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ABSTRACT

This dissertation presents for the first time the detailed excitonic

and Raman scattering investigations of strained-layer single quantum­

well ZnSe/ Znl_xCdxSe heterostructures. Recently, the existing group

of molecular-beam epitaxially (MBE) grown II-VI materials has been

enlarged by the successful growth of cubic (zinc-blende) CdSe and

Znl_xCdxSe on GaAs substrate. The heteroepitaxy of Znl_xCdxSe on

(100) GaAs by MBE results in single-phase zinc-blende crystals over

the entire composition range from CdSe to ZnSe. In Wide-gap II-VI

semiconductors the luminescence spectra are dominated by excitonic

transitions involving the electron subbands and hole subbands.

The photoluminescence under direct and indirect excitations are

investigated in detail to study the carrier generation, transport and

recombination mechanisms. The temperature dependence of photo­

luminescence and resonant Raman scattering are investigated to study

the exciton-phonon interaction and luminescence quenching

mechanisms. Very strong 2LO phonon Raman scattering has been

observed with single ZnO.86CdO.14Se quantum wells, where the

scattered photon energy is in resonance with an exciton transition.

The experimental confined exciton energies are compared with a

finite-square potential-well model including band-nonparabolicity. The
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CHAPTER 1

INTRODUCTION

1.1 General Background:

In the recent years, significant developments have taken place in

the field of semiconductor heterojunctions, quantum-wells (QWs'), and

superlattices (SLs') and their optoelectronic device application. The

early researches (1969) and proposal by Esaki and Tsu [1 ,2]

envisioned two types of layered-structures: namely doping and

compositional type. The QW and superlattice idea emerged during

their feasibility examination' of growing layered-structures by epitaxy,

especially for ultrathin wells and barriers, thin enough to exhibit

resonant electron tunneling through the well/ barrier layers. Resonant

tunneling arises from the interaction of electron waves with potential

barriers. If the characteristic dimensions like the QW width, the

periodicities in multi-quantum-wells (MQWs') are reduced to less than

the electron mean free path A, the entire system will enter a

quantized regime of reduced dimensionality in the presence of nearly

ideal interfaces. High quality heterostructures can have designed

potential profiles and impurity distributions with dimensional control

close to inter-atomic spacing and with defect-free interfaces. This
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great precision has opened a window of opportunities for design and

fabrication of devices in the quantum regime.

The growth of thin layers of different semiconductors by novel

techniques like molecular-beam-epitaxy (MBE) and metal organic

chemical vapor deposition (MOCVD), have enabled the growth of

extremely high quality epitaxial interfaces. This offers the possibility to

fabricate a large variety of artificial. semiconductor structures; not only

between lattice-matched, but even between materials which differ in

lattice constants by several percent. Quantum-well structures in III-V

compounds have attained significant importance because of their

unique electronic properties;that can be tailored through choice of

materials and layer thickness, allow prorntstng application in modern

semiconductor device technology. The wide-gap II-VI compounds are

less studied as compared to III-V compounds, offer the possibility to

fabricate optical devices from blue region to far-infrared region of the

spectrum. Examples of such novel semiconductor structures include

light-emitting diodes (LEDs'), lasers, optical modulators, MQW/ SL

photo-detectors, and high - s peed mod ulation - d oped field-effect

transistors (HS-MODFETs'). Superlattices from II-VI compound semi­

conductors are particularly promising for optoelectronic devices for

blue light-emitting-diodes (LEDs'), tunable color LEDs', and short

wavelength semiconductor lasers.
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The intriguing features of these gw structures basically arise from

the localization of electron and hole wavefunctions which for small

well-width, results in a quasi-two-dimensional (2D) carrier system.

The optical properties of a quasi-2D system exhibit many unique

characteristics which are different than those of bulk semiconductors.

When the lattice parameters of the bulk compounds are different,

the hetero-Iayers are strained. These strains can cause profound

changes in the electronic and optical properties and thus providing an

extra degree of freedom in the device design. In a strained-layer

superlattice (SLS) or strained-Iayer-quantum-well (SL-gW), lattice­

mismatch is accommodated by elastic strain, rather than generation of

misfit dislocations; provided that the layer thickness is less than some

strain-dependent critical value.

The fundamental physical property that determines the possible

application of a given heterojunction is the relative lineup of the band

structures of the two materials joined at the interface (called as the

band-offset). Theory of band-offsets have been reviewed extensively by

several authors [7,14,16,18,60].

In wide-gap II-VI semiconductors the luminescent spectra are

dominated by excitonic transitions involving the electron subbands
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and hole subbands. Recently, the existing group of MBE grown II -VI

materials have been enlarged by the successful growth of cubic (zinc­

blende) CdSe and Znl_xCdxSe on a (100) GaAs substrate by Samarth

and Furdyna (65,66]. CdSe exists in wurtzite (WZ) structure in nature

and bulk grown Zn l-xCdxSe is obtained over the entire composition

range (0 < x < 1) and changes from zinc-blende (ZB) to wurtzite when

composition x > 0.5, the interval 0.5 < x < 0.7 being the range of

structural phase transitions [47]. In contrast, the heteroepitaxy of

Znl_xCdxSe on (100) GaAs by MBE results in single-phase zinc-blende

crystals over the entire composi.tion range from CdSe to ZnSe [65,66].

Observations of Raman scattering resonant with excitons in III-V

QWs' and SLs' have been reported in the literature [44,45,52,67-69].

Two excellent review articles of experimental and theoretical results

of the exciton-phonon interaction in QWs' and SLs' have been

published [51,53].

1.2 Objectives and Organization:

The objective of this dissertation is to perform for the first time,

the detailed excitonic and resonant Raman scattering investigations of

strained-layer single quantum-well (SQW) ZnSe/ Znl-xCdxSe hetero­

structures. This particular investigation seems to be suitable for the
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realization of narrow band emitters for a blue region of the visible

spectrum. Photoluminescence (PL) spectra of the sgw hetero­

structures are studied in detail. Lattice-mismatch as high as 1.011 0A>

exists in single ZnSe/ Znl_xCdxSe / ZnSe quantum wells with x=0.14.

The strain effect shifts the band gap energy in the well and removes

the degeneracy present at the zone center. The strain-induced effects

on band structure and the energy transitions by confined carriers are

calculated and observed in the PL spectra. The PL process like the

generation of carriers, carrier transport and their confinement are

analyzed in detail. The confined carrier (electrons and hole) energies

are computed using a finite-square-potential well model. Resonant

Raman scattering are observed for the first time in Znl_xCdxSe

quantum wells. Experimental results are cornpared with the

theoretical model and calculations. The temperature dependencies of

peak position, their intensities, and the linewidth are determined.

The dissertation is organized as follows: In Chapter 2, physics

and applications of quantum-well structures, their evolution, theory of

heterojunction band-lineup, electron states, strain and effect of strain

on the optical properties of these structures are reviewed. Chapter 3

describes the spectroscopic techniques used to study the optical

properties of the quantum-well structures. The results of photo­

luminescence measurements are presented and observed features are
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discussed. Experimentally observed radiative transitions are ascribed

as free-exciton and bound-exciton transitions. Temperature

dependence of photoluminescence and resonant Raman scattering

are discussed in detail. Results of circular polarization measurements

are also presented. In Chapter 4, the bandgap of Zn l-xCdxSe quantum­

well as a function of composition is computed. The confined carrier

energies are numerically computed by modeling single quantum-wells

as finite-square-potential wells. Strain and strain effects on the energy

of transition from heavy-hole, light-hole and splitoff-bands are

computed. Experimental results are compared with the theoretical

models and calculations. Conclusions and recommendations for future

work are given in Chapter 5. Appendices list the special programs

written to calculate the confined carrier energies, strain-shift due to

heavy-hole. light-hole and split-off bands, together with sample

calculations.
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CHAPTER 2

LITERATURE REVIEW

Layered-structures like quantum-well and superlattices offer

unique electronic and optical properties, and hence find importance

in custom designed optoelectronic devices. By techniques like MBE

and MOCVD, it is possible to grow ultrathin epitaxial layers and tailor

the electronic properties, by varying the composition between the two

semiconductors and by the layer thickness. The crucial parameters

that govern the electronic properties of the heterojunction are the

bandedge discontinuities.

In this chapter, starting from the fundamental concepts of QW

structures, the theory of band lineup, electron states in a QW, strain in

lattice mis-matched systems and the effect of strain on transition

energies are reviewed.

2.1 Physics and applications of semiconductor quantum-well

Structures:

Advances in the semiconductor technology have facilitated the

fabrication of microstructures with dimensions in the atomic scale.
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The availability of this class of semiconductor structures create new

opportunities for the investigation of the physics of condensed matter

under conditions of reduced dimensionality. In the case of electrons,

quantum size effects occur when the physical dimensions are

comparable to the characteristic lengths that determine the electron

behavior, like the mean free path. These lengths range between lOA

to 1000 A.

New physics and novel devices are possible because of control of

composition and doping of theses layered structures. These layered

structures reveal a great wealth of physical phenomena. The existence

of a 'unique axis' along the direction normal to the layers, which

represents the direction in which the electron moves, is strongly

altered by the ultrathin layers in the structure. On the other hand, the

carriers' motion parallel to the plane of the layers is not substantially

altered. Thus, semiconductor heterostructures can be fabricated with

tailored composition and doping profiles, such that carriers are

confined within one type of layers or quantum wells. This confers to

carriers a quasi-two-dimensional character, that is at the center of

some most exciting developments in experimental and theoretical

semiconductor physics today. The unique features that attract much

attention are the high mobility observed in 'modulation doped'

heterojunctions and the enhanced optical properties seen close to the

band gaps of quantum-well heterostructures. Periodic multi-layer
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structures form superlatttces, in which the folding of the Brillouin

zone, strongly effects the energy band structure and symmetry

selection rules, as compared to bulk semiconductors.

2.2 Evolution of semiconductor quantum wells and superlattices:

The early research on semiconductor superlattices was initiated

with a proposal by Esaki and Tsu [1,2] for a one-dimensional potential

structure engineered with epitaxy of alternating ultrathin layers

(Fig. 1). The superlattice structures possess an unusual electronic

property of quasi-two dimensional character (1,2]. The introduction of

the superlattice potential perturbs the band structure of the host

materials. Since the superlattice period is much longer than the

original lattice constant, the Brillouin zone is divided into a series of

minizones , causing narrow subbands, separated by forbidden regions

[3] (Figs. 2 a & b).

Heteroepitaxy is of fundamental interest for the superlattice

growth. The dimensions of these structures are controlled close to

interatomic spacing and with almost defect-free interfaces. This great

precision has cleared access to quantum regime. Semiconductor

interfaces exhibit an abrupt discontinuity in the local band structure,

usually associated with a gradual band bending in its neighborhood that
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reflects space-charge effects. According to such discontinuity, the

hetero-interfaces are classified into 4 kinds: Type I, Type II-staggered,

Type Il-mlsaltgned. and Type III. The conduction-band discontinuity

is denoted as ~ E c and the valence-band discontinuity is denoted by

aEv between the two semiconductors. Figure 3 illustrates four

different types of superlattices.

Type I applies to GaAs- AlAs, GaAs -GaP systems, etc., where their

energy difference aEg =aEc + aEv . Type II staggered and misaligned

apply to pairs of lnAs-GaSb, InP-All_xlnxAs systems, etc.. where their

energy gap difference aEg = IaEc - aEv I and electrons and holes are

confined in the different semiconductors at their heterojunctions. In

Type III the system is similar to HgTe-CdTe, where one of the

constituent is semimetallic.

The bandedge discontinuities at the hetero-interfaces command

all the properties of quantum wells and superlattices, constituting a

most important parameter for the device design.

Optical investigation of these layered structures has revealed the

salient features of quantum confinement. Dingle et ale (4] observed

pronounced peaks in the optical absorption spectrum, representing

bound states in single and double quantum wells. In the low­

temperature measurements for such structures, several exciton peaks,
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associated with different bound-electron and bound-hole states can be

resolved.

Bandgap engineering consists of tailoring of associate materials to

custom design the band structure of the heterostructure for some

desired properties, unattainable in homostructures. The range of

materials now grown in ultrathin layers is extremely wide. Some

degree of the lattice-mismatch, yet small, at the hetero-interface is

inevitable, because of the joining of the two different semiconductors.

It is certainly desirable to select a pair of materials closely lattice­

matched to obtain defect and stress-free interfaces. But,

heterostructures lattice-mismatched, by 1 - 5°;6 can be grown with no

misfit dislocations, if the, layers are sufficiently thin. This is because

the mismatch is accommodated by uniform lattice strain (5,6]. The

realization of this effect has lead to the development of ultrathin

multilayer structures with a much wider group of materials. Within the

allowed range, the choice of layer thickness allows one to select a

strain value that offers an additional parameter for tailoring of

electronic properties.
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2.3.1 TheolY of heterojunction band lineup:

The crucial parameters which determine the electronic behavior of

the heterojunction are the valence and conduction band-edge

discontinuities. These discontinuities are dependent, and are

colletively referred as the band-lineup. Band-lineups determine the

barrier for hole or electron transport across the interface, and act as

boundary conditions in the calculation of band bending and

electrostatic features.

Because the bandgaps of the two semiconductors Eg(Al and Eg(Bl at

the h e t e r oj u n c t i o n are in general different, there is always a

discontinuity in one or both band-edges at the interface. Figure 4

illustrates the band discontinuities between A and B semiconductors.

The valence-band discontinuity is given by

LlEy(A, B) = Ey(B) - Ev(A)

and the conduction-band discontinuity LlEc is given by

LlEc(A, B) =Ec(8) - Ec(A)

These discontinuities are related by

LlEg = I aEc - LlEy I (2.3)

where aEg is the band gap difference between materials A and B.
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Either the valence-band discontinuity or the conduction-band dis­

continuity is sufficient to specify the band lineup, which is

independent of the doping profile.

The band lineup or band offset, is an important consideration for

the design of a device. The band lineup problem holds a special place

in basic heterojunction interface physics, since it is one of the well­

defined interface problems. In the above discussion, the band lineup

problem amounted merely to determine the band-edge discontinuities

at a given interface. However, in practice the problem is more

complicated.

The theory of band lineup includes a variety of methods and

approaches for solving the problem, and can be broadly divided into

three categories. The first category consists of numerical calculations

of the complete electronic structure of a specified interface. The

accuracy of this approach is limited by the approxtmations made, in

practice. The second category is the theoretical work, involving

qualitative analysis of the problem, leading to model theories. Finally,

the third category of work consists of analysis of electronic properties

of the interface, given the band lineup, which includes quantum-well

exciton energies, luminescence spectra, and impurity states at the
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interface, etc. A critical review of this problem has been done by

Tersoff [7).

The flexibility in a heterojunction originates from the use of two

different semiconductors with two different sets of parameters, the

most important of which are the minimum forbidden gaps Eg (A) and

Eg (8) at the interface. The difference aEg = Eg (A) - Eg (B) gives rise to

valence-band discontinuity .!lEv and the conduction-band discontinuity

aEc . This band discontinuity plays a leading role in determining the

transport and optical properties of the interface.

The first fundamental step was formulated by Anderson's 'electron

affinity rule' (8). Many researchers have developed surface-sensitive

experimental techniques (9), for example photoemission spectroscopy.

In the recent years, the advent of these techniques has stimulated a

renewed theoretical interest in this problem, and the formulation of

several new discontinuity models [10,11]. The definition of the

discontinuity problem is provided by practical aspects of device

applications. The control of aEv and .!lE c must achieve an accuracy

better than kT at room temperature, i.e., ± 0.25 meV. Therefore, the

research goal is the formulation of theoretical approach capable of

predicting .!lEv and .!lEe with the above mentioned accuracy.
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In Anderson's approach [8), the relevant property of each

semiconductor is its electron affinity. The basic prediction of this

model is that the valence-band discontinuity is given by the difference

between the electron affinities of the two semiconductors, LlEc = XB ­

XA. Anderson's model is a general purpose theory, and given any two

semiconductors, one substitutes the corresponding electron affinities

and finds LlE c (see Table I). From an empirical point of view, the

electron affinity is measured by extracting electrons from the

semiconductors, and therefore, it is influenced by the interfaces

between the surface and vacuum. The electron affinity rule uses a

linear combination of the results of such measurements to describe all

the factors contributing to the discontinuities.

A practical problem affecting the electron affinity rule is the

difficulty in measuring the electron affinities, and the consequent lack

of a more comprehensive and reliable data base. There is a

discrepancy between theory and experimental results, in computation

of band lineups using electron affinity rule (EAR). The failure of the

EAR increases the emphasis on other linear models. The EAR rule,

expresses the discontinuities in terms of the absolute position in

energy of the valence-band edges of the two semi-conductors. Other

models follow the same pattern, trying to identify a reference energy
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Semiconductor parameters
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Material

CdS

CdSe

CdTe

ZnS

ZnSe

ZnTe

Eg, minimum bandgap*

(eV, room temp.)

2.42

1.74

1.44

3.54

2.58

2.26

Electron afflnttyv"

(eV)

4.79

4.95

4.28

3.9

4.09

3.53

• from eRe Handbook of Chemistry and Physics.

•• from Reference [76].



22

level (the vacuum level for the EAR), then to estimate the absolute

position in energy of the valence-band edges, Ev (A) and Ev (8). Finally

~ E v is predicted from the absolute positions, ~ E v = Ev (8)- Ev (A).

The problem of finding a theory capable of calculating the valence­

band edge positions with respect to some absolute reference level.

Harrison [12] emphasized that the simplest and meaningful band

calculations which place all systems on the same scale are the 'tight­

binding' calculations based upon universal parameters. Thus, this

approach is best suited to find Ev terms for different semiconductors,

whose differences define the band lineup ~ E v . Harrison's approach is

quite accurate to experimentally determined band-offsets.

In Frensley- Kroemer model, a pseudopotential approach is used to

estimate the valence-band edge positions [13]. The reference energy

in each semiconductor is the interstitial potential Vi' which is the

average of the electrostatic potentials at the midpoints between

adjacent atoms. The result of this approach is its linear character,

including dipole corrections. The Microscopic study of semiconductor

heterojunctions by photoemission measurements [14) and problem of

heterojunction band discontinuities has been reviewed by

Margaritondo et al. [14].
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2.3.2 Nature of valence-band edge discontinuity:

To obtain insight into the nature of the band edge discontinuity,

one relies on the combination of experiment and theory. Theory

p r ovid e s predictions based on certain assumptions. Then a

comparison between experimental results and theoretical predictions

provides a verification of those asstrmptions and can help identify the

origin of the physical property. Detailed theoretical calculations are

complex and lack in accuracy, and have lead the researchers to rely on

some semiquantitative theories.

A number of semiquantitative approaches have been proposed to

describe the band edge d i s cont i n u tty. Such approaches include

Anderson's electron affinity rule (8], Harrfsons LCAO model (12),

Frensley- Kroemer pseudo-potential model (13), and induced gap state

model by Tersoff (15). Below a short description of the essential

features of various semiquantitative theories are discussed:

1. Anderson's model:

In a heterojunction, the vacuum level is parallel to the band edges

and continuous throughout the Junction in the absence of dipole layers.

Under these assumptions the conduction-band dtscorrttnutty can be

expressed as the difference between the electron affinities (Xl and X2)
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of the two semi-conductors forming the heterojunction, aEc =Xl - X2 ·

This model has some practical drawbacks, such as the accurate

measurement of electron affinity to predict aEc .

2. Frensley and Kroemer's model:

According to Frensley and Kroemer, the average interstitial

potential derived from the electrostatic part of the total periodic

potential for the bulk semiconductor, is continuous throughout the

interface in the absence of dipole layers. On this basis, they calculated

the valence-band maximum with respect to the average interstitial

potential using the self-consistent pseudopotential approach for the

bulk materials. The valence-band discontinuity is given by, aEy = Ey(B)

- Ey(A), where Ey(A) and Ey(B) are the valence-band positions of the

two semiconductors as given by pseudopotential calculations. This

model has been later modified to include the interface dipoles. The

modification is a correction determined from the relative electro­

negativities of the constituents of the semiconductors.

3. Harrison's model:

In this model, the valence-band maximum is calculated by the

linear combination of atomiclike orbital (LCAO) approach, for the bulk

semiconductors. The valence-band discontinuity is given by ~ E y =
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Ey(B) - Ey(A), where Ey(A) and Ey(B) are the calculated valence-band

maxima of the two semiconductors. The calculation of valence-band

maxima includes the p-atomic energy states of the anion and cation of

the semiconductor and the interatomic distances.

4. Teraoff's model:

According to Tersoff, the mid-gap energy position for a

semiconductor should be the reference point to calculate the band

discontinuities. The mid-gap energy position is calculated by

minimizing the interface dipole that results from the band

discontinuity states, is obtained by assuming charge neutrality at the

interface and, consequently, zero interfacial dipole. This calculation

requires the knowledge of the band structure of the semiconductor

under consideration. The band discontinuity is given byaEy = EB(B) ­

EB(A), where EB(A) and EB(B) are the mid-gap energy positions for the

two semiconductors forming the heterojunction.

A common feature of the above models is that, they express the

band discontinuities as the difference between two terms

characteristic of the two semiconductors. Extensive experimental

work has been performed over the past two decades to verify the

consequences of the above mentioned semiquantitative theories and to

asses their accuracy limits. Many of these experiments addressed the
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question of the interface and its contribution to the band edge

discontinuity. Most experiments sought a parameter by which they

would have control over band edge discontinuity, like the consequence

of linearity, overlayer ordering, and dependence of surface orientation,

etc. Light scattering determinations of band-offsets in GaAsjAlI_xGaxAs

heterojunction by Menendez et ale [16] is noteworthy. A review of

heterojunction interface characteristic and also the theoretical and

experimental work related to band discontinuities has been done by

A. D. Katnani (17].

Self-consistent calculation of the electronic structure of the

interfaces have been performed by several authors [18,19]. Most of

these calculations are made with local density approximation (LDA).

Kromer [60] has presented a critical review of theory of

heterojunctions. Kromer has presented the results of Harrison theory

(HAO) in a simple table form for III-V and II-VI compounds. The

energies have been expressed relative to the top of the valence band of

GaAs. Specific application of HAO theory and the values from Kromers'

table in our calculation will be discussed in Chapter 4.
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2.4 Electron states:

Dingle et ale (201 first performed optical measurements on a

rectangular GaAs/ All_xGaxAs quantum-well heterostructure (QWH).

The All_xGaxAs layers were thick enough to ensure that carriers are

localized to a GaAs layer. The smaller band gap material sandwiched

between layers of larger band gap material (barrier) constituted the

quantum-well. The investigations performed on this structure by

absorption spectroscopy, concerns the bound states of a particle

confined to a one-dimensional QW of thickness Lz ' when this

thickness is comparable to the de Broglie wavelength of the particle.

In this case a discrete spectrum of energy levels is created for the

particle in the well. The eigenvalues of the energy relevant to these

levels depends strongly on the well thickness Lz. For very large Lz ' a

continuum of states results and the particle will no longer be in the

quantum limit. For an infinitely deep rectangular potential well, the

solution to Schrodinger wave equation leads to the energy eigenvalues

En = (fi21f2/2m) (n/Lz)2 , n =1,2,3 The dependence of the energy

eigenvalues En of the bound states in a quantum well on the dimension

of the well (Lz in ID case) is known as the quantum size effect (QSE).

For the particle (electron or hole) subband calculations in

quantum-well heterostructure, the effective mass approximation
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(EMA) has been the most widely used method (21). In its simplest

form, this method uses the standard time-independent Schrodinger

equation separately for the conduction and for the valence bands,

respectively, with the mass of electron or hole replaced by its band­

edge effective mass. For the background discussion, one can follow the

considerations of Bastard and Brum (22) and apply the effective mass

envelope function approximation. This approximate theoretical

scheme is straightforward and proven efficient leading to analytical

results. There are two important considerations: the first, is because

most of the host materials forming the heterojunction has similar band

structures. The periodic parts of Bloch functions [23] of the relevant

band edges do not differ very much from one host material to the

other. The second, is connected with the somewhat low excitation

level of the carriers in the QW, which has the consequence that the

relevant energy states are closer to the band extrema of the hosts.

Thus, only a small fraction of the host Brillouin zone participates in

the formation of the particle energy states.

In the envelope function scheme, consider the growth direction of

the semiconductor heterostructure as the z-axis. The host materials

will be called from now on well (W) and barrier (B) of the QW

heterostructure, respectively. Each host materials has its own lattice

constant, and a band structure characterized by dispersion relations

EnB(kB)' EnW(kw) and Bloch functions lVnkBB(r) and lIInkWW(r). The band
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edges relevant to optical properties of the discussed quantum-well

heterostructure have the [6 (conduction band), r 8 (principle valence

bands for heavy-holes and light-holes), and [7 (valence band splitoff by

11 from the [8 edge through spin-orbit coupling) symmetries [24).

Under flat band conditions, the quantum-mechanical wave function

\IIWB(r) describing the physical states of the particles in the well­

barrier layers may be expanded as:

where k1. (kx ' ky) and r 1. (rx ' ry) are two-dimensional wave and

position vectors respectively, and n is a bulk band index that extends

over the host band edges. Notice that, k1. is real, since in the layer

plane, the 'heterostructure has the same transition invariance as the

host. On the other hand kzWB is either real or imaginary, depending on

whether the particle energy corresponds to a propagating or

evanescent state within the Wand B layers, respectively.

The wave function "WB (r) is the sum of products of: (I) the

envelope functions (slowly varying functions at the scale of the host

unit cells- the plane waves in \IIWB(r)], (It) by the rapidly varying

periodic parts of band-edge Bloch functions unOWB(r). It is the clear

cut separation between the spatial extensions of the two kinds of

terms that underlay the envelope function scheme. The rapidly varying
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terms will enter the heterostructure calculations only through

effective parameters: with the host crystalline potentials, they fix the

barrdgaps , interband p-matrix elements, etc. these quantities are

assumed to be a priori known in the envelope function approximation.

For the slowly varying terms the envelope function flz), a relevant

Schrodinger-like equation governing their spatial behavior, has to be

solved (22]. The two simplifying considerations, inherent in the above

discussed envelop e function approximation, mean that the wave

function lIIWB(r) may be restricted only to 8 terms in n. which are

relevant to the r 6, r 7, and twice r 8 bands, while the periodic parts of

Bloch functions are assumed to be the same in both, the well (W) and

the barrier (B) layers.

In type I heterostructures kJ.. = 0, and the light-hole and heavy-hole

levels decouple. The equations for the envelope functions flz), relevant

to electrons, light-holes and heavy-holes, respectively, have the form

(22]

- (fi 2 /2) a/oz {I /m(z) * of(z) / oz} + V(z) fez) = Ef(z) (2.5)

When taking the energy zero for holes at the top of the degenerated

r 8 band of the bulk W material, and for electrons at the bottom of the

r 6 band of the W material, then V(z) = r 6B - r 6W = aE c for the

conduction band electrons, while V(z) = - (rSB - r 8W) = aEv for the
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light and heavy-holes. The first term on the left-hand side of equation

(2) represents the quantum mechanical operator of kinetic energy

acting on the envelope function relevant to the specific particle. From

physical point of view, this terrn is finite throughout the quantum-well

heterostructure. This requirement lea.ds to the necessary boundary

conditions that have to be fulfilled by the envelope functions.

Accordingly, both fez) and {l/m(zj :Ie af(z)/oz} should be continuous for

all values of the z-coordinate, including the QW interfaces at z = ±

Lz/2.

The fez) functions can be chos en either even or odd in z. The

following equations give the bound states of the particles confined to

rectangular quantum-wells [22]

for even fez) (corresponding to even values of quantum number n):

tan (mwEnLz2/ 2fl2)1/2 = {mw(ilEc,v - En)/ mBEn} 1/2 (2.6)

and for odd f(z), and odd n:

cotan (mwEnLz2/ 2fi2)1/2 = - { mw(ilEc,v - En)/ rnBE n} 1/2 (2.7)

Figure 5 illustrates the bound states and wavefunctions in a QW.

Evidently, the energy eigen values En of the particles confined to the

quantum-wells may be determined from these equations if the

following quantities are known for the considered material system: the
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I'<potnt effective masses, m W(3D) and m B(3D), of the particle in the

well and barrier bulk materials, respectively, and the band-edge

discontinuities aEc =QaEg(3D) and aEv= (1- Q)aEg(3D), with aEg(3D)

= EgB(3Dl - EgW(3Dl.

The conduction band, which exhibits r 6 symmetry, is .made up of

spherical s-orbitals [24,25]. This results in isotropy of this band in the

zinc-blende crystal lattice. Therefore, the effective mass of the

conduction electrons has the same value me for all directions in the

crystal lattice. The principle valence bands, with [8 symmetry, are

made up of p-orbitals coupled with the spin to the total angular

momentum J = 3/2 (24,25]. This results in anisotropy of these bands.

The effective masses of the light-holes and heavy-holes are therefore

different in different directions in the zincblende crystal lattice [26].

They may be expressed by applying the Luttinger parameters y1, Y2,

and Ys (27).

D. Gershoni et ale [28] have numerically calculated the energy levels

of the confined carrier in the quantum well by finding the roots of the

equation:

f (E) = [ rl (E) - 1/ rl (E)] sinr2 (E) - 2 cos r2 (E)

where r 1 (E) = kw (E) rnB (E) / kB (E) mw (E)

and r2 (E)=kw (E)Lw

(2.8)

(2.9)

(2.10)
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Figure 5. Bound states and wavefunctions in a QW.
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In the above equation L, k, m stand for the well-width, carrier wave

vectors, and effective masses in the confinement direction, and the

subscripts Wand B stand for the well and the barrier, respectively.

The dispersion relations that correlate the wave vector to the

particle energy E, measured from the bottom of the well are given by

E =112 k W
2 / 2 mw (E)

and E =VB - f12 kB2 / 2 rna (E)

where Va is the barrier potential or the band discontinuity.

2.5 2D excitons in quantum-well heterostructures:

(2.11)

(2.12)

Spatial localization of electrons and holes in a quantum-well causes

a dramatic enhancement of excitonic effects [29]. Excitons dominate

optical properties like absorption or luminescence of quantum-well

heterostructures. Excitons are fundamental electronic excitations of

semiconductor crystals. Excitons are the electron-hole pair formed by

coulombic interaction. They occur when a single electron is

transferred from one of the fully occupied valence bands into an

unoccupied level in the conduction band. The transition of the valence

band electron through the energy gap of the semiconductor into the

conduction-band leaves an unoccupied energy state in the valence­

band (hole, a particle with a positive charge). This description of the
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electronic excitation was first discussed by Wannier, and are called as

Wannier excitons.

Wannier excitons, from now on simply excitons, are usually

generated in semiconductors through absorption of photons,

accompanied by creation or destruction of lattice phonons. An ideal

semiconductor crystal is transparent to light of photon energy less

than the energy gap Eg. Therefore, the photon energy at which this

crystal starts to absorb optical radiation is characteristic to the crystal,

called as the fundamental absorption edge. Optical properties of

crystals near the absorption edge are strongly influenced by the fact

that the electron and the hole created in the excitation process

interact with each other.

An exciton state is a two-particle state, which resembles a

hydrogen atom, to which a characteristic Bohr radius and a binding

energy may be assigned (Fig. 6). The quantum-mechanical wave­

function associated with an exciton has the spherical symmetry of the

s-orbital of the hydrogen atom, and a set of hydrogenlike quantum

numbers (n, 1, ... ) that characterize the relative motion of the electron

and the hole to create an exciton.
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Figure 6. Energy level diagram for an exciton and its excited

-states, the exciton energy being referred to the

edge of the conduction band.
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A short review of the theory of Wannier excitons in bulk semi­

conductors can be found in Ref. 30. In quantum-well heterostructures,

where carrier masses are very anisotropic, the confinement of an

exciton to the well layer changes considerably the properties of this

two-particle system. The anisotropy effects on excitonic properties

have been theoretically analyzed by Grundmann and Bimberg (29].

2.6 Hole-energy levels:

The bulk hole bands are described in the Kane model by basis

functions with angular momentum J = 3/2 symmetry. That means,

four-fold degeneracy at k= 0 neglecting the spin-orbit split-off valence

band. The dispersion near k= 0 can be described by Luttinger

Hamiltonian as:

H =1i2 / 2mo ( (YI + 5/2 Y2) k2 - 2Y2(kx
2J2

x + k y
2J2

y + k z
2J2

z )

- 4Y3 ({ kx · ky} {Jx . J y + }) ] (2.13)

where VI' Y2' and Y3 are the Luttinger parameters of the valence band.

In the bulk, propagation can be described in terms of heavy-hole

and light-hole propagation in a given direction. Taking the z-axis as

the quantization axis for the angular momentum, the direction of

propagation of the hole, the levels J z = ± 3/2 and J = ± 1/2 give a

simple dispersion relation from Eqn. (2.13). Taking k z in a (100]
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direction, the kinetic energy of holes is

E = f12k z
2/ 2mO (YI - 2Y2)

= 1i2kz
2

/ 2mO (YI + 2Y2)

for J z = ± 3 / 2

for J z = ± 1/ 2

(2.14)

(2.15)

From Eqns. (2.14 & 2.15), one can find the heavy-hole mass as:

mh = mol (YI - 2Y2) (2.16)

and light-hole mass as:

mj = mol (YI + 2Y2) (2.17)

In a successive perturbation approach, for hole levels in a

quantum well, one first treats the quantum-well potential as a

perturbation to the k= 0 unperturbed states, then adds the Luttinger

interaction as a new perturbation to the quantum well levels. As a first

perturbation, the quantum well potentiallifts the degeneracy between

the Jz= ± 3/2 and 112 bands as they correspond to different masses.

According to the Luttinger Eqn. (2.13), if we insert the values k x = k.t,

k y = k z = 0, the dispersion in a [100] direction perpendicular to z ­

direction is given by:

E = f12k.t21 2mo (VI + V2) for J z = ± 3/2

and

(2.18)

(2.19)
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The transverse dispersion equation corresponding to J z = ± 3/2

(heavy-hole band along the z-direction) now has a light mass (mol (YI +

Y2))' whereas the J z = ± 112 has a heavy mass. The above procedure

describes qualitatively the valence band effects. Figure 7 illustrates

the hole dispersion curves. C. Weisbuch (31) has modified the k. p

perturbation, which yields the dispersion along with the perturbation

introduced by the quantum well. It is suggested that one has to

diagonalize a perturbative Hamiltonian:

H = H k.p + H QW

in the degenerate set of valence-band levels at k= O.

(2.20)

Besides energy quantization along the z-axis , the main property of

quantum wells and thin structures is the bi-dimensionality in the

density of states. As the motion along the z-direction is quantized an

electron possesses only two degrees of freedom along the x and y

directions.

2.7 Selection rules:

The quantum well and superlattice potentials are symmetric

under space reflection changing from z into -z. Therefore, parity is a

good quantum number; i.e., the envelope wavefunctions are

characterized by their even or odd character under space reflection.
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Figure 7. Hole dispersion curve in a quantum well.

quantum-well potential lifts the 4-fold degeneracy of holes [in 3D, (a)] at k = O. (b). The k· p

interaction term as described by the Luttinger Hamiltonian then yields the dispersion in the y

direction (for example) (c); finally, higher-order terms lead to an anticrossing behavior, (d).
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The interband transition probability for particles confined in

quantum wells can be calculated by perturbation theory and is the

product of an optical matrix element times a density of states [31].

Considering the electric-dipole matrix element, the factorization

procedure leads to the following results.

(1) The usual change of parity of electric-dipole transitions

appears in the Bloch integral matrix element.

(2) Transitions are then allowed for confined states with the

same envelope function symmetry under space reflection.

(3) In the infinite-well approximations, due to the orthogonality

of the envelope wavefunction, only transitions between confined

valence and conduction states with the same quantum number n are

allowed (an= 0 rule).

Light polarization matrix elements can be calculated at k= 0,

where the quantum-well potential acts as a simple perturbation to the

Kane description of bands. The split-valence states retain their

symmetry characterized by the angular momentum of the Bloch

wavefunctions: the heavy-hole level at k= 0 has J z = ± 3/2; the light­

hole level has J z = ± 1/2. The various allowed transitions can be

calculated as the transitions between ground levels with J = 3/2, Jz= ±

3/2 or Jz= ± 1/2 and excited levels J = 1/2, Jz= ± 1/2. Using classical
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description of radiation emission, which states that an electric dipole

radiates mainly perpendicular to its own motion and does not radiate

in the parallel direction, the following selection rules can be deduced

for light absorption or emission [32].

Light propagating perpendicular to the layers:

Only those dipole moments in the plane can absorb or radiate.

Free electron-hole absorption is three times larger for the heavy-hole

band (HH) than for the light-hole band (LH) transitions. Under

circularly polarized Iigh t excitation lOO°A> spin polarization occurs

when electrons are only excited from one of the heavy-hole or the

light-hole band.

Light propagating along the layers:

The heavy-hole transition can only occur with light polarization

parallel to the layer (TE mode). The light-hole transitions occur for

both TE and TM light polarizations. The relative intensities of the TE

and TM modes are ratio 1: (2/3). Dingle reports that the TE mode

luminescence to heavy-hole transition is larger than the TM emission.

Figure 8 shows the optical selection rules for absorption and

luminescence between Bloch states of valence and conduction-bands.
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Figure 8 b. Optical selection rules for absorption and lumin­

escence between Bloch states of valence and

conduction bands: (c) possible dipole moments

(d) dipole moments in a QW situation (31).
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2.8 Strain and strain effects:

In wide gap II-VI compound quantum-well heterostructures, the

physical system has elastic strain (E) due to lattice mis-match. H. Asai

and K. Oe (33) have developed a procedure for theoretically calculating

the strain in III-V semi-conductors. According to the procedure, the

effect of elastic strain is such that, the energy shift of the heavy-hole

valence-band ~ E o (1) and the energy shift of the light-hole valence­

band ~ E o (2), respectively, is given by

aEO (1) =( -2a (C l 1 - C12)/C1 1 + b(C 11 + 2C I 2)/C1 1) E

and ~ E o (2) = ( -2a (C11 - C I 2)/ C1 1 - b(C 11 + 2C 12)/CI I ) E

(2.21)

(2.22)

where E is the elastic strain, 'a' the hydrostatic deformation

potential, 'b' the shear deformation potential, and C1J is the elastic

stiffness constant of the material forming the heterostructure.

The elastic strain in the quantum-well is given by :

E = Jla/a = (a (barrier) - a (QW) ) / a (QW) (223)

The strain E is positive for compressive stress, produced by a biaxial

stress parallel to (100] and (010]. Pikus and Bir (34) have developed a

scheme to formulate the orbital strain Hamiltonian for the given bands

at k = O. Figure 9 shows the band diagram of a QW structure under

biaxial strain.
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Figure 9. Schematic band diagram of a hetero-interface

under biaxial strain at the zone center.
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For a zinc-blende type material, the valence bands at k = 0 consist

of a fourfold PS / 2 multiplet (J=3/2, rnJ=± 3/2, ± 1/2 in spherical

notation) and a twofold P 1/ 2 multiplet (J=I/2, mJ=± 1/2). The biaxial

stress splits the P S / 2 multiplet, because of the hydrostatic stress

component of the strain, shifts the 'center of gravity' of the P S / 2

multiplet. And also shifts the Pl/2 multiplet relative to the conduction

band. The three valence bands as are labeled as VI (J=3/2, mJ=±3/2),

V 2 (J=3/2, mJ=±1/2), and Vs (J=I/2, mJ=±1/2) (Fig. 10). The

transitions between the lowest conduction band and theses valence

bands at k=O are labeled as Eo (1), Eo (2), and (Eo + dO), heavy-hole,

light-hole, and split-band, respectively.

With the above formulation of confined carrier transition with the

energy shift due to strain, the energies for observable excitonic

transitions from the heavy-hole band to the nth quantized subband is

given by

(2.24)

where En is the allowed conduction band energy, E ZH is the strain

shift of the QW heavy-hole band, and EHH is the heavy-hole exciton
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Figure 10. Schematic representation of the valence bands

and the lowest conduction band: unstrained and

strained due to biaxial compressive stress in zinc­

blende type semiconductors at k=O.
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binding energy. In the same manner, the energy of an excitonic

transition from the light-hole band to the nth quantized subband is

given by

Em, = En + EzL +Eui (2.25)

where EZL is the strain-induced shift of the QW light-hole band and

ELH is the light-hole exciton binding energy.
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2.9 Luminescence:

The phenomena of luminescence, i.e., the emission of light by

excited atoms, molecules, or condensed matter that occurs in excess

to thermal radiation is caused by radiative transitions between energy

levels of the excited species. Each feature of the luminescence

spectrum of the physical system is connected with a definite

electronic transition that originates on some excited electronic energy

level, and after the emission of a photon (sometimes combined with

generation of a phonon) terminates when the electron reaches a lower

energy level. Depending on the way in which the excited levels

become populated or becomes energetically excited, different

luminescence processes may occur. If the physical system is excited

by electromagnetic radiation (light), photoluminescence occurs, while

electroluminescence is excited by applying an electric field (voltage)

to the system.

In semiconductors, luminescence is caused by radiative

recombination of excited individual or coupled charge carriers. These

may be: [i] free electrons or holes occupying the energy levels in the

conduction and valence bands, respectively, (ii) electrons or holes

bound to ionized impurities, and (iii) excitons (electron-hole pairs
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coupled by Coulomb interaction). Excitons may move throughout the

crystal lattice of the semiconductor (free-exciton), or become

localized by interaction with an active point defect of the lattice or on

interfaces occurring in the semiconductor structure (bound excitons).

Luminescence spectroscopy has the advantage of the ability to

differentiate between species involved in different recombination

processes involved and can provide information on many types of

centers in the crystal lattice. Luminescence techniques belong to the

most sensitive, nondestructive methods of analyzing both intrinsic and

extrinsic semiconductor properties. Luminescence spectroscopy, i.e.,

light emission versus wavelength observed under fixed optical or

electron-beam excitation is commonly used to ascertain physical

characteristics of quantum-well heterostructures.

Reihlen et ale [49) have calculated the photogeneration of carriers

in the GaInAs/ InP quantum-well, and report that it is negligible as

compared to that occurring in the InP barriers. They observed the

quantum-well PL to be several orders stronger than the barrier PL in

the 10 - 300 K temperature range. They explain the increase in PL

intensity, due to the rapid and efficient transfer of photogenerated

carriers from barriers into the quantum-well. The integrated

quantum-well PL intensity decreased by two orders of magnitude as
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the temperature was raised from 10 - 300 K, which they attribute to a

decrease of the radiative quantum efficiency of the quantum-well.

Using a uniform absorption coefficient for the barrier at a

particular excitation wavelength at a low temperature, one can find the

percentage of the incident photons absorbed within the epitaxial

barrier layers, during a PL experiment [75).

The quantum-wells give very strong PL, even though their

absorption is negligible. That means, the photogenerated carriers in

the barriers are efficiently transferred into the quantum-well, before

recombination occurs. Reihlen (49) have developed a rate-equation

model describing radiative and non-radiative recombination in the

barriers and in the quantum-well, and transfer of carriers from the

barriers into the quantum-well.

2.10 Composition dependence of the bandgap:

Hill [56) reports that the bowing of the energy-gap in

semiconductor alloy results from the nonlinear dependence of the

crystal potential on the properties of the component ions. The energy

gap of an alloy AxB 1-x in terms of the pure compound energy Eg (A) and



Eg (B) can be described as

Eg(x) = Eg (B) + (Eg (A) - Eg (B) - blx + bx2

where' b' is the bowing parameter.

The difference between the linear average

EgtAV = xEg (A) + (I-x) Eg (8)

and Eg(x) is BE = EgtAV - Eg(x) = x(I-x)b
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(226)

(227)

(228)

According to Hill (56), the alloy MFxG 1-x behaves as if the pseudo­

anion Fo.5G O.5 has a covalent radius equal to I/2 (rF + rG). The

difference between the potential for the pseudo-anion and the average

of the potentials of the F and G ions is:

(2.29)

where Z is the valence number of the intersubstitutional ions F and G,

rF and ra are the scaled covalent radii of F and G ions (Paulings'

constants), and 'e' is the electron charge. Assuming the reduction in

energy ~ E in the energy-gap at x=0.5 is equal to the screened potential

Vb, the bowing parameter can be written as:

b = ZerAV/ 41rEo { I/fF - 1/ra)2 exp (-sa 13/8)

where rAV = 1/2 (rF + fG), and's' is the screening constant.

(2.30)
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2.11 Temperature dependence of the bandgap:

The variation of the energy gap (Eg) of a semiconductor with

temperature T is suggested by Varshni [35]:

Eg (T) = E g (0) - a T2j (T + ~) (2.31)

where E g is the energy gap which may be direct (Egd) or indirect

(Eg 1d ) , Eo the value of energy gap at 0 0 K, and a and r3 are some

constants.

Varshni reports that, most of the variation in energy gap with

temperature is believed to arise from the following two mechanisms:

(1) a shift in the relative position of the conduction and valence

bands due to the temperature-dependent dilation of the lattice. The

effect is nonlinear in the low temperature range and linear at high

temperatures.

(2) a shift in the relative position of the conduction and valence

bands due to a temperature-dependent electron-lattice interaction.

The temperature dependence has the following form:

T« e

(2. 32)



T» e

LlEg OC T

where e is the Debye temperature.

(2.33)
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Due to fluctuations of the thickness of the Znl_xCdxSe quantum

well layer across the lateral direction, the effective bandgap of the QW

is modulated in real space as shown in Figure 11. Generally, this

modulation results in a broadening of the PL emission spectrum. In

the low-temperature range, most of the free carriers occupy low­

energy states according to the Fermi-Dirac distribution. As a result,

the energy of the PL peak represents mainly the bandgap minima

Elhm 1n in the band modulation. When temperature is increased, more

and more free carriers will occupy stationary higher-energy states and

the PL emission peak broadens and shifts to higher-energy value.

Due to this thermal population of the higher-energy states with

excited free carriers, at higher temperatures with QW luminescence

more and more regions will originate where the modulated bandgap

has its maximum value E1hmax. As a consequence, the PL peak shifts to

higher energies as compared to the minima of the modulated bands.

In a rough estimate, this relative shift is in the order of kT. At the

same time, as the PL peak shifts to higher energy values (with respect
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to the band-edge minimum) the bandgap shifts to the lower energies

due to the bandgap shrinkage when the temperature is increased.

Thus the total change of the PL peak energy E 1h between 10 - 300 K

is given by both effects: a blue shift of about kT - 25 meV due to

thermal population of higher energy states and a red shift of about 100

meV (in bulk GaAs) due to the bandgap shrinkage.

Jiang et al. [48] have investigated the temperature dependence of

GaAs quantum well structure and report that experimentally they

observed 78 meV PL emission peak shift. Based on the above model,

the PL emission peak shift should lie in the range of about 75 meV,

which is in good agreement with the experimental results.

2.12 Linewidth of excitons in quantum wells as a function

of temperature:

The main contribution to the linewidth of excitons is attributed to

lattice interactions via polar optical phonons and to inhomogeneous

fluctuations in the thickness of the well (36,37]. The studies of

electron transport in a heterostructure suggests that these contri­

butions are dominant at high temperatures [38].
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Theoretically, one can calculate the linewidth broadening due to

various scattering mechanisms. By the Fermi golden rule, the

transition rate WUl for various scattering mechanisms can be calculated

if the unperturbed wavefunction of the quasi-particle is specified. The

linewidth (HWHM) is then determined by [j = hWO)/2 for various

scattering mechanisms.

It is assumed that the electron-hole pairs generated by incident

light are completely confined in the quantum well layer of thickness L

in the z-direction, and are free to move along the weIll barrier

interface, the p plane. The wavefunction of the exciton in the ground

state may be approximated by [39]

w(p, Ze, 7n, R) =A elK · R e - ~p/2 COS(1T zel L) COS(1T zhl L) (2. 34)

where A is the normalization constant, K and R are the wave vector

and polar vector of the center of mass of the exciton in the p' plane, p

is the relative distance between electron and hole, ~ is a variational

parameter, and ze and zh are the respective projections on the z-axis

of the electron and hole positions.

The transition rate WUl due to phonon-exciton interaction is

given by Tait and Weiher [40] for acoustic and polar optical phonon
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scattering, considering all phonon mechanisms to be inelastic. In

acoustic phonon scattering, there are two types of scattering

potentials: one involving piezoelectric and the other deformation

mechanisms [38]. In polar optical phonon scattering, because the

optical phonon energy, flwQ is larger than the binding energy of an

exciton Eex(L), after a collision of an exciton with an optical phonon,

the exciton is either totally ionized or the optical phonon energy is

transformed into kinetic energy of the center of mass with elevation of

the exciton to an excited state.

The calculation of scattering cross section of free excitons from

impurities (neutral and ionized) in a quasi-two-dimensional system is

extremely complicated, because of the quantum confinement of free

carriers, the binding energy of an impurity depends on the thickness

of the well layer and the location of the impurity (41). J. Lee et ale [38]

have invoked a phenomenological formula.

The transition rate W(lmp) is proportional to the number N+ of

scattering centers N that are ionized,

w(tmp) (0) = CN+=WQ e -<Eb>/ kaT (2. 35 )

where <E b > is the binding energy averaged over all possible locations
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of the impurities. The parameter Wo = eN is determined by fitting the

experimental data.

The evaluation of total linewidth HWHM (fJ =hWU)/2) is obtained

by combining the effects of all scattering mechanisms, and is given by:

(2.36)

where the first term [0+ is the linewidth due to inhomogeneous

fluctuations of the well width, and [imp + is the linewidth due to the

ionized impurity scattering. [ph is the exciton- LO phonon coupling

constant and flooo is the LO phonon energy (30.81 meV in ZnSe). [a is a

coefficient of the exciton-acoustic phonon interaction, and <Eb> is the

binding energy of the donor averaged over all positions of the
.

impurities within the well-layer. The second term represents the

linewidth due to acoustic phonon scattering via deformation and

piezoelectric potentials and the third term is due to optical phonon

scattering.

J. Lee et al. have investigated the luminescence linewidth of

excitons in GaAs/ AlxGal_xAs multiple quantum well structure, and

have used the above formulation to fit their experimental data. They

mention that for both heavy-hole and light-hole exc itons , the
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theoretical model predicts the HWHM increases sublinearly in the low

temperature range. They also report that, in the sample investigated,

(t) at low temperatures acoustic phonon scattering is the dominant

mechanism, (ii) when the temperature is larger than 20 - 25 K,

ionized impurity scattering begins to make a significant contribution

to the HWHM, and (iii) when the temperature T is higher than 200 K,

polar optical phonon scattering becomes the dominant mechanism.

2.13 Raman Scattering:

The nearly backscattering geometry is frequently used [81]. Light

propagates inside the sample along directions close to the normal to

the plane of the quasi-2D system. It is often convenient to set e + <p =

900 . In this case the in-plane and normal components of the

scattering wavevector are given by:

k = 21f/AL { sin e - cos e} (2. 37)

and k z = (41f/ AL)11 (AL) { 1 - [1/211 (ALl)2} (2. 38)

where AL is the incident laser wavelength and 11 (AL) is the refractive

index. The in-plane component k can be varied from a small value, at

e = 450, up to maximum of k - 105 cm- I . Larger values of k can be

achieved with the more conventional backscattering geometry in

which e + <I> = 00.
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Raman scattering involves two photons - one in and one out-. In

the Raman effect, a photon is scattered inelastically by the

semiconductor crystal/ mixed-composition alloy with the creation

(Stokes) or annihilation (anti-Stokes) of a phonon. The selection rule

for the first-order Raman effect are:

to = w' ± Q ,and k =k' ± K (2. 39)

where eo, k refer to incident photon, w' and k' refer to the scattered

photon. Q and K refer to the phonon created or destroyed in the

scattering event. In the second-order Raman effect, inelastic light

scattering is accompanied by two phonons; creation of two phonons or

the absorption of two phonons , or creation of one phonon and the

absorption of one phonon. The phonons may have different

frequencies. The selection rules in the second -order Raman effect are:

W = co' ±Q ±Q' , and k =k' ± K ± K' + G (2.40)

where G is the reciprocal lattice vector. Figure 12 illustrates the

Raman scattering process.

In the first-order Raman effect in the optical region it is not

possible in terms of energy to have a reciprocal lattice vector because

the photon wave vectors k, k' and their difference are much smaller
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Figure 12. Representation of inelastic scattering and Raman

lines with Stokes and Anti-stokes lines.
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than the shortest reciprocal lattice vector G. On the contrary, in the

second-order effect it is possible for the difference of the phonon

wavevectors K, K' to be a reciprocal lattice vector.

When the energy of the exciting radiation approaches the edge of

the interband absorption of crystals the cross section of Raman

scattering is considerably enhanced. R. C. Miller et ale [52] have

reported enhanced Raman scattering in square GaAsj AlxGal_xAs

quantum wells when either the incident photon or scattered photon

energy are resonant with the exciton transition in the well. They also

report the first observation of resonant Raman scattering (RRS) with

GaAs quantum wells where the tncident and scattered photon energies

are resonant with a 2D exciton transition. This type of LO phonon

resonant Raman scattering is unique to quantum-wells where the

exciton energies are tunable via the QW structure parameters.

2.14 Resonance Raman Scattering (RRS):

Excitons in multiple-quantum well (MQW) heterostructures are

formed by electron-hole pairs confined in the well layers. For example,

in GaAs - (AIGa)As heterostructure, excitons are confined in the GaAs

layers. This reduction in dimensionality results in an enhancement of

the exciton behavior. Optical properties of MQW's show several sharp
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transitions that are characterized as excitons constructed from

particle-in-a-well eigenstates [20, 42,43].

The QW potential and the degree of confinement of the exciton

are affected by the choice of the material parameters, such as the

width of the well and barrier layers. The width of the well insures both

lower dimensionality and a sharp exciton. The width of the barrier

determines the coupling between electron and hole states in adjacent

wells. Zucker et ale [44] investigated GaAs- (AIGa)As sample consisting

of 65 periods of 96A GaAs and 98A (AIGa)As using a tunable dye-laser.

The Raman spectra obtained in resonance with the n= 1 and n= 2

excitons showed only the LO phonons of GaAs. For incident photon

energies near the n= 3 and higher excitons, they also observed the LO

phonons of (AIGa)As, evidencing the appreciable penetration of the

barriers by theses excttons. In the energy range of the n= 1 heavy­

hole exciton peak there is a correspondence between the excitation

and Raman spectra. The resonant enhancement, in which the incident

photon energy coincides with that of the exciton, is called the

incoming resonance. A resonant behavior where the scattered

photon energy equals that of the optical transition is termed as the

outgoing resonance [92]. Observation of Raman scattering resonant

with excitons in III-V compound quantum wells [45] and in II-VI

compound (Cd,Hg)Te system [46] have been reported recently.
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In most Raman scattering experiments the incoming and outgoing

resonances cannot be separately resolved. Double resonances are

expected only in the presence of sharp optical structure, and thus is a

characteristic signature of exciton behavior. Double resonances are

only possible when the laser frequency wL > wI + 2 0LO, where wL is

the laser frequency, wI the exciton energy and fiLO the LO-phonon

frequency [45). Figure 13 illustrates 2LO resonant Raman scattering

process. Resonant Raman scattering (RRS) by phonons provides the

link between electronic and lattice-dynamical properties. Raman

scattering by LO phonons has been observed near electronic critical

points in scattering configurations, which are forbidden according to

dipole-selection rules [46).

2.15 Relation between elastic tensors of wurtzite and zinc­

bIende structure materials:

Martin (63J has derived a transformation which relates the fourth­

rank elastic tensors of sphalerite (zinc-blende or ZB) and wurtzite

(WZ) tetrahedrally coordinated compounds. The transformation

permits a simple derivation of effective cubic constants from WZ

compounds. Zinc-blende crystals are face-centered cubic (fcc with T d

symmetry) with two atoms per primitive cell, where as WZ crystals are
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Figure 13. Schematic representation of resonant Raman

scattering.
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hexagonal (with C6 v symmetry) with four atoms per cell. The

fundamental relation between ZB and WZ structures is that the local

environment of any atom in either ZB or WZ is exactly the same

through the second neighbor. The two lattices differ only in the

arrangement of third and more distant neighbors. The procedure

involves simple rotations which apply to tensorial property. Table II

presents the effective cubic constants of wurtzite crystals [63]. The

bulk modulus is given by B = 1/3 (ell + 2C 12 ) and shear constant Cs =

1/2 (CII - C I 2 ) , where ell and C12are the elastic stiffness constants of

the material. From Table II taking the values for effective modulus B

and Cs ' one has to solve for the elastic constant C1J in ZB form.

2.16 Exciton complexes:

Recombination radiation from silicon crystals containing one of

the Group III or V elements as an added impurity, show extremely

sharp lines at low temperatures under high-resolution spectroscopic

measurements. These lines are interpreted as the radiation produced

by the recombination of an electron and a hole both of which are

bound in an immobile four-particle complex consisting of an impurity

ion and three electronic particles. J. R. Haynes [80) report that the

ratio of the integrated intensity in the sharp lines to that of the

intensity of principal exciton line are found to be proportional to the



TABLE II

Effective cubic constants for wurtzite crystals

Units are lOll dyn/ cm2
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Material

SiO

BeO

ZnO

CdS

CdSe

Berf

22.06

22.52

14.33

6.11

5.31

C err
s

11.90

11.69

4.55

1.26

1.02

25.15

19.96

5.49

2.41

2.23
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amount of impurity added. Earlier investigations on impure

semiconductor materials have shown the existence of exciton

recombination and donor-acceptor recombination with LO phonon

replicas (82). Bogardus et al. (83] investigated the exciton complexes

in pure GaAs doped with one type of shallow acceptor and one type of

shallow donor, e.g., Si; observed several sharp emission peaks in the

photoluminescence spectra. They attribute the major emission lines

due to excitons: either free excitons, excitons trapped on neutral or

ionized impurities, or excitons trapped on impurity pairs (donor­

acceptor recombination). The less intense lines are due to phonon

replicas and emission from excited states of excitons. Sharma and

Rodriguez (84) have calculated the binding energies of excitons bound

to neutral donors, for the particular case of GaAs. They assumed an

effective mass ratio of 0= mel mh =0.15 and predicted a binding

energy for an exciton X trapped on an ionized donor D+, of Exo+ =

1.06 ED, where ED is the binding energy of the isolated donor DO. For

an exciton trapped on an ionized acceptor A-, they find EXA - = 1.4 EA.

The binding energy for excitons bound to neutral impurities is usually

expressed in terms of the dissociation energy Do, i.e., the energy

required to separate the complex into a neutral impurity and a free

exciton. For a exciton bound to neutral donors DO, Sharma and

Rodriguez calculate a dissociation energy of Do = 0.13 ED, giving a
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binding energy of EXDO= Ex + 0.13 ED. Here Ex is the binding energy

of the free exciton. According to Hopfield [85], the binding energy of

exciton-neutral acceptor complex is EXAO = Ex + 0.07 EA for GaAs.

Combining the results of Hopfield and Sharma, one can estimate the

photon emission energy fico of radiative annihilation of the exciton

complexes (DO .X), (D+,X), (AO,X) , and (A-,X) as (83):

fitC{Xdl) = Eg - Ex -0.13 Eo

ntC{Xot) = Eg - Eo -0.06 Eo

ntC{XAo) = Eg - Ex -0.07 EA

i1tC{XA-) =Eg - EA - 0.40 EA

(2.41)

(2.42)

(2.43)

(2.44)

From effective mass approximation based on hydrogenic model,

Ex can be found and the ratio 0= m e/mh can be assumed for the

particular semiconductor of interest. The binding energy of the donor

ED = (1- 0) Ex and the binding energy of the acceptor EA=Eo/a is

calculated.

2.17 Circular Polarization:

When the electrons are excited with circularly polarized light

from the valence band, the electron spins are optically oriented and

this manifests itself in a circular polarization of the recombination
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[86,87]. Upon excitation by the circularly polarized light, owing to the

symmetry properties of the wavefunctions and the connection

between angular momentum and the momentum, a preferred­

direction along the momentum of the produced holes, is created in

the valence band, with a symmetry axis that coincides with the

direction of the light beam (88]. The circular polarization phenomena

are determined by the relative s trength s (3 and 1), the mJ values

(±3/2 and ±1/2), and the effective hole masses (fih *=0. 45mo and

mI*=O.088mo for the heavy and light holes, respectively in a GaAs

system). Since the electron states are rnJ = ±1/2, the resonant

absorption of 0+ (arnJ= + 1) polarized light by heavy and light hole

transitions, will generate electrons with mj= -1/2 and +1/2,

respectively. With fih* > mI*' the emission at low temperatures will

be via the heavy-hole ground state [89]. Thus assuming a spin relaxed

hole population and incomplete electron spin-relaxation, resonant

excitation of the lowest energy heavy or light hole exciton transitions

lead to the emission from the ground-state heavy-hole exciton

polarized 0+ and 0-, respectively. At higher temperatures where the

lowest light-hole level is thermally populated, the above resonant

excitation conditions give rise to emission from the ground-state

light-hole exciton with polarization 0- and 0+, respectively. As there is

always some relaxation of the electron spins, the luminescence will
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not be 100°16 polarized. A decreased or negative polarization, i.e., a

polarization opposite to the incident polarization, is the significant

features of light-hole transitions for excitation, with detection set at

the heavy-hole emission which is the usual way of obtaining an

excitation spectrum. For nonresonant excitation, at low temperatures

a+ emission dominates, since the heavy-hole transitions are three

times stronger than the light-hole transitions. Thus circular

polarization techniques are very useful in identifying transitions. Figure

14 illustrates the selection rules for absorption and emission

transitions for GaAs type quantum wells, under circular polarized light.
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CHAPTER 3

EXPERIMENTAL TECHNIQUES

AND

THE PHOTOLUMINESCENCE SPECTRA

Luminescence spectroscopy, that is, the light emission over a range

of wavelengths observed under optical excitation (named as

photoluminescence (PL)), is commonly used to ascertain physical

characteristics of quantum-well heterostructures. Each feature on the

luminescence spectrum of the physical system is connected with a

definite electronic transition which originates on some excited

electronic energy level, and after the emission of a photon terminates

when the electron reaches a lower energy level.

In this chapter, the investigated MBE grown quantum-well sample is

described. Description of the techniques and state-of-the-art equipment

used during measurement of luminescence (recording), features

observed in low temperature PL spectra, measurement of PL in 8.7 ­

120 K temperature range along with some analysis of experimental

results are presented.
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3.1 Single quantum well (SQW) sample

In the bulk, single crystals of the alloy Zn l-xCdxSe has the zinc­

blende structure for x <0.3, the hexagonal wurtzite structure for x> 0.5,

and mixed phases for 0.3 -cx <0.5 [47). When grown in bulk, CdSe has

the hexagonal wurtzite structure. Samarth et ale [65,66) have success­

fully grown a single-crystal zinc-blende phase of CdSe on (100) oriented

GaAs by molecular beam epitaxy (MBE), despite the large lattice

mismatch (-7°16) between epilayer and the substrate. The hetero-epitaxy

of Znl_xCdxSe on (100) GaAs by MBE results in single-phase zinc­

blende crystals over the entire composition range from CdSe to ZnSe.

The investigated Znl_xCdxSe quantum wells (QWs) were grown by

MBE on a ZnSe 0.7 urn buffer layer, grown on (100) oriented semi­

insulating Cr-doped GaAs substrate. The single quantum well samples

have 60A, gOA, and 120A wide ZnO.86CdO.14Se wells, clad on the top by a

0.1 urn thick ZnSe layer (Fig. 15). The QWs were grown at around 250

degree centigrade and the sample surfaces were monitored by

reflection high-energy electron diffraction (RHEED). The details of

crystal growth are published elsewhere [65,66). The heterostructure

adapts the zinc blende (ZB) crystallographic form of the substrate. The

quantum layer thicknesses were determined by transmission electron

microscopy (TEM) and the reflectance spectroscopy method [65,66].
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Figure 15. Investigated single quantum-well structure.
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3.2 Experimental setup and Measurement techniques

3.2.1 Setup for Photoluminescence (PL) Spectra

The optical spectra are measured in the backscattering direction at

26 0 from the normal to the quantum well layer, with the sample

mounted on a cold finger cooled by a closed cycle helium cryostat down

to 8.5 K. The photo-luminescence measurements are performed with an

argon ion laser (Fig. 16) for the intrinsic excitation (ZnSe - barrier)

using the 351.1-363.8 nm (UV) lines or the 365 nm Hg line from a

100W high pressure Hg lamp (PTl model AIOIO). The 457.9 nm line

from an argon ion laser directly excites the ZnO.86CdO.14Se quantum

well (extrinsic excitation), because the ZnSe cladding layer is

transparent for the 457.9 nrn line.

Luminescence spectra are recorded with a Jarell-Ash 0.75 m

monochromator equipped with a 1180 grooves/ mm grating. The

detection electronics has a thermo-electrically cooled photomultiplier

(Hamamatsu R928) with a fast preamplifier (ORTEe 474). Signals

from the pre-amplifier are fed to the time-correlated-single photon­

counting (TCSPC) system or to a gated photon counting apparatus

(SR400) both controlled by a computer that also controls the stepping
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Figure 16. Photoluminescence measurement setup
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motor scanning of the Jarell-Ash monochromator. The photomultiplier

(PMT) detector used has a rather flat response within the emission

range of the ZnO.86CdO.14Se luminescence. All the spectra are stored in

the computer for further processing.

3.2.2 Setup for Photoluminescence excitation (PLE) spectra

For quantum wells, higher energy features that are not seen in

standard photoluminescence spectra can be observed in excitation

luminescence spectra, since the quantized quantum well states exhibit

resonant absorption. If one excites the sample with a tunable excitation

source (by scanning the wavelength of excitation) and observes the PL

emission at a fixed wavelength, one measures the photoluminescence

excitation spectrum (PLE). The instrument setup is similar to the PL

measurement setup as shown, except for using a tunable excitation

source. The detection wavelength is set to the sample emission peak

wavelength and the 100 W tungsten halogen lamp used as the excitation

source, is scanned over 400 nm through the wavelengths close to the

detection wavelength (Fig. 17).
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Figure 17. Photoluminescence excitation measurement

setup.
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3.2.3 Set up for Circular Polarization (CPL) spectra:

Figure 18 gives the block diagram of the experimental setup. The

light from the argon-ion laser is linearly polarized by the Glan calcite

polarizer PI, and a 900 retarder to produce the circular polarized light.

The a+ and a- polarization is achieved by rotating the linear polarizer by

450 clockwise or counter-clockwise. The acceptance angle of excitation

is controlled by a diaphragm. By means of lenses the light is focussed on

the sample S, mounted in a cryostat.

The degree of polarization of light is analyzed by the photo-elastic

modulator (PEM) and the polarizer P2. Because of the large acceptance

angle used during measurements, usually a sheet polarizer is used for

P2. Emitted light from the sample is dispersed by a 0.75 M Jarrell-Ash

monochromator and detected by the R928 (Hamamtsu) photomultiplier.

The modulator is driven by the voltage VM (Fig. 18) at a frequency f=50

KHz gives rise to a retardation that changes rapidly within the

modulation cycle. If the maximum retardation is 900, then alternating

with 50 KHz the left- and right-circularly polarized components of the

luminescence are detected. Within a modulation cycle the retardation is

best defined in the intervals 'a' and 'b' that are centered around the

peak values ofVM as shown in Figure 18. A dual-channel photon counter
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(SR400) is used to simultaneously record both right- and left circularly

polarized emission intensities. The number of photons detected by the

photomultiplier in the interval 'b' (Ib) originate from the right­

circularly polarized intensity and the number of photons detected in

the interval 'a' (Ia) originate from the left-circularly polarized intensity.

The degree of circular polarization is then computed as the ratio of

sum and difference 'of two, polarized intensities is given by :

3.3 The Photoluminescence spectra of the single quantum well

The photoluminescence spectra of Zn l-xCdxSe single quantum-well

samples were recorded under direct excitation by an Argon laser 2.707

eV laser line, and under indirect excitation by UV lines of Argon laser

(3.407 - 3.53 eV) as well as 3.396 eV line from a Hg- lamp. Our

investigation was aimed to study the photoluminescence (PL) emission

intensity, peak wavelength and the linewidth (FWHM) in Zn l-xCdxSe

single quantum wells of different well width.

What we mean by direct and indirect excitation of the gw in this

study is, the ZnSe barrier has the bandgap Eg = 2.821 eV at 8.7 K and

the single quantum-well of Zn l-xCdxSe for the composition x = 0.14,
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has the bandgap Eg = 2.6355 eVe If the excitation energy is above the

bandgap of Znl_xCdxSe single quantum-well and below the ZnSe barrier

bandgap (2.6355 < Eex < 2.821 eV). it is the direct excitation of the gW.

If the excitation energy is greater than the bandgap of the ZnSe barrier,

then it is referred to as the indirect excitation of the gw (Eex > 2.821

eV).

The photoluminescence spectra shown in Figure 19 and Figure 24

are due to radiative transitions in Zn l-xCdxSe well for three of the

Zn l_xCdxSejZnSe single quantum-well samples (PL intensity normalized

to unity), with well widths of 60A, 90A and 120A respectively. The

spectra in Figure 19 were measured at 8.7K, using UV lines (3.407 eV­

3.53 eV) from an argon ion laser. It distinctively features two emission

bands. The emission bands show a clear shift to lower energies (2.6604

eV -> 2.6405 eV) and become narrower (8.02 meV -> 3.377 meV) as

the well width is increased (78,79]. The higher energy peak is ascribed

to the free exciton, and the lower energy peak to the bound exciton

transitions. Figure 20 shows the PL spectrum of the highest-quality

single quantum-well with well-thickness 90 A (SgW-5), with its

deconvolution into two emission bands. Figure 21 shows the PL

spectrum of the single quantum-well with well-thickness 60 A (SgW-4),

with its deconvolution into two emission bands.
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Figure 19. PL of single quantum-wells by argon UV lines
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Figure 20. sgw-5 PL by argon UV lines and its deconvolution

into two emission bands.
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Figure 21. sgw-4 PL by argon UV lines and its deconvolution

into two emission bands.
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Figure 22 shows the PL spectrum of sgw-5 by the mercury line

3.396 eV, and its deconvolution into two emission bands. Under

mercury line (3.396 eV) excitation, the free exciton peak (high energy

peak) shows higher intensity than the bound exciton (low energy

peak). The 3.407 eV - 3.53 eV argon UV laser lines, and mercury

3.396 eV lines are strongly absorbed in the ZnSe barrier layers. If we

5 -1
assume an absorption coefficient of 1 x 10 em for ZnSe (Eg = 2.821

eV at 8.7K), 95% of the excitation photons are absorbed within 300

nm of the barrier layers (100 nm ZnSe cladding barrier and 200 nm

of the barrier buffer layer of 700 nm total thickness). Figure 23 shows

the comparison between argon UV lines and Hg-Iamp excitation of

SgW-5, featuring less intense bound-exciton intensity by the Hg-Iamp.

Table III lists the results of the PL spectra under direct and indirect

excitation with deconvolution into two and three emission bands in

sample SgW-5.

The excitation process will be predominantly indirect, being limited

by diffusion of the photo-generated free carriers from the ZnSe barriers

into the ZnO.86CdO.14Se quantum well [48,49). Indirect excitation of the

quantum well gives very strong emission, and the photo-generated

carriers in the barriers are efficiently transferred into the

ZnO.86CdO.14Se well before recombination occurs.
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Figure 23. Comparison of PL spectra of SgW-5 under argon

UV lines and Hg-Iamp excitations.



TABLE III

Experimental results of sgw-5 PL spectra

92

peak position Intensity

(eV)

FWHM

(eV)

Under direct-excitation:

Free exciton 2.6486

RRS 2.6453

Bound-exciton 2.6393

Under indirect-excitation:

a) Ar -UV excitation :

Free-exciton 2.649

Bound-exciton 2.6424

b) Hg-Iamp excitation:

Free-exciton 2.6484

Bound-exciton 2.6406

0.95293

0.40305

0.08079

0.6931

0.8703

0.9043

0.5811

0.009036

0.001581

0.007455

0.007778

0.011112

0.011968

0.009596



93

Figure 24 shows PL spectra obtained by direct excitation of the

quantum-well; note the excitation photon energy of 2.707 eV (457.9

nm) is smaller than the energy gap of the ZnSe barrier layer. In this

case, the barrier is transparent to the excitation energy. The PL

spectrum can be deconvolved distinctively into three to four Gaussian

bands by the least-square fit. The PL emission bands show a clear shift

to lower energies and become narrower as the well-width is increased,

similar to the features observed in Figure 19.

Figure 25 shows the luminescence spectrum at 8.7 K (curve with

stars) obtained from ZnSe/ ZnO.86CdO.14Se single quantum well

heterostructure (SgW-5, gOA well), under direct quantum-well

excitation using the 2. 707 eV laser line and the least square fit to three

Gaussian bands. The main peak at 2.649 eV originates from the confined

n=l heavy hole free exciton transition. The peak at 2.639 eV is the

exciton bound to a neutral donor that is likely to be the Ga donor at the

Zn or Cd site, and the sharp peak at 2.645 eV, with half-width 1.58

meV, is the resonant Raman scattering (RRS) peak.

The emission spectra obtained by indirect excitation exhibit

different features from spectra obtained by direct excitation. The main

differences are - much-stronger low energy band (as can be seen from
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Figure 19) and the absence of a strong Raman peak (R) that appears in

the directly excited quantum well (Figure 24). The free and donor­

bound exciton peaks obtained from least squares fit have linewidths of

7.7 meV and 11.1 meV, respectively, and correspond well to peaks

obtained from the indirectly excited PL spectra.

Figure 26 shows the PL emission from the sample SgW-4, under

direct excitation by the 2.707 eV laser line and its deconvolution into

four Gaussian bands.

3.4 Temperature dependency:

Figure 27 shows the temperature dependence of PL emission from

the sample SgW-5. We see that the resonant Raman peak is dominant

even at tempe.rature 90 K. The usual decrease in peak position can be

attributed to the bandgap shrinkage, as the temperature is increased.

But the interes.ting feature in the PL spectra is that the resonant

Raman peak at 8.7 K appears on the lower energy side of the free­

exciton energy peak, and shifts gradually toward lower energy. At

about 50 K the the free-exciton and RRS peaks are overlapping. The

resonant Raman peak at 70.5K appears on the high energy side of the

free exciton line and is still dominant. At a temperature of 80.5K, the

Raman peak decreases and shifts a little toward higher energy, and at
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Figure 24. PL of single quantum-wells under argon 2.707 eV

excitation.
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Figure 25. SQW-5 PL by argon 2.707 eV excitation and its

deconvolution into three emission bands.
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90K it is weak. Figure 28 shows the temperature dependence of PL

emission from the sample SQW-4.

Figure 29 shows the temperature dependence of the free exciton

E Ih peak energies with circles denoting experimental data and the

solid line indicating a theoretical fit to empirical data, as discussed in

Chapter 2, using Varshni's formula [35]:

Eg (T) =Eg (0) - aT2j (T+B) (3.1)

where Eg(O)= 2.648 eV, the Znl-xCdxSe bandgap at 0 0 K, constant a =

4 -1
(-4.022 xl0- ) eVK ,and (3= (-350.23) K for quantum well SQW-5.

Figure 30 shows the temperature dependence of the free exciton E 1 h

peak energies in SQW-4, with Eg(O)= 2.6605 eV, the Znl_xCdxSe

bandgap at 0 0 K, constant a= (- 2.65 x l O" 3 ) eVK-
1

, and B= (- 1420) K

as the parameters that satisfy Eqn. (3.1).

Figure 31 shows the temperature dependence of the linewidth of

this free excitonic emission for SQW-5. The half-width (FWHM) of the

n= 1 electron heavy hole excitonic emission increases slowly in the

temperature range of 8.7-40 K, but increase more rapidly with

temperatures above 40 K.
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Figure 30. Temperature dependence of the free exciton E lh

peak energies, for SQW-4. The symbol denoting

the experimental data and the solid line

representing the theoretical fit.
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The temperature dependence of the emission linewidth for the heavy

hole exciton can be analyzed using equation (38]:

+ [ ( Eill) ]-1 J - (E) ]
r total = r 0+ rT+ r ph eXI\ kT - 1 + I' imp eXit kT (3.2)

The above equation for the linewidth of the exciton luminescence

includes interactions with polar optical p honons (LO) r ph (the third

term), and with acoustic phonons via deformation and piezoelectric

potential I' (the second term). The first term I'0+ is the linewidth due

to inhomogeneous fluctuation of well thickness and the last term [imp

is the linewidth due to the ionized impurity scattering. The <E> is

the average binding energy of the donor. The best fit to the

experimental data shown in Figure 31 (solid line) is obtained if we

choose r 0+= 8.8 meV, f= 4x10-
5

eV /K. rph= 70 meV, EL O = 30.81

meV, [imp= 0.5 eV and the donor binding energy <E> =25 meV.

Figure 32 details the temperature dependence of linewidth (FWHM)

of heavy-hole exciton of sample SQW-4 (60A) . The best fit to the

experimental data shown in Figure 32 (solid line) is obtained if we

choose f 0+= 8.8 meV, f= 4x10·
5

eV /K. f ph= 70 meV, EL O = 30.81

meV, [imp= 0.35 eV and the donor binding energy <E> =27.5 meV.
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Tables IV and V list the experimental results for SgW-5 and SgW-4

respectively.

The temperature dependency of n= 1 heavy hole exciton integral

intensity is shown in Figure 33. The photoluminescent intensity is

exponentially reduced in the temperature region 8.7 K-50 K mainly

due to the thermal dissociation of excitons. In the higher temperature

regions above 50 K, the PL intensity is exponentially reduced mainly

due to the thermally activated nonradiative recombination channel.

This PL quenching is characterized by higher activation energy. It is

possible to fit the thermal quenching data for the integral emission

intensity to the exponential expression [50]:

I(T) -1
1(0) = (l + Aexp t- E IIkT] + B exp [ - E 21kT ])

(3.3)

From the fit of this expression shown in Figure 33 (solid line), the

two activation energies are derived E 1=17. 7 meV and E2=37.7 meV

for SgW-5. The activation energy E 1 corresponds to the dissociation of

the excitons, however, if the exciton no longer exists, the reason for

appearance of a second activation energy, despite this fact, is found in

the difference between constants A and B (A=180, B=2.5xl04
) [48,50].
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TABLE IV

Experimental details of the temperature dependency of

free-exciton emission in sample SQW-5 ( Lz=90A)

under direct excitation

- - - - - - - - - - - - - - - - - - - - - - - - - - ~ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Temp Intensity peak emission FWHM Area

(K) (eV) (meV) (x 105 )

----------------------------------------------------------------------------

8.7 1154583 2.6486 9.1494 2485.1

20.6 1144477 2.6483 9.601 1930.1

24.6 998306 2.6479 9.2524 1678.8

30.7 666599 2.6475 10.3916 1346.0

40.8 416526 2.6466 10.0786 877.7

50.5 163281 2.6455 11.8602 480.9

55.5 153229 2.6441 13.4414 339.2

60.4 100412 2.6431 14.6842 229.5

65.5 78451 2.6425 17.96 158.6

70.5 58191 2.6411 19.9928 110.6

75.5 45497 2.6402 97.4

80.5 14049 2.6382 73.9

90.2 12999 2.6355 39.3

100.4 4778 2.6322 26.5

120.0 3950 2.6256 7.44
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Experimental details of the temperature dependency

of free-exciton emission in sample sgw-4 ( Lz=60A)

under direct excitation

- - - - - - - - - - - - - - - - - - - - - - - - - - - ~ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Temp Intensity peak emission FWHM Area

(K) normalized (eV) (meV) ( x 10 5 )

----------------------------------------------------------------------------

9.2 0.8072 2.6607 9.1318 1531.0

15.2 0.7936 2.6608 8.9034 825.2

20.5 0.6954 2.6608 8.3326 528.67

25.5 0.73935 2.6595 10.2734 361.19

30.6 0.79025 2.6582 11.5288 383.1

35.6 0.57366 2.6569 13.698 155.36

40.8 0.5508 2.6554 14.383 107.9

50.5 0.9942 2.6545 10.3434 122.4

60.6 0.80905 2.652 12.62 713.1

70.8 0.53422 2.6498 15.345 447.5

75.5 0.41485 2.6489 17.129 331.85

80.5 0.3126 2.647 17.163 251.5

85.5 0.22763 2.6455 18.413 182.9

90.6 0.49615 2.6447 14.374 184.6

95.4 0.45779 2.6433 16.184 134.1

100.6 0.45108 2.6411 17.656 95.78
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3.5 Resonant Raman Scattering

Under resonant conditions, Raman scattering by longitudinal

optical (LO) phonons in polar semiconductors can be observed in

scattering configurations, which are forbidden according to selection

rules. This phenomenon is due to the phonon-wave vector dependent

contribution of the Frohlich electron - phonon interaction to Raman

process. Phonon-wave vector is small in the first order scattering due

to conservation of crystal momentum, where as the pairs of phonons

participating in the corresponding second order scattering which

enhances the Raman efficiency and is stronger [45).

In II - VI semiconductors which are more polar than III - V, the

exciton - phonon coupling via the Frohlich interaction (LO phonons) is

much stronger than via the deformation potential (LO and TO

phonons). The ratios of the Frohlich (F) interaction to deformation

potential (DP) interactions in II - VI semiconductors are larger than

in III - V semiconductors (F/DP (II - VI) > F/DP (111- V) ) [46,53]. In

our experiment, the Raman scattering from a (100) crystal face was

similar to the back scattering configuration and the Raman spectra are

dominated by forbidden scattering from LO phonons [51,92].
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Assuming the LO-phonon frequency in the quantum well layer with

x=0.14 (ZnO.86CdO.14Se) is the same as in bulk mixed crystal, the

frequency is wLO= 248.5 cm! (30.81 meV). The Stokes shift of the

resonant Raman peak for sample SQW-5 is 496.99 ern"! (61.62 meV)

which corresponds to two LO phonons with frequency wLO = 248.5

cm- l (30.81 meV, Fig. 24). For SQW-6 and SQW-4, the LO frequencies

are wLO= 246.48 cm- 1 (30.56 meV) and w LO= 250.91 cm- 1 (31.11

meV) , respectively (see Table VI) . In Figure 24, under argon 2.707 eV

excitation we find Raman peak (Rl) at 2.6447 eV in SQW-4, peak R2

at 2.6453 eV in SQW-5, and peak R3 at 2.6458 eV in SQW-6,

respectively. The observed Raman 2LO scattering (Fig. 34) is resonant

with the free exciton energy for SQW-5 and near resonant with the

free exciton energy for SQW-6 single quantum wells as can be seen in

Figure 24. For SQW-4, a weak resonant peak is observed at the low

energy shoulder of the exciton peak (Fig. 24). The striking feature of

the 2LO outgoing resonance [44,52,53], (where the scattered photon

energy equals that of the optical transition) is its sharpness and the

large intensity (2 million photons/s for 100 mm wide slit) of the 2LO

phonon which is comparable with the exciton E 1h photoluminescence

intensity as shown in Figures 27 and 28. The detailed discussion of

this 2LO resonant Raman scattering in Znl_xCdxSe QW has been

published (54,77).



TABLE VI

Phonon energies of II - VI compounds in meV

112

Compound

center

TO

Zone

edge

Tal T02 LO LO

Zone

center

LA

edge

ZnO 54 52 60 30 17 12

ZnS 39 37 42 22 11 9

ZnS 290 37 31 26 20 11

ZnSe 26 26 31 26 20 11

ZnTe 24 22 26 23 16 6

CdS 30 30 30 38 37 19 10 9

CdSe (W) 23 19 27 25 14 7

CdTe (28) 17.4 17 21 22 13 8
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The E2 2h = E2e - E2h h ~ free exciton transition versus temperature

is plotted (solid line) taking the theoretical value for E 22h at 8.7 K

from our model (see theoretical approach section), and assuming the

same temperature dependence as fo r E Ih transition. The two

horizontal lines represent the energy of the exciting laser line Eex

and the 2LO phonon scattered photon energy fiw S2LO ~ is shown in

Figure 34. The inter-section of the E 1h curve with the 2LO phonon

scattered photon line defines the condition for (the outgoing

resonance) RRS. At the 2LO resonance the scattered flwS2LO photon

energy peak falls right on the top of the E Ih free exciton peak (see

Figure 27) which occurs at temperature 50 K. With the temperature

tuned bandgap (Ie -lhh) of the single quantum well, we have been

able to observe RRS of the confined 2LO phonon from the

ZnO.86CdO.14Se well layer. The heavy hole exciton E 2 2h curve in Figure

34 for SQW-5 crosses the excitation laser energy E ex line at a

temperature of about 47 K and defines the incoming resonance [ 4 4 ] ~

which is very close to the temperature (50 K) where we observed

outgoing resonance with E 1h free exciton. Similarly, the heavy hole

exciton E22h curve in Figure 35 for SQW-4 crosses the excitation laser

energy E ex line at a temperature of about 90 K and defines the

incoming resonance [44], which is very close to the temperature (89

K) where we observed outgoing resonance with E 1h free exciton.



114

2.72

2.7098
E22h

2.70

~
"'-""'"

c:
2.680

2LO = 61.62 meV
:t=
UJ
0
a..
..x: 2.66ctS
Q)

E1ha.
2.6469

2.64

80 100 120604020

2.62~,..... ~ ......

o

Temperature (K)

Figure 34. Temperature dependence of the free exciton

peak energy Elh and E2hh from SQW-5. The two

horizontal lines represent the exciting laser line

Eex and the 2LO-phonon scattered phonon energy

~ W S 2 L O ·



115

~

SQW-4>
OJ

2.66 y y Y"
~

~

c:
9 y

0 SQW-5
y

.,...... 2.65
~

Yy
+J ~ ~ • 9
.,......

RRS .~
en

, y

•• I Y
0 2.64 •
0. ~ 1

I~

~ I •ro 2.63 I
OJ

I
0...

I

2.62
0 20 40 60 80 100 120

Temperature (K)

Figure 35. Temperature dependence of the free-exciton

peak energy Elh in SQW-5 and SQW-4 and the

intersection of Raman scattered line.



116

Figure 36 shows the Raman peak intensity as a function of

temperature in the temperature range 8.7 -120K. The experimental

data is the convolution of three effects: the temperature dependence

of the Raman scattering process; the temperature dependence of LO

frequencies (55]; and temperature detuning of the resonance Raman

scattering process, which has been discussed in detail above (Fig. 24).

The linewidth (FWHM) of the RRS line is 1.65 meV and remains fairly

constant with temperature.

3.6 Circular Polarization (CPL) spectra:

Figure 37 shows the SgW-5 PL emission under 0+ excitaticn and

Figure 38 shows the sample sgw-5 PL emission under a- excitation.

The spin-flip of Raman peak is evident in these figures. And also the

intensity of free exciton peak is stronger under 0- excitation than the

Raman peak, where as the intensities are almost equal under 0+

excitation. The degree of polarization is approximately +0.02 for 0+

excitation and -0.05 for 0- excitation.
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CHAPTER 4

THEORETICAL ANALYSIS

AND DISCUSSION

In this Chapter, the bandgap as a function of the composition, the

band offset, confined carrier energies in the quantum-well based on a

finite-square-potential-well model taking into account the band

nonparabolicity by energy dependent effective masses, strain due to

lattice-mismatch, and the effects of strain on the transition energies

are computed. Experimental results found by luminescence

measurements are compared with the theoretical calculations.

4.1 Theoretical bandgap as a function of composition:

The theoretical bandgap of Znl_xCdxSe varies with composition,

and is calculated by substituting Bandgap of CdSe for E g (B) and

bandgap of ZnSe for Eg (A), in Eqn (2.26) of Chapter 2, and write:

E g{ x) = E gCdSe + {E gZnSe - EgCdSe - b)x + bx
2

(4.1)

where I b' is the bowing parameter. The bowing parameter, b, is

calculated from the equation:



b= Ze {( 1 1 2 13
- - - ) (r

M
+ r N ) exp( - sa - )}

811' Eo r M r N 8
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(4. 2)

where 'Z' is the valence number of the intersubstitutional ions Cd and

Zn, 'a' is the lattice constant of the mid-composition alloy, 's' is the

screening constant (s=0.25 A-I) and red (rM) and rZ n (rN) are the

Pauling's covalent radii of elements Cd and Zn, respectively.

The lattice constant of the mid-composition alloy, 'a', is

calculated from Vegard's law which states that the lattice constant of

the solid solution varies linearly with composition. Using for ZnSe
Z B

lattice constant a=5.6676A and for CdSeZB lattice constant a = 6.077A

(65], the lattice constant of the mid-composition (Zno.sedo.sSe) is

a= 5.8723 A. Using covalent radii, red = 1.405 A and rZn =1.225 A

[57], the calculated bowing parameter is b = 0.301. Figure 39 shows

the composition dependence of the band gap for ZnI_xCdxSe alloys at

10K, computed by taking the bowing parameter b=0.30 1, the band

gap of ZnSe (2B) E g = 2.821 eV and the band gap of CdSe (2B) Eg=

1.765 eVe The band gap of CdSe (ZB) Eg= 1.765 eV is obtained by

adding the free exciton binding energy, 15 meV (for CdSe-WZ [58,59])

to free exciton energy 1.75 eV, determined at 10K, from the photo­

reflectance and ptezomodulation spectroscopy at 10K [65] (see Tables

VII and VIII). By substituting the band gap of ZnSe and CdSe (ZB), the
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TABLE VII

Exciton binding energies and Valence band

splitting energies in meV
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Compound Structure ~ s o

ZnO

ZnS

ZnSe

ZnTe

CdS

CdSe

CdTe

W 59 8.7

ZB 40.1 72

W 40.1 92

ZB 19 430

ZB 10 900

W 29.4 65

W 15.7 420

ZB 10 900



TABLE VIII

Band gap and Lattice constants of II-VI compounds
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Compound

ZnS

ZnSe

ZnTe

CdS

CdSe (28)

CdTe

Lattice constant (A)

5.4093

5.6676

6.1037

5.802

6.077

6.481

Eg (eV)

3.84

2.821

2.395

2.58

1.765

1.597
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bandgap of Znl_xCdxSe quantum-well sample for composition x=0.14

is, Eg = 2.6355 eVe

4.2 Conduction and valence-band offsets:

A discussion of the theory of band offsets and experimental

techniques used to obtain bandoffsets (16,60] has been done in

Chapter 2. We have not experimentally obtained the band offset

between ZnSe and ZnO.86CdO.14Se, but we estimate the band offset

from the Harrison Atomic Like Orbital (HAD) theory given by H.

Kraemer (60] in a simple table form (Table IX). The electron affinity

rule gives the conduction band step L\E c = 120 meV and the valence

band step L\E v=65 meV, for the electron-affinities XCdSe = 4.95 eVand

XZnS e = 4.09 eVe Based on the HAD theory, the valence band edge

energy EV1 (ZnSe) = -0.82 eV and EV2 (CdSe) = - 1.05 eV; the valence

and conduction band discontinuities are L\Ev= 32.2 meV and L\Ec=

153.28 meV respectively. The ZnSe/ ZnO.86CdO.14Se value is the value

extrapolated from ZnSe/ CdSe value. The electron-affinity rule gives

twice the valence band offset LlEv ' as compared to the value obtained

from HAO theory.



TABLE IX

Bandedge energies in eVe

All energies are expressed relative to the top of

the valence band of GaAs (HAO theory). The columns represent

equal anions and the rows represent equal cations.

III/V Compounds

p As Sb

AI 1.95 2.17 2.44

-0.50 -0.04 +0.86

Ga 1.79 +1.42 +1.57

-0.47 0.00 +0.84

In +1.24 +0.68 +1.29

-0.11 +0.32 +1.12

II/VI Compounds

S Se Te

Zn +1.93 +1.82 +2.42

-1.87 -1.05 +0.03

Cd +0.97 +1.02 +1.81

-1.59 -0.82 +0.21

The bottom entry represents the valence bandedge, and the

top entry the conduction bandedge.
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4.3 Confined carrier energies:

The single quantum well is characterized by a finite square

potential well model. The confined electron and hole energies are

calculated by finding the root of the equation numerically, similar to

Gershoni (28):

where:

k =
b

K =w
(4.3)

Lw ' mew' meb stand for the width of the well and the carrier effective

masses for well and barrier respectively. V is the barrier potential or

the band discontinuity.

c. K. Williams et al. (61] have studied the ballistic transport of

carriers in GaAs using Monte Carlo simulation, defining the duration

and spatial extent of ballistic transport for an electron distribution.

They propose a model for GaAs that includes nonparabolic conduction

bands described by



p2 = 2m*E (1 + (X E)
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(4.4)

where p is the momentum, Eis the kinetic energy of the electrons, rn"

is the band-edge effective mass, and a is band nonparabolicity given by:

a = (1 - m*/ mo)2 / Eg (4.5)

D. F. Welch et ale (62) h ave calculated the conduction band

discontinuity, using the effective mass and band nonparabolicity in

(Ga,In)As / (AI,In)As heterojunction. They report that, the energy

dependence of the mass is m* = mo* (1 + o e). Then, the energy­

dependent effective mass for electrons me * = meo* (1 + (lee), and for

holes mh* = mhO* (1 + ahE), respectively. Values of m eo* and mho*

are obtained by linear combination of the respective binaries. In our

calculations, the band nonparabolicity correction is introduced by

using an energy dependent effective mass mew(E)= mew(O)

(l+2uw,b E), uw.b=(l-mew,b(O)/ mo)2/ Eg w.b [61,62), where mew.b(O)

are the band edge effective masses of electrons in the well or barrier

respectively; aw,b' Egw,b are the nonparabolicity and the band gaps of

the well or barrier respectively; rno is the free electron mass and E is

the electron energy. For the heavy and light hole valence bands,

equivalent relationships are formed. A computer algorithm was used to

calculate the eigenvalues satisfying the time-independent solutions of
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Schrodinger equations. The constants used in the calculations that

satisfy Eqn. (4.3) are listed in Table X.

4.4 Strain and strain shifts:

The effect of elastic strain in the quantum wells are computed

using equations developed for III-V structures [33]. The lowest

conduction bands in ZnSe and ZnO.86CdO.14Se have s-like character

so they do not change due to uniaxial strain. However, the fourfold

P3/2 multiplets and a twofold P 1/ 2 multiplet of the valence bands will

split under the stress and shift relative to the conduction band [34].

The ZnSe- ZnO.86CdO.14Se quantum well has internal strain because of

the 1.011 0/f) lattice mismatch between the ZnSe (ZB) (lattice constant

a = 5.6676 A) and ZnO.86CdO.14Se (Z8) (lattice constant a = 5.7249 A).

The planes of ZnSe that are parallel to the quantum well interface will

be under the action of tensile stress, while the ZnO.86CdO.14Se will be

compressed. The effect of biaxial compressive and tensile strain on

the energy bands of ZnSe/ Znl_xCdxSe quantum-well is shown in

Figure 40. An increase of the band gap of ZnO.86CdO.14Se and a

splitting of the r 8 valence band due to uniaxial compression, as

discussed in the literature review, is given by [33]:
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[ [
C - C ] J C + 2C ]]

Llli o(1) = - 2a 1 ~ 1 1 12 + 1. 1 1C 1 1 12 E

[ [
C - C ] [C + 2C ]]

Llli o(2) = - 2a 1 ~ 11 12 - b 1 1C 1 1 12 E (4.6)

for heavy hole, light hole and split band respectively. In the above

equations, "a" is the hydrostatic deformation potential, "b" is the shear

deformation potential, ell, C I 2 are the elastic stiffness constants, and

E is the elastic strain (positive for compressive stress) calculated

from:

[a(Zn l_xCdxSe) - a(ZnSe)]
E =-----------

a(ZnSe) (4.7)

the computed value of strain is E = 0.01, for x=O.14 and taking

parameters from Table X·

Because the experimental elastic constants, CIJ, and deformation

potentials, a and b for zinc blende CdSe are unavailable, we computed

the elastic constants C 11 and C 12 for cubic CdSe from wurtzite

experimental data using the procedure described by Martin (63].

According to Martin, the bulk modulus B = 1/3 (CI I + 2C I 2 ) , and two



TABLE X

Constants Used in Confined Energies Calculations

Name ZnSe CdSe ZOO.86Cdo.14Se

Eg (eVat 9K) 2.821 1.765 2.63552 a

me (e.m.u) 0.16 0.13 0.1558 b

mh (e.m.u) 0.6 0.45 0.579 b

aBc (eVat 9K) 0.826 0.15328 b

aEy (eVat 9K) 0.23 0.0322 b

<Xew 0.270411 b

ahw 0.067251 b

<Xeb 0.250124 b

ahb 0.056717 b

a. From our calculation [Eqn. (4.1)].

b. Linearly interpolated from the binary materials data.

131



E

J =at2, rn J = ±3/2

J=S'2, rn J = ±1/2

J=1/2, rnJ =±1/2 E s o

Compressive

Stress

E

No

Stress

132

E

.--.__ J=312, mJ = ±1/2

J=at2, rnJ = ±3/2

J=1/2, rnJ = ±1/2

Kz

Tensile

Stress

Figure 40. Effect of biaxial compressive (in ·Zn l-xCdxSe QW)

and tensile (in ZnSe barrier) strain on the energy

bands.
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shear constants Cs = 1/2 (Cll- C12) and C44 for any semiconductor can

be computed. All these constants have units of lOll dyn /cm2. From

Table-Il, the effective cubic constants for wurtzite CdSe are:

Beff = 5.31

Cs
eff =1.02

C44 err =2.23

substituting the above constants into the expressions of Band Cs ' we

get the elastic constants Cll = 6.67 x lOll dyn/cm2 and C12 = 4.63 x

10 11 dyn/ cm2 for CdSe (ZB) zinc- blende structure derived from

wurtzite values.

The hydrostatic deformation potential "a" was obtained using the

relationship:

1 BEg
a= - "3(C

ll
+ 2C

12
) aP = - 3.664 eV

BE g -11
where -- = 6.9 x 10 leV m 2 / N] (64) is the theoretical value

BP
of the pressure dependence of the band gap of CdSe (W).

The material parameters for Zn l-xCdxSe listed in Table XI were

computed by linear interpolation from the binary materials data.
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TABLE XI

The material parameters Cij - elastic stiffness, in (N/m2) a - the hydrostatic

deformation potential (eV), b - the shear deformation potential (eV)

CII C12 a b

ZnSe (ZB) 8.26x10
10

(a) 4. 98xl 0
10

(a) -4.25(b) -1.2 (b)

CdSe (ZB) 6.67xI0
10(a)

4.63xl0
10

(a) -3.664 -0.8 (d)

ZI1().86CdO.14Se 8.04xl 0
10

(c) 4.93xl0
10

(c) -4.17 (c) -1.14 (c)

(ZB)

a. Reference 63

b. Reference 91

c. Linearly interpolated from the values of ZnSe and CdSe parameters.

d. taken as a fitting parameter.
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The shear deformation potential "bit for CdSe- ZB is taken as a

fitting parameter. The calculated energy shifts of the heavy-hole,

light-hole and split valence bands at k=O, equation (4.6), to the first

order in the strain are:

aEo (1) =

aEo (2) =

a(Eo+a) =

O.69E eV

5.77 E eV

3.22E eV

The light hole subbands are not confined because, the elastic

strain energy shift is 58.3 me'V, which is bigger than the valence band

offset 32.2 meV. Figure 41 shows the allowed electron- heavy hole

transitions.

Figure 42 shows the peak luminescence photon energy versus the

well thickness for samples with x= 0.14 measured at 8.6 K and the

thicknesses of quantum wells of 60A, gOA, and 120A respectively.

The solid lines show the results of the calculations including the

strain-induced shift and exciton binding energy which we assume as

18 meV. The 18 meV binding energy corresponds to a Bohr radius of

about 38 A which is smaller than the width of the investigated

quantum wells and no increase of exciton binding energy is expected.
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The experimental results are in good agreement with calculated

theoretical values. The E l e and E 1h h confinement energies are 17.85

mev', and 4.55 meV respectively, taking the effective mass and other

parameters as listed in Table X.

The observed energy position for the free exciton peak is

interpreted in terms of a strain induced Zn1_xCdxSe band increase

which we computed from equation (4.6). The computed strain shift of

the heavy-hole band is 6.82 meV (-7.0 meV). From a quantum well

model, the sum E l e + E l h h of the corresponding confinement

energies are 22.4 meV and 40.15 meV for SQW-5 and SQW-4,

respectively. Thus, under biaxial compression stress, the

ZnO.86CdO.14Se layer is characterized by a fundamental heavy-hole to

conduction band gap:

Eg Zn Cd Se + 22.4 meV + 7.0 meV
0.86 0.14

= 2.6649 eVe

Eg Zn Cd Se + 40.15 meV + 7.0 meV
0.86 0.14

= 2.6826 eVe

Subtracting the binding energy of a free exciton energy which we

assume is 18 meV (same as a free exciton binding energy in bulk
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ZnSe) from the above band gap energy, we obtained 2.6469 eV, as

compared to the experimental value 2.6486 eV for sample SgW-5, and

2.6646 eV, as compared to experimental value 2.6605 for sample

SgW-4, respectively.

The experimental PL data and numerical values computed from

the discussed model are listed in Table XII.
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TABLE XU

Energies of the Photoluminescence observed transitions (at 8.7K) together with
the results of calculations for electron confinement energies (Ene) and ground-

state heavy-hole (Enhh) and strain induced shifts (ilEo( 1» computed using

parameters from Table I and II . The exciton binding energy Ebex used is

18meV. The last column indicates the sum of electron and heavy-hole

confmement energies asa function of 5% well width fluctuations.
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Sample Well Transition Ega
width [Ene-£rum] (eV)

Ene Enhh tiEo(l) PL Computed Variation

(meV) (meV) (meV) (eV) (eV) (meV)

SQW-4 60A [1 - 1 ]

[ 1 - 2 ]

[ 2 - 1 ]

[ 2 - 2 ]

SQW-5 90A [1 - 1 ]

[ 1 - 2 ]

[ 2 - 1 ]

[ 2 - 2 ]

[ 3 - 1 ]

[ 3 - 2 ]

SQW-6 120A [ 1 - 1 ]

[ 1 - 2 ]

[ 1 - 3 ]

[ 2 - 1 ]

[ 2 - 2 ]

[ 2 - 3 ]

[ 3 - 1 ]

[ 3 - 2 ]

[ 3 - 3 ]

[ 4 - 1 ]

[ 4 - 2 ]

[ 4 - 3 ]

2.6355 32.10

32.10

113.5

113.5

2.6355 17.85

17.85

67.88

67.88

136.3

136.3

2.6355 11.35

11.35

11.35

44.03

44.03

44.03

94.0

94.0

94.0

149.3

149.3

149.3

8.05 7.0

27.80

8.05

27.80

4.55 7.0

17.40

4.55

17.40

4.55

17.40

2.92 7.0

11.48

24.42

2.92

11.48

24.42

2.92

11.48

24.42

2.92

11.48

24.42

2.6605 2.6646 ± 2.8

2.6844

2.7461

2.7658

2.6486 2.6469 ± 2.0

2.6598

2.6969

2.7098

2.7654

2.7782

2.6393 2.6388 ± 1.0

2.6474

2.6603

2.6715

2.6800

2.6930

2.7214

2.7299

2.7429

2.7767

2.7853

2.7982

a - using our calculation [Eqn. (4.1)].
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4.5 Comparison:

Experimental results are in good agreement with the theoretical

calculations. As can be seen from the Table XII, for SQW-5, the

theoretical fundamental heavy-hole to conduction-band transition

energy E 1h is 2.6469 eV, taking into account the confined carrier

energy in the conduction band-offset as well as the valence band offset

and the strain effects on heavy-hole transitions and the exciton

binding energy. The experimental free-exciton peak is observed at

2.6486 eV in SQW-5. The difference between theory and experiment

being 1.68 meV. Similarly we find a difference of 4.1 meV in SQW-4

and 0.5 meV in SQW-6, respectively.

In our calculation we use an effective mass ratio of 0= mel mh

=0.269 and predict a binding energy for an exciton X trapped on an

ionized donor D+, of EXD+ = 1.12 ED, where ED is the binding energy

of the isolated donor DO. For a exciton bound to neutral donors DO, we

calculate a dissociation energy of Do = 0.33 ED' giving a binding energy

of EXDO'= Ex + 0.33 ED. Here Ex is the binding energy of the free

exciton. The binding energy of exciton-neutral acceptor complex is

estimated to be EXAo = Ex + 0.09 EA for Znl_xCdxSe QW. We estimate

the photon emission energy fuo of radiative annihilation of the exciton

complexes (DO ,x), (D+,X), (AO,X), and (A-,X) as [83]:
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nw(Xoo) = E g - EX - 0.33 ED

nw(XO+) = Eg - ED - 0.12 ED

nw(XAo) = Eg - EX - 0.09 EA

We find that the above mentioned relationship of exciton

complexes, is consistent with the experimental observations in both

the samples SgW-5 and SgW-4.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

In this research, an investigation of optical properties of three

Zn l-xCdxSe single-quantum-wells has been made, for the first time,

the temperature dependence of the photoluminescence from

sphalerite ZnO.86CdO.14Se strained quantum well heterostructures in

the range 8.7 - 300 K, in order to get some insight into the PL and

RRS spectra. The temperature dependence of the photoluminescence

from the 60A, 90A and 120A ZnO.86CdO.14Se/ ZnSe single quantum

well are studied under indirect (by the UV 3.407 - 3.53 eV Argon laser

and 3.396 eV Hg- UV line) and direct (by the 2.707 eV Argon laser

line) excitation. The emission spectra obtained by the indirect

excitation shows two emission bands, namely the free exciton and

exciton bound to neutral donor which we believe is the Ga donor at

the Zn or Cd site.

The directly excited quantum wells exhibit a free exciton PL band

and a strong Raman peak in samples SQW-5 and SQW-6, and only a

trace of a Raman peak in SQW -4. We observe resonant Raman

scattering in ZnO.86CdO.14Se/ ZnSe single QWs' for the first time. By
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temperature tuning the bandgap, the E 1h exciton transition (in SQW­

5) is brought into resonance with the double photon Raman scattering

fiwS2LO. This resonance occurs at a temperature of 50 K, which is

almost the same temperature (- 47 K) at which the E2h h heavy-hole

free exciton is in resonance with excitation laser energy (Eex). The

single quantum well SQW-4 shows E 1h exciton transition in resonance

with a Raman scattered photon 1iw S2 L O at a temperature of - 92 K,

havmg a different temperature dependence as compared to sample

SQW-5. If the temperature dependencies of SQW-5 and SQW-4 are the

same, the single quantum well SQW-4 should show E Ih exciton

transition in resonance with a Raman scattered photon at a

temperature - 108 K. The precise composition of the Znl_xCdxSe

single quantum-well as well the accurate measurement of the well­

width (iz) are the possible cause of any observed discrepancies. It will

be very interesting to perform an experiment with a tunable dye laser

in the range 2.6 - 2.8 eV to confirm our results.

In summary, this work reports a detailed comparison between the

measured and calculated excitonic transitions in strained Zn1_xCdxSe

heterostructure. Quantum wells have been modelled as finite square­

potential wells and theoretical calculations are presented for the

confined carrier energies, including band-nonparabolicity correction

induced by an energy dependent effective mass, in a single quantum
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well and calculated the strain and its effect on the energy

transitions of the heterostructure. Theoretical calculations and

experimental observations are in good agreement. The temperature

dependencies of PL emission peak position, intensity and linewidth

(FWHM) under direct and indirect excitation are analyzed and

discussed in detail.

By temperature tuning of the bandgap, the E 1h exciton transition

is brought into resonance with the Raman scattered photon 1iw S2 LO .

This resonance occurs at a temperature of 50 K in sample SgW-5, and

coincides with the temperature (- 47 K) at which the E 2 h h heavy­

hole free exciton is in resonance with the excitation laser energy

(E ex). Based on Hill's theory, the bandgap of Znl_xCdxSe has been

computed as a function of composition.

Circular polarization measurements show the spin-flip of resonant

Raman peak and decrease or enhancement of free-exciton transition

to heavy-hole band under a+ and a- excitations, respectively.

From a device point of view, as a future work, one can develop a

blue-green Znl_xCdxSe gw laser by photopumping [70-72), and in an

external-cavity configuration [73,74], adapting longitudinal pumping
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technique and use of tight focus to improve beam quality and

birefringent filter for tunability. Lithium doped ZnSe films and

epilayers have been successfully grown recently [90) and there

potential for p-n junction type of Zn l-xCdxSe light-emitting diodes

(LEDs') and QW lasers in the near future.
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APPENDICES

The appendices contain computer programs written in FORTRAN.

The complete listing of the program together with several numerical

examples and pertinent outputs are included.

Program #1

Program #2

Program #3

Program #4

Program #5a

Program #5b

compute the bowing parameter

compute the bandgap as a function of composition,

the band-nonparabolicity, and the effective mass.

compute the band-offsets.

compute strain, and strain shifts due to heavy-hole,

light-hole and split-off bands.

confined carrier energies in the conduction-band.

confined carrier energies in the valence-band.



C Program to compute the bowing parameter

C based on Hill's theory: Program # I

C Program for Equation # (4.2) by Vasant Shastri

C

REAL AI,A2,A,RM,RN,Z,Q,E,S,B,PI,VAL,TERM2,TERM3

C Al - the lattice constant of compound M

C A2 - the lattice constant of compound N

C A - the lattice constant of the mixed composition

C RM & RN - Pauling constants for material M & N

C Z - the valence number of the substitution ion

C E - the dielectric constant

C Q - the charge of an electron

C S - the screening constant

C TERM2 & TERM3 - intermediate terms in calculation

C

WRITE(6 ,*) "Enter the valence number Z '

READ(5,*) Z

WRITE(6, *) , Enter r'(M) & r(N) ,

READ(5, *) RM,RN

WRITE(6 ,*) , Enter lattice constants of M & N '

READ(5, *) AI,A2

C Compute the lattice constant of mid-composition alloy

A= (Al+A2)j2

C Use the constants

E=8.85E-12

Q=I.602E-19

S=O.25EIO

PI=3.141593

C Now compute the bowing parameter
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VAL=(-S*A*O.216506)

TERM3=(RM+RN)*(EXP(VAL))

TERM2=(((1 /RM)-(l jRN))**2)

B=((Z*Q) / (8*PI*E))*TERM2*TERM3

C Write the computed values

WRITE(6 ,*) I The lattice constant (mixed alloy) : I,A

WRITE(6 ,*) , The computed bowing parameter: t ,8

STOP

END
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EXAMPLE #1

Computation of bowing parameter for Zn l-xCdxSe mixed alloy, let us

execute the Program #1 as below:

For the prompts of the program M: Zn and N:Cd, enter the

following values:

Enter the valence number Z

Enter r(M) & r(N)

Enter lattice constants of M & N

2

1.225, 1.405

5.6676, 6.077

The lattice constant (mixed alloy): 5.8723

The computed bowing parameter: 0.301164



C Program to compute the Bandgap, effective mass and

C band nonparabolicity : Program # 2

C Program for Equation # (4.1) & (4.5) by Vasant Shastri

C

REAL EGl,EG2,X,B,Ml,M2

C EG 1 - the bandgap of compound M

C EG2 - the bandgap of compound N

C X - the value of Cd in the mixed composition alloy

C M 1 & M2 - effective masses for electron & holes respectively

C B - theoretically computed bowing parameter

C

WRITE(6, *) • Enter the bandgap of compound M ·

READ(5, *) EG2

WRITE(6, *) • Enter the bandgap of compound N •

READ(5, *) EG 1

WRITE(6, *) • Enter the START x-value'

READ(5,*) X

WRITE(6, *) • Enter the STOP x-value & STEP ·

READ(5,*) X2, DX

WRITE(6, 10)

10 FORMAT(' ',2X: X',2X,' EGX',2X,' Ml ',2X,' AI',

+ 2X, t M2', 2X, ' A2')

C to compute a table of RESULTS

C Loop

15 CONTINUE

IF (X. GE.X2) GOTO 20

EGX=EGI + ((EG2-EGI-B)*(1-X)) + B*((I-X)**2)

MI =0.13 + (I-X)*0.03

Al =(( I-M I )**2) /EGX
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M2=O.45 + (l-X)*O.15

A2=((1-M2)**2) jEGX

C to write the computed values

WRITE(6,25) X, EGX, Ml, AI, M2, A2

25 FORMAT(' ',2X, F5.4,2X, F8.6, 4(2X, F8.6))

X=X+DX

GaTO 15

20 CONTINUE

STOP

END
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C Program to compute the Band-offsets

C based on HAO theory: Program # 3

C Program using TABLE I & IX: by Vasant Shastri

C

REAL XM, XN, X, DELTAX, XCOMP,EM, EN, ECOMP

REAL DELXC, DELXV, DELEG, DELEC, DELEV, DELTAE

C XM - the electron affinity of compound M

C XN - the electron affinity of compound N

C X - the value of Cd in the mixed composition alloy

C EM & EN - valence band energies of M & N respectively

C

WRITE(6 ,*) , Enter the composition x '

READ(5,*) X

WRITE(6, *) I En.ter delta Eg I

READ(5, *) DELEG

WRITE(6,*) I By electron-affinity-rule : '

WRITE(6 ,*)' (Conduction band-offset first) ,

WRITE(6 ,*) , Enter Chi-value of M & N I

READ(5,*) XM, XN

DELTAX=ABS(XM-XN)

XCOMP=XN-(l-X)*DELTAX

DELXC=XCOMP - XM

DELXV=DELEG - DELXe

WRITE(6 ,*) , The conduction band-offset = " DELXC

WRITE(6,*) t The valence band-offset = " DELXV

WRITE(6,*) , By Harrison Atomiclike theory: '

WRITE(6, *)' (Valence band-offset first) I

WRITE(6 ,*) , Enter energy-value of M & N t

READ(5, *) EM, EN
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D ELTAE=ABS(EM -EN)

ECOMP=EN-(l-X)*DELTAE

DELEV=ECOMP - EM

DELEC=DELEG - DELEV

WRITE(6, *) , The valence band-offset = " DELEV

WRITE(6,*) , The conduction band-offset = " DELEC

STOP

END
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EXAMPLE #2

Computation of band-offset for Zn l-xCdxSe mixed alloy, let us

execute the Program #3 as below:

For the prompts of the program M: Zn and N:Cd, enter the

following values:

Enter the composition x

Enter delta Eg

0.14

0.18548

By electron-affinity-rule :

( Conduction band-offset first)

Enter Chi-value of M & N 4.09,4.95

The conduction band-offset = 0.1204

The valence band-offset = 0.06508

By Harrison Atomiclike theory :

( Valence band-offset first)

Enter energy-value of M & N -1.05, -0.82

The valence band-offset = 0.0322

The conduction band-offset = 0.15328



C Program to compute the Strain and strain effects

C on the confined carrier energies: Program # 4

C Program for Equation # (4.6) & (4.7) by Vasant Shastri

C

REAL AM,AN,DELA,ALLOY,STRAJN,X,AI,A2,A3

REAL TERM 1, TERM2, BI, B2, B3, DEOI, DE02, DE03

REAL ellM, C12M, C 11 N, C I2N tell, C 12

C AM & AN - the lattice constants of M & N

C AI, A2, A3 - hydrostatic deformation potentials

C BI, 82, 83 - shear deformation potential

C X - the value of Cd in the mixed composition alloy

C CtJ - elastic stiffness of M & N compounds

C

WRITE(6,*) , Enter the lattice constant of M &N '

READ(5, *) AM, AN

WRITE(6 ,*) , Enter the composition x '

READ(5,*) X

ALLOY=AM*(I-X) + AN*X

DELA=ABS(ALLOY-AM)

STRAIN=DELA/AM

C write the computed strain

WRITE(6, *) X, ALLOY, STRAIN

C enter the material parameters

WRITE(6, *) I Enter the hydrostatic/shear potential of M '

READ(5, *) Al ,B 1

WRITE(6,*) I Enter elastic stiffness ell & cI2 for M '

READ(5,*) CIIM, C12M

WRITE(6, *) I Enter the hydrostatic/ shear potential of N '

READ(5, *) A2,B2
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WRITE(6,*) t Enter elastic stiffness ell & cl2 for N I

READ(5,*) CIIN, C12N

C compute the parameters for the ternary/mixed compound

A3=Al *(I-X) + A2*X

B3=Bl *(l-X) + B2*X

C 11 =C 11M*(1-X) + C 11 N *X

CI2=CI2M*(1-X) + C 12N*X

C compute the intermediate terms

TERMl=(Cll - CI2)/CIl

TERM2=(CII + 2*C12)/Cll

C compute the strain effect due to heavy-hole

DEOI=((-2*A3*TERMl) + (B3*TERM2))* STRAIN

C compute the strain effect due to light-hole

DE02=((-2*A3*TERMI) - (B3*TERM2))* STRAIN

C compute the strain effect due to split-off band

DE03=(-2*A3*TERM 1)* STRAIN

C now write the results

WRITE(6, *) t The computed strain shifts are: I

WRITE(6, *) I for heavy-hole '. DEOI

WRITE(6, *) I for light-hole t , DE02

WRITE(6 ,*) t for split-off band t , DE03

STOP

END
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C Program to compute the confined carrier energies

C in the quantum well: Program # 5a

C Program for Equation # (4.3) by Vasant Shastri

C

REAL Xl,X2,X3,ABSERR.DELX.V,LZ

INTEGER N

WGICAL OK

COMMON I BLK I V. LZ

C LZ - width of the quantum well

C V - depth of the quantum well

C Xl, X2 - bounds of root finding limits

C X - the rootl bound state in the well

C DELX - increment value

C

WRITE(6,*) , Transitions in the conduction band'

WRITE(6, *) , Enter the barrier height (band-offset) V '

READ(5,*) V

WRITE(6, *) , Enter the well width Lz '

READ(5, *) LZ

Xl=lE-3

X3=(V-5E-4)

DELX=lE-4

ABSERR=1E-6

N=1

10 CONTINUE

IF (X. GE. X3) GOTO 20

X=Xl

X2=Xl + DELX

CALL ESTATE (Xl, X2, ABSERR, ROOT, OK)



IF (OK) THEN

WRITE(6,*) , The root for n = " N, ' is " ROOT, ' eV'

N=N + 1

ENDIF

X=X + DELX

Xl=X

GOTO 10

20 CONTINUE

STOP

END

C ==================================================

REAL FUNCTION QWELL (Xl

C

REAL X

REAL V, LZ

COMMON / BLK / V, LZ

C

REAL Bl, ci. KW, KB, MB, MW, B

C MB & MW - effective masses for the well & barriers

C

B= 5.121934E9

MB= 0.1558* (1 + 0.541 * Xl

MW= 0.1558* (1 + 0.541 * X)

KB= B*SQRT(MB* (V - X))

KW= B*SQRT(MW* Xl

Cl=KW* LZ

B 1=(((KW*MB)**2) - ((KB*MW)**2)) / (KW*MW*KB*MB)

QWELL = (Bl ·SIN(Cl) - 2*COS(Cl))

RETURN

END
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C ==================================================

SUBROUTINE ESTATE ( xi. X2, EPS, ROOT, OK)

C

REAL xi. X2, EPS, ROOT

WGICAL OK

C

REAL XXI, XX2, EEPS

REAL MID, FX1, FX2, FMID

C begin finding the roots

XX1=X1

XX2=X2

EEPS=EPS

IF(EEPS.LT.1E-4) EEPS = IE-4

FX1=QWELL (XXI)

FX2=QWELL (XX2)

IF (FX1 *FX2.GT.0.0) THEN

OK =.FALSE.

ELSE

10 CONTINUE

MID=(XX1 + XX2)/2.0

IF (ABS(XX1 - XX2) . LT. EEPS) GO TO 20

FMID=QWELL (MID)

IF (FX1 *FMID) . LT. 0.0 ) THEN

XX2=MID

FX2=FMID

ELSE

XX1=MID

FXl=FMID

ENDIF

GO TO 10
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20 CONTINUE

ROOT=MID

OK= .TRUE.

ENDIF

RETURN

END
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C Program to compute the confined carrier energies

C in the quantum well : Program # 5b

C Program for Equation # (4.3) by Vasant Shastri

C

REAL Xl,X2,X3,ABSERR,DELX,V,LZ

INTEGER N

LOGICAL OK

COMMON I BLK I V, LZ

C LZ - width of the quantum well

C V - depth of the quantum well

C Xl , X2 - bounds of root finding limits

C X - the rootl bound state in the well

C DELX - increment value

C

WRITE(6,*) , Transitions in the valence band'

WRITE (6 ,*) , Enter the barrier height (band-offset) V '

READ(5,*) V

WRITE(6, *) , Enter the well width Lz '

READ(5, *) LZ

Xl=lE-3

X3=(V-5E-4)

DELX=lE-4

ABSERR=lE-6

N=l

10 CONTINUE

IF (X. GE. X3) GOTO 20

X=Xl

X2=Xl + DELX

CALL ESTATE ( xi. X2, ABSERR, ROOT, OK)



IF (OK) THEN

WRITE(6, *) , The root for n = " N, ' is " ROOT, ' eV '

N=N + 1

ENDIF

X=X + DELX

Xl=X

GOTO 10

20 CONTINUE

STOP

END

C ==================================================

REAL FUNCTION QWELL (Xl

c

REAL X

REAL V, LZ

COMMON / BLK / V, LZ .

C

REAL Bl, Cl, KW, KB, MB, MW, B

C MB & MW - effective masses for the well & barriers

C

B= 5.121934E9

MB= 0.5790* (1 + 0.1345 * Xl

MW= 0.5790* (1 + 0.1345 * X)

KB= B*SQRT(MB* (V - Xl)

KW= B*SQRT(MW* X)

Cl=KW* LZ

Bl=(((KW*MB)**2) - ((KB*MW)**2)) / (KW*MW*KB*MB)

QWELL = (Bl *SIN(Cll - 2*COS(C1))

RETURN

END
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c ==================================================

SUBROUTINE ESTATE ( xi. X2, EPS, ROOT, OK)

C

REAL xi. X2, EPS, ROOT

WGICAL OK

C

REAL XXI, XX2, EEPS

REAL MID, FXl, FX2, FMID

C begin finding the roots

XXl=Xl

XX2=X2

EEPS=EPS

IF(EEPS.LT.IE-4) EEPS = IE-4

FXl=QWELL (XXI)

FX2=QWELL (XX2)

IF (FXl*FX2.GT.0.0) THEN

OK = .FALSE.

ELSE

10 CONTINUE

MID=(XXI + XX2)/2.0

IF (ABS(XXI - XX2) . LT. EEPS) GO TO 20

FMID=QWELL (MID)

IF (FXl *FMID) . LT. 0.0 ) THEN

XX2=MID

FX2=FMID

ELSE

XXl=MID

FXl=FMID

ENDIF

GO TO 10
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20 CONTINUE

ROOT=MID

OK= .TRUE.

ENDIF

RETURN

END
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EXAMPLE #3

Computation of confined carrier energies for Zn l-xCdxSe mixed

alloy gw, let us execute the Program #5a & 5b as below:

Transitions in the conduction band

Enter the barrier height (band-offset) V

Enter the well width Lz

0.15328

se-s

The root for n = 1 is

The root for n = 2 is

The root for n = 3 is

17.85 e-3 eV

67.88 e-3 eV

136.3e-3 eV

Transitions in the valence band

Enter the barrier height (band-offset) V

Enter the well width Lz

32.2e-3

se-a

The root for n = 1 is

The root for n = 2 is

4.55 e-3 eV

17.4 e-3 eV

Transitions in the conduction band

Enter the barrier height (band-offset) V

Enter the well width Lz

0.15328

6e-9

The root for n = 1 is

The root for n = 2 is

32.1 e-3 eV

113.5 e-3 eV



Transitions in the valence band

Enter the barrier height (band-offset) V

Enter the well width Lz

32.2e-3

6e-9
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The root for n = 1 is

The root for n = 2 is

8.05 e-3 eV

27.8 e-3 eV


