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Exciton-light coupling in cylindrical microcavities containing quantum wires has been treated by means of
classical electrodynamics within the nonlocal dielectric response model. A typical anticrossing behavior of
quasi-one-dimensional exciton-polariton modes has been obtained, as well as the weak-coupling–strong-
coupling threshold. Effects of the nonradiative damping of the exciton resonance in the quantum wire on the
optical response of the microcavity structure have been analyzed.

I. INTRODUCTION

One of the major trends of modern semiconductor re-
search is toward the achievement of electron and photon
states of low dimensionality.1 Electrons and holes can be
localized in semiconductor heterostructures, such as quantum
wells, wires, and dots, which have spatial sizes of several
nanometers, and which are comparable with the de Broglie
wavelength of an electron. Similarly, photons can be local-
ized by periodic modulation of the refractive index of the
medium in different types of microcavities,2,3 with a feature
size of the order of a micrometer or below, and comparable
with the wavelength of light.

Quantum wells, providing the confinement of electrons or
excitons in only one direction, can be fabricated by different
epitaxial techniques. Quantum dots, providing full three-
dimensional confinement of excitons, have been obtained by
the technique of spontaneous formation during epitaxial
growth.4,5 At present, the most developed method of fabri-
cating quantum wires~QW’s!, where excitons are localized
in two dimensions, is growth on V-grooved substrates,6 but
only QW’s parallel to the substrate can be obtained by this
technique. A very promising approach to fabricate QW’s ori-
ented perpendicularly to the substrate surface is to stack a
large number of layers of vertically coupled quantum dots.7

Due to the strong vertical coupling between the dots, the
electron states in such structures are of a quasi-one-
dimensional type.

The technology of the fabrication of planar microcavities,
where one-dimensional localization of light occurs, is well
established, and the interaction of quantum-well excitons and
localized photon states in such structures has been the sub-

ject of intensive studies in the last decade.8–10 By providing
a substantial enhancement of light-matter interaction, micro-
cavities make possible an experimental investigation of vari-
ous fundamental effects, such as the propagation of
two-dimensional exciton-polaritons,9 vacuum field Rabi
splitting,11 enhancement of spontaneous emission,12 etc.

The interaction of quasi-one- and quasi-zero-dimensional
photons with excitons has been a subject of considerable
interest in the scientific community in the last decade. First,
the three-dimensional confinement of photons was achieved
in pillar microcavities for certain modes.13–17 The theory of
light-matter interaction in this kind of structure was recently
developed.18 The semiclassical model of light-exciton
coupling in gratings of quantum wires was also developed19

and compared with experimental data on the optical spec-
troscopy of gratings of quantum wires.20,21 This approach
was extended for a description of the optical spectra of mi-
crocavities containing quantum wires.22 Recently, the two-
dimensional localization of light by a cylindrical multilay-
ered structure was demonstrated,2 and the optical eigenmode
structure of such a cylindrical microcavity was analyzed
theoretically.23

The aim of the present work is to develop a formalism for
a description of light-matter interaction in a system with cy-
lindrical symmetry and containing an embedded quantum
wire, and to investigate the exciton-polariton state originat-
ing from the coupling of a one-dimensional~1D! quantum
wire exciton to a 1D photon mode in a cylindrical microcav-
ity. The type of model structure considered is shown in Fig.
1. It has an infinitely long cylindrical microcavity with its
axis of symmetry, taken parallel to thez axis, formed by a
central cylinder with a radius of the order of the wavelength
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of light, and surrounded by a cylindrical Bragg reflector.24 A
relatively thin cylindrical quantum wire is placed at the cen-
ter of the structure. Corresponding experimental structures
will be susceptible to a degradation of their cavityQ factors
due to the out-of-plane scattering assosiated with their finite
length. Therefore, the parameters of experimental cylindrical
microcavities of this type should be chosen to minimize such
light scattering,2 or some photonic band-gap structure should
be used to suppress the scattering.

II. BASIC EQUATIONS

A. Reflection of the cylindrical light wave by a quantum wire

Consider anE-polarized cylindrical wave of a frequency
v incident on a cylindrical quantum wire.E polarization
means in this case that the electric-field vector is directed
along the axis of the quantum wire.25 The medium is char-
acterized by a background dielectric constante. The electro-
magnetic field of the diverging cylindrical wave has the form

Ez5AHm
(1)~kr!exp~ imw!,

Hw5 iA«AHm
(1)8~kr!exp~ imw!, ~1!

Hr5~mc/rv!AHm
(1)~kr!exp~ imw!,

whereA is the constant,m is an aztimuthal number,Hm
(1)(kr)

is the Hankel function of the first type,c is the light velocity
in vacuum, andk5Ae(v/c). The electromagnetic field of
the converging cylindrical wave has the form

Ez5AHm
(2)~kr!exp~ imw!,

Hw5 iA«AHm
(2)8~kr!exp~ imw!, ~18!

Hr5~mc/rv!AHm
(2)~kr!exp~ imw!,

whereHm
(2)(kr) is the Hankel function of the second type. In

the following we assume the light wave is propagates in the

plane orthogonal to the wire, and consider only the exciton
ground state in the wire, which is characterized by zero an-
gular momentum.

The electromagnetic field in the vicinity of the quantum
wire is described by Maxwell’s equations when the excitonic
contribution to the dielectric polarizationPexc is taken into
account19:

D'Ez1k2Ez524p
v2

c2
Pexc~rW !. ~2!

Here

Pexc~rW !5E x~v,rW ,rW 8!EW ~rW 8!drW 8 ~3!

is the nonlocal dielectric susceptibility, whose dependence
on the exciton envelope function is given by

x~v,rW ,rW 8!5x̃~v!F~rW !F~rW 8!, ~4!

whereF(rW ) is related to the envelope function of the exciton
ground state byF(rW )5ALC(rW ,rW ), andL is the length of the
wire.

Substituting formula~5! into Eq. ~4!, one can rewrite the
excitonic polarization as

Pexc~rW !5x̃~v!F~rW !L, ~5!

whereLm5*F(rW )E(rW )drW ~for details, see Ref. 19!. Given
the cylindrical symmetry of the exciton ground state, the
integral in Eq.~5! is nonzero only in the case of cylindrical
light waves having zero angular momentum. Thus in the fol-
lowing we limit the discussion to that situation only. In that
case

x̃~v!5
«vLTp aB

3

ṽex2v2 iG
, ~6!

where ṽex is the exciton resonance frequency,vLT is the
exciton longitudinal-transverse splitting in the bulk material,
aB is the exciton Bohr radius in the bulk material, andG is
the exciton nonradiative damping.

The solution of the inhomogeneous Helmholtz equation
~2! can be found by the Green-function technique as

E~rW !5Ehom~rW !1k0
2 E G~rW ,rW 8!Pexc~rW 8!drW 8, ~7!

whereG(rW ,rW 8)5 ip H0
(1)(kurW 2rW 8u) is the Green function of

Eq. ~2!, and Ehom(rW ) is the solution of the corresponding
homogeneous equation. In the empty microcavity the field
must be finite atr50 , which requires that

Ehom5H0
(1)~kr!1H0

(2)~kr!52J0~kr!, ~8!

whereJ0(kr) is the zeroth-order Bessel function, and it is
assumed that the waves have an amplitude equal to unity.

Substituting Eq.~5! into Eq. ~7! gives

E~rW !52J0~kr!1k0
2x̃~v!LE G~rW ,rW 8!F~rW 8!drW 8. ~9!

FIG. 1. An illustration of a cylindrical microcavity with quan-
tum wire at its center. A central core of the refractive indexn0 is
surrounded by a cylindrical Bragg reflector, constructed from alter-
nate layers of the refractive indexn1 andn2.
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Then, multiplying both sides of Eq.~9! by F(rW ) and inte-
grating overrW results in the linear equation forL,

L52Lhom1k0
2x̃~v!LI , ~10!

whereLhom5*J0(krW )F(rW )drW and

I 5E G~rW ,rW 8!F~rW 8!F~rW !drW 8drW .

In order to find the value of the integral
*G(rW ,rW 8)F(rW 8)drW 8, it is convenient to represent the Green
function in the form26

G~rW ,rW 8!

5 ip5 (
n52`

1`

Hn
(1)~kr!Jn~kr8!exp@ in~w2w8!#, r.r8

(
n52`

1`

Hn
(1)~kr8!Jn~kr!exp@ in~w2w8!#, r,r8.

~11!

From the above-mentioned symmetry arguments, only those
terms in the sums in Eq.~11! which haven50 give nonzero
contribution to the value of integral. Thus one can write

E H0
(1)~kurW 2rW 8u!F~rW 8!drW 8

52pE
0

`S H H0
(1)~kr!J0~kr8!, r.r8

H0
(1)~kr8!J0~kr!, r8.rD F~r8!r8dr8

52pFJ0~kr!E
0

`

J0~kr8!F~r8!r8dr8

1 iY0~kr!E
0

r

J0~kr8!F~r8!r8dr8

1 iJ0~kr!E
r

`

Y0~kr8!F~r8!r8dr8G . ~12!

The integral in the first term on the right of Eq.~12! is just
Lhom. The wave functionF(rW ) decays exponentially on the
length scale ofaB outside the quantum wire, so that, for large
r ~compared toaB),

E G~rW ,rW 8!F~rW 8!drW 85 ipLhomH0
(1)~kr!. ~13!

Using relation~13!, Eq. ~9! can be rewritten in the form

E~rW !5H0
(2)~kr!1@11 i2pk0

2x̃~v!LLhom#H0
(1)~kr!.

~14!

We define the reflection coefficient of the wire as the ratio of
the amplitudes of the diverging and converging waves@i.e.,
the ratio of the coefficients ofH0

(1)(kr) andH0
(2)(kr) in Eq.

~14!#. Thus we obtain

r QW511 ip k0
2x̃~v!LLhom. ~15!

Substituting the value ofL from Eq.~10! into Eq.~15! gives

r QW511
2p ik0

2x̃~v!Lhom
2

12k0
2x̃~v!I

. ~16!

Then, multiplying the numerator and denominator of ratio
~16! by ṽex2v2 iG, we obtain the reflection coefficient in
the form

r QW511
ig

vex2v2 i ~G1G0!
, ~17!

where

g52p2kex
2 vLTaB

3Lhom
2 , ~18!

vex5ṽex2p kex
2 vLTaB

3 Re~ I !, ~19!

G05pkex
2 vLTaB

3 Im~ I !, ~20!

andkex5A«B(ṽex /c).
Using Eq. ~11!, the integralI can be represented in the

form

I 5 ipE H0
(1)~kurW 2rW 8u!F~r8!F~r!drW 8drW

54p3i E
0

`

J0~kr!F~r!r drE
0

`

J0~kr8!F~r8!r8dr8

24p3E
0

`

Y0~kr!F~r!F E
0

r

J0~kr8!F~r8!r8dr8Gr dr

24p3E
0

`

J0~kr!F~r!F E
r

`

Y0~kr8!F~r8!r8dr8Gr dr,

~21!

from which it follows that Im(I )5pLhom
2 andg52G0.

Finally, we obtain the reflection coefficient of the wire:

r QW511
2iG0

vex2v2 i ~G1G0!
. ~22!

In a similar fashion, the reflection coefficients of converging
cylindrical electromagnetic wave, characterized by non-zero
azimuthal number can be obtained.

B. Eigenmodes of a cylindrical microcavity with an embedded
quantum wire

An electromagnetic field in a central cylinder containing a
quantum wire located at the symmetry axis has the form

E~r!5H0
(2)~kr!1r QWH0

(1)~kr!, ~23!

and can be represented as two-dimensional vector
@H0

(2)(kr),r QWH0
(1)(kr)#, whose components are the magni-

tudes of the converging and diverging waves.
At the boundary of the central cylinder, which is at radius

r0, the ratio of the amplitudes of the converging and diverg-
ing waves is given by the reflection coefficientr b of the
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cylindrical Bragg mirror, which provides the optical confine-
ment in the structure, and can represented asC(r b,1), where
C is the constant.

The equation defining the frequencies of the eigenmodes
of the cylindrical microcavity with an embedded quantum
wire can be obtained by equating the two vectors defined
above, to give

H0
(2)~kr0!5r br QWH0

(1)~kr0!. ~24!

In the case of negligible decay of light in the structure, Eq.
~24! can be reduced to

arg@H0
(1)~kr0!#

2arg@H0
(2)~kr0!#1arg~r b!1arg~r QW!52p j .

~25!

Further simplifications can be achieved by use of
the approximate relations arg@H0

(1)(kr0)#>kr02p /4 and
arg(H0

(2)(kr0))>2kr01p/4, which will be valid if the in-
ternal radius of the cavity exceeds the wavelength of light.
The phase of the reflection coefficient of the Bragg mirror at
the Bragg frequency can be approximated by the simplified
expression,27 which is also valid in the cylindrical case,24

arg~r b!5b
v2vb

vb
, ~26!

whereb5pn1n2 /A«(n22n1), andn1 andn1 are the refrac-
tive indices of the layers forming the mirror.

The reflection coefficient of the quantum wire can be rep-
resented in form

r QW5
~vex2v!21~G22G0

2!1 i2G0~vex2v!

~vex2v!21~G1G0!2
~27!

The phase can be found as

arg~r QW!5arctanS 2G0~vex2v!

~vex2v!21~G1G0!2D . ~28!

Let us now assume that the exciton-polariton eigenmode fre-
quencies are significantly different from the frequency of the
exciton resonancevex ~which is the case in planar micro-
cavities in the strong coupling regime!, so that (G1G0)
!uvex2vemu wherevem is the eigenmode frequency of the
structure. Then we find

arg~r QW!>
2G0

~vex2vem!
. ~29!

Using relations~26! and ~29! one can represent Eq.~25! in
the form

2A«
vem

c
r01b

vex2vb

vb
1

2G0

~vex2vem!
52p j 1p/2.

~30!

The frequency interval between optical eigenmode frequen-
cies in the empty cavity,23

Dv j5
2pvb

2A«r0vb /c1b
, ~31!

is quite large compared to the typical Rabi-splitting values,9

and we may consider the exciton coupling with a single op-
tical mode. This allows us to rewrite Eq.~30! in the simple
form

~vem2v0 j !~vem2vex!5~D/2!2, ~32!

whereD is the Rabi splitting given by

D52A 2G0vb

b12A«r0vb /c
, ~33!

andv0 j is the optical mode frequency closest to the exciton
resonance:

v0 j5
2p j 1p/21b

2A«r0 /c1b/vb

. ~34!

Equation~33! has a different form of denominator from pla-
nar case, which can be explained by the different symmetry
of the system. The phase changes of light during a ‘‘round
trip’’ in the cavity is different in the case of cylindrical mi-
crocavity. The following estimates are finally obtained for
the exciton-polariton eigenmode frequencies:

vem5
v0 j1vex

2
6

1

2
A~v0 j2vex!

214D2. ~35!

III. RESULTS AND DISCUSSION

Figure 2 shows the spectral dependence of the phase and
the squared modulus of the amplitude reflection coefficient
of the incident cylindrical converging wave for different val-

FIG. 2. Spectral dependence of the phase~a! and the square
modulus of the amplitude reflection coefficient~b! of a converging
E-polarized cylindrical wave incident on the quantum wire, and
characterized by azimuthal numberm50. Curves for different val-
ues of G are shown: dotted line,G50; solid line, G5G0; short-
dashed line,G52G0; long-dashed line,G55G0; and dash-dotted
line, G510G0. The inset shows the power reflection coefficient at
the resonant frequency vs the value of non radiative dampingG.
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ues ofG. Note that in the caseG50, the magnitude of the
reflection coefficient is equal to unity, while the phase
changes strongly in the vicinity of the exciton resonance.
The latter effect can be easily understood if one takes into
account that it describes the dissipation of energy, and in the
case of a cylindrical wire andG50, the entire energy of the
converging wave must reappear in the diverging wave. This
is because any energy in the converging wave that is not
absorbed reaches the liner50, and then contributes to the
wave diverging from there. ForG5G0 the reflection spec-
trum exhibits a dip that becomes zero at its minimum. With
a further increase ofG, the dips in the spectra become shal-
lower and broader. When the frequency of the incident wave
is tuned to the exciton resonance frequency, the amplitude
reflection coefficient can be represented in the formr QW
5(G2G0)/(G1G0) ~see the inset in Fig. 2!. The total ab-
sorption of the incident radiation is a feature of the cylindri-
cal system which is absent in planar microcavities.

Figure 3 presents absorption spectra of the cylindrical mi-
crocavity with an embedded quantum wire shown in the fig-
ure inset. The model microcavity consists of a central core
having a refractive index of 3.0, surrounded by a cylindrical
Bragg reflector, as described in the figure caption. The pa-
rameters of the microcavity are chosen to tune one of the
optical eigenmodes of the cavity without the quantum wire to
the wire exciton frequency. The value of the radiative damp-
ing is G050.0001vex , which is typical of the relative values
of the oscillator strength and exciton resonance frequency for
real quantum wires.

The spectral positions of the absorption peaks correspond

to the eigenmode frequencies in the system. If the exciton
broadening is much smaller than the Rabi splittingD, the
absorption spectra exhibit two peaks with center frequencies
that are quite insensitive to the value of the nonradiative
damping factorG, but do show significant variations in their
linewidths and amplitudes. The coexistence of two peaks in
the spectra is evidence of the strong-coupling regime.8 How-
ever, whenG is comparable toD, the weak-coupling regime
occurs, and the two peaks in the absorption spectra merge
into one broad peak, centered at the frequency of the exciton
resonance. These properties are analogous to those for the
interaction of photon and exciton modes in a planar micro-
cavity containing a quantum well.1

The dependence of the optical eigenmode frequency on
the central cylinder radiusr0 of an empty cylindrical micro-

FIG. 4. Dependence of the eigenmode frequencies of the cylin-
drical microcavity with quantum wire on the central cylinder radius.
The dotted lines show the optical eigenmodes of a microcavity
without the quantum wire. The solid lines show the dependences,
obtained using Eq.~25!. The circles show the positions of the ab-
sorption peaks.

FIG. 5. Absorption spectra for different values of the central
core radius. The solid lines correspond to the cases~a! r0vex/2pc
50.3735, ~b! r0vex/2pc50.3713, ~c! r0vex/2pc50.37015, and
~d! r0vex/2p c50.3668, which are all close to the anticrossing fea-
ture in Fig. 4. The dotted line in~c! shows the absorption spectrum
for r0vex/2p c50.465, corresponding to an essentially uncoupled
exciton.

FIG. 3. Absorption spectrum of a cylindrical microcavity with
the quantum wire for a convergingE-polarized cylindrical wave
with azimuthal numberm50. Different values of are shown: solid
line, G5G0; dotted line, G52G0; short-dashed line,G510G0;
long-dashed line,G520G0; and dash-dotted line,G550G0. The
inset shows a schematic view of the cross section of the structure: a
central core with the quantum wire in the center, surrounded by
cylindrical Bragg reflector. The refractive indices of the central
core, outer media, and the two layers of the Bragg reflector, shown
in gray, are equal to 3.0, while refractive index of the three white
layers are equal to 1.0. The thicknesses of the layers of the reflector
are a quarter of the wavelength corresponding to the exciton reso-
nance frequencyvex . The radius of the central core is chosen to
provide an exact tuning of the optical eigenmode frequencyv0 j to
the exciton resonance frequency and satisfies the relation
r0vex/2p c50.37015.
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cavity exhibits a series of branches, as shown in Fig. 4. In
each branch, the frequency increases with decreasing radius
r0. The splitting between two neighboring branches charac-
terized by the same azimuthal number is given by formula
~31!. By changing the radiusr0 it is possible to tune the
optical eigenmode frequencyv0 j into resonance with the
quantum wire exciton. The coupling of a photon and an ex-
citon state leads to the anticrossing behavior seen in the fig-
ure. The optical eigenmode branch crosses the exciton reso-
nance frequencyvex when the radiusr0 approaches the
value satisfying the relationr0vex/2p c50.37. Figure 4 also
shows another anticrossing atr0vex/2p c' 0.54, where the
exciton state couples with another optical eigenmode.

The change in shape of the absorption spectrum with
variation of the radiusr0 around the value corresponding to
the first anticrossing is illustrated by the solid lines in Fig. 5.
When the detuning of the exciton and the photon modes is
strong there are two distinct peaks in the absorption spectra,
and the frequencies of these two peaks nearly correspond to
the uncoupled exciton and photon states@Fig. 5~a!#. Tuning
the optical mode to the exciton frequency leads to the shift of
both resonances which exhibits identical shape in the case of
precise tuning@Fig. 5~c!#. The splitting between the peaks in
this case is almost identical to the value of the vacuum-field
Rabi splittingD given by Eq.~33!. The dotted curve in Fig.
5~c!, which corresponds to the value ofr0 well removed

from the anticrossing, illustrates how much weaker the exci-
tonic absortion is when the exciton and optical modes are
essentially uncoupled.

IV. CONCLUSION

Exciton-light interactions in a system of cylindrical sym-
metry have been theoretically analyzed using the nonlocal
dielectric response model. An interesting peculiarity of the
cylindrical system is that a converging cylindrical electrody-
namic wave can be fully absorbed by quantum wire exciton.
An equation for the energies of the polariton states originat-
ing from the optical eigenmode of the cylindrical microcav-
ity and the quantum wire exciton has been obtained, and
simplified approximate formulas have also been derived. The
state energies exist on a series of anticrossing branches when
plotted as a function of the inner radius of the microcavity.
The transition between weak- and strong-coupling regimes
has also been illustrated, and is similar to the case of a quan-
tum well in a planar microcavity.
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