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We discuss how excitons can affect the generation of coherent radial breathing modes in the ultrafast

spectroscopy of single-wall carbon nanotubes. Photoexcited excitons can be localized spatially and give rise to a

spatially distributed driving force in real space which involves many phonon wave vectors of the exciton-phonon

interaction. The equation of motion for the coherent phonons is modeled phenomenologically by the Klein-Gordon

equation, which we solve for the oscillation amplitudes as a function of space and time. By averaging the

calculated amplitudes per nanotube length, we obtain time-dependent coherent phonon amplitudes that resemble

the homogeneous oscillations that are observed in some pump-probe experiments. We interpret this result to mean

that the experiments are only able to see a spatial average of coherent phonon oscillations over the wavelength

of light in carbon nanotubes and the microscopic details are averaged out. Our interpretation is justified by

calculating the time-dependent absorption spectra resulting from the macroscopic atomic displacements induced

by the coherent phonon oscillations. The calculated coherent phonon spectra including excitonic effects show

the experimentally observed symmetric peaks at the nanotube transition energies, in contrast to the asymmetric

peaks that would be obtained if excitonic effects were not included.

DOI: 10.1103/PhysRevB.88.075440 PACS number(s): 78.67.Ch, 78.47.J−, 73.22.−f, 63.22.Gh

I. INTRODUCTION

Single-wall carbon nanotubes (SWNTs) have been an

important material for providing a one-dimensional (1D)

model system to study the dynamics and interactions of

electrons and phonons. These properties are known to be

very sensitive to the SWNT geometrical structure, charac-

terized by the chiral indices (n,m).1 With rapid advances

in ultrafast pump-probe spectroscopy, it has recently been

possible to observe lattice vibrations of SWNTs in real time by

pump-probe measurements, corresponding to coherent phonon

oscillations.2–6 Femtosecond laser pump pulses applied to

a SWNT induce photoexcited electron-hole pairs bound by

the Coulomb interaction, called excitons.2,7 Shortly after the

excitons relax to the lowest exciton states (≈10 fs), the SWNT

starts to vibrate coherently by exciton-phonon interactions

because the driving forces of the coherent vibration by excitons

act at the same time.

The coherent phonon motions can be observed as oscilla-

tions of either the differential transmittance or the reflectivity

of the probed light as a function of delay time between the

pump and probe pulses. By taking a Fourier transformation of

the oscillations with respect to time, we obtain the coherent

phonon spectra as a function of the phonon frequencies.

Several peaks found in the coherent phonon spectra correspond

to certain optically active phonon modes. Typical SWNT

phonon modes observed from the coherent phonon spectra

are similar to those found in the Raman spectra because the

exciton-phonon interactions are responsible for both coherent

phonon excitations and Raman spectroscopy. However, unlike

Raman spectroscopy, ultrafast spectroscopy techniques allow

us to directly measure the phonon dynamics, including phase

information, in the time domain.2,3,5

One of most commonly observed coherent phonon modes

in SWNTs is the radial breathing mode (RBM), in which

the tube diameter vibrates by initially expanding or con-

tracting depending on the tube types [mod(n − m,3) = 0,1,2]

and excitation energies.5 Previously we have developed a

microscopic theory for the type-dependent generation of

coherent RBM phonons in SWNTs within an extended tight-

binding model and effective mass theory for electron-phonon

interactions.8,9 This model did not take into account the

excitonic interaction between the photoexcited electrons and

holes. We found that such initial expansion and contraction

of the SWNT diameter originates from the wave-vector-

dependent electron-phonon interactions in SWNTs. Although

the coherent phonon generation mechanism neglecting exciton

effects considered in previous studies could describe some

main features of the coherent phonons in SWNTs, it predicted

an asymmetric line shape in contrast to the experimentally

observed symmetric line shape. This discrepancy indicates

that the presence of excitons in SWNTs should be important

microscopically.10–13

Excitons should have at least four important effects on the
generation and detection of coherent phonons in SWNTs:
(1) The optical transitions will be shifted to lower energy
owing to the Coulomb interaction between the photoexcited
electron-hole pair,10 (2) the strength of the optical transitions
will be enhanced since the excitonic wave functions have
larger optical matrix elements resulting from the localized
exciton wave functions,14 (3) the phonon interaction matrix
elements may also change because the electron-phonon and
hole-phonon matrix elements now become exciton-phonon
matrix elements,14 and (4) in SWNTs, the excitons can become
localized along the tube with a typical exciton size of about
1 nm.15 This will change which phonon modes can couple
to the photogenerated excitons. Excitons are known to have
localized wave functions in both real and reciprocal space,13

and this should modify the electron-phonon picture of the
coherent phonon generation. Due to the localized exciton wave
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functions, the driving force of a coherent phonon is expected to
be a Gaussian-like driving force in real space for each localized
exciton, whose width is about 1 nm, instead of a constant force
considered in the previous works.8,9 The localized force can
be obtained only if we consider the coupling of excitons and
phonons.

The interaction between excitons and coherent phonons

will involve many phonon wave vectors for making localized

vibrations and many electron (and hole) wave vectors for

describing these excitons. By applying strong pump light to

the SWNTs, many excitons are generated and the average

distances between two nearest excitons are estimated to be

about 20 nm.16,17 This indicates that the driving force for

coherent phonon generation can be approximated by many

Gaussians, each of which originates from an exciton and

are separated by the distance between two excitons. Using

such a driving force model also implies that the coherent

phonon amplitudes are inhomogeneous along the nanotube

axis. However, since the wavelength of light (∼500 nm)

is much larger than the spatial modification of the RBM

amplitudes, the laser light can only probe the average of the

coherent vibrations.

To simulate the exciton effects using coherent phonon

spectroscopy, we model the coherent RBM phonon amplitude

Q(z,t) as a function of space and time using the Klein-

Gordon equation that will be shown to explain the dispersive

wave properties. The driving forces are localized almost

periodically, and therefore the calculated coherent phonon

amplitudes of the RBM are no longer constant along the

tube axis. However, by taking an average over the tube

length for the calculated coherent phonon amplitudes, we

find that the average amplitude fits the oscillations as a

function of time observed in the experiments. In order to

compare our theory directly with experiments, in which the

change of the transmittance (�T/T ) or reflectivity (�R/R) is

measured, we calculate the time-dependent absorption spectra

for macroscopic atomic displacements induced by the coherent

phonon oscillations Q(z,t). The symmetric line shape found in

the calculated spectra is also consistent with the experimental

observations.

This paper is organized as follows. In Sec. II, we give the

phenomenological model for the generation of coherent RBM

phonons, which is expressed by the Klein-Gordon equation.

The Klein-Gordon equation is able to explain the propagation

of the coherent RBM phonons induced by excitons because it

gives the RBM phonon dispersion. In Sec. III, we present the

main results and discuss how the inhomogeneous coherent am-

plitudes obtained from solving the Klein-Gordon equation can

lead to the observed homogeneous time-dependent absorption

spectra. Finally, we give conclusions in Sec. IV.

II. COHERENT PHONON MODEL

In the conventional model for the coherent phonon genera-

tion mechanism in semiconductor systems, the phonon modes

that are typically excited are the ones with phonon wave vector

q = 0. The coherent phonon amplitudes Qc(t) satisfy a driven

oscillator equation,18,19

∂2Qc(t)

∂t2
+ ω2

0Qc(t) = Sc(t), (1)

where ω0 is the phonon frequency at q = 0 and Sc(t) is a

driving force that depends on the physical properties of a

specific material. In the case of a SWNT, without considering

the excitonic effects, Sc(t) is given by8,9

Sc(t) = −
2 ω0

h̄

∑

μk

M
μ

el−ph(k)δf μ(k,t), (2)

where M
μ

el−ph(k) is the electron-phonon matrix element for the

μth cutting line (one-dimensional Brillouin zone of a SWNT)

as a function of the one-dimensional electron wave vector k and

is calculated for each phonon mode at q = 0. The distribution

function δf μ of photoexcited carriers generated by a laser pulse

pumping at the Eii transition energy is obtained by solving a

Boltzmann equation for the photogeneration process.8

We can see in Eqs. (1) and (2) that Qc(t) and Sc(t) have a

time dependence only and no spatial dependence when we con-

sider electron-photon (or hole-photon) and electron-phonon

(or hole-phonon) interactions; i.e., we ignored the excitonic

interaction between the photoexcited electrons and holes.

We now extend this model by considering that the exciton

effects (exciton-photon and exciton-phonon interactions) give

a spatial dependence to the coherent phonon amplitude and

to the driving force, which we denote as Q(z,t) and S(z,t),

respectively. Here z is the position along the nanotube axis. To

describe the coherent phonon amplitude Q(z,t), we propose

using the Klein-Gordon equation,

∂2Q(z,t)

∂t2
− c2 ∂2Q(z,t)

∂z2
= S(z,t) − κQ(z,t), (3)

where c and κ are the propagation speed and dispersion

parameter depending on the SWNT structure, respectively.

The Klein-Gordon equation is solved subject to the two initial

conditions Q(z,0) = 0 and Q̇(z,0) = 0. The exciton-induced

driving force S(z,t) is given by

S(z,t) = −
2

h̄

∑

μ,k,q

ωqM
μ

ex−ph(k,q)δf μ(k,t)eiqz, (4)

where M
μ

ex−ph(k,q) is the exciton-phonon matrix element on

the μth cutting line as a function of the exciton wave vector

k and phonon wave vector q.13,14 By using the driving force

expression of Eq. (4), the amplitude Q(z,t) is dimensionless

because the dimension of S(z,t) is the inverse of time squared

(instead of length per inverse of time squared). Here the

actual coherent phonon amplitudes with units of length can

be obtained by multiplying Q(z,t) with the zero-point phonon

amplitude Q0 =
√

h̄/2Mcω0, where Mc is the total mass of

the carbon atoms in the nanotube unit cell.

The reason why we adopt the Klein-Gordon equation

to explain the exciton-induced coherent phonon generation

in SWNTs is based on a phenomenological consideration.

We generally expect that the coherent RBM phonons are

propagating dispersively along the nanotube axis. Integrating

Q(z,t) and S(z,t) over z should give Qc(t) and Sc(t) in Eq. (1)

which describes the homogeneous vibration observed in

experiments. Parameters c and κ in the Klein-Gordon equation

can then be obtained from the RBM phonon dispersion, which

gives positive c and κ values. To obtain this relationship, we

consider the Klein-Gordon equation (3) with S(z,t) = 0 and
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FIG. 1. (Color online) RBM phonon dispersion of a (11,0)

nanotube. Theoretical data are represented by cross symbols, which

are calculated using a force constant model as in Refs. 8 and 20. The

solid line shows the fitted RBM dispersion using the Klein-Gordon

dispersion relation in Eq. (8). The phonon energy, h̄ω, is plotted as

a function of q in units of π/T . Here T = 0.431 nm is the unit cell

length of the (11,0) tube.

take a Fourier transform defined by

Q̃(q,ω) =
∫ ∞

−∞

∫ ∞

−∞
Q(z,t) ei(qz−ωt)dzdt, (5)

to obtain

−ω2Q̃ + c2q2Q̃ = −κQ̃. (6)

From Eq. (6) we have a dispersion relation for the Klein-

Gordon equation,

−ω2 + c2q2 = −κ. (7)

The physical solution of Eq. (7) for ω > 0 is

ω(q) =
√

c2q2 + κ. (8)

We can then fit the wave dispersion to the RBM phonon

dispersion which is already available by force constant or

first-principle models.20–22 We are particularly interested in

the region of q ≪ π/T (T is the unit cell length of a

SWNT1) because this is the typical size over which an exciton

in reciprocal space interacts with a phonon.13,14 Fitting the

RBM phonon dispersion to Eq. (8) thus gives the values of

both c and κ to be used in the Klein-Gordon equation. As

for the phonon dispersion shown in Fig. 1, which here is

calculated for a (11,0) tube, we obtain c = 2.545 nm/ps and

κ = 3147.22 ps−2. Hereafter, we will consider the (11,0) tube

as a representative example for the simulation.

To simulate the coherent phonon dynamics, we can further

simplify the driving force in Eq. (4), which contains the

exciton-phonon matrix element, by assuming that the spatial

shape of the driving force follows that of the exciton wave

function. This is because the exciton-phonon matrix element

is the electron-phonon matrix element weighted by the exciton

wave function coefficients. The spatial shape of the exciton

wave function can be fitted to a Gaussian with a certain

full width at half maximum, σz, that also determines the

exciton size. The exciton wave function with the corresponding

exciton energy dispersion can be obtained by solving the

Bethe-Salpeter equation.13,14

Furthermore, we consider that the Gaussian force appears

approximately every 15–30 nm along the tube axis depending

on the photoexcited carrier density. For example, by solving for

the photoexcited distribution δf using the method described

in Ref. 8, we estimate an exciton density for a (11,0) tube

at an excitonic transition energy E22 = 1.78 eV which is

about 5.6 × 10−2 nm−1. This exciton density corresponds to

the average spatial separation between two excitons of about

18 nm. In this case, we neglect the exciton center-of-mass

motion that involves the exciton-exciton interaction, such

as would be important for exciton diffusion and the Auger

effect,16,17,23 which could be considered in a future work.

Before the excitons interact with each other, the optically

excited exciton does not have the center-of-mass momentum

because of the energy-momentum conservation, and thus we

need some more additional time (sub-picoseconds) after the

excitation to obtain the finite diffusion constant which affects

the coherent phonon dynamics. In a micelle-encapsulated

nanotube sample, excitons typically diffuse by about 2 nm

(every 1 ps),24 while the average separation between two

excitons is one order of magnitude larger. Although in a

pristine nanotube sample the excitons can diffuse up to the

same order as the average separation between two excitons,25

the exciton diffusion mostly contributes to the decay of the

exciton lifetime.26 Also, the Auger rate is on the order of

0.1 ps−1, which corresponds to the ionization or recombination

times of excitons of about 10 ps,27 whereas the time needed

for generating coherent phonons in our case is as early as

hundred femtoseconds (the phonon period) and the time scale

for considering the coherent phonon dynamics is less than

5 ps. The Auger effect is then important at a later time when

any two excitons can collide and disappear. If the two excitons

survive, the coherent phonon amplitude may be given by a

linear combination of amplitudes induced by each exciton.

However, we did not consider such situations for simplicity.

Therefore, in the present study, the total driving force for the

coherent phonon dynamics can be defined as a summation of

contributions from each Gaussian generated from an exciton.

Each Gaussian function centered at the exciton position zi ,

which is distributed along the tube axis, is expressed as

Si(z,t) = Age
−(z−zi )

2/2σ 2
z θ (t), (9)

where θ (t) is the Heaviside step function, Ag is the force

magnitude obtained from the product of the exciton-phonon

interaction and the related factors in Eq. (4), and σz is the

width of the exciton-phonon matrix element for a given (n,m)

SWNT. A typical value of σz is related to the exciton size in real

space (∼1 nm). The exciton wave functions, exciton energies,

and exciton-photon and exciton-phonon matrix elements are

all calculated by solving the Bethe-Salpeter equation within

the extended tight-binding method as developed by Jiang

et al.13,14 The force magnitude thus obtained is on the order

of 103 ps−2. For the lowest E22 exciton state of the (11,0)

tube, we obtain σz = 0.9 nm and Ag = 4.82 × 103 ps−2. The

total driving force used in solving Eq. (3) is a summation of

Gaussian forces in terms of Eq. (9),

S(z,t) =
N

∑

i=1

Si(z,t), (10)

where N is the number of excitons (and thus the number of

Gaussian forces) in a SWNT. In Fig. 2, we show a schematic
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FIG. 2. (Color online) Schematic illustration of the driving force

S(z,t) created by excitons which align along the nanotube axis. In

general, the excitons can be distributed randomly with an average

separation between two excitons denoted by d . The force S(z,t) is

symmetric in the circumferential direction.

diagram of a typical model for our simulation. The driving

force S(z,t) has an axial symmetry and is aligned along the

nanotube axis with a separation distance of d. To avoid any

motions of the center of mass, the general force S(r,t) should

also satisfy a sum rule,

∫ ∞

−∞
S(r,t) d r = 0, (11)

which is automatically satisfied for S(z,t) in Eq. (10) because

of the axial symmetry of the model, as can also be understood

from Fig. 2. In the present calculation, we fix d = 18 nm, and

there are N = 9 narrow Gaussian forces arranged periodically

(thus L = 144 nm). The RBM phonon energy near q = 0 is

37.1 meV, corresponding to a frequency ω = 297 cm−1 and a

vibration period τ = 0.112 ps.

It should be noted that the specific details of the spatial

arrangement of the localized excitons are also mainly deter-

mined by the exciton-exciton interaction.16,17,23 However, we

can simply take into account the main point resulting from

these exciton-exciton interactions that the excitons will be

stabilized and will arrange themselves in a certain spatial

configuration. In general, excitons do not need to be arranged

periodically and can be distributed randomly along the tube

axis. Here we use a specific exciton configuration as a

representative example that corresponds to a slightly random

configuration of excitons. Interestingly, it will be justified in

the next section that even if the excitons are distributed very

randomly along the tube axis, the coherent phonon amplitudes

at each exciton site are not affected as far as two (or more)

excitons are not located at the same position.

III. RESULTS AND DISCUSSION

In Fig. 3, we plot the coherent RBM phonon amplitudes

Q(z,t) for a (11,0) nanotube pumped at its E22 transition

energy, in which a snapshot is taken for t = 0 to τ4, where

τj = jτ/4. We consider a slightly random configuration of

excitons with an average distance between two excitons d =
18 nm and then we shift one of the excitons at the center of

the tube axis by 9 nm. The calculation is done numerically

by solving for Q(z,t) from Eq. (3) with periodic boundary

conditions at ±L/2. We can observe some periodic peaks

corresponding to each localized force and these peaks also do

not move as a function of time. One might then ask whether or

not such exciton effects correctly describe the coherent phonon

oscillations in SWNTs. This can be answered by considering

the average of the inhomogeneous Q(z,t) per nanotube length.

FIG. 3. (Color online) Time evolution of coherent phonon

amplitudes in a (11,0) nanotube for a slightly random distribution of

excitons with an average separation d = 18 nm and with the center

force shifted by 9 nm. Solid lines show snapshots of Q(z,t) as a

function of z (position along the tube axis) for several different

t values with a time sequence τj = jτ/4, where τ = 0.112 ps is

the fundamental period. Q(z,t) is plotted in terms of Q0 = 2.59 ×
10−3 nm. Dotted lines show the force S(z,t) for comparison.

To clarify that our model can describe homogeneous

coherent RBM phonon oscillations that are observed in

experiments,3,5 we define an average of Q(z,t) as follows:

A(t) =
1

L

∫

L

Q(z,t)dz. (12)

In Fig. 4(a), we plot A(t) for the (11,0) tube considered

above. We also include a decay constant 0.2 ps−1 to resemble

the experimental results.5 Interestingly, now the coherent

phonon amplitudes, which have been averaged before, could

fit the experimental shape of the homogeneous transmission

oscillation in Fig. 4(b). We then interpret that such an

experiment cannot observe the nanoscopic vibration of the

exciton effects on the coherent phonon amplitudes, but it

can only observe the averaged amplitudes. Moreover, the

definition (12) is important mathematically to describe the

homogeneous coherent phonon amplitudes in experiments

if we are able to recover Eq. (1) from the Klein-Gordon

equation (3). Indeed, by integrating both left and right sides of

Eq. (3),
∫

L

Qt tdz −
∫

L

c2Qzzdz = −
∫

L

κQdz +
∫

L

Sdz,

and using
∫

L
Qt tdz = At t ,

∫

L
κQdz = κA,

∫

L
Qzzdz = 0, we

can obtain

At t + κA(t) = S(z), (13)

which is nothing but the driven oscillator model in Eq. (1).

It is important to note that we have assumed a certain

configuration of excitons as a function of z. However, excitons

in nature might not be uniformly spaced and any exciton distri-

butions with random spacing can be possible. Nevertheless, we

expect that our result for the average amplitude A(t) in Fig. 4

is approximately constant regardless of the exciton spacing, as

far as the average exciton density remains the same. This can be
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FIG. 4. (Color online) (a) Average of coherent phonon amplitudes

per length, A(t), plotted as a function of time for a (11,0) nanotube

(τ = 0.112 ps) and shown in units of Q0 = 2.59 × 10−3 nm. The

dotted line represents the average amplitude for the force distribution

shown in Fig. 3. The solid line represents the average amplitude if a

decay constant 0.2 ps−1 is taken into account. (b) An example of the

transmission oscillation data available for a (13,3) tube measured in a

pump-probe experiment with τ = 0.162 ps (reproduced from Ref. 5).

The average coherent phonon amplitude shown in (a) resembles the

oscillating feature of the experimental transmission shown in (b).

rationalized by considering a trial solution of the Klein-Gordon

equation,

Q(z,t) = e−λzei(qz−ωt), (14)

which comprises a traveling wave and a decay term with

parameter λ to be determined. By substituting Eq. (14) into

Eq. (3) and setting S(z,t) = 0, we obtain

λ = iq ±
√

κ

c2
− q2, (15)

where we have assumed ω = qc and the sign ± is determined

for the ±z region. Depending on whether the value of
√

κ/c2 − q2 is real or pure imaginary, respectively, we can

get a spatially localized or propagating solution of Q(z,t).

In the presence of a force, we can solve Eq. (3) using

the Green’s function method for a single Gaussian force

S(z,t) = Age
−z2/2σ 2

z θ (t). The solution for Q(z,t) in the region

−L/2 < z < L/2 with a boundary condition, Q(−L/2,t) =
Q(L/2,t), is given by

Q(z,t) =
2σzAg

√
2π

L

∞
∑

n=0

[

e−q2
nσ 2

z /2

c2q2
n + κ

×
(

cos(qnz)
[

1 − cos
(

t

√

c2q2
n + κ

)]

)]

, (16)

where qn = nπ/L. This solution consists of a wave packet

of standing waves weighted by a Gaussian distribution and a

denominator which comes from the phonon dispersion relation

of Eq. (8). The Gaussian distribution originates from the

Fourier transform of the Gaussian force in real space. In this

case, the selection of q is determined by the Fourier transform

of the driving force S(z,t). For the Gaussian force in our model,

the q value can be selected for the region 0 < q < 1/σz. If the

maximum q = 1/σz is smaller than qc =
√

κ/c, then Q(z,t)

is localized. If 1/σz is larger than qc, then Q(z,t) is divided

into two contributions: 0 < q < qc and qc � q < 1/σz, in

which the former q value gives the localized wave and the

latter part gives the propagating wave. We can then define

a critical parameter σzc = 1/qc to explain the localization

or propagation of the coherent phonons obtained from the

Klein-Gordon equation.

For the (11,0) tube, we have a critical parameter σzc =
(2.545/

√
3147.22) nm = 0.045 nm. Since in our simulation

we already used σz = 0.9 nm which is much larger than σzc,

it is then expected that the coherent phonon is sufficiently

localized. To emphasize this fact, we show two different

cases of Klein-Gordon waves in Fig. 5 for σz = 0.9 nm and

σz = 0.03 nm. Figure 5(a) shows the two forces with different

σz values, while Figs. 5(b) and 5(c) show the corresponding

coherent phonon amplitudes that are generated. It can be

seen that we obtain localized (propagating) waves by using

σz > σzc (σz < σzc). Intuitively, we can understand from

Fig. 5(c) that a faster appearance of an amplitude propagating

along the z direction can be obtained when σz becomes

much smaller than σzc although some parts of Q(z,t) remain

localized (contribution from 0 < q < qc). The propagating

wave components in Fig. 5(c) travel with a velocity
√

κ/q,

where q in this case is related to σz directly by q = 1/σz, thus

giving a speed of
√

3147.22 ps−2 × 0.03 nm = 1.68 nm/ps.

FIG. 5. (Color online) (a) Driving forces with two different parameters σz(= 0.9 nm) > σzc and σz(= 0.03 nm) < σzc, which give (b) only

localized and (c) both localized and propagating wave components, respectively. For the (11,0) tube in this simulation, we have σzc = 0.045 nm.

The propagating wave components in (c) travel with a speed of 1.68 nm/ps.

075440-5



A. R. T. NUGRAHA et al. PHYSICAL REVIEW B 88, 075440 (2013)

In contrast, in the case of σz much larger than σzc [e.g.,

Fig. 5(b)], we cannot see any amplitudes along the z direction

except in a limited region where the force exists; i.e., the

propagating wave components cannot be observed. Indeed, the

actual RBM dispersion is a bit flatter than the approximation

from the Klein-Gordon wave dispersion (see Fig. 1). This

means that the modes are localized even more. Therefore,

in our case of σz = 0.9 nm, each excitonic force will not

interfere with neighboring force sites separated by distance

d, which indicates that the average amplitude A(t) in Fig. 4 is

not affected by a random separation between every excitonic

force. In general, we may say that the localized vibration is

a characteristic of the optical phonon propagation driven by

a localized force because the wave packet is dominated by

q ≈ 0 phonons, while the contribution of the group velocity

comes from q � qc. This optical phonon feature differs from

that of the acoustic phonon feature whose solution is expressed

in terms of traveling waves.28

We then calculate the optical absorption spectra as a

function of time using the calculated Q(z,t). It is expected

that the inhomogeneous coherent phonon oscillations induce a

macroscopic atomic displacement which modifies the transfer

integral and thus modulates the energy gap. We calculate the

absorption coefficient α(EL,t), where EL is the laser excitation

energy, by evaluating it in the dipole approximation using

Fermi’s golden rule. The absorption coefficient at a photon

energy EL obtained by including exciton effects is given by23,29

α(EL,t) =
8e2

ELRm0c0

∑

μk

∣

∣M
μ
ex−op

∣

∣

2

×δf μ(k,t) δ(Eii(t) − EL), (17)

where M
μ
ex−op is the exciton-photon matrix element within

the dipole approximation,13,14 corresponding to the transition

between the initial and final state on the μth cutting line, R is

the tube radius, m0 is the electron mass, and c0 is the speed of

light. The exciton energy Eii is now time-dependent because

of the change in transfer integral due to coherent RBM phonon

vibrations A(t).

Since the band gap is inversely proportional to the diameter

oscillation (or to the coherent RBM amplitudes), the time-

dependent absorption α(EL,t) has the same oscillating feature

as the average amplitude A(t). However, exciton effects acting

on the absorption spectrum will modify the shape of the

absorption spectra compared to that obtained without inclusion

of the exciton effects. We should then calculate the time-

dependent absorption for a broad range of excitation energies,

for example, within the range of 0.5 to 2.5 eV. By performing

a Fourier transformation numerically over this energy range,

we can obtain the RBM coherent phonon spectra as shown in

Fig. 6, which include E11 and E22 for the (11,0) tube that we

consider. The coherent phonon spectra calculated by including

the excitonic effects given in Fig. 6 show double-peaked

structures as a function of the excitation energies, either with

or without including the excitonic effects, as indicated by the

solid and dashed lines in Fig. 6, respectively.

The reason for the presence of the double-peak features

(either symmetric or asymmetric) in the excitation-dependent

coherent phonon intensity can be explained as follows. The

generation of coherent RBM phonons modifies the electronic

0.5 1 1.5 2 2.5

 Excitation Energy (eV)

F
T

 i
n
te

n
s
it
y
 (

a
rb

. 
u
n
it
s
) E

22 = 
1.78 eV

E
11

 = 0.81 eV

FIG. 6. (Color online) Fourier transform intensity of the time-

dependent absorption coefficient for the coherent RBM phonon of

a (11,0) nanotube as a function of excitation energies EL. The

solid line represents the coherent phonon spectra which include

excitonic effects, showing a symmetric double-peaked line shape

at each transition energy Eii . The dashed line represents the coherent

phonon spectra without excitonic effects, in which asymmetric line

shapes were obtained previously (Ref. 8).

structure of SWNTs and thus it can be detected as temporal

oscillations in the transmittance of the probe beam. Since

the RBM is an isotropic vibration of the nanotube lattice in

the radial direction, i.e., the diameter periodically oscillates

at the RBM frequency, this makes the band gap Eg also

oscillate at the same frequency. As a result, interband transition

energies oscillate in time, leading to ultrafast modulations of

the absorption coefficients at the RBM frequency, which is also

equivalent to the oscillations in the probe transmittance, and

thus correspondingly, the excitation energy dependence of the

coherent phonon intensity shows a derivative-like behavior.

More explicitly, the effect on the absorption α for small

changes in the gap can be modeled by30

α(EL − Eg) ≈ α
(

EL − E0
g

)

−
∂α

(

EL − E0
g

)

∂EL

δEg + · · · ,

(18)

which gives

�α ≈ −
∂α

(

EL − E0
g

)

∂EL

δEg, (19)

where Eg is assumed to be time dependent, and δEg here

corresponds to a small change in the band gap. Since the

coherent phonon intensity is obtained by taking the Fourier

transform (power spectrum) of the differential transmission,

the coherent phonon intensity is thus proportional to the square

of the derivative of the absorption coefficient.

The excitonic absorption coefficient basically has a sym-

metric line shape with a single peak.11 Therefore, the derivative

of the excitonic absorption coefficient will give a symmetric

double-peak feature, in contrast to the asymmetric line shape

expected from the 1D Van Hove singularity (joint density of

states). Here the use of the Klein-Gordon equation which gives

nonhomogeneous macroscopic atomic displacements is then

also justified by obtaining the symmetric line shape for the

coherent phonon spectra. On the other hand, in the free carrier

model without the excitonic effects, we see an asymmetric

double-peaked structure at each transition with the stronger
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peak at lower energy and the weaker peak at higher energy,

which originate from the derivative of the asymmetric line

shape of the absorption coefficient. Moreover it has also been

noted in some earlier works that the transition energy was

shifted upward by several hundred meV.11,30

As a final remark, we would like to mention that considering

the localized excitons in this work might be just one possibility

that gives the symmetric peak of the absorption spectrum

because the origin of the symmetric absorption line shape

is basically from the presence of discrete energy levels of

excitons in carbon nanotubes. In this sense, if there are other

configurations of excitons in carbon nanotubes, which are not

localized, such cases might also give rise to the symmetric

absorption line shape. This can be an open issue for future

studies. However, we expect that as an initial condition of the

system after the excitation by the pump pulse, the excitons

should be localized with a certain average separation.31–33

IV. CONCLUSION

We have shown that excitonic effects modify the

coherent phonon amplitudes in SWNTs as described by the

Klein-Gordon equation. The localized exciton wave functions

result in an almost periodic and localized driving force in

space. Although the exciton effects make the amplitudes

inhomogeneous, these amplitudes might be difficult to observe

in experiments where the long wavelength of the probe pulse

averages over the sample. We then defined a spatial average

of the amplitudes that matches the experimental results. Such

an interpretation becomes necessary and fundamental since we

may say that the pump-probe experiments on coherent phonons

could not measure the “real” coherent phonon amplitudes of

SWNTs. What is measured in the experiments is actually the

average of the amplitudes. Nevertheless, using the present

treatment we have been able to simulate the experimental

observation of a symmetric double-peaked structure as is

observed in the coherent phonon spectra as a function of

excitation energy.
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