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Abstract. Exciton-polaritons in semiconductor microcavities have become a model system

for the studies of dynamical Bose-Einstein condensation, macroscopic coherence, many-body

effects, nonclassical states of light and matter, and possibly quantum phase transitions in

a solid state. These low-mass bosonic quasiparticles can condense at comparatively high

temperatures up to 300 K, and preserve the fundamental properties of the condensate, such

as coherence in space and time domain, even when they are out of equilibrium with the

environment. Although the presence of an in-plane confining potential is not strictly necessary

in order to observe Bose-Einstein condensation, engineering of the polariton confinement

is a key to controlling, shaping, and directing the flow of polaritons. Prototype polariton-

based optoelectronic devices rely on ultrafast photon-like velocities and strong nonlinearities

exhibited by polaritons, as well as on their tailored confinement. Nanotechnology provides

several pathways to achieving polariton confinement, and the specific features and advantages

of different methods are discussed in this review. Being hybrid exciton-photon quasiparticles,

polaritons can be trapped via their excitonic as well as photonic component, which leads

to a wide choice of highly complementary trapping techniques. Here we highlight the

almost free choice of the confinement strengths and trapping geometries that provide powerful

means for control and manipulation of the polariton systems both in the semi-classical and

quantum regimes. Furthermore, the possibilities to observe effects of the polariton blockade,

Mott insulator physics, and population of higher-order energy bands in sophisticated lattice

potentials are discussed. Observation of such effects could lead to realization of novel

polaritonic non-classical light sources and quantum simulators.

PACS numbers: 00.00, 20.00, 42.10
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1. Introduction

The term ’polariton’ is generally used in solid state physics, when an optical excitation is

strongly coupled to a matter excitation. The matter excitation can be provided by a plasmon,

a phonon, an electron, or an exciton. This review article exclusively discusses exciton-

polaritons in microcavity systems. The excitons, which are bosonic composite quasi-particles

consisting of an electron and a hole bound via their Coulomb attraction in a semiconductor,

can be confined in quantum well (QW) structures embedded in optical microcavities. If the

conditions for strong light-matter coupling are fulfilled, the properties of the bosonic matter

excitation and the photon light field inside the microcavity are mixed, and new eigenstates of

the coupled system evolve [1, 2]. Being bosonic quasi-particles, polaritons can in principle

condense in a single particle energy state of a finite size [3]. This dynamical condensation

of bosons is closely related to the Bose-Einstein condensate (BEC) phase which is usually

studied in ultra-cold atomic systems [4]. However, due to the finite lifetime of polaritons

even in state-of-the-art microcavities, the thermal equilibrium between the polaritons and

their environment is very hard to establish. Nevertheless, the long-range spatial [3, 5] and

temporal [6, 7, 8] coherence of polariton condensates has been demonstrated, revealing the

characteristic signatures of a BEC [9]. The effective mass of a microcavity polariton is

approximately five orders of magnitude smaller than that of a free electron and 8− 9 orders

of magnitude smaller than that of an atom. Since the critical temperature for the Bose

condensation is inversely proportional to the particle mass [10], polaritons are well suited

for the studies of condensation in the temperature range from liquid helium up to room

temperature.

Polaritons exist in a semiconductor microcavity environment, hence their properties can

be tailored by means of semiconductor lithography and nanotechnology. Manipulation of the

polaritonic systems via spatial trapping of excitons and/or photons in real and momentum

space can therefore provide access to completely new areas of mesoscopic physics in

semiconductors. While photons have to be confined in a cavity to achieve sufficiently long

lifetimes to form polaritons, the excitons are usually located in quantum wells to enhance

the oscillator strength of the emitters and to reduce possible detrimental effects of surface

recombination. Consequently, polaritons formed by the cavity photons and QW excitons

are quasi-particles living in a two-dimensional environment of a quantum well-microcavity

system. In order to allow for the observation of phase transitions related to Bose-Einstein

condensation at finite temperatures, the exciton-polariton system should be of finite size, since

otherwise the condensate’s long range order would be destroyed by thermal fluctuations [11].

This condition is usually assured by a finite area of optical (or electrical [12]) excitation.

Engineering of additional lateral (i.e., in the QW plane) traps in the semiconductor yields

the possibility to create sophisticated potential landscapes with the spatial scales of the order

of the polariton wavelength (∼ 1 µm), and therefore to study interactions and transport of

polariton condensates in tailored environments. This possibility, in turn, can be exploited in

designing new schemes for highly nonlinear photonic integrated circuits (PICs) and logic

elements [13, 14]. Such PICs promise ultra-high processing speeds and very low power
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consumption, since polaritons can propagate with ultrafast velocities and low decoherence

rates. The large polariton nonlinearities inherited from the excitonic component enables

manipulation [15], switching and steering of the polariton flow by very weak laser beams

[16] and possibly electrical contacts. Additionally, the spin degree of freedom in the polariton

system can be actively exploited to add new functionalities to polaritonic logic devices, as

discussed in [17].

The possibility to engineer polariton trapping potentials has furthermore triggered the

interest in using polaritonic systems to emulate complex many-body phenomena, such as the

physics of high-temperature superconductors, graphene, or frustrated spin lattices [18, 19, 20].

Quantum emulators are envisaged as a highly desirable tool for understanding complex many-

body properties of novel solid state, chemical, and biological systems, which are otherwise

hardly accessible. They rely on the emulation of Hamiltonians via potential landscape

engineering in highly controllable quantum systems [21]. Polariton gases in microcavities

are considered as promising candidates for solid state quantum emulation, as they fulfill a

range of important prerequisites: Namely, they can form bosonic condensates and enter a

superfluid phase [22], possess internal (pseudo-spin) degrees of freedom, can be localized by

lithographic or optical techniques possibly at the single polariton level, and their interaction

constants are tuneable [23, 24]. One example of progress towards quantum emulations are

periodic potential landscapes, where higher-band p- and d-orbital like condensates mimic

the fundamental structure of high temperature superconductors [25, 18], offer the possibility

to study Dirac cones [26, 19], and are predicted to implement Bose-Hubbard Hamiltonian

physics in semiconductors [27].

Predictions of the quantum blockade regime in the dilute polariton systems have gained

significant attention [28, 29, 30]. This effect would allow one to exploit the fascinating

properties of polaritons in integrated quantum light sources, sources of entangled and

indistinguishable photons [31], and to generate polariton number states in microcavity traps.

The latter effect could pave the way for the study of quantum phase transitions and Bose-

Hubbard physics with light, and therefore open new directions in the solid state microcavity

research. However, the experimental demonstration of polariton quantum blockade critically

relies on the tight trapping of polaritons to enhance polariton-polariton interactions [28], or

on the controlled coupling of polariton boxes to facilitate quantum interference [30]. The

experimental and technological challenges are significant, and consequently the effect has not

been demonstrated yet.

The rapidly expanding research on exciton-polaritons creates an unrelenting demand for

elegant and non-destructive methods for trapping polaritons in a microcavity. This review

summarizes a number of complementary techniques that have been developed to meet the

demand. We discuss the techniques for trapping the excitonic component of the polaritons

by manipulating the QWs or by structuring the optical pump, as well as methods for trapping

the photonic component by manipulating the microcavity. We review the most prominent

experiments enabled by each of the trapping techniques, and discuss the limitations and

prospects.
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2. Theory

2.1. Quantum well excitons

The excitons are localized in the plane of the QWs, however the in-plane exciton wavefunction

is usually delocalized over a large number of the crystalline lattice sites due to the

electromagnetic screening in the semiconductor with a characteristic Bohr radius of 5− 15

nm and the binding energy of 4 − 10 meV for typical III/V compounds (except nitrites).

Since the physics of quantum well excitons has been studied for several decades, here we will

only summarize the most important physical relations and parameters and refer the interested

reader to the exhaustive literature (see, e.g. [1, 32, 33, 34]).

The energy spectrum of a Wannier-Mott exciton in a crystal with a dielectric constant

ε can be found in the effective mass approximation, by solving a Schrödinger’s equation for

an electron in a hydrogen atom, where the free electron mass, m0, has to be replaced by the

reciprocal mass µ = memh/(me+mh) (here me and mh are the effective masses of an electron

and a hole, respectively), and the dielectric constant ε0 is replaced with εε0.

The Schrödinger equation for the relative electron-hole motion
(

−
h̄2∇2

2µ
−

e2

4πεε0r

)

ψ(r) = Eψ(r), (1)

where r is the relative distance between the electron and the hole, has a solution in the form

of the 1s scattering wavefunction

ψ(r) =
1

√

πa3
B

e−r/aB (2)

with the Bohr radius aB = 4πεε0h̄2/(µe2) and the corresponding eigenenergy E =

2µe4/(8π h̄εε0)
2.

In quantum confined systems, such as a quantum well, the reduced dimensionality leads

to modifications in these quantities, and the Bohr radius, as well as the binding energies

of the excitons, critically depend on material parameters. In the presence of confinement,

excitonic effects generally are enhanced, resulting, e.g., in a four fold increase of the exciton

binding energy in an ideal two-dimensional system. The effects of confinement on excitons

are thoroughly investigated in references [1, 32, 34, 35], to list a few.

The oscillator strength of QWs can be expressed in terms of the overlap integral between

the electron and hole wavefunctions. Excitonic effects lead to an increase of the oscillator

strength compared to band-to-band transitions. The oscillator strength for a transition f can

be expressed in the effective mass approximation in terms of the periodic (Bloch) part of the

wavefunctions in the valence (v) and conduction band (c) uv,c and the envelope Fv,c with the

momentum operator p and the polarization vector ê:

f =
2

µ h̄ω
| 〈uv|êp|uc〉 |

2| 〈Fv|Fc〉 |
2, (3)

where h̄ω is the energy of the considered transition.
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The oscillator strength is closely related to the optical absorption in a QW as follows:

A =
4π2e2h̄ f

nm0cL
, (4)

where n is the refractive index of the material, L the the well width, and A is the integrated

absorption intensity (in units of eV/cm). This quantity can therefore be determined via photon

absorption spectroscopy [34].

2.2. Microcavity Photons
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Figure 1. (a) Vertical mode profile in the microcavty: The optical field is strongly enhanced

in the central layer, where the QWs are located to maximize light-matter coupling. (b)

Calculated reflectivity spectrum of a DBR-microcavity with a strongly pronounced Fabry-

Perot resonance.

There exists a wide range of possibilities to trap photons in semiconductor microcavities

in one or more dimensions. Common techniques involve total internal reflection

on semiconductor-air interfaces, photonic bandgap tailoring, plasmonic resonances, or

distributed Bragg reflection [1]. In the research field of microcavity polaritons, distributed

Bragg reflector (DBR) based microcavities are most commonly used, since they can provide

near unity reflectivity without additional sample processing and lithography steps. We will

briefly summarize their basic properties in this section.

The typical cavity hosting exciton-polaritons is composed of layers with different

refractive indices, such as AlAs and (Al)GaAs. If the thicknesses of the individual layers

are chosen to match the Bragg condition, d = λ/(4n), then in such a DBR, interference of

transmitted and reflected light allows to achieve extraordinary high reflectivity in a spectral

window with a width of about 100 nm around the Bragg wavelength. In order to form a cavity

based on such reflectors, a photonic defect layer has to be included. We will only consider the

simplest case here, namely a λ/n- thick defect of a high-index material (such as GaAs).

The optical mode profile in such a Fabry-Perot resonator can be calculated by the

transfer-matrix method, yielding a strong enhancement of the light intensity inside the cavity

defect layer and an oscillating decay inside the DBR mirrors. Details of the method are

described in [1]. From this decay, we can define an effective cavity length, which is the sum

of the physical cavity length Lc and the depth of the light penetration into the mirrors:

Leff = Lc +
λc

2nc

n1n2

|n1 −n2|
,
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where ni are the refraction indices of the DBR layers and nc is the refractive index of the

cavity layer.

Figure 1(a) depicts the optical field inside of the cavity, as calculated by the plane-wave

expansion technique. Additionally, figure 1(b) shows the reflectivity spectrum of the full

structure consisting of the microcavity and the surrounding DBRs, which is characterized

by a high-reflectivity region (the stopp-band) and the centered resonance dip. The width

of this resonance defines the so-called quality factor or Q-factor via Q = ω/δω , which is

directly linked to the lifetime τ of photons in the cavity Q = ωτ . In (Al)GaAs DBR based

microcavities, Q-factors of several 100000 are available [36, 37] which reflects the high

material qualities available by state-of-the-art epitaxy.

As the photon cannot freely propagate through the microcavity, its dispersion relation is

strongly modified, and it can be approximated by a parabola for small in-plane momenta, k||,

which results in an effective photon mass, mc, in a microcavity:

E(k)≈ E0 +
h̄2

2mc
k2
||, (5)

where E0 = E(kII = 0). The effective mass is defined as mc = hnc/(cLc) and has a value on

the order of 10−5m0. A detailed derivation of this equation can be found, e.g., in [1, 38].

2.3. Exciton-polaritons and normal mode coupling

Implementing a QW with a high oscillator strength in a microcavity with a sufficiently

large Q-factor can give rise to a normal mode coupling between the photonic and excitonic

resonance. The energy is transferred back and forth from the excitons in the QW to the

microcavity photons, which results in a characteristic Rabi oscillation in the time domain

accompanied by a normal mode splitting of the polariton branches. A semi-classical treatment

of this effect by modeling the system as two damped coupled oscillators is described in

[39, 40]. This coupled oscillator model yields an analytical expression for the normal mode

coupling in a straightforward manner. Here, we summarize some important conclusions from

this model. Solving the transfer matrix equations yields an expression which connects the

frequency of the polariton states with the frequency of the exciton ωx, the cavity resonance

ωc, the interaction potential V and the dissipation rates γx,c:

(ωc −ω − iγc)(ωx −ω − iγx) =V 2. (6)

This expression yields an equation for ω , which reads

ω =
ωc +ωx − i(γx + γc)

2
±

√

V 2 +
1

4
(ωx −ωc − i(γx − γc))

2. (7)

The corresponding energies of the upper and lower polariton branch h̄ω are plotted as a

function of the detuning h̄ωc − h̄ωx in figure 2(a).

The splitting between the upper and lower polariton branches on resonance is the

characteristic Rabi splitting h̄Ω. The Rabi frequency Ω is then defined as:

Ω = 2

√

V 2 −
1

4
(γx − γc)

2. (8)
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The coupling constant, V , is a function of the exciton oscillator strength fn, an effective

number of QWs in the microcavity, NQW, and the effective cavity length Leff:

V ≈

√

2Γ0cNQW

ncLeff

. (9)

with

Γ0 =
πe2

nc4πε0mec
fn. (10)

The hybridization of light and matter leads to a strong modification of the energy-

momentum dispersion relations. In order to derive the polariton dispersion relations, one

needs to introduce the Hopfield coefficients |X |2 and |C|2 which determine the fraction of

light (|C|2) and matter (|X |2) for the lower polariton branch:

|X |2 =
1

2



1+
Ec −Ex

√

h̄2Ω2 +(Ec −Ex)2



 (11)

and

|C|2 =
1

2



1−
Ec −Ex

√

h̄2Ω2 +(Ec −Ex)2



 (12)

As a consequence of the parabolic cavity dispersion, the lower branch of the polariton

dispersion also acquires a parabolic shape around its energy minimum, and the effective mass

of the lower polariton critically depends on the exciton-photon detuning, δ = Ec−Ex, through

the Hopfield coefficients: m−1
LP = |X |2m−1

x + |C|2m−1
c (see. figure 2)

2.4. Polariton lasing and condensation

Exciton-polaritons behave as bosons in the low density limit. Due to their light effective

mass, they are excellent candidates for studies of bosonic condensation effects and related

phenomena at elevated temperatures in semiconductors. However, there are several

restrictions:

• Polaritons only live for a short time (∼ 1− 100 ps) in a microcavity before they decay

radiatively. Hence, they can hardly reach true thermal equilibrium. Therefore, the

condensate of exciton-polaritons is often referred to as a dynamic, open-dissipative

condensate, or a polariton laser. A comprehensive discussion of the ’polariton laser’

vs ’condensate’ regime can be found, e.g., in [41].

• At high densities, screening of excitons is dominant, which leads to a bleaching of the

oscillator strength and the system enters the (fermionic) plasma phase. This typically

happens for particle densities on the order of the Mott transition, i.e 1010−1011 electron-

hole pairs per cm−2 [42].

• Excitons are only stable up to a certain temperature which is determined by their binding

energy.
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Figure 2. (a) Anticrossing of the lower and upper polariton branch at zero in-plane momentum.

Energy-momentum dispersion relations for exciton-polaritons with a large negative detuning

of −h̄Ω (b), at zero-detuning (c), and with a large positive detuning of h̄Ω (d).

The resulting phase diagram of exciton-polaritons has been drawn by Kavokin et al. [1], and

is sketched in figure 3 for the case of GaAs QWs in a microcavity.

Figure 3. Phase diagram of exciton-polaritons based on GaAs QWs in a microcavity. The

image is reproduced in a slightly modified manner from [43].

The planar microcavity exciton-polariton system is inherently two-dimensional (2D),

and in accordance with the Hohenberg-Mermin-Wagner theorem, the transition to BEC in
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a uniform system is only possible at zero temperature [11] for 2D as well as 1D geometries.

Restriction of the system to a finite size, however, inhibits excitation of density and phase

fluctuations permitting the formation of a condensate or quasi-condensate phase with a

macroscopic coherence length. This is true for a polariton system with a finite excitation

area, both in one and two dimensions [44, 45]. In most cases, the coherence length of the

polariton condensate is thus finite, and ranges on the order of the optical pumping spot size [3].

At macroscopic lengths, and in the 2D case, it is generally assumed that the system enters

the Berezinskii-Kosterlitz-Thouless (BKT) phase, where vortex-antivortex pairs are formed,

and the spatial correlation function decays according to a power law [46, 47]. Although the

correlation function measurements in exciton-polariton system are suggestive of the BKT

phase [48] more conclusive detection of spontaneously formed vortex pairs is required to

confirm this regime.

The need to confine polaritons goes far beyond the unambiguous observation of

condensation effects. As described in the introduction, the engineered confinement of exciton-

polaritons paves the way for creating functional polaritonic circuits and quantum simulators,

as well as fundamental studies of polariton condensation in complex potential landscapes.

2.5. Polaritons in potential landscapes

Since exciton-polaritons are composed of light and matter, both the photonic and the excitonic

part of the quasiparticle can be subject to confinement. Theoretical description of the exciton-

polaritons in the engineered potentials below condensation threshold generally relies on

calculating the eigenstates of photons and excitons under respective confinement conditions

and then using the exciton-photon interaction Hamiltonian to derive the corresponding

polariton dispersion. This approach was successfully used, e.g., to describe discrete polariton

states appearing in a zero-dimensional ’mesa’ trap [49]. Indeed, as will be discussed below

in section 3.2.5, such a trap provides a purely photonic confinement of a polariton, and

therefore it is sufficient to solve a Maxwell equation for the photon field, E (ρ) with the

boundary conditions given by the contour of the mesa, and assuming that at a position

ρ within the trap the electromagnetic modes are locally equivalent to the planar cavity

modes: E (r) = E (ρ)exp(ikz(ρ)z), where kz(ρ) is a suitably modified propagation constant.

Introducing the field operators of cavity photons, φ̂ , and excitons, χ̂ , the second-quantized

Hamiltonian for the two coupled oscillators model (7) [38] can be written as:

Ĥ = ∑{n}

(

h̄ωc{n}φ̂ †
{n}φ̂{n}+ h̄ωx{n}χ̂†

{n}χ̂{n}

)

+

∑{n},{n′}

(

h̄Ω{n},{n′}φ̂ †
{n}χ̂{n′}+h.c.

)

,
(13)

where summation over all quantum numbers of the bound states is assumed. Here h̄ωc,x are

the eigenenergies of the photon and exciton modes, and Ω{n},{n′} is defined through the Rabi

splitting in the planar region, Ω, and the overlap integrals between the corresponding exciton

and photon modes [49]. In the absence of excitonic confinement, exciton modes are those of

a free particle.
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Similarly, using the linear exciton-photon coupling Hamiltonian (7) and (13), it was

shown that the structure of the energy bands imposed either on the cavity photon mode (or the

exciton mode) by a periodic potential (e.g., periodic array of mesas) translates into the band-

gap structure of the polariton spectrum [50, 51]. For the case when only photonic modes

are affected by the periodic potential, the energy bands of the lower-polariton (LP) state are

determined as:

ELP
n =

1

2
[Ex +Ecn −

√

h̄2Ω2 +(Ecn −Ex)2], (14)

where Ecn = h̄ωc are the photonic Bloch bands, and Ex = h̄ωx. Alternatively and equivalently,

the LP band structure can be calculated directly by solving the eigenvalue problem for

the polariton Bloch states uk(rrr) = uk(rrr + a) in an effective polaritonic in-plane potential

V (rrr) =V (rrr+a):
[

h̄2

2mLP
(−i∇+k)2 +V (rrr)

]

u(n,k)(rrr) = En(k)u(n,k)(r) (15)

where n is the band index and mLP the effective polariton mass in the planar region. A typical

structure of LP energy bands ELP(k) is plotted in figure 4 for a square lattice with a = 3 µm,

and the comparison with the low density polariton emission spectrum (see section 3.2.5, figure

16) demonstrates a good agreement. Furthermore, provided the effective polariton potential is

deduced with sufficient accuracy, a fractal band-gap spectrum in a Fibbonacci lattice has also

shown to be well reproduced by this approach [52]. For a considerable polariton density above

the condensation threshold, the energy spectrum is significantly affected by the polariton-

polariton interaction leading to screening of the band-gap structure [53] and formation of

localized gap states [54, 55, 51, 56].

Above the condensation threshold, the linear coupled oscillator model no longer holds.

With the exception of a very strong confinement in zero-dimensional structures, static and

dynamic features of the exciton-polaritons condensates in trapping potentials can be well

captured by the mean-field description. The mean-field models are derived under the

assumption that a significant population is present in each of the intracavity modes, as well as

near the energy minimum of the LP dispersion, such that bosonic stimulated scattering into

the condensed state is notable.

In the case of coherent, resonant excitation of the condensed state, such as the OPO

regime [57], the modified Gross-Pitaevskii equation for the cavity photon and QW exciton

mode amplitudes can be written in the form:

i∂tΨc =
(

ω0
c −

h̄2

2mc
∇2 − iγc

)

Ψc +
Ω
2

Ψx +αEp

i∂tΨx =
Ω
2

Ψc +
(

ω0
x +V (r, t)− iγx

)

Ψx +G|Ψx|
2Ψx.

(16)

where Ep(r, t) = E0 exp(ikr)exp(−iωpt) is the optical pump field, α is the response

coefficient, G is the exciton-exciton interaction strength, and the exciton and photon modes

are characterized by their minimum energies h̄ω0
c,x. The model in this form was successfully

used, e.g., in [53] to describe dynamics of condensation in a periodic potential V (r, t) imposed

predominantly onto excitonic component of polaritons by surface acoustic wave modulation.
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Note that the effective mass of the excitons is much larger than that of cavity photons, so that

their kinetic energy is ignored in Eq. (16).

The model equation (16), with the external potential term introduced into the equation

for the cavity photon amplitude, could also serve to describe resonant excitation and

nonlinear dynamics of exciton-polaritons in photonics potentials, e.g., those provided by

tapered microcavities [16]. It is important to note, however, that in order to describe

realistic experimental situations, the mean-field models often need to be augmented to

account for non-radiative energy relaxation of excitons. This is usually done by introducing

a phenomenological damping term into a modified Gross-Pitaevskii equation [58] in the

spirit of thermal relaxation models for atomic condensates [59]. Recently, a stochastic

Gross-Pitaevskii equation for the polariton order parameter ΨLP was derived from the full

microscopic theory, under the assumption of coherent pumping and phonon-assistend energy

relaxation [60], and shown to be successful in describing thermal relaxation of a polariton

condensate in an imposed potential landscape.

Finally, as will be discussed in detail in the subsequent section 3.1.5, incoherent, far-

off resonant excitation of a polariton condensate provides a unique opportunity to create

reconfigurable traps for polaritons induced by an optical pump via an excitonic reservoir.

The model for the reservoir-coupled condensate is discussed, e.g., in [61]. In a more general

form, this open-dissipative Gross-Pitaevskii equation (or modified complex Ginzburg-Landau

equation), takes the form:

ih̄
∂ΨLP

∂ t
=

[

−
h̄2

2mLP
∇2
⊥+gc|ΨLP|

2 +gRnR(r, t)+ i
h̄

2
(RnR(r, t)− γ)

]

ΨLP,

∂nR

∂ t
= − (γx +R|ΨLP|

2)nR(r, t)+P(r). (17)

Here ΨLP is the condensate wavefunction, nR is the reservoir density, and P(~r) is the spatially

modulated optical pumping rate. The critical parameters defining the condensate dynamics

are the loss rates of the polaritons γ and reservoir excitons γx, the stimulated scattering rate R,

and the strengths of polariton-polariton, gc, and polariton-reservoir exciton, gR, interactions.

Even without an engineered confining potential, the polaritons can be spatially localized

in the vicinity of a single pump spot due to the gain-induced self-trapping effect, which

is generic for open-dissipative systems [62, 63, 64]. Combination of several pump spots

or pumping with structured light beams creates an effective polariton trap due to a strong

repulsive potential induced by the reservoir density distribution nR(r). A striking effect of

this all-optical trapping scheme is shown in figure 4(b), where the condensate is confined in

an effective 1D harmonic potential created by two intense pump spots. The model (17) with

various modifications accounting for the adiabatic evolution of the reservoir (see, e.g., [65])

phenomenological energy relaxation, and reservoir diffusion, is successfully used to describe

experimental observations of all-optically trapped polariton condensates [66, 67, 68, 69]].

Theoretical and numerical studies of the model (17) have also resulted in a number of

predictions concerning the behaviour of far off-resonantly excited polariton condensates in

the presence of an engineered trapping potential. For example, trap-induced deformations of

the polariton density [65, 63], instabilities promoting vortex formation [65, 70] , and detailed
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structure of excited states in harmonic potentials [71] were described theoretically, but still

await to be systematically tested in experiments.

Finally, it has been predicted that in the presence of spatial confinement, polariton

interactions can be notably enhanced [28]. The nonlinear coefficient characterising the

polariton interaction in the presence of optical confinement within a cylindrical area of radius

r0 is calculated as a function of the structure parameters in [28]. The interaction energy reads:

h̄ωnl = 2.67h̄κ/(2r0)
2, where κ quantifies the polariton blueshift without lateral confinement,

and ranges in the order of h̄κ = 1.5× 10−2 (µ m)2 meV. If the value for ωnl exceeds the

polariton linewidth, only one polariton can be injected into the system by a resonant laser, and

the regime of polariton blockade is reached.
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Figure 4. (a) The first four energy bands for a square lattice array of polariton traps in the

reduced Brillouin Zone (BZ) representation. Dashed lines indicate the position of the complete

band gap. Inset: The first irreducible BZ. (b) Harmonic energy spectrum of a polariton

condensate trapped between two laser spots. This figure is reproduced with permission from

[66].

3. Experimental approaches to polariton confinement

In the following, we will discuss various techniques employed to spatially confine polaritons

and highlight the advantages and limitations of each technique. We also summarize important

experiments made possible by the techniques under consideration. We will first discuss

methods for confining polaritons via their excitonic part. In the second half of this section

we will review commonly used approaches to trapping the polaritons via their photonics

component.

3.1. Trapping polaritons via the excitonic part

For all techniques employed to localize microcavity polaritons via their excitonic part, it is

of crucial importance to retain a high quantum efficiency, prevent surface recombination,

and preserve a large exciton oscillator strength. These design rules naturally exclude some

methods, such as defining small quantum dots (QDs) via lithography and dry etching of a

QW, and set intrinsic limits to others (e.g., application of large local electric fields).
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a) b) 

c) 

Figure 5. (a) Schematic drawing of the setup to apply local strain to a sample via a pin. (b)

Potential profile on polaritons trapped in such a strained environment. (c) Flow of a polariton

condensate from the excitation spot (on the right) into the potential minimum created by local

strain. The figure is reproduced with permission from [5].

3.1.1. Application of local strain Since the bandgap of semiconductor crystals critically

depends on the distance between two nearest atomic neighbors, externally applied crystal

strain can be employed to locally tune the exciton wavelength. One possible scheme

exploiting this effect to create a trapping potential for polaritons is presented in figure 5(a)

[5]. The sample with a partly removed substrate is held in the cryostat, and a sharp metal tip

with a radius of 50 µm locally applies compressive strain on the reverse side. In this manner,

a local parabolic potential minimum for QW excitons on the order of the width of the tip can

be created. The local redshift of the exciton energy at the position of the tip is also reflected

in the energy minimum for exciton polaritons which is shown in figure 5(b). The depth of this

potential can reach several tens of meV [5, 72, 73, 74], clearly exceeding the thermal energy

at liquid helium and even nitrogen temperatures. The implementation of this technique led

to the first successful demonstration of Bose-Einstein condensation of exciton-polaritons in a

GaAs based microcavity under strictly non-resonant and non-local pumping, taking advantage

of the diffusion of polaritons into the trap. This effect can be seen in the real space image in

figure 5(c). The polaritons are generated by a non-resonant pump laser on the right side of

the trap. The emission shown in figure 5(c) is a consequence of polaritons flowing into the

potential minimum separated by ∼ 20 microns from the excitation. The flexibility to adjust
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the strain reversibly, and hence control the potential shape and depth is another advantage of

this technique. However, due to the finite size of the mechanical pin, more complex potential

landscapes beyond a single trap seem difficult to realize. The lateral trap size on the 10−100

µm scale makes this technique, at least in this implementation, unsuitable for the observation

of size quantization effects or blockade effects on the single polariton level.

3.1.2. Surface acoustic waves A somewhat related technique, which also exploits a

modification of the local strain environment to manipulate the polariton potential landscape,

is the application of surface acoustic waves (SAWs) to the polariton system. The field can, for

instance, be electrically stimulated by an interdigitated transducer. The sound waves of the

acoustic field then propagate along the sample, as sketched in figure 6(a) for a two dimensional

square configuration. Strictly speaking, and similarly to the local static strain technique, the

acoustic phonon field has a direct impact on both the excitonic and the photonic part of the

polariton:

• As discussed above, the strain pulse locally affects the energy of the QW-exciton via the

stress depending bandgap, or more precisely, via the deformation potential interaction

energy. This effect is the stronger one of the two.

• Both the physical cavity length and the refractive index of the cavity material are locally

modified in the presence of the acoustic field, which leads to a change of the local

resonance condition and hence to optical confinement.

The depth of the excitonic confinement exceeds the photonic modulation by more

than a factor of two, yet both effects on their own are sufficiently strong to provide

effective polariton localization [75]. Figure 6(b) depicts the influence of the SAWs on the

bandstructure of the lower polariton branch. As a result of the generation of a two-dimensional

polariton superlattice, a strong modification of the polariton dispersion is evidenced from the

calculations, as depicted in figure 6(b) [55]. In such a potential landscape, the condensation

of polaritons close to the M-point of the BZ in the lattice bandgap was observed, where the

effective mass of the polaritons acquires a negative sign.

3.1.3. Proton implantation induced intermixing Local interdiffusion of compound QWs

with the barrier material is a promising technique to generate large excitonic trapping

potentials with lateral extensions below 10 µm. Intermixing techniques have been widely

studied in semiconductor laser research [76], and offer a convenient way to tailor QW

properties post-growth. However, this comes at the expense of a loss in flexibility, since

intermixing naturally is an irreversible process.

One possible scheme to locally tune a QW via rapid thermal annealing without damaging

its properties can be facilitated by masking the QW-cavity wafer with a material of very

low heat transmittance. Polariton traps can be created at these positions after the annealing

process, as the annealing procedure leads to a local redshift of the QW emission. SrF has

been identified to be a good candidate for this application [76]. Underneath the masked areas

the GaAs QWs (for instance embedded in AlAs barriers) remain widely unaffected by the
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a) b) 

Figure 6. (a) Schematics of two propagating SAWs, forming a square lattice potential on

a polariton sample. (b) Calculated bandstructure of the lower polaritons arising in such a

periodic potential. The figure is reproduced from [55]. Copyright (2013) by The American

Physical Society.

annealing process if moderate temperatures below 900 ◦C and reasonable annealing times are

applied. In the surrounding areas, which could for instance be covered by a heat transmitting

dielectric or a diffusion enhancing material, such as SiO2, the QW emission energy can be

blue-shifted via QW-barrier intermixing.

An alternative technique to induce a local intermixing between the QW material and its

barrier employs the deliberate disordering and annealing of the semiconductor heterostructure

interfaces by high energy ion implantation [77]. Depending on the atomic species being

implanted and the dose (ions/cm2), a rapid thermal anneal can recover the induced damage

of the ion beam to a high degree. Protons are the natural choice of ion for this technique, as

hydrogen is a common, largely inactive interstitial atom incorporated during growth, and will

have a negligible effect on the post-processed material quality.

Despite the thickness of the top DBR layer, the ion energy can be tuned specifically such

that the protons deposit the bulk of their energy in the QW-embedded cavity region, thus

creating the highest density of vacancies. Figure 7(a) shows the simulated ion and vacancy

profile in a typical GaAs microcavity structure with 24/27 mirror pairs on the top/bottom of

the cavity. For the chosen energy of 440 keV, the ion and vacancy concentration is largely

localized to the cavity region.

The applicability of this technique is strongly supported by previous studies [78] of

proton implantation-induced intermixing on bare GaAs/AlGaAs QWs which show energy

shifts in the 100’s of meV range, and specifically, that at smaller doses, the luminescence

intensity and linewidth can be recovered close to original values but still with 10s of meV

shifts, sufficient for a tight and deep trapping of exciton-polaritons in microcavities.

The shift of the lower polariton (LP) state will strongly depend on the initial cavity-

exciton detuning. Given a blue-detuned LP state [figure 7(b)], as nominal exciton energy E0
X

is shifted to the blue (and correspondingly the LP energy) with increasing dose, the lower

polariton detuning will shift to the red [figure 7(c)]. As far red-detuned polaritons are quite

insensitive to the exciton energy, the LP mode will only shift to a maximum energy roughly
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Figure 7. (a) shows the calculated ion and induced vacancy distribution at the optimal ion

energy for a specific microcavity structure in order to localize the vacancies to the cavity

region. As the exciton energy E0
X is increased in energy with increasing dose, an initially

blue-detuned LP (b) will also shift to higher energy (c), while its mass decreases as a result of

the shift towards negative detuning. Experimentally, an initially blue-detuned sample (d) after

implantation with a dose of 5×1014 cm−2 ions at 440 keV (e), shows exactly these features.

equivalent to its amount of positive detuning. Provided the Rabi energy is also sufficiently

large, implanting a low dose of protons into a polariton microcavity, with subsequent thermal

annealing, will create a strong confining potential for a LP state with blue detuning.

Initial experimental studies of the technique on planar samples can reproduce the above

described features. An originally blue-detuned sample [figure 7(d)], when implanted with

a moderate dose, yields a polariton mode shifted by ∆ELP ∼ 15 meV, and shows a large

reduction in the effective mass consistent with a shift of the polariton detuning into the red

region [figure 7(e)].

3.1.4. Electrostatic Traps By applying electric fields to semiconductor quantum wells, the

energy of the exciton can be tuned via the quantum confined Stark effect (QCSE). When

locally applied to a sample, this effect can also be exploited to build flexible and elegant

exciton traps. A major advantage of this technique certainly lies in the ability to electrically

manipulate the trapping potential. For weak electric fields F , the shift of the exciton energy

due to the QCSE can be expressed as:

∆E = βF2, (18)
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where β is the polarizability of the quantum well excitons. Note that, for indirect excitons in

coupled QWs (these are excitons where the electron is confined in one QW, and the hole in

the other QW [79]), see figure 8(a,b) or for excitons in thick QWs, for high fields the energy

shift is linear with the applied electric field ∆E = −edeffF , where deff denotes the separation

between the QWs or the width of the thick QW. This trapping technique has been successfully

exploited to localize (mostly indirect) excitons to study cold exciton gases in the presence of

confinement. A cross-section of a design for such a trap (reproduced from [80]) is shown in

figure 8(c).The electric field strength is laterally modulated due to shielding by an SiO2, which

leads to the distinct formation of an electrostatic trap of QW excitons as can be seen by the

deeply trapped indirect excitons in figure 8(d) . This technology has been applied in similar

forms for the creation of exciton traps with complex geometries [81], yielding the possibility

to promote bosonic condensation phenomena [82].

A possible scheme for fabrication of electrostatic polariton traps is seen in figure 8(e),

which shows semi-transparent contacts fabricated on top of a doped microcavity. Since the

QWs are located in the intrinsic region, moderate applied voltages of a few hundred mV

should suffice to shift the QW exciton emission up to several meV. It is interesting to note

that, while the QCSE has been studied for exciton-polaritons in the linear regime [83, 84, 85],

certain peculiarities related to phonon enhanced tunneling effects between nearby QWs and

carrier screening were observed recently [86, 87]. Under specific circumstances, in particular

if diffusion of the reservoir is restricted, these effects indeed lead to a blueshift of the polariton

resonance in the presence of the electric field, which may present a complication for the

realization of electrostatic polariton traps.

An intrinsic limit to the tuning range of the exciton emission is the carrier tunneling out

of the finite QW barriers. Furthermore, in order to laterally trap excitons, the QCSE has to be

locally applied via a finite-size gate. As a result, lateral electric fields will evolve in the QW

[88], which can also lead to a dissociation of the excitons. Despite the fact that there still is

no conclusive demonstration of an electrostatic polariton Stark trap to date, the development

of this technique would be highly advantageous, in particular because of its flexibility. A

combination of electrostatic trapping or tuning with other confinement techniques described

later in this article could yield the possibility to engineer reconfigurable polariton landscapes

with unprecedented properties.

3.1.5. Confinement provided by the excitonic reservoir The carrier and exciton reservoir,

which is induced by the excitation laser, provides a natural way to create potentials for the

exciton polaritons. This approach provides a very elegant and useful technique to confine,

manipulate and steer polaritons by exploiting their strong Coulomb interactions. An initial

demonstration of this effect was discussed in a one-dimensional configuration [90]. Here,

the polaritons were already partly confined in a deeply etched wire cavity along the wire.

The high-energy excitonic reservoir created by the laser pump (tuned far off-resonace from

the polariton energy) provided an additional potential barrier due to the strong repulsive

interaction with polaritons. As a consequence, the polaritons became confined in all spatial

directions close to the edge of the wire [figure 9(a)]. Conveniently, the size of the pump-
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Figure 8. Electrostatic trapping of excitons and exciton-polaritons: (a) and (b) The

exciton radiative transition without and with an applied voltage, the latter with long-lifetime

indirect excitons XI . (c) A cross-section of a trap design showing a modulation of the

electric field strength felt by the excitons due to shielding by an SiO2 layer, and (d) the

experimental realization of indirect exciton trapping. These figures are reproduced from

[80]. Copyright (2011) by The American Physical Society. (e) Proposed trap for microcavity

exciton-polaritons: The microcavity is locally capped by a semitransparent contact which

simultaneously acts as a gate. Once a small bias is applied, the polariton energy is lowered

underneath the trap, and an attractive potential is created. The figure is reproduced with

permission from [89]

induced trap can be modified by changing the location of the pump spot on the wire cavity.

In a similar way, polaritons can be confined all-optically by choosing smart geometries of the

excitation laser beam. By using spatial light modulators to shape the optical excitation, ring

shaped confinements [91, 68] [see figure 9(b)], confinements created by multiple pump spots

[66, 92, 91], and controlled flow patterns in more complex landscapes were generated [93].

Long-lifetime polaritons in large-area optically-induced ring traps are emerging as a platform

for studies of fundamental properties of polariton condensation largely decoupled from the

excitonic reservoir [94].

The concept of structuring the non-resonant pump profile to produce a targeted mode of

the condensate has been further extended in [69] to demonstrate polariton condensates with a

defined chirality. There, the pump beam has been structured via a metal amplitude mask with

six pin-holes, which either were misaligned with respect to the laser beam, or structured in a

chiral arrangement. As a result, trapped steady-state vortices were produced in the center of

the six excitation spots, as confirmed by real space interferometry [see figure 9(c-e)].

The technique of controlling the environment for polariton condensate via pump shaping

has proven extremely useful for the manipulation of the polaritons’ properties due to its

flexibility, however the depth of the provided confinement (or the potential height) is limited
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by the strength of the polariton-exciton repulsive interaction, which is of the order of 1 meV.

a) b)

e)

Figure 9. All-optical trapping of polaritons with the pump laser. (a) The polaritons are already

confined in a one-dimensional microwire. The excitation laser spot provides the remaining

boundary, and a zero-dimensional polariton condensate is formed close to the edge of the

wire. The figure is reproduced from [90] (b) With a ring-shaped excitation laser spot, it is

possible to create and confine a condensate in the center. The figure is reproduced from

[68]. Copyright (2013) by The American Physical Society. (c-d) Method to create chiral

structures by tailoring the exciton reservoir with a structured pump beam, by misalignment (c)

and deliberatly designing the pump structure (d). Both techniques create a charge on vortex

via non-resonant pumping. e) Interference image with a characteristic fork pattern, indicating

the presence of a vortex. (c-e) are reproduced from [69]. Copyright (2014) by The American

Physical Society.

3.1.6. Low-dimensional active material In order to complete this section, we will briefly

review some examples of creating microcavity polaritons by directly using low-dimensional

gain material instead of two-dimensional quantum wells subject to lateral trapping. In this

discussion, we will limit ourselves to single semiconductor quantum dots on GaAs. A system

composed of a single QD and a microcavity can be described by the single-particle Jaynes-

Cummings Hamiltonian [95], giving rise to an energy ladder structure which adds strong non-

linearities on the single photon level. For this reason, QD-polaritons are usually studied in the

framework of isolated quantum systems, similar to atoms in high finesse microcavities [96].

Naturally, the possible application of QD-polaritons fundamentally differ from the QW-case.

Successful realizations of QD-polariton systems were first reported in [97, 98, 99] for

various photonic resonator geometries. The first successful demonstration of true quantum

effects in such systems (i.e. sub-poissonian emission statistics) in fundamental contrast to

quantum well microcavity polaritons, was reported by [100] and [101]. Signatures of the
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photon blockade (or QD-polariton blockade), which is a fundamental effect that occurs due

to the single photon non-linearity of the Jaynes-Cummings ladder system (see [102]), were

observed in [103]. The electrical injection [104], electro-optical manipulation [105], and

nonlinear emission [106] have been reported.

While the strong exciton localization in the quantum dot structures has many advantages

due to the inherently very large non-linearities on the single- to few photon or exciton scale

(leading to single photon emission and the polariton blockade effect), its main drawback lies

in the poorly controlled nature of the fabrication process. It is still very challenging to gain

control over the properties of single quantum emitters to such an extent, that they can be,

e.g., arranged in arrays [107, 108] with designed spectral properties [109]. In this respect, a

QW-polariton system, if it could be designed in such a way that nonlinearities are strongly

enhanced, would be highly preferable.

3.2. Trapping of polaritons via their photonic part

Complementary to the discussion on the excitonic polariton trapping, in the following we will

consider techniques to confine polaritons via their photonic part. Due to the relatively large

extent of the photonic wavefunction, quantization and finite size effects can be observed for

relatively large structures on the order of the polariton wavelength. This gives rise to ’quasi

zero dimensional’ exciton polaritons in structures with lateral dimensions on the order of

1− 10 µm. Three of the most frequently exploited techniques, namely etching micropillars,

defining shallow mesas and depositing metal masks on top of the two dimensional microcavity

are sketched in figure 10, and will be discussed in more detail in the next section.

Figure 10. Schematics of commonly applied techniques for spatial confinenement of exciton-

polaritons via the photonic part: (a) depositing metal films on the top DBR layer, (b) etching

micropillars and (c) defining shallow mesas in the cavity.

3.2.1. Natural photonic disorder traps In many microcavities, polariton localization can

inherently occur in so-called photonic disorder potentials. These potentials can arise, e.g.,

due to natural local elongations of the cavity at the position of crystal defects and provide



Exciton-Polariton Trapping and Potential Landscape Engineering 21

an optical confinement. It has also been shown, that the condensation of polaritons in a

planar two-dimensional cavity is likely to occur in such natural potentials [110]. An accurate

characterization of the formation of polaritonic states in natural traps was performed in [111].

Interestingly enough, these defect-induced traps are typically of a Gaussian shape, which

is predicted to promote confined Q-factors strongly exceeding those of their mesa (vertical

sidewall) counterparts for comparable mode volumes [112]. This makes such natural crystal

defect traps highly appealing for the demonstration of large polariton nonlinearities and even

photon blockade effects [113]. However, the scalability of this approach is strongly limited

due to the randomness of these defects. In a later subsection, we will discuss in detail a

technology enabling to implement similar structures in a microcavity in a fully controlled

manner.

3.2.2. The metal mask technique A comparatively simple, yet very efficient method to create

polariton confinement in a grown microcavity structure is the deposition of metal films on the

sample surface. The metal layer changes the boundary conditions of the electromagnetic

field with respect to the semiconductor-air interface, and creates an optical node. As a

result, a modest shift in the energy of the optical resonance can be observed (on the order of

0.1−1 meV), which leads to an effective photonic confinement. The beauty of this approach

certainly lies in its simplicity, and many pioneering experiments with polaritons in periodic

potential landscapes were initially carried out in such samples. Examples include the first

demonstration of a polariton condensate at higher-order Bloch bands in one-dimensional

arrays [25] and the formation of polariton condensates in d- and f-states [18], as well as

the condensation of polaritons close to Dirac points in triangular configurations [114]. A

compilation of results obtained in the square lattice geometry is shown in figure 11. As can be

seen in figure 11(b), this technique yields relatively shallow lattice potentials (∼ 10−2 −10−1

eV), and therefore the full energy gap, e.g., that between the first and the second band shown

in figure 4, does not open.

An important extension of this approach is related to the excitation of the so-called Tamm

plasmon (TP) states at semiconductor-metal interfaces. Localized TPs can evolve at the crystal

surface at the interface between a periodic dielectric structure and a metal layer [115], and

can be directly optically excited. The electric field distribution of such a TP decays into

the periodic DBR structure, with a significant field enhancement close to the semiconductor-

metal interface. It is rather straightforward to couple TP modes to matter excitations, and the

formation of Tamm plasmon exciton-polaritons has been reported [116, 84, 117]. In stark

contrast to the deposition of the metal on top of a DBR, the lateral confinement provided by

the Tamm plasmon can be significant [118].

For both methods, the Tamm plasmon approach or the metal mask deposition (which can

also be considered as evanescent coupling of a Tamm state to a cavity photon), one has to

compromise between the depth of the polariton confinement and the cavity Q-factor. While

the Q-factor increases with the number of mirror pairs deposited onto the top DBR segment,

the confinement depth decreases at the same time. This issue renders this approach incapable

of providing spatial confinement for high-quality DBR based microcavities. For instance,
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for a sample with 16/20 AlGaAs/AlAs mirror pairs and a Q-factor on the order of 2000, a

confinement depth of about 200 µeV was experimentally extracted [119]. This number would

be reduced to a value between 10−50 µeV for a sample capped by more than 25 mirror pairs,

as can be determined by a standard Transfer Matrix calculation.

c

Figure 11. Confinement of polaritons by deposition of thin metal layers on a microcavity:

(a) Photograph of a metal layer with micron sized circular holes forming a square lattice

arrangement. (b) Calculated energy-momentum dispersion relation for the lattice geometry

in (a) and a shallow potential [cf. figure 4(a) for the deep lattice potential].(c) Demonstration

of the condensation of polaritons close to the high-symmetry points in the BZ, starting with a

condensate at the characteristic M-point of the BZ. Reprinted with permission from [18].

3.2.3. Etched micropillar cavities Deep etching of micropillars in the sample is perhaps

the most straightforward approach to lateral confinement of a photon in a DBR microcavity.

Additionally, diffusion and propagation of excitons is also limited to the pillar size, which has

some important implications on the performance of polariton lasers in the pillar geometry

[120]. In this geometry, the optical field is laterally confined by the semiconductor-air

interface. This approach has been widely exploited to fabricate vertically emitting lasers and

efficient single photon sources [121, 122, 123]. In order to realize such structures, typically

optical lithography or electron beam lithography is employed to define an arbitrary shape of

the pillar in a photo- or electron beam sensitive resist. This resist can be either directly used

as an etch mask, or the latter can be evaporated after the lithography step. Plasma etching

has been proven to facilitate the realization of nearly perfect posts with vertical sidewalls

in the GaAs system. A typical example of such a micropillar with a diameter of 2 µm is

shown in figure 12(a). Note that careful optimization of the etching procedure (e.g. reactive
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ion etching with Cl2/Ar plasma) can lead to almost perfectly vertical and smooth sidewalls,

which is crucial when scattering and diffraction losses should be kept minimal [37]. With

this technique, it is possible to realize DBR-based zero dimensional microcavities with Q-

factors exceeding 250000 [37]. The finite physical size of this micropillar results in a strong

optical confinement for the microcavity photon as a result of the huge difference between

the refractive index in the structure (n ≈ 3.5) and its surroundings (n ≈ 1). Hence, the

optical mode spectrum splits into a set of characteristic waveguide modes. A characteristic

photoluminescence spectrum from such a micropillar cavity is shown in figure 12(b). The

parabolic cavity resonance splits into a set of discrete, confined photonic modes, arising from

the circular waveguide geometry (see, e.g., [124, 125, 126]).
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Figure 12. (a) SEM image of a micropillar cavity, etched into a DBR based structure. (b)

Photoluminescence spectrum of the optical modes in a micropillar device. (c) SEM image

of a 1D arrangement of rectangular micropillars, resembling a modulated microwire. (d) The

energy-momentum dispersion of the modulated wire features a band gap spectrum with distinct

gaps at the edges of the BZ.

Despite the brute force approach to lateral optical confinement, and associated

degradation of the QW properties due to surface related effects, strong coupling effects

in such micropillars were successfully demonstrated by Gutbrod et al. [127], where the

characteristic anticrossing between optical and electronic resonance was fully mapped out
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via temperature tuning. In this work, the effects of light-matter coupling were amplified by

an applied magnetic field, which enhanced the oscillator strength of the integrated QWs and

lead to an increase of the light-matter coupling strength. Subsequent benchmark experiments

include the first demonstration of polariton condensation in a micropillar cavity in the II/VI

system [128] and in the GaAs system [129].

A particular advantage of defining polariton potentials via lithography and etching lies

in the simplicity of the approach. It is comparably easy to create almost arbitrary potential

profiles and to study the behavior of the quantum gas in such tailored environments. In this

spirit, polariton condensates in one dimensional microwires have been generated and their

propagation and coherence properties were investigated [90, 130, 131]. Furthermore, the

condensation of polaritons in microwires with a modulated sidewall [in other words, a one-

dimansional array of coupled rectangular micropillars, see figure 12(c)] has been reported

[54]. The overlap between adjacent pillars leads to photonic coupling, resulting in photonic

bands with well pronounced gaps at the edge of the BZ [figure 12(c)], which has been

investigated already in the early works by Dasbach et al. [132]. As we will detail later, the

peculiar band structure of such an array of coupled micropillars featuring full bandgaps and

associated negative effective mass regions gives rise to interesting condensation phenomena,

such as the formation of gap solitons [54].

Owing to the high flexibility and maturity of the electron beam lithography and etching

technologies, two-dimensional arrays of overlapping micropillars can also be realized rather

straightforwardly. Initial measurements of the photonic band structure in two-dimensional

micropillar lattices were reported by Bayer et al. [133]. An example of the implementation of

a polariton condensate in a hexagonal potential environment is shown in figure 13(a). The

structure features an optical potential landscape resembling the graphene-type lattice (so-

called honeycomb structure), which is also reflected in the optical properties of the emitted

light. The most striking property of this lattice configuration is the appearence of the Dirac

points at specific locations in the BZ. A Dirac point is characterized by its linear dispersion

of mass-less particles. The condensation of polaritons in the vicinity of a Dirac point is

demonstrated in figure 13(b).

b)

Figure 13. (a) SEM image of an array of micropillars aligned in a honeycomb lattice

configuration. (b) The potential landscape gives rise to Dirac cones with a linear Energy-

momentum dispersion relation. The condensation of polaritons near such a Dirac point is

discussed in [134]. Copyright (2014) by The American Physical Society.
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Furthermore, the maturity of this approach has already led to the first generation

of polaritonic logic devices designed for integrated photonic experiments. These devices

take advantage of the possibility to direct the flow of polaritons along etched channel

structures over macroscopic distances, and to manipulate them via optical or electric fields,

resulting in the successful implementation of switches, interferometers, and tunneling diodes

[16, 15, 135].

The ease of the micropillar approach comes along with a significant disadvantage. In

order to provide a strong mode confinement, the structures are commonly etched through the

active region (the QWs). As a consequence, nonradiative recombination of the excitons at the

surface can occur, and furthermore etching through the QWs is accompanied by degradation

of the emission. This effect can be pronounced, and is visible for instance in the spectrum

of the etched micropillar in figure 12(b), where the emission from a strong uncoupled

background resulting from etching through the active region can be seen. Therefore, less

destructive methods to incorporate deep and flexible polariton confinements into polariton

landscapes are highly desirable.

3.2.4. Photonic crystals and hybrid approaches Similarly to the fabrication of micropillar

cavities to confine polaritons, photonic crystal nanocavities can also provide a tight optical

confinement with the smallest mode volumes. This technique is particularly popular for the

fabrication of microlasers with the smallest footprints and coupled systems with quantum dot

emitters, due to the small mode volumes and the resulting large light-matter coupling strength

[98, 101]. To date, there are only few demonstrations of polariton lasers in conventional

photonic crystal nanocavities [136] [figure 14(a)]. A (hybrid) photonic crystal approach

which fully circumvents the etching of the active medium has been introduced by Zhang et

al. [137, 138]. Similarly to the methods used to build flexible vertically emitting microlasers

[139], only the upper DBR mirror is replaced by a highly reflecting sub-wavelength high

contrast grating (HCG), which is a broadband crystal mirror. A sketch of the resulting

structure, which has been proven to promote polariton lasing features [137] is shown in

figure 14(b). This work has been successfully extended by coupling of such polaritonic

boxes to photonic molecules and one-dimensional superlattices [140], which demonstrates

the versatility and potential of the approach.

In the HCG-cavity, strong coupling conditions can only be maintained underneath the

finite sized grating. This finite size effect results in an effective in-plane confinement

of polaritons, restricted to the dimension of the HCG. Another approach to define zero

dimensional polaritons by reducing the lateral area was introduced in [141]. The authors

designed a single mode fiber with an integrated Bragg grating, which they used to replace

the top DBR. While the curvature of the fiber tip defines the mode volume in such a cavity,

the resonance frequency of the resulting hybrid device can be almost arbitrarily varied by

varying the distance between the fiber tip and the sample surface. This elegant techniques

promises ultra-high Q-factors, low mode volumes and, consequently, is a prime candidate for

investigating non-linearities on the single polariton scale. A conceptually similar concept was

introduced in [142], where the authors demonstrated strong coupling conditions in a so-called
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a) b)

c) 

Figure 14. (a) Polariton laser based on a GaInP L3 photonic crystal nanocavity (figure

reprinted with permission from Azzini et al. [136]). (b) Sketch of a hybrid photonic crystal-

DBR polariton laser. (c) Hybrid fiber cavity polariton laser. The figure is reproduced from

[141]. Copyright (2015) by The American Physical Society.

open cavity approach. Here, one DBR is attached to piezo actuators which allow to tune the

physical cavity length, while a tight optical confinement is introduced by locally shaping the

curvature of the mirror.

3.2.5. Etch-and-overgrowth technique As indicated in section 3.2.1, a shallow modulation

of the cavity length, e.g. via a crystal defect initiated by a droplet, is sufficient to create

a well defined, deep lateral photonic confinement [111]. A straightforward lithographic

implementation of this concept leads to creation of polariton mesa traps. These traps have

been first reported by El Daif et al.[143] and where subsequently theoretically analyzed

with respect to the feasibility to observe polariton BEC states in lattice configurations [50].

Although the realization of such mesa traps is certainly more challenging compared to other

approaches, including etching of regular micropillars or deposition of metal masks, the

approach is very appealing due to the following significant advantages: (i) the confinement

depth can be tuneable in a wide range, mainly by adjusting the height of the defect and

the light-matter detuning; (ii) inter-site coupling between neighbouring traps is readily

controllable; (iii) surface recombination effects from etching through the active medium are

fully avoided. These traps are commonly realized by texturing of the cavity layer of a Fabry-
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Perot-microcavity structure into elongated (trap) and regular (planar) regions. As the cavity

resonance condition is fulfilled for photons with a longer wavelength, the trap region acts as

an attractive potential for photons. If the lateral dimension of the trap region is comparable

to the wavelength of the cavity-photons or polaritons, discrete 1D or 0D modes evolve in the

system.

Such a structure, which is sketched in figure 15(a), can be realized e.g., via molecular

beam epitaxy (MBE) growth in a three-step etch-and-overgrowth procedure. First, the bottom

DBR mirror and the cavity layer including all optical active regions (QWs) are grown. In the

case of an AlAs-cavity including GaAs-QWs, a thin GaAs-capping layer should be grown on

top of the AlAs-cavity-layer to protect the sample from oxidation [51], and ideally be placed

at a node of the optical field to circumvent absorption. This structure then gets transferred out

of the MBE-reactor for patterning of the MC via lithography and etching prior to epitaxial

overgrowth. Routinely, electron beam lithography is used to define the traps. However,

existing techniques for creating three dimensional nanostructures [144, 145] have a great

potential for implementation of advanced geometries. In fact, the shallow elongation of the

MC spacer is preserved even after deposition of the several microns thick top DBR mirror

and can be fully resolved on the sample surface, e.g. via atomic force microscopy, as seen in

figure 15(b).

Figure 15. (a) Schematic drawing of the mesa trap structure to provide a lateral confinement

for polariton condensates. (b) AFM image of the surface of an overgrown trap. Simulation

of the energy-momentum dispersion of a trap with a diameter of 8.6 µm (c) and 3.6 µm (d)

respectively. Reprinted from [49], Copyright (2006) by The American Physical Society.

A simulation of the polariton energy-momentum dispersion in such a mesa is shown in

figures 15(c )and (d). Due to the finite size effect, a strong mode quantization is evident, which
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scales with the size of the lateral confinement. Emission from the planar microcavity persists

in the background, however this emission can be significantly blue-shifted by increasing the

etch depth.

The confinement of polaritons in such a structure can be rather accurately modelled by

calculating the single particle energy levels in a finite, cylindrically symmetric (polariton)

potential well. The (lateral) well depth is given by the height of the mesa (and the

corresponding shift in the Bragg resonance energy). Then, the Schrödinger equation can be

solved for a particle with the polariton effective mass mLP, yielding the discrete energy levels

which can be seen in figures 15 (c) and (d) for a diameter of 10 and 3.6 µm [49]. The low

dimensional confinement, which can be designed in a wide range, can be utilized to engineer

the scattering properties in such structures. A detailed discussion of the relaxation processed

in such low-dimensional polariton structures is given in [146]. Noteworthy, it is found that the

phonon relaxation between localized levels in the trap is enhanced (compared to 2D samples)

as a consequence of momentum space selection rules, whereas energy transfers between 2D

and 0D polaritons are strongly suppressed. Consequently, it is suggested that, under non-

resonant excitation conditions, the 0D polariton states have to be directly populated from the

exciton reservoir, rather than from the 2D polaritons.

The first demonstration of polariton condensation under non-resonant pumping in a mesa

was discussed quite recently in [51], where the authors investigated a single trap with a

diameter of 6 µm and a depth of ∼ 30 nm.

Figure 16. Polaritons in a square lattice potential landscape. (a) Schematic drawing of

the investigated square lattice structure consisting of buried polariton traps. (b) Atomic

force microscopy image of the etched cavity surface, depicting the morphology of the mesa

structure.

The full potential of this technique becomes obvious, when the traps are arranged in

more complex geometries, such as square lattice arrangements (figure 16). The polariton

wave functions can penetrate into the barrier leading to evanescent photonic coupling between

neighboring sites which is accompanied by the formation of a band structure. Using the linear

exciton-photon coupling Hamiltonian[38], it can be shown that the structure of the energy

bands imposed on the cavity photon mode by the periodic potential translates into the band

structure of the polariton spectrum [50] (see section 2.5).
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A comparison between experiment and theory is shown in figure 17(a), recorded for a

square lattice with a constant of 3 µm below condensation threshold from the Γ-point to the

X-point of the BZ. The wave-function overlap is sufficient to form distinct bands for the three

lowest energy levels, which can be perfectly reproduced by a model with realistic parameters:

VL = 3.2 meV, mLP = 5.6×10−5me.

Figure 17. Polariton condensation in a square lattice (a) Photoluminescence spectrum of a

square lattice with a lattice constant a = 3 µm. The axis shows the momentum in units

of the BZ, while the upper axis marks the symmetry points. The band structure calculated

theoretically is plotted in black lines. (b) Zoom onto the band gap region of a square lattice

with a lattice constant a = 3 µm recorded along the X-M symmetry direction revealing a

complete gap between the M and X symmetry points of the first BZ. (c) For large pump power

(1.3 times power at the condensation threshold Pth = 5.7 mW), polariton condensation in the

full gap near the M-point is observed. The figure is reprinted with permission from [51]

The nonlinear characteristics of the polaritons in such a lattice is particularly manifested

close to the M-point of the BZ, which is shown in the close up image of the gap between the

s and p-band in our system, taken along the X-M symmetry direction below [figure 17(b],

P ∼ 0.2Pth] and above [figure 17(c), P ∼ 1.3Pth] the condensation threshold. With increasing

pump power, the condensate forms in the vicinity of M-points of the BZ blue shifts into the full

gap of the linear spectrum. This behavior suggests the formation of a spatially localized two-

dimensional gap soliton state [147], also observed in the potentials created by surface acoustic

waves [55]. These gap states are analogous to their 1D counterparts observed in modulated

photonic wires [54] and arrays of mesa traps [56], however the essential requirement for their

existence in 2D is the complete energy gap which, at lower energies, is only available at the

M-point of the square lattice BZ. Although particular parameters of the microcavity and the

polariton potential do affect the process of gap soliton formation, their spatial and spectral

properties are rather universal.
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4. Conclusions and outlook

Owing to the rapid development of the techniques for manipulating light and matter waves

on the scale of their characteristic wavelengths, it has become possible to engineer potential

landscapes for light-matter particles in semiconductors. While state-of-the-art microcavities

facilitate exciton-polariton propagation over hundreds of microns with the velocities close to

the speed of light, the polaritons’ hybrid nature allows for their efficient manipulation via

electro-optical and all-optical methods.

The possibility to create polariton condensates in a variety of trapping geometries,

to engineer and manipulate scattering mechanisms, to control propagation of polaritons in

channels, and to form versatile periodic potentials, opens the way towards more advanced

fundamental studies and applications of polariton physics.

One interesting opportunity, which we have touched in this review, can arise by utilizing

polaritons in channel structures for integrated polaritonic schemes. Another interesting option

involves exploiting polaritons in periodic potential landscapes to create polaritonic topological

insulators [148, 149], which facilitate unidirectional propagation of polaritons in edge states

protected from back-scattering by topology. While the investigation of topological effects

in coupled light-matter systems is extremely appealing from the fundamental point of view,

there is also a vast variety of possible applications arising from such effects.

Further improvements of trapping schemes at the sub-micron scale could enable the

regime of polariton blockade, where non-linearities occur on the single polariton scale.

Successful engineering of potentials allowing for single polariton localization is still a major

challenge in the field, however it carries the promise to open new directions in the research

field of quantum polaritonics.

Furthermore, the inherently lossy nature of the polariton system combined with the gain

derived from the optical pump, offers a possibility to create and control potential landscapes

with both real and imaginary part, and therefore to explore non-Hermitial quantum physics.

This possibility has already been exploited to observe exceptional points and topological

Berry phase in a polaritonic quantum billiard [150], to demonstrate the novel effect of weak

polariton lasing in a one-dimensional periodic potential [151], and to load exciton-polaritons

into a flat energy band of a one dimensional‘Lieb’ lattice potential [152].

Finally, practical applications of the fascinating effects described in this review clearly

require a clean, reliable material platform which can support exciton-polaritons well above

cryogenic temperature range. Utilizing materials with large exciton binding energies, such

as organic semiconductors [153], GaN [154], and ZnO [155], or atomically thin layers of

transition metal dichalcogenides [156] can hence lead to novel architectures in integrated

photonics and optoelectronics based on coherent bosonic states created and maintained at

room temperature.



REFERENCES 31

4.1. Acknowledgments

The authors thank A. Kavokin, I.A. Shelykh, I.A. Savenko, H. Flayac, T. Fink, T.C.H. Liew,

A. Nalitov, N. Gregersen, N.Y. Kim, S. Brodbeck, R. Dall, B. Bradel, A. Schade, A. Löffler,
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