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Exciton polaritons in a cylindrical microcavity with an embedded quantum wire
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Exciton-light coupling in cylindrical microcavities containing quantum wires has been treated by means of
classical electrodynamics within the nonlocal dielectric response model. A typical anticrossing behavior of
quasi-one-dimensional exciton-polariton modes has been obtained, as well as the weak-coupling—strong-
coupling threshold. Effects of the nonradiative damping of the exciton resonance in the quantum wire on the
optical response of the microcavity structure have been analyzed.

. INTRODUCTION ject of intensive studies in the last dec&d® By providing
a substantial enhancement of light-matter interaction, micro-
One of the major trends of modern semiconductor re<cavities make possible an experimental investigation of vari-
search is toward the achievement of electron and photonus fundamental effects, such as the propagation of
states of low dimensionality.Electrons and holes can be two-dimensional exciton-polaritoris,vacuum field Rabi
localized in semiconductor heterostructures, such as quantusplitting}! enhancement of spontaneous emissfoetc.
wells, wires, and dots, which have spatial sizes of several The interaction of quasi-one- and quasi-zero-dimensional
nanometers, and which are comparable with the de Brogliphotons with excitons has been a subject of considerable
wavelength of an electron. Similarly, photons can be localinterest in the scientific community in the last decade. First,
ized by periodic modulation of the refractive index of the the three-dimensional confinement of photons was achieved
medium in different types of microcavitiés with a feature in pillar microcavities for certain modés='’ The theory of
size of the order of a micrometer or below, and comparabldight-matter interaction in this kind of structure was recently
with the wavelength of light. developed® The semiclassical model of light-exciton
Quantum wells, providing the confinement of electrons orcoupling in gratings of quantum wires was also develdped
excitons in only one direction, can be fabricated by differentand compared with experimental data on the optical spec-
epitaxial techniques. Quantum dots, providing full three-troscopy of gratings of quantum wiré$?! This approach
dimensional confinement of excitons, have been obtained byas extended for a description of the optical spectra of mi-
the technique of spontaneous formation during epitaxiatrocavities containing quantum wirésRecently, the two-
growth*® At present, the most developed method of fabri-dimensional localization of light by a cylindrical multilay-
cating quantum wire$QW's), where excitons are localized ered structure was demonstrafeahd the optical eigenmode
in two dimensions, is growth on V-grooved substr&ésit  structure of such a cylindrical microcavity was analyzed
only QW’s parallel to the substrate can be obtained by thigheoretically?®
technique. A very promising approach to fabricate QW's ori-  The aim of the present work is to develop a formalism for
ented perpendicularly to the substrate surface is to stack adescription of light-matter interaction in a system with cy-
large number of layers of vertically coupled quantum dots. lindrical symmetry and containing an embedded quantum
Due to the strong vertical coupling between the dots, thevire, and to investigate the exciton-polariton state originat-
electron states in such structures are of a quasi-onang from the coupling of a one-dimensiondD) quantum
dimensional type. wire exciton to a 1D photon mode in a cylindrical microcav-
The technology of the fabrication of planar microcavities, ity. The type of model structure considered is shown in Fig.
where one-dimensional localization of light occurs, is well 1. It has an infinitely long cylindrical microcavity with its
established, and the interaction of quantum-well excitons anexis of symmetry, taken parallel to theaxis, formed by a
localized photon states in such structures has been the sutentral cylinder with a radius of the order of the wavelength
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plane orthogonal to the wire, and consider only the exciton
ground state in the wire, which is characterized by zero an-
gular momentum.

The electromagnetic field in the vicinity of the quantum
wire is described by Maxwell’s equations when the excitonic

@/

contribution to the dielectric polarizatioR,.,. is taken into
account?:
MNj|e o o n2nln0
w2 >
‘e, A E,+K°E,= —47T?Pexc(p). @)
Fos ~ Here
p N
N e DAY =T =y
= Pewcd )= | (5.5 EG 05 ®
_Po | p

is the nonlocal dielectric susceptibility, whose dependence
FIG. 1. An illustration of a cylindrical microcavity with quan- on the exciton envelope function is given by
tum wire at its center. A central core of the refractive inagxis
surrounded by a cylindrical Bragg reflector, constructed from alter- X(w,ﬁ,ﬁ’) :}(w)q)(,})@(,}'), (4)
nate layers of the refractive indew andn,. .
whered(p) is related to the envelope function of the exciton

of light, and surrounded by a cylindrical Bragg reflectdA ground state byb(p)= LW (p,p), andL is the length of the
relatively thin cylindrical quantum wire is placed at the cen-yjire.

ter of the structure. Corresponding experimental structures Substituting formula5) into Eq. (4), one can rewrite the
will be susceptible to a degradation of their caviffactors  excitonic polarization as

due to the out-of-plane scattering assosiated with their finite

length. Therefore, the parameters of experimental cylindrical Pexc(!;):;((w)q)(f;)A, (5)
microcavities of this type should be chosen to minimize such o

light scattering, or some photonic band-gap structure shouldwhere A .= [ ®(p)E(p)dp (for details, see Ref. 29Given

be used to suppress the scattering. the cylindrical symmetry of the exciton ground state, the
integral in Eq.(5) is nonzero only in the case of cylindrical
Il. BASIC EQUATIONS light waves having zero angular momentum. Thus in the fol-
lowing we limit the discussion to that situation only. In that
A. Reflection of the cylindrical light wave by a quantum wire case

Consider ark-polarized cylindrical wave of a frequency
o incident on a cylindrical quantum wiréE polarization ~
means in this case that the electric-field vector is directed x(w)= T el ©)
along the axis of the quantum wifé The medium is char- ex
acterized by a background dielectric constanThe electro-  where w,, is the exciton resonance frequenay,t is the
magnetic field of the diverging cylindrical wave has the formexciton longitudinal-transverse splitting in the bulk material,
ag is the exciton Bohr radius in the bulk material, alids

swLTTrag

E,=AH{)(kp)expime), the exciton nonradiative damping.

The solution of the inhomogeneous Helmholtz equation
H,=i \/EAHﬁr})/(kp)exp(imp), (1)  (2) can be found by the Green-function technique as
H,=(mdpw) AHD (kp)exp(ime), E(p)=Enom(p) + K3 f G(p.p")Pexdp)dp’, (D)

whereA is the constaninis an aztimuthal numbeH (M (kp)

is the Hankel function of the first type,is the light velocity
in vacuum, andk= \/e(w/c). The electromagnetic field of
the converging cylindrical wave has the form

whereG(p,p')=imHM(Kk|p—p'|) is the Green function of
Eqg. (2), and E;,{(p) is the solution of the corresponding
homogeneous equation. In the empty microcavity the field
must be finite ap=0 , which requires that

E,=AHZ) (kp)expime),

Enom=HE"(kp) +HE(kp) =23o(kp), ®)
H,=iVeAH? (kp)exp(ime), (1) whereJy(kp) is the zeroth-order Bessel function, and it is
assumed that the waves have an amplitude equal to unity.
Hp=(mdpw)AHfﬁ)(kp)exp(imcp), Substituting Eq(5) into Eq. (7) gives

whereH?)(kp) is the Hankel function of the second type. In

>y 27 =2y =y =y
the following we assume the light wave is propagates in the E(p)_ZJO(kp)+k0X(w)Af Glp.p")®(p")dp". (9
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Then, multiplying both sides of Eq9) by ®(p) and inte-  Substituting the value ok from Eq.(10) into Eq.(15) gives

rating overp results in the linear equation fox, ~
grafing overp g 2mikZY(w) A2,

- Frow=1+ = 16
A=2A gt KEx(@)AL (10 W=t e 19
WhereAh0m=fJo(kﬁ)<D(5)dﬁ and Then, multiplying the numerator and denominator of ratio
(16) by wex— w—iT', we obtain the reflection coefficient in
|=f G(p.p")P(p")D(p)dp'dp. the form
In order to find the value of the integral row=1+ — lT ESE (17
JG(p.p")®(p')dp’, it is convenient to represent the Green Wex— @I 0
function in the forn® where
G([;,[;’) szwzkgxwLTagAﬁom' (18)
< Wex=wex— TK2,w 13 Re(l) (19
S HPke) 3 exTin(e— o), p>p’ o e The i Rell).
=Ty . I'o= k3o 7ag Im(1), (20)
HO(kp" ), (kp)exdin(e—¢')], p<p’. ~
n;w n (kp")dn(kp)exdin(e—¢")],  p<p andk., = oo (/).
(11 Using Eqg.(11), the integrall can be represented in the
From the above-mentioned symmetry arguments, only thosf m
terms in the sums in Eq11) which haven=0 give nonzero
contribution to the value of integral. Thus one can write I :iwf Hgl)(k|p_p'|)q>(p’)q>(p)dp’dp
(1) Y =y =y (= © , " ,
f Ho (Klp=p'[)®(p")dp =47 JO Jo(kp)P(p)p olpf0 Jo(kp")(p")p'dp
[ [HE(kp)Io(kp'),  p>p’ . ,
— , , ! ’ ! _ 3 ’ ' ’ !
ZWJO HO(kp")Jo(kp), p'>p | PP P dp Am JO Yo(kp)d)(p)“OJo(kp )@ (p")p'dp }p dp
=27 Jo(kp)f Jo(kp" YD (p')p'dp’ —4W3JO Jo(kp)cb(p)“ Yo(kp’)d)(p’)p’dp’}p dp,
0 p
(21

p
+' ! ’ ! !
|Y0(kp)f0 Jolkp )P (p")p"dp from which it follows that Im()=7A32,, and y=2T,,.

Finally, we obtain the reflection coefficient of the wire:
. (12

+iJo<kp>f Yo(kp')®(p')p’dp’ -
p 0

wey— w—i(I'+Tg) "

The integral in the first term on the right of EQ.2) is just
Aphom- The wave functionb(ﬁ) decays exponentially on the In a similar fashion, the reflection coefficients of converging
length scale ofg outside the quantum wire, so that, for large cylindrical electromagnetic wave, characterized by non-zero
p (compared tag), azimuthal number can be obtained.

f G(;;,E')q)(ﬁ’)dﬁ’ =j WAhomH(()l)(kP)- (13) B. Eigenmodes of a cylindrical microcavity with an embedded
quantum wire
Using relation(13), Eq. (9) can be rewritten in the form An electromagnetic field in a central cylinder containing a
quantum wire located at the symmetry axis has the form
E(p)=HE(kp) +[1+i2mkix(w) A Anor]HE (Kp).
(14) E(p)=HEP(kp)+1quHE(kp), (23

We define the reflection coefficient of the wire as the ratio ofang  can be represented as two-dimensional vector
the amplitudes of the diverging and converging wapies, [ng)(kp),rQWHgl)(kp)], whose components are the magni-
the ratio of the coefficients dfi§”(kp) andH{P (kp) iN EQ.  tudes of the converging and diverging waves.
(14)]. Thus we obtain At the boundary of the central cylinder, which is at radius
o po. the ratio of the amplitudes of the converging and diverg-
row=1+imkox(@) AAnom. (19  ing waves is given by the reflection coefficierg of the
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cylindrical Bragg mirror, which provides the optical confine- n
ment in the structure, and can represente@@s,1), where
C is the constant.

The equation defining the frequencies of the eigenmodes =
of the cylindrical microcavity with an embedded quantum
wire can be obtained by equating the two vectors defined
above, to give

HEP (kpo) = rur owH S (kpo). (24)

In the case of negligible decay of light in the structure, Eq.
(24) can be reduced to

ard H§"(kpo)]
—ard H{P(kpo) ] +argry) +argr qu) =2j.

(25 FIG. 2. Spectral dependence of the ph&seand the square
Further simplifications can be achieved by use ofmodulus of the amplitude reflection coefficigiy of a converging
the approximate relations é[#ggl)(kpo)]ékpo—wm and E-polarize_d cyIindri(_:aI wave incident on the quant_um wire, and
arg(H(()Z)(kpo))E —Kkpo+ /4, which will be valid if the in- characterized by azimuthal numbae=0. Curves for different val-
ues ofI' are shown: dotted linel’=0; solid line,I'=T"y; short-

ternal radi f th Vity ex the wavelength of light.
ernal radius o e cavity exceeds the wavelength of lig dashed line]'=2I"y; long-dashed line]'=5T",; and dash-dotted

The phase of the reflection CoemC'em of the Bragg r_nlrro_r_atl.ne’ I'=10I"y. The inset shows the power reflection coefficient at
the Bragg frequency can be approximated by the S|mpl|f|eq'

- S M S he resonant frequency vs the value of non radiative dampin
expressiorf, which is also valid in the cylindrical cag8, quency mping

_ 27w
_pPT @ P - 3D)
arqrb) b Wh ' (26) ) 2\/Ep0wb/C+ b

whereb= mn;n,/\e(n,—n;), andn, andn, are the refrac- is quite large compared to the typical R_abi-splitting_val%es,
tive indices of the layers forming the mirror. and we may consider the exciton coupling with a single op-

The reflection coefficient of the quantum wire can be rep-ical mode. This allows us to rewrite E(B0) in the simple
resented in form orm

(wem— wOj)(wem_ wex):(A/Z)za (32

(Wex— )2+ (I2=T 3 +i2T j( wey— w)

Fow= (@ay— )24+ (T +T )2 (27) whereA is the Rabi splitting given by
ex 0

The ph be found / 2r
€ phase can be tound as A=2 0Wp , 33)
b+ 2\/;p0a)b/C

arg(roy) = arcta 2ol wex w)
o (wex— )2+ (I +T0)2)

(28) and wg; is the optical mode frequency closest to the exciton
resonance:

Let us now assume that the exciton-polariton eigenmode fre- .

qguencies are significantly different from the frequency of the - 2mj+ml2+D
exciton resonanc@., (which is the case in planar micro- o 2\/§p0/c+ b/wb.
cavities in the strong coupling regimeso that {+1I'g)
<|wey— wen] Wherew,, is the eigenmode frequency of the
structure. Then we find

(34)

Equation(33) has a different form of denominator from pla-
nar case, which can be explained by the different symmetry
of the system. The phase changes of light during a “round
2T, trip” in the cavity is different in the case of cylindrical mi-
argrow)=——"-. (29 crocavity. The following estimates are finally obtained for
(@ex— wem) the exciton-polariton eigenmode frequencies:

Using relations(26) and (29) one can represent ER5) in
the form _ @0t ®ex 1 — 2 2
Wem= iz \/(woj Wey) T 4A”. (35

2
2\e

Wem Wex™ Wp 2l .
+b + =2+ /2.
c po Wp (Wex— Wem) :
(30

IIl. RESULTS AND DISCUSSION

Figure 2 shows the spectral dependence of the phase and
The frequency interval between optical eigenmode frequenthe squared modulus of the amplitude reflection coefficient
cies in the empty cavit® of the incident cylindrical converging wave for different val-
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Absorption

_ ’ 045 050 055
100 Py, /2mC

FIG. 4. Dependence of the eigenmode frequencies of the cylin-
FIG. 3. Absorption spectrum of a cylindrical microcavity with drical microcavity with quantum wire on the central cylinder radius.
the quantum wire for a converging-polarized cylindrical wave The dotted lines show the optical eigenmodes of a microcavity
with azimuthal numbem=0. Different values of are shown: solid without the quantum wire. The solid lines show the dependences,
line, I'=T; dotted line, I'=2I"y; short-dashed line]'=100"; obtained using Eq(25). The circles show the positions of the ab-
long-dashed line]'=20I"y; and dash-dotted linel’=50I";. The sorption peaks.
inset shows a schematic view of the cross section of the structure: a

central core with the quantum wire in the center, surrounded b3f0 the eigenmode frequencies in the system. If the exciton
cylindrical Bragg reflector. The refractive indices of the central broadening is much smaller than the Rabi splittihg the
core, outer media, and the two layers of the Bragg reflector, Showgbsorption spectra exhibit two peaks with center frequencies

in gray, are equal to 3.0, while refractive index of the three white B . .
. that are quite insensitive to the value of the nonradiative
layers are equal to 1.0. The thicknesses of the layers of the reflectccf)I

are a quarter of the wavelength corresponding to the exciton res _amp:jngr]] factc(;ﬂ“, bult. dg sho_l\_/\;]&gnlflc_ant varlaﬁclons n thslr.
nance frequencyse,. The radius of the central core is chosen to NEWIdths and amplitudes. The coexistence of two peaks in
provide an exact tuning of the optical eigenmode frequangyto the spectra is evidence of the strong-coupling rediHew-

the exciton resonance frequency and satisfies the relatioRVer, whenl' is comparable td\, the weak-coupling regime
Powe,/2mc=0.37015. occurs, and the two peaks in the absorption spectra merge

into one broad peak, centered at the frequency of the exciton
ues ofI". Note that in the casE=0, the magnitude of the esonance. These properties are analogous to those for the
reflection coefficient is equal to unity, while the phasemteracnon of photon and exciton modes in a planar micro-

changes strongly in the vicinity of the exciton resonanceCavity containing a quantum Wé”- .
The latter effect can be easily understood if one takes into 1he dependence of the optical eigenmode frequency on

account that it describes the dissipation of energy, and in thie central cylinder radiug, of an empty cylindrical micro-
case of a cylindrical wire antl =0, the entire energy of the

converging wave must reappear in the diverging wave. This 1| @

is because any energy in the converging wave that is not

absorbed reaches the lipe=0, and then contributes to the Jk

wave diverging from there. Fdr=1", the reflection spec- (1) AL

trum exhibits a dip that becomes zero at its minimum. With © x100

a further increase df, the dips in the spectra become shal-

lower and broader. When the frequency of the incident wave

is tuned to the exciton resonance frequency, the amplitude - ‘

reflection coefficient can be represented in the far ®

=(I'=Tg/(I'+Ty) (see the inset in Fig.)2 The total ab- ‘k

sorption of the incident radiation is a feature of the cylindri- 0

cal system which is absent in planar microcavities. @ ' ‘
Figure 3 presents absorption spectra of the cylindrical mi-

crocavity with an embedded quantum wire shown in the fig-

ure inset. The model microcavity consists of a central core 0

having a refractive index of 3.0, surrounded by a cylindrical -100

Bragg reflector, as described in the figure caption. The pa-

rameters_ of the microcavity are C_hosen to tune one (_)f the FIG. 5. Absorption spectra for different values of the central

optical eigenmodes of the cavity without the quantum wire t0qgre ragdius. The solid lines correspond to the cdaepowe,/27C

the wire exciton frequency. The value of the radiative damp-—0.3735, (b) powe,/2mc=0.3713, (C) powe27c=0.37015, and

ing isI"o=0.000kvey, Which is typical of the relative values (d) pywe,/27c=0.3668, which are all close to the anticrossing fea-

of the oscillator strength and exciton resonance frequency faiire in Fig. 4. The dotted line ifc) shows the absorption spectrum

real quantum wires. for powe,/27mc=0.465, corresponding to an essentially uncoupled
The spectral positions of the absorption peaks corresponekciton.

Absorption
— O

—

50 0 100 150

0 5
(0-w,)/To
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cavity exhibits a series of branches, as shown in Fig. 4. Ifrom the anticrossing, illustrates how much weaker the exci-
each branch, the frequency increases with decreasing raditenic absortion is when the exciton and optical modes are
po- The splitting between two neighboring branches characessentially uncoupled.
terized by the same azimuthal number is given by formula
(31). By changing the radiug it is possible to tune the
optical eigenmode frequency,; into resonance with the
guantum wire exciton. The coupling of a photon and an ex- Exciton-light interactions in a system of cylindrical sym-
citon state leads to the anticrossing behavior seen in the fignetry have been theoretically analyzed using the nonlocal
ure. The optical eigenmode branch crosses the exciton resdielectric response model. An interesting peculiarity of the
nance frequencyw., when the radiusp, approaches the cylindrical system is that a converging cylindrical electrody-
value satisfying the relatiopyw.,/277c=0.37. Figure 4 also namic wave can be fully absorbed by quantum wire exciton.
shows another anticrossing gw.,/27c~ 0.54, where the An equation for the energies of the polariton states originat-
exciton state couples with another optical eigenmode. ing from the optical eigenmode of the cylindrical microcav-
The change in shape of the absorption spectrum witlity and the quantum wire exciton has been obtained, and
variation of the radiug, around the value corresponding to simplified approximate formulas have also been derived. The
the first anticrossing is illustrated by the solid lines in Fig. 5.State energies exist on a series of anticrossing branches when
When the detuning of the exciton and the photon modes iplotted as a function of the inner radius of the microcavity.
strong there are two distinct peaks in the absorption spectrdhe transition between weak- and strong-coupling regimes
and the frequencies of these two peaks nearly correspond tws also been illustrated, and is similar to the case of a quan-
the uncoupled exciton and photon staftEiy. 5@)]. Tuning  tum well in a planar microcavity.
the optical mode to the exciton frequency leads to the shift of
both.resongnce.s which exhibits_id_entical shape in the case of ACKNOWLEDGMENTS
precise tuningFig. 5(c)]. The splitting between the peaks in
this case is almost identical to the value of the vacuum-field The work was partly funded by an EPRSC research grant,
Rabi splittingA given by Eq.(33). The dotted curve in Fig. and partly by RFBR and NATO Linkage HTEC Grant No.
5(c), which corresponds to the value pf, well removed 974673.
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