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Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 

(Received 29 May 1969) 

The interaction of Frankel excitons with optical phonons in molecular crystals is studied by means 
of a Green's function method in which the use of a canonical transformation allows most of the exciton­
phonon interaction to be treated nonperturbatively. The self-energy of the Green's function is then ex­
panded in terms of the intermolecular potential. An expression is obtained for the absorptive part of the 
dielectric function of the exciton-phonon system. Comparison is made with experiment and also with earlier 
theories, some of the limitations of which are pointed out. 

There are a number of interesting aspects of the calculation can be used to obtain information about the 
theory of molecular crystals, such as the nature of the complex dielectric function of the exciton-phonon 
spectral line shapes and their temperature dependence system and thus about its optical properties. 
or the processes of energy transfer and excitation We consider particularly the interaction of one band 
trapping, which are strongly influenced by the coupling of Frenkel excitons with an arbitrary number of bands 
of the electronic and vibrational excitations (the of optical phonons. Two different types of optical 
exciton-phonon interaction). The conventional exciton modes are recognized-"high-frequency modes" which 
theory for the electronic excitations of molecular arise from the internal vibrations of the molecules and 
crystals1- a is essentially a rigid lattice theory and "low-frequency modes" which arise from torsional 
offers little insight into these matters. In order to vibrations or from the relative motions of two molecules 
understand these and other properties of molecular in the same unit cell. It is shown that these two types 
crystals which arise from or are strongly influenced of phonons have quite different effects on the optical 
by this coupling, it is necessary to develop a theory spectrum of the solid. Except for a qualitative dis­
which directly includes the exciton-phonon inter- cussion in Sec. IV, the effects of acoustic phonons are 
action.4 not directly taken into account in this treatment. 

There have already been a number of studies of the The exciton-phonon interaction is assumed to be 
present problem5-11 many of which have involved linear in phonon coordinates, and it is also assumed 
attempts to treat the entire exciton phonon coupling that we are concerned only with temperatures for 
as a perturbation. Notable among these are the studies which the thermal population of exciton states is 
involving the calculation of the one exciton Green's negligible. Restricting ourselves to linear terms in the 
function. Suna8 and Agranovitch and Konobeev9 interaction implies that there are no vibrational 
expand the self-energy of the Green's function in frequency differences between the ground and excited 
powers of the exciton-phonon coupling, retaining states. Of course, this is not strictly correct (molecular 
only the lowest-order term. Takeno1o and Davydov vibrations can change by as much a 10%-20%); 
and Nitsovitch7 obtain equivalent results by making however, the coupling constant for the quadratic terms 
decoupling approximations to solve the Green's is usually much smaller than that for the linear terms. 
function equations of motion. These methods are all We will discuss the effect of the quadratic terms in a 
analogs to the standard Green's function treatment of future paper. It may be noted that throughout most 
the polaron;12 however, as we shall see, they are subject of the following the phonon band indices are sup­
to severe limitations when applied to the present pressed and, except where doing so might easily lead 
problem. This is due, at least in part, to the fact the to confusion [see, e.g., (56)], a one-dimensional 
expansion parameter employed in the perturbation notation is employed. This is done only for simplicity, 
theory is usually quite large. PhilpoUS and Rashball not to imply any assumption as to the dimensionality 
have attempted other nonperturbative approaches to of the model or the precise number of phonon bands 
this problem which are quite different from the present allowed. The model considered is, however, restricted 
analysis. to the case of one molecule per unit cell so that all 

In this paper we will develop the formal aspects of a low-frequency optical modes involved are auto­
theory of exciton-phonon interactions which can be matically torsional modes. 
specifically applied to molecular crystals, in which the The paper is set out as follows. In Sec. I, the Hamil­
intermolecular interactions are weak. The theory is tonian used is defined and the exact diagonalization 
based on a Green's function method which is capable of this Hamiltonian in two limiting cases is discussed. 
of including the results mentioned above, but which A unitary transformation is then applied to the Hamil­
also allows us to avoid the major limitations of these tonian. In Sec. II, the Green's function is defined and 
earlier theories. We will show how the results of this an equation for the self-energy is derived. In Sec. III, 
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the results of Sec. 11 are compared to previous results. 
In Sec. IV, the dielectric constant is defined and related 
to the Green's function. Various approximate forms 
are derived. 

1. PROPERTIES OF THE HAMILTONIAN 

The exciton~phonon Hamiltonian may be repre­
sented as5 ,8 

(1) 

In Eq. (1), Hex is defined as 

Hex= L Eoan+an+ L'Jn-n,an+an" (2) 
n ,n' 

and represents the Hamiltonian for one band of Frenkel 
excitons in a perfect rigid crystal. Eo is the energy of an 
electronic excitation localized at site n and Jn~n' is 
the resonance interaction between excitations at sites 
nand n'. For most molecular crystals the maximum 
value of I n- n , does not exceed a few hundred cm~t, and 
it is, in fact, often much less. The operators an and 
an + destroy and create an electronic excitation localized 
at site n. The sum Ln,n.' is over all values of nand n' 
for which n~n'. As mentioned earlier, we are em­
ploying a one-dimensional notation purely as a matter 
of convenience; we are not necessarily restricting the 
analysis to a one-dimensional model. 

The free phonon Hamiltonian, H ph , is written as 

H ph = L wq.abq,a+bq,a, (3) 
q,a 

where Wq,a is the angular frequency of a phonon of wave 
vector q, band a (h=1). The operators bq,a and bq,a+ 
are the corresponding destruction and creation oper­
ators. 

The interaction term, Hint, is taken as the first term 
in a Taylor's series of the exact exciton~phonon inter­
action in powers of the phonon coordinates. It may be 
broken into two parts: 

(4) 
where 

Hint'=N~1/2 L Xq,anwq,a(bq,a+b~q,a+)an+an, (5) 

with 

and 

11,q,a 

Xq,a"Wq,a=lV~leiqn Lf(a)(k, q) =eiq"gq,aWq,a, 
k 

Hint"=N~1/2 L' L Fq,an,n'an+an,(bq,a++b~q,a), 

with 

n n' q,a 

Fq,an,n'=N~l L e~ikn exp[i(k+q)n'JJ<a)(k, q), 
k 

pa) (k, q) = [pa) (k+q, - q) J*. 

(6) 

Hint' describes the interaction of an electronic exci-

tat ion at site 1l with optical phonons of wave vector q, 
band a, The average (gq,aWq,a), taken over q, is a 
measure of the energy required to distort a molecule 
(for high-frequency modes) or to change the orienta­
tion of the molecule in the unit cell (for low-frequency 
modes) from its equilibrium position in the electronic 
ground state to the equilibrium position in the first 
electronically excited state. For the high-frequency 
optical bands information about this parameter can be 
obtained from molecular spectroscopy, and it is found 
that often I (gq,a) I ~ 1. For low-frequency bands the 
energy involved may be expected to be much less; 
however, since (wq,a) is also less in this case, one may 
still expect that (gq,a) is not small. 

The term Hint" describes the phonon induced in­
teraction of excitons localized at different lattice 
sites. Fq,an,n', which measures the strength of this 
interaction, is small in the case of molecular crystals, 
for which all intermolecular forces are weak; and for 
this reason we generally expect 

for given a. It should be noted of course that in many 
cases there is very little direct experimental informa­
tion available about all of these quantities. The in­
tuitive arguments which have been employed may 
therefore be quite misleading in certain specific in­
stances; however, it is probably reasonable to expect 
the conclusions reached to be fairly accurate for the 
majority of representative molecular crystals. These 
conclusions concerning the relative sizes of the param­
eters involved will be useful in understanding the 
approximations made in later sections, 

It is also useful to note that, due to our assumption 
of a linear exciton~phonon interaction, there are no 
terms in the Hamiltonian connecting different phonon 
bands. We may therefore suppress the band index 
henceforth and consider the problem, initially, of one 
band of excitons interacting with one band of optical 
phonons. The generalization of results obtained in this 
way will be quite straightforward. 

The exciton~phonon Hamiltonian may be diag­
onalized in two limiting cases. The first is when X = 
F=O, in which case the Hamiltonian can be written as 

H = L Ek' ak+ak+ L wqbq+bq, 
k 

ak = lV~1/2 L eiknan , 

n 

Ek'=Eo+ L Jneikn. 
n"'O 

(7) 

(8a) 

(8b) 

This corresponds to the limit of zero exciton~phonon 
interaction. The second case where exact diagonaliza­
tion is possible is J = F= 0 and corresponds to the case 
of zero intermolecular interaction.5 The Hamiltonian 
can then be diagonalized by the following unitary 
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transformation: 

li=N-I/2 L Xqnan+an(bq+-b_q) , (10) 
nq 

where we have assumed that the total exciton density 
is very small. A useful means of checking the results of 
any approximate study based on (1) will then be a 
direct comparison with these two exactly soluble 
models. The second limit, of course, appears to be of 
more direct interest in the present case. This will be 
shown in greater detail in Sec. II of this paper. 

In order to formally incorporate these exact results 
in our approach, we define new operators 

A" = exp( - t)an exp( C); 

Bq=exp(-t)bqexp(C), (11) 
whc:re 

l~· AT_I/2 '" XA n + (b + b ) = 1\' L...J q an an q - -q , (12) 
n,q 

and Xqn is as yel unspecified [except that we require 
Xqn= exp(inq)f(q) , andf(q) =1*( - q)]. We will discuss 
the two useful limits for Xqn. In terms of these new oper­
ators, the Hamiltonian may be written as 

+ L wqBq+ Bq+ L' In_n,A n + An,8n +8", 
q n,n' 

n,q 

n,n' il 

where 

Note that when xqn=o, the diagonal part of (13) is 
identical to (7), and when Xqn=Xqn, it becomes 
identical to (9). Thus, both exactly soluble limits arc 
explicitly included in (13). 

The zeroth-order energies of the zero phonon, one 
phonon, two phonon, eAtc. states may be calculated 
using (13) in the limit Xnq=X"q, which is appropriate 
in the weak intermolecular coupling case. For ex­
ample, when the phonon frequencies are independent of 
wavevector, we find a band of energies for each of the 
above states, with the bandwidth of each being ap­
proximately the total exciton bandwidth (in the limit 
of zero exciton-phonon interaction) multiplied by a 
Franck-Condon factor. When the total exciton band­
width is small compared to a typical optical phonon 
frequency, this gives a series of narrow, nonoverlapping 
bands. 

For our purposes, it is convenient to add and sub-

tract in (13) the following expression: 

L iJJkAk+Ak= L' [Jnn,(On+On' )0+N-l/2 L Fqnnl 
k nn' 

X (6n+(Bq++ B_q) On' )oJAn+ An'. (14) 

Here A k+, Ak are defined in analogy with (8), the 
average, ( ..• )0, is over the grand canonical ensemble 
of the diagonal part of (13), and (we henceforth 
assume that kT«Eo) 

E k = L exp[ik(n-n')J exp[ -S(n-n')J 

X [In_n,-N-l L Fr/(X_qn+X_qnl)J, (15) 

Sen) =N-I L (1-cosqn) ] Xqn]2 coth«(3wq/2). (16) 
q 

In this way, the Hamiltonian can be written 

H= L (Eo+Ek-N-l L] Xqn ]2Wq) Ak+Ak 
k q 

+ L wqBq+Bq+ L Vkk,Ak+A k" (17) 
q kkl 

Vkk, = N-I L' exp[i(kn- k'n' ) J 
nnl 

X [0,,+ (Bq++ B_q)On'- (On+(Bq++ B-q)O", )oJ) 

+N-3/2 L exp[i(k-k')nJ(Xqn-Xq")wq(Bq++B_q). 
nq 

(18) 

We shall see later that this has the effect of making the 
first order contribution to the self-energy vanish. 

II. GREEN'S FUNCTION ANALYSIS 

In order to obtain information about the exciton­
phonon interaction without explicitly calculating the 
eigenvalues and eigenfunctions of the system, we wi!! 
studv the one exciton Green's function (which con­
tain~ phonon operators when Xqn~o) 

G(k; I-I') = -i(TfAk(/)Ak+(I')}), (9) 

where T is the time ordering operator, Ak(t) and 
Ak+(/) are in the Heisenberg representation, and 
( ... ) represents a thermal average over the grand 
canonical ensemble using (17). We may evaluate this 
expression by use of the functional derivative tech­
nique. 13 

To do so, we define the more general function 

Gs(kk' ; tt') = -i(T{SAk(t)Ak'+(I')})/ (T{S}), (20) 

with 

S=exP[-il+00 

dt" L if>qq' (I") Vqq, (III)] . (21) 
-00 qql 

Here, if>qq' (I) is some unspecified test field and V qq' (/) 
is as defined in (18). Note that this expression reduces 
to (19) in the limit that <1>--+0. The equation of motion 

Downloaded 21 Oct 2012 to 18.189.110.229. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



2102 M. K. GROVER AND R. SILBEY 

for Gs is 

[i(ajat) -Ek]Gs(kk'; tt') =o(t-t')o(k-k') 

-i L [(T{SVkk',(t)A k" (t)Ak,+(t' ) I )/(T{S) )], (22) 
kll 

where 

q 

This may be rewritten in terms of the inverse Green's 
function as 

Gs-l(kk'; tt') = GO-l (kk', tt') 

1+00 (TI SVkk2(t) Ak2(t) Ak,+(tl) » 
+i L dtl -

k,k2 -00 (T{ S) ) 

X Gs-l(klk'; tt'), (23) 
where 

(24) 

We may now rewrite the three point function in (23) 
in terms of a functional derivative. 

i(T( SVkk2 (t) A::(t) Ak/(tl) ) ) = _ [(T{ SVk:2(t) ) ) 

(T{S}) (T{S}) 

o ]_ 
+i--(-) GS (k2k1;ttl ), (25) 

OPkk2 t 

and from this we obtain the result that if we define the 
self-energy of the Green's function as 

""1:,s(kk' ; tt') = GO-l (kk'; tt' )-Gs-l(kk' ; tt'), (26) 

then the equation of motion for ""1:,s (kk'; tt') is 

""1:, (kk,.tt')=o(t-t') (TIVkk'~')S» 
s , (T{S) 

. 1+00 
- o""1:,s (k2k'; tIt') 

+~ L dtlGS(klk2 ; ttl) ( ) . (27) 
k,k2 -00 OPkk, t 

This equation for the self-energy may be solved to 
arbitrary accuracy by an iterative procedure. To first 
order we have 

""1:,S(l) (kk'; tt') =o(t-t' ) (TISVkk'(t')})/(T{S). (2Sa) 

To second order, we obtain 

""1:,S(2) (kk'; tt') = ""1:,S(I) (kk'; tt') + L GS(qq'; tt') 
qql 

X{(T{SVkq(t) Vq'k'(t')}) 
(T{S» 

_ (T{ SVkq(t)} )<!{SVq'k,(t») )}. (2Sb) 
(T{ S) )2 

Let us now allow Pqq, (t)-O. Recalling our assump­
tion that Eo/kT«l, we find for the first-order term 

""1:,s(l) (kk' ; tt')_""1:,(l) (k; t- t') o(k- k'), 
and 

""1:,(l)(k, t, -t') =o(t-t' ) (Vk,,(l) )=0. (29) 

The second-order term in this limit is 

""1:,s(2)(k, k'; tt')_""1:,(2)(k, t-t')o(k-k'), 

""1:,(2)(k; t-t') = L (T{ Vkk'(t) Vk'k(t' )} )G(k'i t_t'). 
k' 

Then if we define G(kw) as 

1
+00 

G(kw) = _00 eiwtG(kt)dt, 

(30) 

(31) 

and similarly for L (kw), we obtain to the degree of 
accuracy indicated in (30), and for the temperature 
of interest 

G(kw) =[ w-E,,- (271")-1 ~ l:OO Ih}(w-w') 

XG(q, wl)dw'r
l
, (32) 

and 

1+00 15kk,O(w-wl)dw' 
""1:, (kw) = (271")-1 LIE I (k

' 
') . 

k' -00 W - k -""1:, w 
(33) 

Here 15kk ,o (w) is the transform of 

(T{ Vkk' (t) Vk'k(t' ) ) )0, 

defined as in (31). These equations may be solved by 
iterating further, although it should be noted that it 
may not be entirely consistent to do so as certain 
higher order terms have been dropped in deriving (30). 

III. ANALYSIS OF RESULTS; COMPARISON WITH 
EARLIER METHODS 

A. Xqn=o 

As in Sec. II there are two special cases of interest in 
examining the above results. The first such case occurs 
when we set Xqn=o. Then fJn= 1 so that ak=A k, and 
the Green's function has no phonon part [It is then 
written as G(k, t)]. Also in this case we can write (30) 
as 

q 

XG(k+q,t-t' ), (34) 

wheref(kq) is defined in (5) and (6), and 

DqO(t) = -i(T{cpq(t)cp_q(t' ) I )0, 

is the usual phonon Green's function, and 

cpq= (2wq)-1/2(bq+b_q+). 

In this way we obtain for the Green's function 

G(kw)=[W-Ek- C~T)~ If(k,q) 1

2wq 

(35) 

X L:oo dw'DqO(w')G(k+q, w+w') rl 

(36) 
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and for the self-energy 

iN-l 
~(kw) = - L: If(k, q) 12wq 

71" q 

X dw' q . 1+00 D O(w') 

-00 W+W'-EkH-~(k+q,w+w')' 
(37) 

where, consistent with our earlier assumptions, DqO(w) 
is the Fourier transform of DqO(t) in (35). 

Equations (36) and (37) are identical to the results 
of Suna, Davydov, and Nitsovich, and others. They 
may be further simplified by contour integration on 
w' to obtain for example 

~(kw) =N-l L: If(k, q) 12 

+ w+wq-Ek+q-~(k+q, w+wq) , 
(38) 

where N q is the occupation number of the phonon mode 
q. A major difficulty with results obtained in this limit 
is that, as we have seen in Sec. II, they are derived by 
considering only the lowest-order nonzero term of a 
perturbation expansion of the self-energy in powers of 
Xqn and Fqnn'/wq. The factor Fqnn'/wq is expected to be 
very small, and its higher-order contributions can be 
neglected; however Xqn is for many molecular crystals 
of the order unity or greater, even though its total 
effect to all orders may be small. It would seem that a 
result such as (38) will be of limited applicability if it 
is to be used with confidence. 

What is more, it can be shown that even in the limit 
that Xqn~, the above results give incorrect predic­
tions of the energy levels of the exciton phonon system. 
To see this most simply, we consider the special case of 
(9) with the further simplification that X qn= 
g exp(in. q) and Wq=W for all q. In this case, we know 
that the one exciton energy levels are at E=Eo-
g2W+nw, n=O, 1, 2, ... , but from (38) the poles of 
G(kw) occur [to first order in ~(kw)J at 

or 
n=0,1, 

(39) 

(40) 

in the limit that g-70. From this it can be seen that, of 
the two energy levels which G(k, w) is able to predict 
when approximated in the above manner, one has the 
wrong energy shift even in the limit as g-70. It can also 
be shownl4 that this problem does not immediately 
vanish when ~(k, w) is taken to higher order in g. 
Indeed, this is a difficulty characteristic of any Green's 
function calculation in which only finite order per­
turbation theory is used to obtain the self-energy. The 
problem is, however, of greater significance when the 
expansion parameter involved is large, as in the present 

example. In Appendix C we derive some analytic 
results for the exact zero temperature Green's function 
of this system. 

B. Xqn=Xqn 

In order to overcome these difficulties we consider 
the second special case of interest, in which Xqn= 
Xqn. In this case Xqn is included in ~(k, w) to all 
orders while the perturbation expansion used is in 
powers of Fqnn'/wq, which can be expected to be quite 
small for molecular crystals, and powers of Jne-S(n) /wq. 
For high-frequency optical phonons In/wq generally is 
already a small parameter, and the factor e-S(n) only 
serves to make it smaller. For low-frequency modes 
In/Wq may be fairly large, although we may nearly 
always expect In/wq< 10 and in many cases the ratio 
is of order unity. However, even in these cases the 
factor e-S(n) is still generally sufficient to make the 
expansion parameter small. In a system with m bands 
of optical phonons e-S(n) has a maximum value at 
T= 0 of exp( - m(g2q.a»), where the average is over q 
and a. If (g2 q •a ),....,1 and if m has its minimum value 
of m= 3 then the factor e-S (n),...., 1/10. What is more, 
e-S(n) decreases with increasing temperature. 

The smallness of these parameters, Fqn,n'/Wq and 
J ne-S(n) / Wq, appears to be sufficient to justify the 
truncation used in obtaining (36) and (37) in the 
case Xqn=Xqn; and it is this method which we propose 
to use for the study of the exciton-phonon interaction 
in molecular crystals. 

The term (T { V k ,k' (t) V k' ,k) ) is evaluated in Appendix 
B. For the present we consider only the special case 
when Fqnn'=O. Then for t>O: 

=N-2 exp[ik(n-s) +iq(r-m) J 
nmr8,n¢rn,~8 

X[exp( - iq'n) - exp( -iq'm) J[exp(iq'r) -exp(iq's) ] 

X [exp(iwq,t) Nq+exp( - iwq,t) (Nq,+ 1) J)-1J, (41) 

and for t<O the same result holds with k and q inter­
changed and t replaced by - t on the right-hand side. 
Here Jm=Jm exp[ -S(m)J, SCm) being defined in 
(16). As can already be seen, a major difficulty of this 
approach will be in dealing with fA ,k' (w ). It may be 
necessary to use somewhat more specialized models 
to obtain results in a closed form, or it may be neces­
sary to use a numerical approach. 

IV. DIELECTRIC FUNCTION OF THE 
MOLECULAR CRYSTAL 

In this section we will show how the Green's function 
(19) may be used to obtain information about the 
imaginary part of the dielectric function [~" (kw) J 
and, thus, about the optical properties of the crystal. 
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As indicated in Sec. III, we will be concerned only with 
the results of the case Xqn=Xqn. 

We may write the function f"(k, w) as 

where for frequencies or energies "-'Eo, (lIo(k, w) is a 
very slowly varying function of wand GR(kw) is the 
Fourier transform of the retarded Green's function l5 

(43) 

In order to relate GR (kt) to the retarded Green's func­
tion corresponding to (19), we must make a decoupling 
approximation; since ak= N-I/2 Lq Ok_qAq, 

where Ok is the transform of On, defined as in (8) and 

This result is exact if J = F= 0 and requires no as­
sumptions about the major part of the exciton phonon 
interaction. 

We will consider first the results obtained if we set 
L. (kt) = 0; this is equivalent to neglecting the non­
diagonal parts of (17). Then, 

GRCkt) = -iJY-18(t)e-s 

X L exp[i(k-q)n] exp[ -iEqt+I,,(t)], (46) 
n,q 

with 
( 47) 

-- --_._-- --------- .----

and 

InCt) = N-I L gq
2eiq" 

q 

X [(Nq+ 1) exp( -iwqt) + N q exp(iwql)]. (48) 

In the case where InCt) is not too large, we may expand 
exp[I n (t)] and keep only a few terms: 

exp{In(t) I = 1+~V-l L gq2eiqn 

X [Nq exp(iwqt) + UYq+ 1) exp( - iWql)] 

+1N-2 L gq2gq,2 exp[i(q+q')1/] 
fJ,q' 

X [.iYqXq , exp(iwqt+iwq,f) + Nq(Xq+ 1) 

X exp(iwqt-iwq,t) + (Nq+ 1) ~"q' 

X exp( - iwqt+iwq,t) + (Nq+ 1) (.Yq+ 1) 

Xexp(-iwqt-iwq,t)]+···. (49) 

This leads to a representation of G(k, w) in terms of 
processes involving successively more phonons. Specific­
ally, 

GR(k, w) =e-Slr(w-Ek)+N-1 

XL gl[(Nq+1)r(w-EkH-Wq) 

+NqrCw-Ek+q+Wq)]+···j, (SO) 
wherel6 

rex) = (P j x) - i7ro(x). (51) 

The first peak is the zero phonon line, the second two 
are sidebands (the second is of course a hot band). 
If the phonon band is narrow compared to a typical 
phonon frequency, then these bands do not overlap. 

In order to study the form of f"(k, w) in this ap­
proximation we may write 

-e-S 1+00 

ImGR(k, w) = -,- L exp[i(k- q)ll] dt exp[i(w- Eq)l+ In(t)]. 
21'1' q,n -oc 

(52) 

Considering first the special case where wq=w', gq=g, 

ImGR (k, w) = - e-
s 

{27r L [o(w - Ek) -o(w- Eq)]+ L 1too 

exp[i(w- Eq) t+ Io(t) ]dt} , 
2N q q -00 

(53) 

and using the relation (see Appendix C) 
+00 

exp[Io(t)]= L exp[Hm,&>') - imw'tJlm[g2 cschH.Bw')], (54) 
m=--OO 

where 1m is a modified Bessel function, we obtain 
+00 

ImGR(k, w) = -7re-8 {o(w-Ek) + L exp(~m,&>')[1m(g2 csch,Bw'j2)-ilm.o]2V-1 L oCw-Eq-mw'»). (55) 
Vl=-::;.c 

In the limit as ~~T~oo we may integrate over wave vcctors to finel 
+00 

ImGII(k, w) = -7re-S [o(w-Ek) + L exp(~m,Bw') {1m[g2 csch~(6w')]-om.o) (87r3)-lfdSq (m) I VqEq I-I} (56) 

Here, SCm) is the constant energy surface in the first Brillouin zone defmcel so that Eq=w-mw' for all 
q on SCm). 
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If w' is taken to be the frequency of a torsional mode 
then this result predicts that the absorption spectrum 
of the solid will consist of a band of sharp, nonover­
lapping but closely spaced (",SO cm-I ) peaks, each of 
which has the same shape as the temperature de­
pendent density of exciton states obtained from (15). 
The relative intensities of the peaks are such that the 
band is centered at an energy corresponding to ap­
proximately the middle of the free exciton energy band. 
The intensity decreases slowly at energies above the 
peak and more rapidly at energies below, exhibiting a 
shape very similar to that predicted by Urbach's 
ruleY The center of the band does not shift to lower 
energies as the temperature is increased. 

If we consider more than one low-frequency optical 
phonon mode the over-all shape of the band remains 
essentially the same; however, the individual peaks 
begin to merge together and to overlap, thus smoothing 
out much of the detail exhibited in the simpler example. 
The acoustic modes, which have not been included at 
all in this analysis have the effect of smoothing out this 
fine structure somewhat, so that the experimentally ob­
served absorption band corresponds to the envelope of 
the band predicted in this theory. 

Finally, if we include also the effects of high-fre­
quency optical modes, the absorption band described 

above is accompanied by a series of satellite bands, 
all of which overlap to some extent, both at higher and 
at lower energies. The satellite bands all exhibit a 
shape identical to that of the single band obtained 
above. The spacing of their centers is equal to the 
frequency of the corresponding vibration (",500-
1000 cm-I ). They decrease slowly in intensity above 
the main peak and more rapidly below, again obeying 
an Urbach rule. 

These results, as described above, appear to be in 
good qualitative agreement with most of the experi­
mental evidence available. That the predicted spectrum 
exhibits much more detail than is experimentally 
observed can probably be accounted for at least in part 
by the fact that acoustic phonons have not been in­
cluded in the theory. That each of the satellite bands 
has a shape identical to that of the central band in the 
spectrum (ignoring overlap) also appears to be an 
oversimplification, which arises from the approximation 
Wq = w'. Actual calculations, in which an attempt is 
made to reproduce portions of the observed absorption 
spectrum, may provide a more definitive method for 
evaluating these results in detail. 

In order to study the general case when gq and Wq are 
no longer constant, we may use the expansion in Eq. 
(SO) to obtain (for W~Ek) 

ImGR(k, w) = -7re-S[o(w-Ek )+N-2 L Hgigq,2) Nq(Nq+ 1)0 (w-Ek+q+q+wq-wq,) + ... ]. (57) 
q,q' 

And when the temperature is low enough so that gq4Nq«1, we may keep only a few terms to obtain (as N~rL:J) 

Here the integral on q is over the entire first Brillouin zone whereas the integral on q' is over the constant energy 
surface Sew, q) for which 

(59) 

A similar analysis can be used to obtain expressions for ImGR(k, w) valid when W~Ek+mw', m= ±1, 2···. When 
! m I becomes very large, however, the overlap between neighboring bands becomes significant and the method 
breaks down. 

Due to their greater complexity, the results obtained in this case (wq , gq not constant) are more difficult to 
interpret than in the case of vanishing phonon bandwidth. However, preliminary calculations using Eq. (58) to 
study a few specific models have indicated that if Wq is a weakly varying function of q then the line shapes obtained 
do not differ qualitatively from those given by Eq. (56) in the same temperature range. 

In order to go further in our analysis, we must now explicitly use the results of S:c. II. From Eq. (44) we can 
obtain the result (for W q , gq constant) 

(60) 

And since it can be shown that for the temperatures and energies of intercstt" 

ImGR(k, w) = TmG(k, w), 
we obtain 

+'" 
f"(k, w) = f"oCk, w) -47r/oL012e-S[ImG(k, w) + L exp(mi3w'/2) [lm(g2 coth,Bw' /2) -Om,O] 

X JlmG(q, w-mw')dq/ (27r) 3]. (61) 
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From Eq. (32) we see that 

(62) 

where ~r and ~; are the real and imaginary part of ~(k, w) and hence 

Using (41) in (63) will give an equation for ~(k, w) 
which is extremely complicated. We expect that 
numerical computations of simple models will provide 
insight into the detailed structure of elf (k, w). 

V. DISCUSSION 

In the present paper, we have shown that the 
energies and line shapes of the coupled exciton­
phonon system could be calculated using Green's 
function approaches. We have removed the strong 
coupling by a unitary transformation which produces 
an exponential dependence of the energies and line 
shapes on the coupling constant. This indicates that 
the procedures based on a perturbation expansion in 
powers of the coupling constant will converge slowly 
for values of the coupling constant near unity. The 
formulas we have derived are rather complicated even 
in second order. It is therefore extremely difficult to 
go further analytically; however, numerical calcu­
lations for simple model systems will be useful. 

We have made a number of assumptions in the 
present work. First, we assumed that a coupling linear 
in the phonon coordinates is an adequate representa­
tion of the physical situation. Some work in the quad­
ratic coupling has shown that interesting and dramatic 
effects are to be expected when these are included.13 

We have also worked only within one electronic mani­
fold. Introduction of many bands would further 
complicate the situation. The assumption was also 
made that we may neglect the exciton-phonon coupling 
when averages are taken over phonon variables. The 
averages then reduce to those of harmonic oscillators 
in thermal equilibrium. In the same vein, we have 
neglected the thermal exciton concentration as being 

(63) 

small. Perhaps the most severe approximation is the 
decoupling approximation used in Eq. (44). 

In spite of these approximations, there is hopefully 
enough in the present analysis to adequately represent 
the spectra of real molecular crystals. In a future 
publication, we will apply these results to the calcu­
lation of the energy levels and line shapes of simple 
models of molecular crystals. 

APPENDIX A: THERMAL AVERAGES 

In this paper, we have repeatedly averaged over the 
equilibrium distribution of phonons. The basic formula 
can be written for an ensemble of harmonic oscillators 
with frequency w, as18 

(exp[iH )'lb+y2b+) ])= exp( -h1)'2i;2 cothwiJ/2). (Al) 

From this, we can find the other averages we need. For 
example, differentiate (Al) with respect to )'1, to find 

(b exp[iH )'lb+)'2b+) ])=iHN.,+ 1))'2 

Xexp[ -hlT'2i;2 cothwiJ/2], (A2) 

where we have used 

(A3) 
and 

exp[iH )'1b+)'2b+)]= exp(ib'1b) exp(ib'2b+) 

X exp(h2~1)'2)' (A4) 
Similarly, 

(b+ exp[iH )'1b+)'2b+)]) 

=i~N.,)', exp[ -hl)'2i;2 cothwiJ/2]' (AS) 

Other averages can be similarly derived. 

APPENDIX B: EVALUATION OF (Vkq(t) Vqk) 

We may write (Vkq(t) Vqk ) as 

(Vkq(l) V qk )=N-2 :E exp{i[k(n-s)+q(r-m)]} (/1+ / 2+ / 3+1,), 
n,m,r,8 

11 = JnmJrs ([On +(t)Om (t) - (On +Om)]Or+O.), 

12 =N-1/2Jnm :E Fq,rs([On+(t)Om(t) - (On+Om)]er+(bq+b-q'+)O'), 
ql 

13= N-1/2Jr• :E F q,nm({On +(t) [bq, (t) +b_q,+(t) ]em (I) - (On + (bq+b-q,+)Om) }Or+O.), 
ql 

14= N-l :E F q,nmFq"rs( {On+(t) [bq, (I) +b_q,+(t) ]em(t) - (On (bq+ b-q'+) Om) }Or+(bq,+b_q,,+)O'). 
gIg" 
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It is convenient to define the following function 

R= (On+(t)Om(t)Or+08) 

= exp[ - S(n-m) - S(r-s) J exp[ - N-1 L gu21 (e inu _ eimu ) (e- iru_ e-i8U )Nu exp(iwut) 
u 

Then, we find, on performing the relevant averages: 

11 = In-mJr-s {R-exp[ -S(n-m) -S(r-s) Jl, 
12 = I n-mN-1 L gq,Fq,rs(RI [exp(iwqd)Nq,-exp( -iwq,t) (Nq+ 1) J[exp(inq') - exp(imq') J 

q' 

- [exp(irq') +exp(isq') J)-[exp(irq') +exp(isq') J exp[ - S(n-m) - S(r-s) J), 
13= N-1Jr_ 8 L gq,Fq,nm(R{ [exp( -iwq,t) (Nq+ 1) +exp(iwq,t) Nq,J[exp(irq') - exp(isq') J 

q' 

- [exp(inq') +exp(imq') J)- [exp(iq'm) +exp(iq'n) J exp[ - S(n-m) - S(r-s) J), 
5 

14 =N-J L Fq,nmFq"rs L Aq'q ,(i), 

Aq'q,,(1) = N-l(Nq,+ 1) lVq"gq'gq"R{ [exp(inq') - exp(imq') J+[exp(irq') - exp(isq') J exp(iwq,t) ) 

X ([ exp( inq") - exp( imq") J exp( iwq"t) + [exp( irq") - exp( isq") Jl, 
Aq'q,,(2) = - N-l(Nq+ 1) (Nq ,,+ 1) gq,gq,,[1-o(q'+q") JRI [exp(inq') - exp(imq') J+exp(iwq,t) 

X [exp(irq') - exp( isq') J)I [exp(inq") - exp( imq") J exp( - iwq"t) + [exp( irq") - exp(isq") J) 
+o(q'+q") (Nq+l)R, 

Aq'q,,(3)= - N-l(Nq, ) Nq"gq'gq" (1-o(q'+q") )RI [exp(inq') - exp(imq') J+[exp(irq') -exp(isq') J 
X exp( iwqd) )1 [exp( inq") - exp( imq") J exp( - iwq"t) + [exp( irq") - exp( isq") J) +o(q' +q") Nq,R, 

Aq'q,,(4) = N-Wq, (Nq,,+ 1) gq' gq"R ([ exp( inq') -exp( imq') J exp( - iwq,t) + [exp( irq') - exp(isq') Jl 
X {[exp( inq") - exp( imq") J exp( -iwq"t) + [exp( irq") - exp( isq") J), 

Aq'q,,(5) = N-Igq,gq,,[exp(iq'n) +exp(iq'm) J[exp(iq"r) +exp(iq"s) J exp[ - S(n- m) - S(r-s) J. 

APPENDIX C: AN EXACT GREEN'S FUNCTION 

As an example of the difficulties one may encounter 
using the Green's function analysis of the exciton­
phonon problem without first performing the canonical 
transformation used in the present paper, let us cal­
culate the Green's function for the exciton-phonon 
coupling with no intermolecular coupling. The Hamil­
tonian is given as 

H= L Eoan+an + L wqbq+bq+N-l/2 
n,q 

n,q 

We may write this, using the transformation given 
above, 

H= L (Eo-N-1 L gq2Wq) An+An+ L wqBq+Bq 
n q 

(C2) 
n 

or 

GR(k, t) = -i(J(t)N-l L exp[ik(n-n')J([an(t) , an,+J) 
nn' 

(C4) 

We will calculate ([an(t) , an+J). According to (11) and 
(C2), 

an (t) = An (t)On (t) 

=exp( -iEot) exp{-N-If2 L rinqgq 
q 

Also, because (C2) describes noninteracting particles, 
we have 

([an(t), an,+ J)= (A n,+ An(t) ) ([On (I) ,On'+ J) 
+(CAn(t), An,+J)(On(t)en,+) (C6) 

or 

The retarded Green's function may be written ([an(t) , an,+ J)=Onn' exp( -iEot) (Nn([On(t) , On,+J) 

GR(k,t)=-i8(t)([ak(t),ak+J) (C3) + (On (t)On'+») , (C7) 
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where N n is the average number of excitons at site 11. 

Neglecting exp( -,BEo) with respect to 1, we have 

([an(t) , an,+J)=Onn' exp( -iEot) (On(t)On'+)' (C8) 

Using the results of Appendix A, 

([an (t), an,+ J) = onn' exp( - iEoi- S+ lo(t)), (C9) 

where lo(t) and S are defined in (48) and (47). Thus, 

GR(kt) = -i(}(t) exp[ -iEot- S+ lo(t) J, (ClO) 
and 

GR(kz) = -ie-S 1«> dt exp[i(z-Eo)t+lo(t)]. (Cll) 
o 

An illustrative limit is that in which w(q) =w, g(q) =g 
all q. Then 

10(t)=g2[(i1+1) exp(-i~t)+nexp(iwt)J, (C12) 

where 
(C13) 

Then, expanding exp[Io(t) J and collecting terms, 

+«> 
exp[Io (I) J = L exp[H m,Bw) - imwtJ 

m=-CO 

where 1". is a modified Bessel function.l9 Finally, we 
have 

+«> exp (mfJw/2) 1m[2g2nlI2 (n+ 1) ll2J 
G(kz) = L , (CIS) 

m~oo z_ Eo-g2w-mw 

/ii(n+1) }l/2=!csch,Bw/2. (C16) 

We see that expanding the denominator in order to 
find G(k, z) in a power series in g2 will fail whenever 
g2w?:;(Z_Eo-mw). That is, a series expansion of G 
in powers of g2w will diverge whenever z- Eo- mw is 
less than g2W. The zeroth-order Green's function has 
poles at the points z=Eo+mw, and the exact Green's 
function has poles shifted a constant amount down the 
real axis from these. However the power series ex­
pansion of G(kz) will diverge in the region between the 
zeroth-order poles and the exact poles. In fact, if 

g2?:;1, then the power series diverges along the entire 
real axis, since the circles of divergence now overlap. 

In a recent paper,20 Gosar and Choi have used 
diagrammatic techniques to calculate the Green's 
function, (CIS), and also to consider the case with 
intermolecular coupling. Their results are similar to our 
result using the canonical transformation. Our per­
turbation technique (Sec. II) goes beyond their 
result. 
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