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Exciton fission in monolayer transition metal
dichalcogenide semiconductors
A. Steinhoff1, M. Florian1, M. Rösner1,2,4, G. Schönhoff1,2, T.O. Wehling1,2,3 & F. Jahnke1,3

When electron-hole pairs are excited in a semiconductor, it is a priori not clear if they form a

plasma of unbound fermionic particles or a gas of composite bosons called excitons. Usually,

the exciton phase is associated with low temperatures. In atomically thin transition metal

dichalcogenide semiconductors, excitons are particularly important even at room tempera-

ture due to strong Coulomb interaction and a large exciton density of states. Using state-of-

the-art many-body theory, we show that the thermodynamic fission–fusion balance of

excitons and electron-hole plasma can be efficiently tuned via the dielectric environment as

well as charge carrier doping. We propose the observation of these effects by studying

exciton satellites in photoemission and tunneling spectroscopy, which present direct solid-

state counterparts of high-energy collider experiments on the induced fission of composite

particles.
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The interplay of excitons and unbound electron-hole pairs is
at the heart of excited-semiconductor physics. Due to
exceptionally strong electron-hole Coulomb interaction

and a naturally high sensitivity to spectroscopic methods, atom-
ically thin semiconductors from the class of transition metal
dichalcogenides (TMDCs) are perfectly suited to study the fission
of excitons. The latter present a prominent realization of com-
posite bosons formed by fermionic constituents and therefore
provide insight beyond the specific material class of two-
dimensional semiconductors. The prominent role of excitons in
the optical properties of TMDCs suggests an interpretation of
experimental results as well as theoretical prediction in terms of
excitons rather than unbound electrons and holes1–5. On the
other hand, it is well known that, at a certain excitation density of
electron-hole pairs, the Mott transition is observed6–8. Here a
phase where excitons and unbound carriers can coexist evolves
into a fully ionized electron-hole plasma.

Since excitons are more or less neutral compound bosonic
particles, many-particle renormalization and screening effects in
an exciton gas are very different from those in a plasma of
unbound electrons and holes, which we refer to in the following
as quasi-free particles. For this reason, it is highly desirable to
quantify the relative importance of excitonic and plasma effects
over a wide range of electron-hole excitation densities and to
learn how it can be manipulated from the outside. It has already
been suggested to tune exciton binding energies by electrical
doping8 and some effort has been devoted to study the influence
of dielectric screening on excitons in TMDC semiconductors9–13.
In the past, a powerful scheme has been developed to theoretically
describe the balance between fission and fusion of excitons and
quasi-free particles, also termed ionization equilibrium14–19, with
applications to atomic plasmas and highly excited semi-
conductors. The scheme relies on the assumption of a quasi-
equilibrium between plasma and excitons being established before
electron-hole recombination sets in. This is supported by ultrafast
equilibration due to efficient carrier–carrier20 and
carrier–phonon interaction5 as well as exciton formation21,22

after optical excitation, see ref. 23 for a review.
Experimental verification of the ionization equilibrium has

been achieved in GaAs quantum wells using THz spectroscopy to
probe transitions between 1s- and 2p-exciton states23,24. A similar
technique in the mid-infrared range has been applied recently to
monolayer WSe222. Alternatively, the fractions of excitons and
plasma can be determined from their contributions to photo-
luminescence spectra25 in combination with additional photo-
luminescence simulations.

Here we show that a phase largely dominated by excitons at
elevated excitation densities and its abrupt transformation into an
electron-hole plasma at the Mott transition are found at room
temperature in monolayer TMDC materials. At low densities,
exciton fission due to entropy effects is predicted. We demon-
strate that the thermodynamical balance between fission and
fusion of excitons and quasi-free particles can be directly
manipulated by the choice of dielectric environment as well as
charge carrier doping. We also suggest that new ways to quantify
the fission–fusion balance are angular-resolved photoemission
spectroscopy (ARPES) and scanning tunneling spectroscopy
(STS). The observation of excitons by these methods can at the
same time be understood as fission of composite bosons, induced
by incident photons or applied voltage. Photoemission spectro-
scopy also gives access to the extent of exciton wave functions via
the structure of exciton satellites. To obtain quantitative results
for the materials MX2 (M=W,Mo and X= S,Se), we build on the
theory of ionization equilibrium, combining it for the first time
with material-realistic band structure and Coulomb matrix ele-
ment calculations that enable us also to study the influence of the

dielectric environment. Beyond frequency-dependent plasma
screening, we additionally include screening due to excitons. The
latter is shown to be relevant although it has neither been dis-
cussed before in the context of ionization equilibrium nor for
two-dimensional materials.

Results
Spectral functions and exciton satellites. To examine the equi-
librium properties of excited carriers in TMDCs, we use the
quantum-statistical expression for the carrier density na of the
species a, which can be electrons or holes, as a function of tem-
perature T and chemical potential μa as a starting point:

naðμa;TÞ ¼
i�h
A

Z 1

�1

dω
2π

X
kσ

f aðωÞAa
kσðωÞ: ð1Þ

fa(ω) denotes the Fermi distribution function depending on μa
and T, A is the crystal area and Aa

kσðωÞ ¼ 2iImGret;a
kσ ðωÞ is the

spectral function of the single-particle state |kσa〉 related to the
retarded single-particle Green’s function

Gret;a
kσ ðωÞ ¼ 1

�hω� εakσ � Σret;a
kσ ðωÞ : ð2Þ

The self-energy Σret;a
kσ ðωÞ accounts for many-particle effects giving

rise to renormalizations of the single-particle band structure εakσ
as well as contributions of bound states. For a given self-energy,
the inversion of Eq. (1) yields the chemical potential μa(na, T) for
each species and therefore any thermodynamic property of the
system in the grand canonical formulation. As we describe in
detail in the “Methods” section, by using a T-matrix self-energy in
screened ladder approximation and assuming small quasi-particle
damping, we obtain a spectral function Aa(ω) in the so-called
extended quasi-particle approximation. It exhibits poles for quasi-
free and bound carriers as shown in Fig. 1. From the multiple
valleys in the single-particle band structure of electrons and holes
(Fig. 1a), a rich spectrum of bound states emerges (Fig. 1b) which
contains a variety of dark excitons with large total momentum Q
besides the bright K-valley excitons commonly referred to as A
and B. The dark excitons, though playing a minor role in optical
experiments, are essential to the description of the ionization
equilibrium. Various bound states are reflected in the low-energy
satellites of the single-particle spectral function. Excitonic con-
tributions are expected to be observed in experiments that are
sensitive to these spectral properties. In ARPES26, momentum-
resolved images of the electron spectral function comparable to
Fig. 1c are obtained, which are weighted with Fermi distribution
functions that are defined by the chemical potential μe and
temperature T. In quasi-equilibrium, the measured intensity is
given by

IkðωÞ /
X
σ

f eðωÞAe
kσðωÞ: ð3Þ

For fixed quasi-momentum k, as shown in Fig. 1e, this is typically
referred to as energy distribution curve. On the other hand, STS27

probes the local density of states and thus momentum-averaged
spectral functions of electrons and holes, which are displayed in
Fig. 1c, d. We therefore propose to use these well-established
experimental techniques to spectrally distinguish between exci-
tons and quasi-free carriers. To this end, spectroscopy has to be
combined with prior optical excitation of the semiconductor,
requiring time-resolved experiments. Time-resolved ARPES with
high temporal and spectral resolution has recently been applied to
two-dimensional materials, which prove to be highly sensitive to
this method28–30. In addition, atomically thin semiconductors,
that are available in ever-improving sample quality, have the
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advantage of a large spectral separation of excitonic and quasi-
particle signatures, which is well above the available energy
resolution. These modern developments open the possibility to
quantify the degree of exciton ionization and to access the extent
of exciton wave functions, which are encoded in the structure of
the exciton satellites.

Ionization equilibrium and Mott transition. The spectral
function in extended quasi-particle approximation is given by

Aa
kσðωÞ ¼ �2πiδð�hω� Ea

kσÞ ð1� Za
kσÞ

�2πiΓa
kσðωÞ;

ð4Þ

where Γa
kσðωÞ and the renormalization factor Za

kσ account for
two-particle states, as discussed in detail in the “Methods” sec-
tion. According to Eq. (1), the spectral function can be used to
separate the total electron and hole density (a= e, h),

na ¼ nafree þ nX;
ð5Þ

into contributions from quasi-free carriers and from carriers
bound as excitons. The excitons, defined by two-particle energies
below the quasi-particle band gap, are approximately treated as
bosons. Hence, the properties of the excited semiconductor at a
given temperature and excitation density are described by the
density of electrons ne, the density of holes nh and the density of
excitons nX. The degree of ionization of the excited carriers

αa ¼ nafree
na

ð6Þ

will be established as a result of the ionization equilibrium
between electrons, holes and excitons. While for optical excita-
tion, equal densities of electrons and holes are generated, we
distinguish here between electron and hole ionization to also
include the effect of carrier doping, where electron and hole
densities are different.

Using single-particle band structures and bound-state spectra,
which are determined as discussed in the “Methods” section, we
solve Eq. (5) numerically to obtain the degree of ionization αa in
various TMDC materials under different experimental condi-
tions. The results are collected in Fig. 2 and exhibit the behaviour
of the ionization degree as a function of the excitation density.
There are different regimes of ionization to be observed. At high
excitation densities between 3 × 1012 cm−2 and 1 × 1013 cm−2,
depending on experimental parameters, efficient screening and
many-particle renormalizations lead to a full ionization of excited
carriers, which is known as Mott effect. At lower densities around
na= 1 × 1012 cm−2, excitons dominate the physical properties of
TMDCs for the parameters studied here due to the large exciton-
binding energies and a density of states with dominant
contributions from dark excitons. Bright excitons with very small
momenta that are optically active make up only a tiny fraction of
the total exciton density, as illustrated in Fig. 3. The density of
bright excitons is smaller than the total exciton density by about
five orders of magnitude in MoS2 and six orders of magnitude in
WSe2 over the whole range of excitation densities below the Mott
transition. Although only bright excitons directly recombine,
excitons with larger momentum can relax via efficient
exciton–phonon interaction5 and refill optically active states,
thereby representing an efficient reservoir for bright excitons. In
Fig. 3, we also provide the density of all intra-valley excitons
formed by carriers with equal spins in the K and K′ valleys. These
excitons make up a much larger fraction of the total exciton
density, while still most of the excitons feature electrons and holes
with different spins and/or valleys.

As Fig. 2b shows, an efficient tuning knob for the degree of
ionization is the dielectric screening due to the environment,
which can change over a wide range depending on the
experimental situation or device realization in which the TMDC
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Fig. 1 Spectral properties of excited carriers in monolayer WS2. a Band
structure of freestanding WS2 as obtained from a G0W0 calculation at zero
excitation density, including spin-orbit interaction. b Bound-state spectrum
for WS2 on SiO2 substrate relative to the quasi-particle gap at zero
excitation density over the modulus of total exciton momentum Q as
obtained from a Bethe–Salpeter equation, see Eq. (16) in the “Methods”
section. Excitons involving the Γ, K′ and Σ′ valleys are included but not
marked explicitly. The lines serve as guide to the eye for the K-exciton
dispersion. c Electron spectral function in extended quasi-particle
approximation at T= 300 K and excitation density na= 3.2 × 1012 cm−2

showing resonances from bound and quasi-free particles in momentum-
resolved representation and as normalized local density of states. Energies
are measured relative to the quasi-particle band gap at zero excitation
density. A phenomenological Gaussian broadening of 10 meV (HWHM) is
applied. d Hole spectral function in extended quasi-particle approximation.
e Electron spectral function as in c for spin-down electrons at the K-point.
The vertical line marks the electron chemical potential. f Hole spectral
function as in d for spin-up holes at the K-point
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monolayer is used. The reason is the strong impact of dielectric
screening on the exciton binding energies. Typical examples for
substrates are Borofloat (ε= 2), SiO2 (ε= 4) and sapphire (ε=
10). The dielectric constant of the environment on top of the

monolayer is often given by the vacuum value. On the other
hand, in devices the TMDC monolayer is usually fully
encapsulated by dielectric material. As an example we consider
a full dielectric enclosure with ε= 10, which might be either
sapphire or additional layers of TMDC material in a vertical
heterostructure whose main influence on the excitons is the
dielectric screening31. We find that the minimal degree of
ionization can be tuned from below 0.1% (99.9% excitons) for
weak dielectric screening to about 30% for strong screening, while
the Mott density is lowered at the same time by about a factor of
3. The second important parameter, that is relevant for
applications of TMDC monolayers, is the doping with additional
carriers which might be either intrinsic or induced by external
electric fields in a capacitor structure. Here the fractions of
ionized electrons and holes, αe and αh, are discussed separately as
the densities of the species are not equal anymore. We consider
hole doping of WS2, but similar results are expected in case of
electron doping. According to Fig. 2e, f, even for weak doping the
minority carriers are practically all bound as excitons below the
Mott transition. On the other hand, for higher doping levels an
increasing fraction of majority carriers exists as quasi-free plasma
due to missing partners for exciton formation. As a function of
minority-carrier density, the Mott transition is lowered by about
the density of doped excess carriers. From this, we conclude that
at doping levels above 1013 cm−2 neither dark nor bright excitons
will exist in any case. This is facilitated by the experimental
estimate for doping-induced ionization at several 1013 cm – 2 8. As
Fig. 2c shows, the temperature is another crucial parameter,
which can vary in experiments or devices due to heating of the
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Fig. 2 Degree of ionization as a function of excitation density. na ¼ nafree þ nX denotes the total density of electrons or holes. In general, a fully ionized
plasma (αa= 1) is found above the Mott density, excitons dominate (αa � 1) below the Mott density and ionization appears again at very low densities. If
not stated otherwise, the temperature is 300 K. a Comparison of different TMDC materials on SiO2 substrate. b Comparison of WS2 in different dielectric
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active material under strong optical or electrical pumping. This
effect has been used to explain the observed exciton-to-plasma
ratio in monolayer WSe2 in ref. 22. At room temperature and even
at elevated temperatures up to 700 K, excitons clearly dominate
below the Mott transition. At the same time, the Mott density
slightly increases with temperature due to weaker renormaliza-
tions of the quasi-particle gap. It turns out that strain is no
efficient tuning knob as both, bright and dark excitons contribute
to the ionization equilibrium, although bright excitons are
preferred in moderately tensile-strained TMDCs, see Supplemen-
tary Fig. 2c. A comparison of different TMDC materials shows
that excitons are slightly more important in molybdenum- than
in tungsten-based TMDCs due to the larger binding energies,
which leads to higher Mott densities.

When approaching the Mott density from the low-density side,
many-particle renormalizations, as given by Eq. (25) in the
“Methods” section, become increasingly important. Exchange
interaction and efficient screening due to free carriers as well as
excitons reduce the quasi-particle band gap and the exciton
binding energies. More and more excitons are ionized, which
leads to an increase of efficient free-carrier screening and thereby
to a self-amplification of the ionization effect until all excitons are
dissociated into an electron-hole plasma and the degree of
ionization becomes αa= 1. Note that αa includes not only bright
but also dark excitons with large total momenta for example
between K and Σ valleys. Those excitons may have larger binding
energies, as also discussed in ref. 32, and they are slightly more
stable against ionization than bright excitons visible in an optical
experiment. Fig. 4 shows an illustration of the Mott effect in
terms of the spectral functions in extended quasi-particle
approximation, which contain both exciton and quasi-free-
particle signatures. At very low excitation densities, the only
spectral contribution stems from quasi-free carriers at the band
edge. With increasing density, the quasi-particle peak is shifted to
lower energies due to many-particle renormalizations. At the
same time, spectral weight is transferred from the unbound quasi-
particle to the bound-state peaks as exciton populations increase,
see the explicit expression of the spectral function in Eq. (23). The
appearence of several exciton satellites in the hole spectral
function is due to different bound states involving electrons either
in the K- or Σ-valleys, see Fig. 1b. The energetic position of a
bound-state peak in the spectral function of carrier a is given by
the difference of the corresponding bound-state energy Eab,
which is an eigenenergy of the Bethe–Salpeter Eq. (16), and the
energy of the second carrier b involved in the bound state. The
bound resonance might therefore be interpreted as an effective
ionization energy of the actual carrier a with respect to its energy
in the quasi-particle band structure. Both the quasi-particle band

structure and the effective ionization energies are observable in
experiments that are sensitive to the single-particle spectral
function such as ARPES and STS. Despite the fact that the
amplitudes of bound-state resonances in the spectral functions
are relatively small, observables like the carrier density, Eq. (1),
and the photoemission intensity, Eq. (3), involve weighting with a
Fermi function that strongly favors the low-energy resonances
over the quasi-free contribution. With increasing excitation
density, quasi-particle and excitonic resonances approach each
other until at the Mott density all excitons are ionized and only a
quasi-particle peak of unbound carriers remains. Figure 5 shows
the reduction of the quasi-particle gap until the Mott transition
appears around na= 8 × 1012 cm−2.

An alternative picture of the interacting electrons and holes,
which is consistent with the extended quasi-particle approxima-
tion, is the so-called “chemical picture”, in which excitons are
considered as a new particle species besides electrons and
holes18,19. They are characterized by a chemical potential

μX;ν ¼ μe þ μh � Eν ; ð7Þ

with bound-state energies Eν that are given by the relative motion
of electron and hole, and an ideal Bose distribution function. In
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the chemical picture, solving Eq. (5) corresponds to an adaption
of the chemical potentials of the different particle species, namely
electrons, holes and excitons, as in a chemical reaction. These
considerations are consistent with the theory based on spectral
functions, that we use to obtain all numerical results presented in
this paper. Only for the purpose of illustration, we simplify the
theory considering the nondegenerate case (f aðEa

kσÞ � 1), a
single band-structure valley for electrons and holes each and
momentum-independent band-structure renormalizations. Then
a Saha equation can be formulated that determines the degree of
ionization:

nX
nenh

/ eβI
eff
ν : ð8Þ

In analogy to the usual mass action law, Ieffν ¼ ΔEGap � Eν can be
interpreted as an effective ionization potential of excitons that
corresponds to the exciton binding energy, see also the inset in
Fig. 5. It is obvious from Saha’s equation that a large exciton
binding energy and low temperature favor the formation of
excitons vs. the dissociation into an unbound electron-hole
plasma. The ionization potential depends on excitation density as
a consequence of the excitation-induced lowering of the band
continuum edge given by ΔEGap and the shift of the bound-state
energy Eν. The bound-state shift on the other hand is a net result
of band-gap shrinkage, screening of exciton binding energy and
Pauli blocking33 and is much weaker than the band-gap shift due
to compensation effects. In the end, the ionization potential is
lowered with increasing excitation density until at Ieffν ¼ 0 the
bound state vanishes and merges with the continuum edge, which
is the Mott effect.

A striking observation in Fig. 2 is the degree of ionization
approaching unity at low excitation densities, which is somewhat
counter-intuitive but can be understood from a thermodynamical
point of view. The potential that is minimized by the many-
particle system is the free energy F=U − TS. At low densities and
fixed temperature, the entropy S gained by a dissociation of an

exciton into two separate particles overcompensates the reduction
of internal energy U by the exciton binding energy EB. Hence, the
so-called entropy ionization already discussed by Mock et al.34 is
connected to the huge phase space available for quasi-free carriers
in the low-density limit. We may clarify this using the entropy of
an ideal gas with N particles in a volume V as given by the
Sackur-Tetrode equation:

S ¼ NkB ln V
N cðTÞ
� �þ 5

2

� �
;

ð9Þ

where c(T) is a temperature-dependent parameter. Obviously, the
dissociation of an exciton gas (N particles) into a free electron-
hole plasma (2N particles) yields the entropy ΔS=NkBln(n−1)
with n=N/V up to some additive constant. It follows that the
critical density ncrit below which the free energy is dominated by
entropy essentially scales as exp(−EB/kBT) with temperature.

Excitonic screening. In the spirit of the extended quasi-particle
approximation to the spectral function, there are two types of
contributions to excited-carrier screening of the Coulomb inter-
action, the metal-like free-carrier screening and dipolar screening
due to bound excitons. The screening can be characterized by the
plasmon spectral function, see Eq. (29), that contains excitations
in the interacting electron-hole plasma as poles in the q-ω-plane,
see Fig. 6. In the exciton-dominated regime shown in Fig. 6a,
besides the usual 2-d free-carrier contribution at small energies
and small momenta, a broad resonance above 150 meV appears.
It stems from transitions between 1s- and 2s- as well as 2p-like
exciton states, see Fig. 1b, and also from comparable transitions
between exciton states with large momenta. There are contribu-
tions at smaller energies as well that can not be as easily dis-
tinguished from free-carrier screening. At large densities beyond
the Mott transition, the plasmon spectral function shows a pro-
nounced peak structure with a square-root-like behaviour at small
momenta, which has been discussed for TMDCs in ref. 35 and
which is typical for a two-dimensional electron gas36. Excitons are
expected to be much less polarizable than a free electron-hole
plasma and, hence, contribute less to screening. Nevertheless, at
elevated excitation densities with more than 99% of carriers
bound as excitons, their contribution is significant. We demon-
strate this by comparing the results for the degree of ionization αa
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Fig. 6 Different screening properties of excitons and quasi-free carriers.
Plasmon spectral function given by the imaginary part of the inverse
dielectric function, including the 2-d-Coulomb singularity. In the calculation,
the contributions due to dynamical plasma and excitonic screening are
included. The results are depicted for momenta along the contour Γ-K in
WS2 on SiO2 substrate at T= 300 K. A quasi-particle broadening of 10meV
is used. The carrier densities are (a) nfree= 2.7 × 1010 cm−2, nX= 3.1 × 1012
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ionization equilibrium curve in Fig. 2 in the exciton-dominated and the
plasma-dominated regime, respectively
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with and without excitonic screening included using the example
of WS2 on SiO2 substrate. The results are shown in Fig. 7a.
Excitonic screening efficiently reduces the ionization potential of
excitons at elevated excitation densities, thereby triggering the
transition to an ionized plasma, which is reflected by an increase
of the degree of ionized carriers. This mechanism of exciton fis-
sion is absent when excitonic screening is neglected, thus leading
to an ongoing decrease of the ionized-carrier fraction when
coming from the low-density side of the ionization curves. From
the many-particle renormalization of the band gap caused by
free-carrier and excitonic screening as shown in Fig. 7b, we
deduce that in monolayer TMDC semiconductors excitonic
screening is less efficient by two orders of magnitude for com-
parable excitation densities. As the plasmon spectral function is
directly observable by electron energy loss spectroscopy37, we
suggest to use this technique to explore exciton signatures in the
dielectric function eperimentally.

Discussion
Having the composite nature of excitons in mind, photoemission
and tunneling spectroscopy on excitons can be seen as semi-
conductor analogue to induced fission of bosonic particles into
their constituents in high-energy collider experiments.
Examples include the photodesintegration of deuterium38 and the
photofission of heavy nuclei39, where nuclear forces instead of
Coulomb forces have to be overcome. In time-resolved ARPES,
excitons are fissured by photons in the eV range and momentum
and energy of electrons as fission products are detected, thereby
revealing information about the internal structure of the excitons.
In STS, the role of photons as external probe is assumed by a
voltage and the spectrum is an average over momentum states.
TMDC monolayers offer the unique possibility to optically
address different band-structure valleys selectively40, which we
expect to be reflected by the exciton satellites in photoemission
studies at short time delays after circularly polarized excitation.

Although the extended quasi-particle approximation and the
chemical picture as applied in this paper are very descriptive, we
have to be aware of their limitations. Firstly, the approach
relies on the assumption of a quasi-equilibrium of both types of
carriers, excitons and quasi-free plasma. A mechanism that yields
corrections to this quasi-equilibrium picture is the electron-hole
recombination, either radiative or nonradiative, that reduces the
excitation density on a ps time scale22. Given the fact that the
relaxation and equilibration of excitons and quasi-free carriers are
much faster than this5,20,41, empty states are immediately refilled
and the system practically remains in quasi-equilibrium, where
the exciton-plasma balance adiabatically adapts to the time-
dependent density. This picture is also applied in ref. 22, where a
ratio between excitons and plasma is assigned to the experimental
data at each time during carrier recombination.

A rather fundamental discussion is concerned with the Mott
transition as a first-order phase transition between an exciton gas
and a fully ionized electron-hole plasma18,19. The phase transition
would be connected to an instability of thermodynamic functions
that manifests itself in an ambiguity of αa in a certain region
below the Mott density. Due to excitation-induced broadening of
the two-particle states, which is assumed small in our approach,
and the shrinkage of the ionization potential towards the
Mott transition, quasi-free and bound carriers cannot really be
separated in this density regime. We avoid this regime as a
more sophisticated theory including full spectral functions and
exciton-exciton interaction would be required. Also, screening in
a correlated many-particle system near the Mott transition is an
intricate problem42.

A prominent feature of TMDC semiconductors is the forma-
tion of trions, which could in principle be included as additional
particle species in the spirit of the chemical picture17. In practice,
obtaining bound-trion spectra on the same footing as excitons is a
very challenging task on its own, which is beyond the scope of
this paper. Qualitatively, one can expect a coexistence of all
three phases at room temperature, where some of the exciton
population will be drawn to bound-trion states. As trion binding
energies are typically in the range of 30 meV43, which is an order
of magnitude less than exciton binding energies, this thermal
redistribution of population will be much smaller than between
excitons and plasma.

Beyond the monolayer limit, TMDC semiconductors can be
used to construct bilayer systems44 that allow for the formation of
spatially indirect, long-lived excitons. These systems are expected
to be well suited to realize exotic composite-boson phases like
condensates at record-high temperatures. Our material-realistic
approach to the ionization equilibrium may be extended to
include exciton condensates and used to study the complex phase
diagrams of bilayer systems. Here, in analogy to electron-hole
GaAs/InGaAs bilayers, signatures of exciton fission may also be
observed in the temperature dependence of the Coulomb drag
effect45.

In conclusion, the ionization equilibrium between the fission
and fusion of excitons and electron-hole pairs in monolayer
TMDC semiconductors has been studied for various material as
well as experimentally and device-relevant external parameters on
the basis of an ab initio description of the electronic band
structure and Coulomb interaction. We observe entropy ioniza-
tion of excitons at low excitation densities and a Mott transition
to a fully ionized plasma at high densities between 3 × 1012 cm−2

and 1 × 1013 cm−2, depending on experimental parameters. Below
the Mott transition, excitons become dominant in all cases with
maximal fractions of excitons between 70 and >99.9%. The most
efficient tuning knobs are dielectric screening of the Coulomb
interaction via the choice of dielectric environment and carrier
doping that can induce complete ionization above a level of 1013

cm−2. Moreover, we find that excitonic screening, although two
orders of magnitude less efficient than free-carrier screening at
comparable excitation densities, plays an important role in the
description of ionization equilibrium. We suggest that finger-
prints of excitonic contributions can be observed in ARPES
and STS experiments, which are sensitive to the single-particle
spectral functions, thus containing information about the degree
of exciton fission and the extent of exciton wave functions in
reciprocal space.

Methods
Theory of ionization equilibrium. We start from the general expression for the
carrier density (1) and the spectral function

Aa
kσðωÞ ¼ 2iIm

1

�hω� εakσ � Σret;a
kσ ðωÞ : ð10Þ

In the limit of small quasi-particle damping ImΣret;a � ReΣret;a , the spectral
function can be expanded in linear order of Im Σret,a yielding the carrier density in
so-called extended quasi-particle approximation

naðμa;TÞ ¼ 1
A
P
kσ

f aðEa
kσÞ

� 1
A
P
kσ

R1
�1

dω
2π

2
�h ImΣret;a

kσ ðωÞ f aðEa
kσÞ � f aðωÞ� �

´ d
dω

P
ω�Eakσ=�h

¼ nQPa þ ncorra ;

ð11Þ

where the quasi-particle energy Ea
kσ is given by Ea

kσ ¼ εakσ þ ReΣret;a
kσ ðEa

kσÞ and P
denotes the Cauchy principal value14,19. The total density is divided into
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contributions from quasi-free particles and correlated particles, the latter being
either in bound or scattering many-particle states.

The spectral function in extended quasi-particle approximation corresponding
to this separation into free and correlated carriers is given by

Aa
kσðωÞ ¼ �2πiδð�hω� Ea

kσÞ ð1� Za
kσÞ

�2πiΓa
kσðωÞ;

ð12Þ

with Γa
kσðωÞ ¼ ImΣret;a

kσ ðωÞ 1
π

d
d�hω

P
�hω�Ea

kσ
and the renormalization factor

Za
kσ ¼ R

d�hωΓa
kσðωÞ. The first term describes quasi-free particles at renormalized

energies. Their spectral weight is reduced according to the renormalization factor
to account for correlated carriers, which are spectrally described by the second
term.

To evaluate the expressions (11) and (12), we have to choose an approximation
for the self-energy Σret,a(ω). The real and imaginary parts of Σ determine the quasi-
particle energies and the correlated part of the carrier density, respectively. An
appropriate choice is the screened ladder approximation14,17,46 Σ(ω) = ΣH + ΣGW
(ω) + ΣT(ω) that takes into account screening of Coulomb interaction due to
excited carriers as well as the formation of bound two-particle states and consists of
Hartree, GW and T-matrix contributions. We assume that renormalizations due to
the Hartree self-energy are small compared to exchange and correlation effects. In
the T-matrix contribution, we neglect exchange terms and assume static screening
so that the T-matrix depends only on one instead of three frequency arguments.
Thus, we obtain for the imaginary part of the self-energy using the generalized
Kadanoff–Baym ansatz18:

ImΣret;a
kσ ðωÞ ¼ � 1

A
P
kb

Vab
kk′kk′ Imε�1;ret

k�k′ ðω� Eb
k′σ=�hÞ

´ f bðEb
k′σÞ þ nBðEb

k′σ � �hωÞ� �
þ 1

A
P
kbσ′

ImT ′′;ret;ab
kk′σσ′ ðωþ Eb

k′σ′=�hÞ

´ f bðEb
k′σ′Þ þ nBabð�hωþ Eb

k′σ′Þ
� �

:

ð13Þ

Here we applied thermal equilibrium relations for the screened Coulomb
interaction18:

VS;<;ab
kk′kk′ ðωÞ ¼ nBðωÞVab

kk′kk′2iImε�1;ret
k�k′ ðωÞ;

VS;>;ab
kk′kk′ ðωÞ ¼ ð1þ nBðωÞÞVab

kk′kk′2iImε�1;ret
k�k′ ðωÞ:

ð14Þ

ε�1;ret
q ðωÞ is the longitudinal dielectric function describing screening due to excited
carriers and nB(ω) is the Bose distribution function of the elementary plasma
excitations called plasmons. Vab denotes Coulomb matrix elements between species
a and b which contain dielectric screening due to carriers in the ground state and
due to the environment but no screening due to excited carriers. T′′ denotes the T-
matrix with the two lowest-order terms subtracted from the ladder expansion and
is discussed in the following subsection.

T-matrix and bound carriers. The T-matrix in statically screened ladder
approximation describing bound and scattering two-particle states between carrier
species a and b obeys a Lippmann–Schwinger equation (LSE)

Tret;abðωÞ ¼ VS;ret;ab þ i�hVS;ret;abGret;abðωÞTret;abðωÞ; ð15Þ

where Gret;abðωÞ is the free two-particle Green’s function in the particle-particle
channel. The corresponding interacting two-particle Green’s function Gret;ab

2 ðωÞ
fulfills a Bethe–Salpeter equation (BSE), that has been discussed in detail in
refs. 42,47 and is equivalent to the LSE. We will exploit this fact later when solving
the LSE and evaluating the T-matrix self-energy. In its homogeneous form, the BSE
in static ladder approximation is given by

0¼ ðEa
kσ þ Eb

kþQσ′ÞGret;ab
2;k;kþQσσ′ðωÞ

�ð1� f akσ � f bkþQσ′Þ 1
A
P
k′
VS;ab
kþQ;k′;k;k′þQG

ret;ab
2;k′;k′þQσσ′ðωÞ:

ð16Þ

Diagonalization yields bound states |νσσ′Q〉 and eigenenergies Eσσ′
νQ . We drop the

indices a and b here, assuming that only two-particle states between different
carrier species are involved. Due to the translational invariance of the crystal, the
bound states can be classified by the total exciton momentum Q as discussed in48.
Here we neglect the effect of electron-hole exchange interaction that leads to a fine-

structure splitting of excitons and trions48–50 in the meV range, which is small
compared to the exciton-binding energies of several hundred meV. As a con-
sequence, electron and hole spins, which are already good quantum numbers in
monolayer TMDC materials due to crystal symmetry, also classify the bound states.
For each total momentum and spin combination a series of excitons exists, which is
labeled here by ν, analogue to the angular momentum states of Hydrogen-like
Wannier excitons. Due to the two-dimensional nature of monolayer TMDCs and
the related strong momentum dependence of dielectric screening, nontrivial
exciton series deviating from a hydrogen-like spectrum are observed2,51,52. The
eigenenergies approximately decompose into a part from the relative motion of
electron and hole and a kinetic part depending on the total momentum:
Eσσ′
νQ ¼ Eσσ′

rel;ν þ Eσσ′
kin;Q . We can use Bloch basis functions to find a representation of

the bound states corresponding to exciton wave functions

ψσσ′
νQ kð Þ ¼ kk′σσ′abjνσσ′Qh iδk′;kþQ; ð17Þ

where k conventionally denotes the hole momentum, while the electron momen-
tum is fixed via the total momentum.

An explicit expression for the T-matrix can be obtained by writing the LSE (15)
in the basis of two-particle eigenstates |νσσ′Q〉 as shown in detail in ref. 18. Since
the BSE represents a generalized eigenvalue problem, the eigenstates form a
biorthogonal basis. The procedure yields a spectral representation of the T-matrix
in operator form that is referred to as “bilinear expansion”:

Tret;abðωÞ ¼
X
νσσ′Q

N�1
ab ðEkin � �hωÞ

νσσ′Qj i νfσσ′QD ���
�hω� Eσσ′

νQ

ðEkin � Eσσ′
νQ Þ ð18Þ

with the Pauli blocking factor Nab= 1 − fa − fb, the operator of kinetic energy of

unbound electrons and holes Ekin and the eigenstate of the adjoint BSE νfσσ′QD ���.
The bilinear expansion is used in the following to evaluate the imaginary part of the
self-energy (13) and thereby the contribution of correlated carriers.

Separation of bound and quasi-free carriers. Inserting Eq. (13) into Eq. (11) and
noting that neither the GW self-energy nor the two lowest T-matrix terms con-
tribute to the carrier density46, we obtain17,19

naðμa;TÞ ¼ 1
A
P
kσ

f aðEa
kσÞ þ 1

A2

P
kk′bσ′

R EGap
�1

dω
π nBabðωÞ

´ ImTret;ab
kk′σσ0 ðωÞ d

dω i�hGret;ab
kk′σσ′ðωÞ

þnscatt:

ð19Þ

nBabðωÞ ¼ ½expðβð�hω� μa � μbÞÞ � 1��1 is the Bose distribution function
depending on the chemical potentials of both carrier species. Equation (19) con-
tains contributions of both bound two-particle states, which are below the single-
particle gap EGap, and scattering two-particle states. The latter are explicitly given in
refs. 15–17. Different excitons are localized at different positions in the Brillouin
zone as expressed by the exciton wave functions, Eq. (17), where electrons and
holes are separated by the corresponding total momentum Q. Therefore, we do not
rely on a global (k-independent) band gap to decide whether a two-particle state is
a bound state. Instead, we compare the energy of each two-particle state to the sum
of electron and hole band energies at the maximum of the respective exciton wave
function. The renormalization factor Za

kσ of the quasi-particle resonance in the
spectral function (12) enters the contribution of correlated carriers as Pauli-
blocking factor and as correction to the two-particle scattering spectrum. To
simplify the following discussion, we neglect the contribution nscatt of scattering
states beyond the quasi-free carriers and consider only the bound-state contribu-
tion given by the real-frequency poles of the T-matrix15:

1

A2

X
kk′bσ′

ImTret;ab
kk′σσ′ðωÞ

d
dω

i�hGret;ab
kk′σσ′ðωÞ

�����
bound

¼ π
1
A
X
νσ′Q

δð�hω� Eσσ′
νQ Þ: ð20Þ

Using Eq. (20), we arrive at the final expression for the carrier density:

naðμa;TÞ ¼ 1
A
P
kσ

f aðEa
kσÞ þ 1

A
P
b≠a

P
σσ′

P
νQ

nBabðEσσ′
νQ Þ

¼ nGW;a
free þ nX:

ð21Þ

The total carrier density separates into contributions from quasi-free carriers and
from carriers bound as excitons according to the two poles in the spectral function
Aa(ω). For a specific material, the ionization equilibrium has to be computed
numerically. The electron and hole chemical potentials are determined by adapting
the Fermi functions f aðEa

kσÞ of electrons and holes to a given density of quasi-free
carriers at the quasi-particle energies Ea

kσ . As the chemical potentials also enter the
bound-carrier density via the Bose function nBab , Eq. (21) represents an implicit
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equation for the fraction of quasi-free carriers αa ¼ nafree=na , that has to be solved
self-consistently with the quasi-particle energies in GW approximation, see
Eq. (25), and the bound-state energies Eσσ′

νQ . To simplify the procedure, we exploit
the fact that shifts of excitonic resonances are naturally much smaller than band-
gap shifts, which is due to compensation effects between gap shrinkage and
binding-energy reduction33,47. Hence, we assume that the exciton spectrum
depends only weakly on the excitation density so that we can limit ourselves to the
BSE (16) in the limit of zero excitation density.

Consistent with the imaginary part of the self-energy (13), the quasi-particle
energies Ea

kσ contain GW- and T-matrix contributions:

Ea
kσ ¼ εakσ þ ReΣGW;ret;a

kσ ðEa
kσÞ þ ReΣT;ret;a

kσ ðEa
kσÞ: ð22Þ

The GW self-energy can be separated into the Fock term and the so-called
Montroll–Ward term containing all contributions beyond bare exchange
interaction. The T-matrix contribution is explicitly given in ref. 46 and leads to a
blue shift of single-particle energies that is in the nondegenerate case (f aðEa

kσÞ � 1)
caused by the bound-carrier population. At the same time, the Fock self-energy
contains exchange interaction with both quasi-free and bound carriers via the
extended spectral functions that leads to a lowering of single-particle energies. This
can be seen by using the T-matrix self-energy in Eq. (13) to obtain an excitonic
contribution to the spectral function (12) given by

Γa
kσðωÞ ¼ 1

A
P
b≠a

P
νσ′Q

P
k′

ψσσ′
νQ kð Þ

��� ���2δa;hδk′;kþQ þ ψσσ′
νQ k �Qð Þ

��� ���2δa;eδk′;k�Q

� �

´ δ �hωþ Eb
k′σ′ � Eσσ′

νQ

	 

nBab Eσσ′

νQ

	 

þ f b Eb

k′σ′
� �h i

:

ð23Þ

It yields a sharp resonance for each bound state weighted by its Bose population
function and the exciton wave functions at the corresponding position in k-space.
Note that the spectral positions of the resonances are not given by the bound-state
energies Eσσ′

νQ , which are two-particle quantities, but by an effective binding energy
of the carrier in state |kσa〉, as Γ represents a single-particle spectral function. The
Fock self-energy18 can then be expressed in terms of the spectral function using the
Kubo–Martin–Schwinger relation for the propagators G<(ω) in thermal
equilibrium:

ΣF;a
kσ ¼ i�h 1

A
P
k′
Vaa
kk′kk′G

<;a
k′σ

¼ �i�h 1
A
P
k′
Vaa
kk′kk′

R
dω
2π f

a ωð ÞAa
k′σ ωð Þ

¼ � 1
A
P
k′
Vaa
kk′kk′ f a Ea

k′σ
� �þ f a;boundk′σ

	 

:

ð24Þ

The first contribution to the Fock self-energy scales, besides the Coulomb matrix
elements, with the free-carrier density, while the second contribution scales with
the density of bound carriers. It turns out that similar to exchange interaction with
free carriers, bound-carrier exchange leads to k-dependent renormalizations
according to the exciton wave functions and populations that are contained in the
population factor f a;boundk′σ . As a conclusion, the real part of the self-energy (22)
contains quasi-particle renormalizations due to exciton populations via the T-
matrix in two different places that act in opposite directions. We assume that these
renormalizations cancel to a large degree and focus on the free-carrier
contributions in accordance with refs 17,19. Then we obtain for the quasi-particle
energies:

Ea
kσ � εakσ þ ReΣGW;ret;a

kσ ðEa
kσÞ

��
free

¼ εakσ þ ΣF;a
kσ

��
free

þ ReΣMW;ret;a
kσ Ea

kσ

� ���
free

ð25Þ

with the Montroll–Ward contribution

ΣMW;ret;a
kσ ðωÞ��

free
¼ i�h

R1
�1

dω′
2π

´
P
q

1�f a Ea
q;σð Þð ÞVS;>;aa

kqkq ω′ð Þþf a Ea
q;σð ÞVS;<;aa

kqkq ω′ð Þ
�hω�Ea

q;σþiγaq;σ��hω′ :

ð26Þ

The quasi-particle damping γaq;σ ¼ �ImΣMW;ret;a
kσ ðEa

kσÞ is obtained from the self-
consistent evaluation of the GW self-energy. It is only used for the purpose of
calculating the quasi-particle energies, while the spectral function in extended
quasi-particle approximation, Eq. (12), involves quasi-particle energies without
broadening by construction. We assume that this is valid in a system with
continuous density of states. In a similar manner as for the Fock self-energy,
extended spectral functions could be used to evaluate the Montroll–Ward self-

energy in Eq. (26). Due to the spectral structure of the self-energy, however,
renormalizations of the single-particle band structure caused by bound carriers
involve a denominator of the order of the exciton binding energy, which is very off-
resonant. Therefore the Montroll–Ward term is evaluated using spectral functions
for quasi-free carriers.

Screening due to excited carriers. In the spirit of the extended quasi-particle
approximation, dynamical screening of the Coulomb interaction due to both free
carriers and bound excitons is taken into account. The free-carrier screening is
treated in RPA with a macroscopic Lindhard dielectric function18, while the
excitonic polarizibilities are calculated as described in refs 53,54:

εretq ðωÞ ¼ εret;RPAq ðωÞ

�Vq
1
A

P
νν′σσ′Q

Mσσ′
νν′QðqÞ

��� ���2 nBabðEσσ′
νQ Þ�nBabðEσσ′

ν′Q�qÞ
Eσσ′
νQ�Eσσ′

ν′Q�q��hω�iγ

ð27Þ

with matrix elements

Mσσ′
νν′Q qð Þ ¼ 1

A
X
p

ψσσ′
νQ pð Þ ψσσ′

ν′Q�q pþ qð Þ
	 
�

� ψσσ′
ν′Q�q pð Þ

	 
�h i
ð28Þ

and exciton wave functions ψσσ′
νQðpÞ as defined above. The momentum and fre-

quency dependence of screening is characterized by the plasmon spectral function

V̂S;ab
kk′kk′ðωÞ ¼ VS;>;ab

kk′kk′ ðωÞ � VS;<;ab
kk′kk′ ðωÞ

¼ Vab
kk′kk′2iImε�1;ret

k�k′ ðωÞ:

ð29Þ

Fraction of bright excitons. In the ionization equilibrium between fusion of
unbound carriers and fission of excitons, all bound two-particle states with
quantum number ν and total exciton momentum Q take part, as expressed by the
exciton density, see Eq. (21). On the other hand, besides higher-order processes,
only excitons with small momenta are optically active, as exciton-photon inter-
action requires energy and momentum conservation. From the results on the
ionization equilibrium discussed in the main text, we extract the fraction of bright
excitons by using the obtained electron and hole chemical potentials and summing
over the appropriate exciton states in Eq. (21). To numerically resolve the exciton
population function in the small window of allowed momenta, we apply an
effective-mass approximation to the exciton dispersions shown in Supplementary
Fig. 2 and evaluate the sum over exciton states in polar coordinates. The lowest
bound-state energies involving electrons and holes with equal spins are thus given
by EQ≈ E1s + ħ2Q2/2M, where we find E1s= −311 meV and M= 1.07me for MoS2
and E1s= −258 meV and M= 0.72me for WSe2. The energies E1s are measured with
respect to the quasi-particle band gap, while energy and momentum conservation
in the exciton–photon interaction explicitly involve the band gap, restricting
excitons to inside the light cone with radius Qmax: ħcQmax= E1s + EGap. The energy
values on the right hand side correspond to the position of the A exciton in optical
spectra, which we take from experiment55 yielding 1.95 eV and 1.75 eV for MoS2
and WSe2 on SiO2, respectively. The bright-exciton density is given by

nX;bright ¼ 1
π

Z Qmax

0
dQQnBeh E1s þ �h2Q2

2M

� �
; ð30Þ

taking into account both K and K′ valleys.

Numerical details. We calculate the ionization equilibrium from the fraction of
quasi-free carriers as root of the implicit Eq. (21). The two highest valence and two
lowest conduction bands are considered to cover all excitons that are relevant in a
quasi-equilibrium situation. Band structures and Coulomb matrix elements are
obtained from ab initio calculations as discussed in Supplementary Notes 1 and 2
and illustrated by Supplementary Fig. 1 and Supplementary Table 1. We limit the
Brillouin zone to disks with radius 2.7 nm−1 around the K, K′, Σ, Σ′ and Γ points
using a Monkhorst–Pack mesh with 30 mesh points along Γ-M, which yields
reasonable convergence of all results. The frequency integrals involved in the
Montroll–Ward self-energy (25) are extended from −600 to 600 meV exploiting the
relation VS;<;ab

kk′kk′ ð�ωÞ ¼ VS;>;ab
kk′kk′ ðωÞ. For simplicity, we use a dielectric function (27),

which is isotropic in momentum by evaluating its dependence on |q| along the
contour Γ-K and using Coulomb matrix elements V|q| that are averaged over
Wannier orbitals, see the Supplementary Information. Both the Lindhard and the
excitonic dielectric function (27) are evaluated using ground-state energies and
extrapolated to the limit of vanishing phenomenological quasi-particle broadening
γ. The excitonic dielectric function is evaluated for momenta q on the
Monkhorst–Pack mesh using Eq. (27) and interpolated at arbitrary values of |q|
using cubic Hermite splines. To reach numerical convergence of the dielectric
function, we include up to 4000 bound states depending on the physical
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parameters. The eigenstates and eigenvalues of the BSE, Eq. (16), are obtained by
diagonalization using the SLEPc package56 for the PETSc toolkit57.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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