limit that the temperature dependence of the
Franck-Condon factors are the major cause of the
exciton—phonon scattering. As we have argued, this
should be true in the moderate to high temperature
region for the organic molecular crystals such as
naphthalene and anthracene. Finally, we have assumed
a one-dimensional solid in many of our results. This
makes the algebra extremely simple, and its extension
to higher dimensions is straightforward but tedious.
In a future publication, we intend to apply these
results to the problem of exciton migration in impure
crystals.
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APPENDIX A: FUNCTIONAL DERIVATIVE
APPROACH?

Let us define the function G;;(¢), element of G(¢), as
Gii ()= (Sy{AeA (1) 84;(t) Aet), (A1)

where all operators are in the Heisenberg representation,
and

§=expr (—i /_ > U,,m(t)Cm(t)(lt> (A2)

0 nm
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and

V(t)=etVerillt= 3 Con() A (D A,(1).  (A3)

n=m

The set {U..({")} is some continuous function set
with respect to which we may take functional deriva-
tives of G (¢).

The equation of motion of G;(¢) is

iLdG (1) /di]=— 3 [{AeCri(D) A, (1) SA:(1) AgT)

— (oA () 8C; (D) A;(H A8 (A4)
The higher-order functions on the right-hand side of

(A4) may be expressed as functional derivatives
of Gr..(1).
8G(1) ,
= 50U (0) =(A()G®))i
=— (S 2 (AoCu(t) it () S4,(H) At
1
o Cu()S)
+1';Glj(t)T; (AS)
5(1,1(0 _
S = G0AW,

=—i(S) T (AedF(£) SAL(8) Cu(t)) AgH)

~ <Clj(t') S>
Rl Ty (A9
Thus we may write (A4) as
iLdG () /dt]= —iA*() G (1) — (C*(NYG(L), (AT
where _
(C(1) = (C (1) 181/ (S) (A8)

[49 ’7

and the superscript is to be interpreted as in (19).
Integrating (A7) over / vields

G()=— /t AT FHC NG d+G(1=0),

0

(A9)

and substitution of this expression into the first term on
the right-hand side of (A7) allows us to write, in the
limit as { U;(#')—0} and S—1,

1G (1)

=— lim [/tdz'A’(t) (C=(!) )G(t’)+(C‘(z)>(N;(t)]
{U)>0 Lvo
(A10)

in obtaining (A10) we have dropped terms of order V?,
or CA?, in keeping with our assumption that V may be
treated as a small perturbation. The matrix G(¢) =
lim(S—1)G(1). If we replace G(t) on the right-hand
side of (A10) by G(/), an approximation which is also

AND R.
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correct to order VZ, we finally obtain

{
1G D=—[JTPG()— ml/ dAX(DC NG,
s>1 0
(Al1)
where N -
U7 )u=J . (A12)

Upon taking the indicated functional derivatives, (A11)
may be rewritten in component form and in the weak
coupling limit it becomes identical to Eq. (31).

APPENDIX B: PROJECTION OPERATOR
TECHNIQUES

Let us define a projection operator 7 such that for
any general operator ©

®0=(0). (B1)

Then, if No(£) =A¢" () Ao(1) = eH A" Aoe™ ¢, we may
define

No(D)=@No(t),  No® (1) =(1—C) No(t)
Since V¢® (1=0) =0, we find that
No® (#) =i®LN D (1)

(B2)

——(PL/ ds explis{(1—@) L]J(1—®) LN @ (1—s), (B3)

where L= H* is the Liouville operator.
Using the properties of the projection operator,
we may show that

(1—@) Lo=Ve= L0,
CL(1—@) = PV*=@Ly,

(B4)
(BS)

where V' is the nondiagonal part of H in (13) and where
we have defined L; as the Liouville operator for the
fluctuation of the intermolecular coupling about its
thermal average. With these identities we find

No® (1) =@ LN, (¢)
t
— oL / ds expllis (1—®) LNy (i—s).  (B6)
0

The first term on the right corresponds to coherent or
wavelike exciton motion, while the second term con-
tains the exciton-phonon coupling and is rigorously
second order in V. If we drop from the exponential all
terms of order ¥ and higher we may find, upon taking
matrix elements in the basis ] #)=4,%| 0)}, that the
equation of motion for G,.,.(8) = (| No@ (1) | m) be-
comes identical to Eq. (31) when the weak coupling
limit is taken.

It should be pointed out that another projection
operator commonly used in similar problems is a
product of P and D, the operator which takes the
diagonal element (in the exciton site representation in
our case). If this projection operator is used, an
equation may be derived for the number operator
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which is similar to but not identical to (B6). The
interesting point about this equation is that while the
solutions for high temperature are identical to those of
(B6) for that limit, at low temperatures, the solutions
to the new equation are not equal to those of (B6), but
are quite different and exhibit incorrect features (e.g.,
negative probabilities). This behavior is due to the fact
that DV =0, and hence using this projector implicitly
takes H' (not V) as the perturbation. The moral is
clear: be careful to choose the correct projection
operator for the problem.

APPENDIX C

In this section we will derive Eq. (42) from Eq.
(41). First, we introduce new functions

hi* (1) = eFalrg £ (1) (C1)
The equations of motion of these functions become

R (1) =27 sin(K/2) [h o5 (£) — a5 (1) ]

+2a cosKdq oo™ (£) +al 841845 () +8¢, 1K ()], (C2)

From the definition of the functions 2K, we can see
that the mean square displacement (R2(¢)) is given by

(R (1) )= — lim {e2N[ 8% (1) /0K a2, (C3)
K->0

Thus, we need only solve for 4% in order to find the
mean square displacement and the diffusion constant.
Defining /% (§) = (t) —h*({), we find that we can
write the equations of motion for 4¥ and fX in integral
equation form.

Bk (1) = N=U3(B1) + 2 cosK / T B (=) ThoE ()
1]
ta / drI[B—r) ] /5 (r), (C4)
0

FE(D) = 2N (80) +4ac cosK [ I8 (=) T ()

0

ta f e A=) = I (=) 5 (), (C3)

where 8=4J sinK/2, and J,, is the usual Bessel function.
Then, taking the second derivative with respect to K of
(C4) and the first derivative of (C5), allowing K—0,
and defining

x(1) = lim (8fK(1) /0K), (C6)
y(£) = — lim [V (8%5/0K?) ] ()
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we find,

2 ot ¢
() = %‘ —4a] / dr (1= ) () = 2a / «(r)dr,
0

+ 0
(C8)
t

y(t) =~ 2] 2a / (NI (7) + 2N T2 (1= 1) 20 ()
0

—y(7) }(ZT%—O&TN /l (t—m)x(r). (C9)

The solution of these equations for (R2(¢))/a*=
e2ty(f) is

(R2(1) Y/ a*= (2a+4J2/3a) 14 (4T2/9a2) (-3t —1).
(C10)

We should point out here that the equation for the
density matrix proposed by Avakian et el.2 can also be
manipulated this way to give (in their notation) for
near-neighbor interactions

(RA(1))/@*={26%/T—[B*(1—e™") /T*]} &%,

so that
D=a8/T,

where I' is the inverse of the relaxation time.
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