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Abstract 

Exclusive processes and hadron dynamics at short distances by S. J. Brodsky 

(Stanford Linear Accelerator Center, Stanford University, Stanford, 

California 94305) and G. ?. Lepage (Laboratory of Nuclear Studies, Cornell 

University, Ithaca, New York 14853). 

The predictions of perturbative QCD for a number of areas of hadron dynamics 

are discussed, including exclusive processes at large momentum transfer, the 

endpoint behavior of hadr;.:;ic structure functions, and the Fock state struc­

ture of hadron wavefunctions — especially their behavior at short-distance. 

New results for exclusive two-photon processes, the normalization of high 

twist contributions to the meson structure function, and the calculation of 

the valence Fock state probability of the pion are presented. We also 

review the contrasting features of QCD and parton model dynamics. 
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1. Introduction 

One of the most important areas of applications of quantum chromodynamics 

Is the study of hadron dynamics at short distances. As we have discussed in 

a series of recent papers [1-63, large momentum transfer exclusive processes 

and the short distance structure of hadronic wavefunctions can be systemati­

cally analyzed within the context of perturbative quantum chromodynamics [73.. 

The analysis provides a systematic method for calculating elastic and in­

elastic form factors and the hard-scattering contributions which dominate 

fixed-angle hadronic scattering amplitudes as a perturbation expansion in 

the QCD running coupling constant, a . Many of the predictions such as those 

for the meson form factors [8,93, two-photon processes YY+MM [53, and the 

structure of the hadron wavefunctions at large momentum transfer are derived 

at the same level of rigor as the QCD predictions for the structure function 

moments and the annihilation ratio o(e e"~-*-X)/a(e e~-*-u u~) . 

Thus far, the most extensive efforts in testing perturbative QCD have 

been concentrated in the area of inclusive reactions. In the case of deep 

inelastic lepton scattering, lepton-pair production, and e e~ annihilation 

cross sections, the basic scale-invariance of QCD is revealed through loga­

rithmic modifications of QED or weak interaction amplitudes which must be 

verified over a large range; of kinematics. Direct checks of the coupling 

of QCD at the Born level are possible in inclusive reactions such as e e~ 

annlhilation into three or more jets, and the production of hadrons, jets, 

or photons at very isrge transverse momenta in hadron-hadron collisions. 

As we shall discuss here, large momentum transfer exclusive reactions 

provide an extensive, experimentally accessible, and perhaps definitive 

testing ground for perturbative QCD. In particular, the power-law behavior 

of these reactions directly tests the scale-invariance of the basic quark 

and gluon interactions at short distances, as well as the SU(3)-color 

symmetry of the hadronic valence wavefunctions. The normalizations of the 



exclusive amplitudes (both relative and absolute) test the basic flavor and 

spin symmetry structure of the theory as well as the asymptotic boundary 

condition for meson valence state wavefunctlons obtained from the meson 

leptonic decay rates. The angular variation, helicity structure, and absolute 

sign of exclusive amplitudes test the spin and bare couplings of quarks and 

gluons. In addition the predicted logarithmic modifications of exclusive 

amplitudes reflect the asymptotic freedom variation of the running coupling 

constant and the singularities in the operator product expansion of hadronic 

wave functions at short distances Cl,2], In particular, the process-

independent distribution amplitudes $(x.,Q) (which specify the longitudinal 

momentum distributions for valence quarks colllnear up to the scale Q) have 

a logarithmic dependence in Q which is completely determined by QCD evolution 

equations, or equlvalently, by the operator product expansion of the hadronic 

Bethe-Salpeter wavefunction near the light-cone. The large transverse 

momentum tail of the hadronic wave functions (|>(x.,k..) is thus calculable 

in perturbative QCD; we emphasize that (modulo calculable logarithms), 
2 

$(x.,kj) falls only as 1/k, at large quark transverse momenta — not 

exponentially as is often assumed in phenomenological applications. 

The underlying link between different hadronic phenomenon in quantum 

chromodynamics is the hadronic wavefunction. Many features of the Fock 

state wavefunctions in QCD are quite different from that which had been 

expected in the parton model. We will define [113 the states at equal time 

T * t+z on light-cone in the light-cone gauge A "A + A * 0. The amplitude 

to find n (on-mass-chell) quarks and gluons in a hadron with 4-momentum P 
+ 0 3 directed along the Z-direction and spin projection S z is defined (k~-k ±k ) 

(see Fig. 1) 

PS, & 
Fig. 1. The amplitude to find 
n (on-mass-shell) quarks and 
gluons in a hadron. 
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The valence Fock states (which in fact dominate large momentum transfer 

exclusive reactions) are the |qq> (n»2) and |qqq> (n= 3) components of the 

meson and baryon. For each fermion or anti-fermion constituent 

*g (k ±,x ,s±) multiplies the spin factor u(k.)/^? or v O ^ ) / ^ . The 

wavefunction normalization condition is 

(n)(s1)J ' s ' 

where 
2 

x V i L % / i=l 16TTJ 

and 
n 

[dx] = S (l - £ **) [I d^ 

By studying the wavefunctions themselves, one could in principle under­

stand not only the origin of the standard structure functions, but also the 

nature of multi-particle longitudinal and transverse momentum distributions, 

helicity dependences, as well as the effects of coherence. For example, 

the standard quark and gluon structure functions (probability distributions) 
2 

which control large momentum transfer inclusive reactions at the scale Q are 
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(1.3) 

-1 2 where d <Q ) is due to the wavefunction renormalization of the constituent 

a. Note that only terms which fall-off as \ty\ ~ (k ) ~ (modulo logs) 
2 

contribute to the Q dependence of the integral. These contributions are 

analyzable by the renorraalt2ation group and correspond in perturbative QCD 

to quark or gluon pair production or fragmentation processes associated with 

th° struck constituent a. In general, unless x is close to 1, all Fock states 

in the hadron contribute to G ,„. Multi-particle probability distributions 

are simple generalizations of £q. (1.3). 

Inclusive cross sections in vCD are then obtained by a summation over 

Incoherent hard-scattering subprocess cross sections: 

I 1 A^C - E/^ JXWvfc <WV& d4-,X °-4) 

where each subprocess da is computed for on-shell constituents a and b which 

are collinear with A and B. This result is obtained by integrating the 

hadronic wavefunctions up to the momentum transfer scale Q; the exact 

definition of Q is discussed in Sect. 4. The correct prescription for 

including k„ fluctuations from the wavefunctions is to sum over higher-twist 

subprocesses da , where a and b are each clusters of quarks and gluons in the 

Fock state wavefunctions. The hard-scattering summation procedure C123 

handles the off-shell kinematics cf the constituents correctly and can done 

in a well-defined gauge-invariant manner. The naive procedure of smearing 

the leading twist cross section leads to infinite results (in the case of 

gluon-exchange processes) and cannot be justified in QCD. 

Exclusive reactions at large transverse momentum can also be written in 

a form which factorizes the dynamics of the hard-scattering processes from 

the physics of the hadronic wavefunctions. A simple picture emerges from 



our analysis of these processes. For example* consider the proton's magnetic 
2 2 2 

form factor, Gu(Q )» at large -q *Q . This Is most easily understood in the 

Infinite momentum frame where the proton is Initially moving along the z-axis 

and then Is struck by a highly virtual photon carrying large transverse 
2 2 

momentum q - -q . The form factor is the amplitude for the composite hadron 

to absorb large transverse momentum while remaining intact. In effect, an 

"intact" baryon can be pictured as three valence quarks, each carrying some 
fraction x, of the baryon's momentum j £ x. • 1 J and all moving roughly 

\i-l X / 
parallel with the hadron. As we shall see, the more complicated non-valence 

Fock states in the proton (i.e., qqqqq,qqqg,*-•) are unimportant as Q ••>». 

The form factor is then the product of three probability amplitudes: 

(a) the amplitude, $, for finding the three-quark valence state in the incoming 

proton; (b) the amplitude, T„, for this quark state to scatter with the photon 

producing three quarks in the final state whose momenta are roughly collinear; 

and (c) the amplitude, <J> , for this final quark state to reform into a hadron. 

Thus the magnetic form factor can be written (see Fig. 2a) [1,2] 
1 1 

V Q 2 ) - j [ d x ] y [ d y ] * * < y i ^ T H ( x i » y i ' Q ) 4 < x i » ^ C 1 + ^ ( m 2 / Q 2 ) 3 ( 1 * 5 ) 

o o 
where Q E min (x.Q). 

X •£ 1 

rr1 ~h 
+ -*-S + -g~i~± + . . . 

Fig. 2. (a) The general factorlzed structure of the nucleon form factor at 
large Q 2 in QCD. (b) Leading contributions to the hard-scattering amplitude T„. 



2 
To leading order in <*S(Q )» the "hard-scattering amplitude" T„ Is the 

sum of all Born diagrams for y + 3q-*-3q in perturbative QCD [see Fig. 2b3. 

The transverse momentum fluctuations of the quarks in the Initial and final 

protons are negligible relative to q , as are all particle masses. These can 

be Ignored in T„ so that in effect each hadron is replaced by collinear on-

shell valence partons. Since the final quarks are collinear, momentum of 

^(q,) **"* must be transferred from quark line to quark line (via gluons) in 

T„. This justifies our use of perturbation theory in computing T„, since all 
2 

internal propagators in the Born diagrams must then be off-shell by 0(.Q ). 

Furthermore the most important dynamical feature of the form factor — its 

power-law fall-off — can then be traced to the behavior of T„, which falls 
2 / 2 2 \ 

for Increasing Q with a factor (a (Q >/Q ) for each constituent, after the 

first, scattered from the incident to the final direction: i.e., 

2 2 

T H ( W " ) • (^r) T(vi)[1 +*(».«2>j| ( 1 - 6 ) 

2 2 2 —1 

where a (Q ) = (4TI/B) (in Q /A ) * is the running coupling constant. 

It is now clear that non-valence Fock states In the proton cannot con­

tribute s5nce all such states contain four or more constituents, each of 
( 2 2\3 2 

a (Q )/Q ) or faster and is negligible relative to (1.6) as Q +«. 

[This observation, while strictly true in light-cone gauge (n-A=A • 0 ) , 

has a different interpretation in covariant gauges.3 Thus non-valence ("sea") 

quarks and gluons In the proton do not contribute. The quantity *(x,Q) is 

the "distribution amplitude" for finding the valence quark with light-cone 

fraction x. in the hadron at relative separation b± - ^(1/Q). In fact C1,2Jr 

2 *» k ± < Q 
• (x^.Q) s (j^V)]* y [d\>(n)(*i±*Vsi)-a'7> 

This amplitude is obviously process independent. It contains the essential 

physics of that part of the hadronic wavefunction which affects exclusive 



processes with large momentum transfer. The distribution amplitude is only 

weakly dependent on Q , and this dependence is completely specified by an 

evolution equation of the form (in leading order) 

Q - % *(x ±.Q) * - \ r ~ /[ drf vCx i,y ±)*(y ±,Q) (1.8) 

where V can be computed from a single gluon exchange kernel. The general 

solution of this equation is 

• ( V Q ) = x ^ x E J « n S!) " ^ ( x p . (1.9) 
n»0 \ A / 

Combining this expansion with Eqs. (1.5) and (1.6), we obtain the general 

form of G^ : 

The factorized form of Eq. (1.5) implies a simple space-time picture. 

The exchange of large transverse momentum in the hard-scattering amplitude 

T H occurs only when the relative separation of the constituents approaches 

the light-cone — i.e., - ( z ( ± ) - z ( j ) ) ~ ( z ^ - z ^ ) + ^(1/Q 2). The 

distribution amplitude $ is the probability amplitude for finding the valence 

quarks sufficiently near the light-cone; by the uncertainty principle, this 
2 2 2 corresponds to a momentum space wavefunction smeared over all k < 1/z ~ Q 

as in Eq. (1.7). Each (polynomial) eigensoluticn J 0«J) TEq. (1.9)] of the 

evolution equation is directly related to a term in the operator product 

expansion of the wave function evaluated near the light-cone. The eigen­

values y are the corresponding anomalous dimensions. 

Beyond leading order, both the hard-scattering amplitude and the 
2 potential in the evolution equation have expansions in a_(Q ) : 



T H(x 1 > y i,Q) = f^-j-) {T 0( X i > y i) + a.CQ 2)^,^) + ... } 
Q <1.11) 

V(x i,y 1.a s(Q 2)) « V 0 ( x i r y i ) + «.« 2)V X(» 1,, 1> + ... 

These corrections can be systematically evaluated and the basic equations 

[Eqs. (1.5) and (1.8)3 made exact to any order in a (Q ). 

An essential part of the derivation of these results is an analysis of 

the endpoint behavior of the x. and y. integrations in Eq. (1.5), and es­

pecially of the region x.-»-l or y^ + 1. So long as O - J O > > m'Q* w e f l n d 

that the distribution amplitude vanishes as $(x.,Q) - (1-x.) ^ with 

e(Q) > 1 as x. + 1, This follows from a perturbative analysis of the x. ~ 1 

region coupled with the realization that e(Q) + 2 as Q-*"*» which is a 

necessary consequence •-*. the evolution equation (1.8). Consequently 4> and 

$* vanish sufficiently quickly that the x,,y. integrations are well behaved, 

at least for (1-x.) » m/0. In particular, the evolution of the amplitude 

eliminates any potential logarithmic singularities in the region 

1 » (1-Xj) » m/Q. 

The region 1-x. < m/Q must be analyzed separately. Contributions from 

this region were first discussed by Drell and Yan, and West [14]. They 
2 

related the Q dependence of these contributions to the x -» 1 behavior of 
3 

the deep inelastic structure function vW-. Taking vW- - (1-x) as x -*• 1, 

in accord (roughly) both with experiment and with naive theoretical expec­

tations, the Drell-Yan-West connection implies a term in the form factor 

which falls as 1/Q — i.e., just as in Eq. (1.10). However, a detailed 

examination reveals that this term is suppressed by at least two full powers 
2 

of o (Q ) relative to (1.10). Furthermore, in perturbation theory, gluonic 

corrections to the quark-photon vertex result in a Sudskov form factor which 

suppresses the endpoint contributions by an additional power (m/Q) . Thus the 

infinitesimal region 1-x. < m/Q makes only a negligible contribution to the 
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form factor. It is also clear then that the Drell-Yan-West connection 

between deep inelastic scattering and hadronic form factors is invalid in QCD. 

It should be emphasized that, given that the Sudakov form factor S(Q) is a 
2 

decreasing function of Q , the short distance domain vhere Cl-x) » m/Q gives 

the correct asymptotic QCD behavior for i.he baryon form factor up to correc-
2 tions of relative order a (Q)S(Q) from the Drell-Yan-West region. In the case 

2 _ 

of meson form factors, F (Q )» YY"*"MM, etc., the endpoint region (1-x) < m/Q 

is suppressed by a kinematic factor of m/Q allowing a direct proof of short 

distance dominance using operator product and renoniialization group methods 

[l»2,6j. Further discussion of the exclusive-inclusive connection will be 

given in Sect. 4. 

Following the above prescription, we can reduce the pion's electro­

magnetic form factor to the form: 

/ % , 2 [ d x ] [ d y ] / ^ A ^ / ( y i ' ^ T ( X l , y i , k i , ^ , q ^ * ( X i ^ ) 

i 
=-/[dx][dy] **(yi.Qy)lH(xi'yi>(5)<'(xi.5x) " - 1 2 > 

o 

where T contains all two-particle irreducible amplitudas for Y* + qq -*• qq- and 

QL - min(yjQ), Q =• min(x.Q). The leading contribution comes from one-gluon 

exchange 

16TTC B (Q 2) f e e l r „ , 

^ • v O -f—Lvl+ v d L 1 + < a . w ) - - / Q ) J (1-13) 

vhere e, and e- are the charp.es carried by particles 1 and 2 (in units of e). 

The properties oi $ insure there is no singularity in (1.12) at y, or x. - 0 . 

Consequently, in leading order, we can replace Q„ and Q by Q in (1.12) to 
x y 

obtain the QCD prediction for the pion form fcctor [1,8,9] 
. ,2 

2 4*C <x(q 2) 
e (Q 2) - F s 

Q 2 
^ an( Z n 92") [l+^(as«2).-n/Q)l • 

(1.14) 

http://charp.es
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The n = 0 term dominates as Q 2 becomes very large and we obtain [10] 

2 f l • V<T) * 16lt « S(Q > "i • Cl. 15) 

Thus, each hadronic scattering amplitude can be computed at large momentum 

transfer Q from a hard-scattering amplitude T„(x,,0,6 ) — calculated by 
n l cm. J 

replacing each hadron by collinear on-shell valence quarks — convolute' with 

~2 cone momentum fractions x. at transverse separations ~ ̂ (1/Q ) , with 

Q = (min x.)Q. By definition, all loops containing collinear divergences 

are summed in the distribution amplitudes rather than in T„. The gauge-

invariant distribution amplitude $(x.,Q) plays the same role in exclusive 

amplitudes as the quark and gluon probability distribution functions q(x,Q) 
2 

and g(>. ') play in inclusive reactions [15]. In each case, the large Q 

behavior of these functions can be analyzed from the operator product expansion 

or, equivalently, evolution equations 

3F(x,Q 2)/3logQ 2 = Jv(x,y,as(Q))F(y,Q2)dy (1,16) 

with distinct kernels v(x,y,a (Q )) for each quantity. After renormalization, 

?„ P:W1 V can then be developed in a perturbative expansion in a (Q ) . All the 

results are covariant and gauge-invariant, although the analysis is most easily 

carried out in the light-cone gauge using light-cone perturbation theory (see 

Appendix A of Ref. [23). The infrared singularity which occurs in the gauge-

dependent anomalous dimension for colored fields in this gauge always cancels 
2 

in physical matrix elements. A completely covariant analysis for F (Q ) and 

the connections with the Bethe-Salpeter wavefunction and the procedures 
2 

required to extend the analyses to higher order in °-„(Q ) are outlined in 

Ref. [2]. Alternatively, one could obtain the higher order connections by 

calculating the perr.urbative amplitude for the scattering of collinear, mass-

less on-shell quarks to a given order, and then iti&r- . fy the contributions 
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not already included in the leading order results given here, in analogy to 

the methods used for Inclusive processes. 

The most important dynamical features of the hadronic amplitudes at large 
2 momentum transfer — their power-law fall-off in Q , their angular dependence. 

and their helicity dependence — are all determined by the Born contributions 

to T„(x.fQ,0 ). We arc thus lead to a large number of detailed, experi­

mentally testable, predictions of QCD which critically reflect its elementary 

scaling and spin properties at short distances. In particular there are two 

sets of universal predictions of QCD which follow from the properties of 
2 2 

TH(x,Q ,8 m ) to leading order in 1/Q and to all orders in a s(Q ) CI,23: 

(A) The dimensional counting rules for the power-law behavior of exclusive 

processes: >.M^ Q , where n is the minimum number of external 

elementary fields (leptons, quarks, transversely-polarized gluons or 

(B) The QCD helicity selection rules: ih*0 (hadron helicity cons en/at ion). 

In the case of electromagnetic or weak form factors, hadron helicity 

conservation leads to an even more restrictive rule: |h[ £ 1/2 (minimal 

helicity for each interacting hadron). These helicity rules are special 

features of a vector gluon gauge theory. 

Thus form factors for processes in which the hadron's helicity is changed, 

or in which the initial or final hadron has helicity & 1 are suppressed by 

powers of m/Q whfire m ii; an effective quark mass. Form factors for particles 
2 with opposite helicity dominate for q timelike. The QCr selection rules 

M 2 N 2 * + — 
imply power-law suppression of F1(Q )/F.(Q ) , y p -*• A(h=3/2), and e e -*• irp, 
P L P T ' P T P T ' A ^ h e 3' 2* + M h = -3/2), etc. Further discussion is given in Sect. 2. 

The techniques developed here can be readily extended to other hadronic 

systems, including large momentum transfer reactions involving nuclei, pure 

gluonic states, heavy quark bound states, etc. Applications to the elastic 

and inelastic weak and electromagnetic form factors of baryons are given in 

Kef. [43. We have also used similar methods to analyze the endpoint x -+ 1 
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behavior of meson and baryon structure and fragmenta> _. functions in pertur-

bative QCD, taking into account the correct kinematic limits on structure 

function evolution [1,6]. As we emphasize in Sect. 4, the Drell-Yan-West 

connection does not work in detail in QCD: for example, the perturbative 

diagrams which control the x -*- I behavior of baryon structure functions 
3 

(giving the nominal power Fj(x) — (1-x) ) lead to contributions to bp-yon 
2 form factors which are suppressed by at least two powers of a (Q ) and the 

Sudakov form factor. In the case of large angle exclusive hadron-hadron 

scattering processes, Sudakov form factors suppress the contribution of the 

Landshoff pinch singularities. [Discussions and references are given in Ref. 2.] 

We can also apply the methods of this paper to the calculation of "high 
2 

twist" subprocesses in inclusive reactions, such as C/Q terms in the meson 

longitudinal structure function [16], power-law suppressed terms in the baryon 

structure function, and subprocesses involving more than the minimal number of 

interacting fields in high transverse momentum reactions [17] (see Sects. '» 

and 6). 

The testing of QCD in exclusive reactions is just beginning, but already 

there are a number of important phenomenological successes. The power-laws 

predicted by QCD for the pion, nucleon (and deuteron) form factors, and for 
+ ± + 

large angle pp-»-pp, np+np, IT p -+• TT p, YP^YP* and YP"*"Tt n scattering are 

consistent with the data. A review is given in Ref. [2]. These scaling 

results give the best test so far for the essential scale invariance of qq-*-qq 

scattering and the q and g propagators. We emphasize that the specific 

integral powers predicted by perturbative QCD reflect both the scale-invariance 

of the basic interactions and the fact that the minimal color singlet wave-

functions of hadrons contain either 3 quarks or quark plus antiquark (or 2 or 

3 gluons). The dynamics and symmetries of QCD are thus directly tested. The 

fact that logarithmic modifications are not yet apparent in the data — 

particularly in s da/dt(pp -+pp), which should roughly scale at fixed angle 

as a 1 D ( s ) , gives evidence that t*s(Q2) is slowly varying — i.e., that the QCD 
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scale-constant A is relatively small: A f f < 100 to 300 MeV. [The larger 

value is only possible if mass corrections are important.] 

A more qualitative success of QCD is the fact that the pion form factor, 

computed with the asymptotic wavefunction normalized to the pion decay con­

stant, is within a factor of ~2 of the observed space-like data. The 

definitive check of the predictions for F (Q ) will require an evaluation 
2 

of the. order ct_(Q ) correction, as well as further constraints on the pion 

distribution amplitude <J>(x,Q). As we shall show in Sect. 5, measurements of 

the scaling properties and angular dependence of the two-photon processes 

da/dt(rv -*-MM), with M = TT~' , PT~*T a n d t^ i e^ r ratio to the corresponding 
+ — + -e e * M M cross sections can provide extraordinary checks on QCD and 
Important constraints on the form of the distribution amplitudes at non-

asymptotic momenta. These two-photon processes are the simplest non-trivial 

hadronic scattering amplitudes computable in perturbative QCD. Pinch contri­

butions are power-law suppressed in this case. We also emphasize the import­

ance of experimentally checking the ratio of TT to K to pj~ form factors which 
2 ? 2 

are predicted to asymptotically approach the ratios f ; f' : 2f ** 1 : 1.5 : 2.5. 

(i.e., no zeroes) is a non-trivial check of QCD; for scalar gluons, the meson 

form factor would change sign as Q increases. Another qualitative success 

of QCD is its apparent explanation of the surprisingly large normalization of 

the pp^pp and Trp-*-7rp scattering amplitudes and the magnitude of large momentum 

transfer nuclear form factors. It remains an open question whether the large 

spin polarization observed in large angle pp-»-pp scattering at Argonne can be 

explained in terms of perturbative QCD mechanisms. 
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2. Constraints on Hadronic Wavefunctions 
Q 2 The quark distribution amplitudes <t>(x.,Q) - f d k tf.(x.,k ,) which control 

exclusive reactions at large momentum transfer, and the quark probability 
? 2 2 

distributions q(Xj,Q) - f d k |tfi(x.,k .) j (summed over all Fock states), 
which control inclusive reactions at large momentum transfer, are each deter­
mined by the hadronic Fock state wavefunctions i|»(x ,k . ) • In principle the 
iMx.,k.) describe all hadronic matrix elements. A central goal of hadronic 
physics will be to utilize these wavefunctions to unify short and long dis­
tance physics, and make contact with hadronic spectroscopy, low momentum 
transfer reactions, and the whole range of non-perturbative physics. 

Although the complete specification of hadronic wavefunctions clearly 
will require a solution of the non-perturbative bound state problem in QCD, 
there is a large number of properties of the wavefunctions which can be derived 
from the theory and experimental phenomena. In this section we will discuss 
the following constraints [3]: 

(a) Tho predictions of perturbative QCD for the large transverse momentum 
tail of the 'k state infinite momentum wavefunction ty(k .,x.). These results, 
which also folic* from the operator product expansion near the light-cone [13], 
lead to evolution equations [1,2] for the process-independent distribution 
amplitudes ^Cx»,Q) which control large transverse momentum exclusive reactions 
such as form factors, and for the distribution functions G

a/u( xi>Q) and 
G i„(Xj,Q) which control large transverse momentum inclusive reactions. 

(b) Exact boundary conditions for the valence Fock state meson wave-
functions from the meson decay amplitudes. In particular we shall show ho^ 
the TT + yy decay amplitude for massless quarks specifies the pion wavefunction 
at zero k . This is a new type of low enerf»y theorem for the pion wavefunction 
which is consistent with chiral symmetry and the triangle anomaly for the axial 
vector current [18]. This large-distance result, together with the constraint 
on the valence wavefunction at short distance from the TT-*UV leptonic decay 
amplitude, leads to a number of new results for the parameterization of the 



-17-

pion wavefunction. In particular, we show that the probability of finding 

the valence |qq> state in the total pion wavefunction is ~0.2 to 0.25, for 

a broad range of confining potentials-

(c) As noted above the wavefunction for the Fock states of the hadrons 

on the light-cone (or at infinite momentum frame) ^ (k ,»x.,s.) completely 
b z li l l 

specify the quark and gluon particle content of the he.drons. The coherent 

aspects of the wavefunction are required for constructing the distribution 

amplitudes whlrh are not only necessary for exclusive processes, but also for 

the multi-particle, high twist subprocesses which enter inclusive reactions 

and control transverse momentum smearing effects. We show that the evolution 
2 equations which specify the large Q behavior of the distribution amplitudes 

2 

and of incoherent distribution functions G are correctly applied for Q > <<?>, 

where <<?> is the ^ean value of the off-shell (light-cone/infinite momentum 

frame) energy in the Fock state wavefunction 

i i=l X 'i 

2 

To first approximation, <.£*> is the "starting point" Q n for evolution due to 

perturbative effects in QCD. 

Let us now discuss the constraints on meson wavefunctlons imposed by 

their decay constants. The leptonic decays of the mesons give an important 

constraint on the valence |qq> wavefunction at the origin. As shown in Ref. 

Cl,2] 

11m <f>M(x,,q) = ax.x = / (2.2) 

{ ^ f p V 2 f 0 r p L 

where f = 9 3 MeV is the pion decay constant for TT -+U +V and f„ = 107 MeV is 

the leptonic decay constant from p° •+• e e~. The analogous result holds for 
2 

all zero heliclty mesons. Because the Q -*-ro distribution amplitude has zero 
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anomalous dimension, this constraint is independent of gluon radiative 

correction and can be appliad directly to the non-perturbative wavefunction: 

(,flix-]l6\. t^fenl\,X) . (2.3) 

On t h e o t h e r hand we can a l s o o b t a i n an e x a c t low ener t"V c o ; : s t i a i n t on 

i|>{k = 0 , x ) f o r t h e p i o n i n t h e c h i r a l l i m i t m - * 0 . The Y * * 0 - » " Y v e r t e x 

d e f i n e s t h e TT° - y t r a n s i t i o n form f a c t o r F ( Q 2 ) (q = -y~ ) , 

r * - i e 2 F (Q 2 ) e P V €P q 0 , ( 2 . 4 a ) 
V itY uvpo IT M 

V°> ' T^-c^-^lf • <2'4b) 

This result, derived by the Schwinger, Adler: Tell and Jackiw [183, gives for 

1 = 3 the TT -+YY decay rate, T 0 _̂  , = — j ~ m K (0) = 7.63 eV compared to 

?

e x p t •= ( 7 - 9 5 ± ° - 5 5 ) e V -

If m + 0 , then the valence | qq> contribution to F (Q ) Is [2] 

1 xtf u"ed) Jdxi / T7T ~ — V Q > - 2 ^ («„-d) j t e i / TTT — H " + C x i ^ v • ( 2- 5 ) 

In fact, as shown in Ref. [193, gauge-invariance requires t-hat the valence 

|qq> state should give exactly 1/2 of the total decay amplitude for q •+• 0. 

Thus from Eqs. (2.4b) and (2.5), we find 

/n~ 
• ( l ^ - C x j ) = — . (2.6) 

Therefore the pion wavefunction is constrained both at large and small 

distances. 

In order to implement these constraints It is convenient to construct 

a simple model of the hadronic wavefunction. By using the connection (2.19) 

below for the two particle state from the harmonic oscillator model [203 we 

can get the wavefunction in the infinite momentum frame 



* ( 2>(VV*i) = A e x p [ - R 2 ( - ^ + -i—a)] . (2.7) 

Perhaps the simplest generalization for the n-particle Fock state wave-

functions in the non-perturbative domain is the Gaussian form: 

*sf( k,l' xi- si) = An e x"R] 

The parameterization is taken to be independent of spin. The full wave-

function is the i/j- (k .,x. ,s.) multiplied by the free spinor 

u(kj fS.)/*kt or v(k. ,s.)/*kT . The Gaussian model corresponds to a harmonic 
-*-2 oscillator-confining potential V «>• r in the CM frame. This ansatz for the 

wavefunction has the additional analytic simplicity of (a) factorizing in the 

kinematics of each constituent and (b) satisfying a "cluster" property when 

the constituents are grouped into any rearrangement of subcomposites A,B,... 

If we adopt the Gaussian form for the meson wavefunction Eq. (2.7) then 

constrains (2.3) and (2.6) imply (m 2R « 1, n Q * 3 ) 

R - T ~ =* 0.17 fm 
•n 

and 
A 2m?R2 

A = f e ^ . (2.9) 
TT 

The probability of finding the valence qq state in the tion is thus 

P(qq) »J[dx][d\] Uv^.x^l 2- { > (2.10) 

Alternatively, if we use a powar-law form 

A 



2 2 we find (m <*- u ) 

p { « ) - I t^T • ( 2- 1 2> 
which again leads to 1/4 for large a. For the linear potential case, where 

a - 3 , we have P(qq) « 1/5. 

Let us consider the implications of these results for exclusive large 

momentum transfer processes. As discussed in Sect. 1, we require the behavior 
2 of the distribution amplitude 4>(x ,s.,Q ) defined in Eq. (1.7), which is the 

probability for finding valence quarks at relative transverse separation 

b - 0(1/Q). The large Q dependence of 4> (i.e.. the large k tail of ij<) 

is in fact completely determined by the operator product expansion near the 

light-cone, and in QCD can be calculated from the perturbative expansion in 
2 the irreducible kernel for the quark constituents. To order a (Q ) one only 

requires single gluon exchange, and we find, using the evolution equation CI,23 

«2 

$(X,,Q 2) *= *(X,,Q: ° ) + H irfWsiv^) 
[V(x i,y 1) - 6(x-y)]*( y i,t 2) , (2.13) 

V(x.y) - 2 { x i y 2 e ( y 1 - x 1 > ( « h i S 2 + 7 - ^ - ) + (1~2)J 

- V(y,x) . (2.14) 

2 
This result is derived in the region a,/yi( 1~yi) *s large compared to 

the off-shell energy <<£> in the wavefunction. Thus the natural starting 

point for the evolution of the distribution amplitude is [Qn/x,(1-x.)] — <£*>, 

i.e., to the first approximation we can Identify 

x1(l-x1)<«?> *i ' 

" [v(x,y) - 6(x-y)]»(yi,je2) , (2.15) 



+ n 0 , , - p e r t ( K i ) - / [ d 2 k j ^ " ^ " ( ^ . x j . (2.16) 

Assuming the wavefunction* given by Eqs. (2.7) and (2.9), the shape and 

the normalization of $ (x.) depends only upon the quark mass. The 

application of perturbative QCD for [£. /yj(l-yj)] > ̂ «?> is reasonable here, 
2 2 

since <<?> - 0.7 GeV for this wavefunction is much larger than QCD A f f . 

An (approximate) connection between the equal-time wavefunction in the 

center of mass frame and the infinite momentum frame wavefunction can be 

established by equating the energy propagator M - < f = M - | 2 j k . | in "-m 
the two frames: 

( n .2 E ?i - 0 CCM] 

V?-S = / *-, .. • (2.17) 
n l?2^. 2\ sN=-) E^i=° 

E * 2 - E ^ * o»i 
i 

Thus the rest frame wavefunCL.'-»n ilv̂ (o, ,j-v) vhich controls binding and hadrcnic 

spectroscopy Implies a form for the IMF wavefunction *TMF(xi-^, i) i f w e 

kinematically identify 

k t (AA 
P V ° 

5'j 

(2.IB) 

and 

For a two particle state, there is thus a possible connection; 

( T T ? " " 2 ) ^ * ™ ^ ' (x = x i - x 2 ) • ( 2 - 1 9 ) 

An equivalent insult was also obtained recently by Karmonov [21] using a 

different method. 
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Let us, for illustration and simplicity assume the n-particle Fock state 

wavefunction r ' is a symmetric function of the relativistic kinetic energy 

Independent of the form of ifj, it is easy to show 

'^r p e r t cv^ri » - v 2 n s " 1 ^ D • <2-2« 
where n * mindi^-H ) is the minimum number of spectator constituents in the 

min = mV hadron H after removing the particle (or subcomposite) a, and <f , ~ m /x. 

(1.3) by changing variables from d K . to d k ./x, is independent of the form 

of iK<?.) as long as it is sqnare-integrable under £d K,3 • Examples of this 

result for G *„ and G , R have recently been given by de Rujula and Martin 

[22J. Notice that if we can neglect the quark masses (i.e., for (1-x ) » 

2 2 m /<k >) we obtain the spectator rule proposed in Ref. L'233 

-.non-pert (*») " C .-(l-x) 
.2n„ 

Ua/H " V ~ ̂ a/H 

(*a~' • « " . > " & ) 
2 . (2.21) 

2 2 In fact if we neglect m /<k > the non-pert-ixbative contribution can dominate 

the perturbative prediction in the x - 1 domain! For example, the pertur­

bative power-law behavior is C243 

ai/d [25] 
,3 

4 ( » - x ) J 

« S l ° S \ (I-*)5 

parallel q and B helicity 
4 G F % ' ~ , «" < . (2.23) 

q/B x-»i s I n . . i 5 anti-parallel q and B beliclty 

Since flavor and Bpin are correlated in the baryon wavefunction, perturbative 

QCD predicts AG # p i 2AG. * p. In fact if we assume the baryon wavefunction 

satisfies SU(6) symmetry Cwhich is a rigorous result for •_(*j IQ) > Q-•""), 

we have AG ,„ - SbS,,„ for x •* 1 C25]. The question of whether the non-
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perturbative or perturbative contribution dominates the structure functions 

at x -»• 1 can thus be studied using spin and flavor correlations. 

3. Form Factors and Hadronic Wavefunctions 
2 Figure 3 illustrates the QCD predictions for Q F given three different 

initial wavefmiction at Q„ - 2 GeV [26 D: 

(a) •(x 1,Q 0) - x x x 2 

(b) •(Xj.Qg) « 6(x 1-l/2) 

(c) •(x 1.Q 0) « (x 1x 2)' £ 

(3.1) 

vlth representative values of the QCD scale parameter A . In each case the 

viormalizatlon Is uniquely determined by (2.2); all curves ultimately converge 

to the asymptotic limit (1.15). For Fig. 3, ve have multiplied (1.14) by 
2 2 —1 2 

(1+nk/Q ) to allow a smooth connection with the low Q behavior suggested 
by vector dominance models. 

10 20 40 
0 J (G*2) 

Fig. 3. QCD predictions for the 
pion form factor assuming various 
distribution amplitudes • (JC1,Q(.) 
at Qjj - 2 GeV 2 and varior ' — 
of the QCD scale paramet< 
The data are from the an. The data are from the analysis cf 
electroproduction e"p -*• e" + ir +n; 
C. Bebeket al., Ref. [26]. 



The behavior exhibited in Fig. 3 can be radically modified if *(x.,QQ) 
has nodes or other complex structure in x,. However such behavior is unlikely 
for ground state mesons such as the pion. For these, one intuitively expects 
a smooth, positive-definite distribution amplitude, peaked about x. ,x_ — 1/2. 

2 
Given these constraints, the normalization of F (Q ) is largely determined by 
the breadth of the distribution — broad distributions (Fig. 3c) result in a 
large form factor, narrow distributions (Fig. 3b) in a small one. The 
magnitude of the form factor also depends to some extent upon the scale 

2 2 
parameter A through the factor a (Q ) in (1.14). 

Notice that we can completely remove dependence upon the distribution 
amplitude by comparing F to F . In fact a measurement of each provides a 

2 
direct determination of a_(Q ): 

, o 2 , n c ( e u - e d ) 2 y q 2 > + n , 2 f n M 

«,(Q ) = ~r? ~~5 5—5 + Ola,_(Q U 
* CF Q2|F (Q 2)| 2 s 

• -^ -H1—5—? + ° ( ° f « >) • ( 3 - 2 > 
" Q IV<3 2 ) ! 2 

The tlectromagnetic form factors of K -meson and logotiudinally polarized 
p -mesons follow from the same analysis but with f replaced in the sum rule 
by f„ and /5 f„ respectively. If the quark distribution anplitudes for these 
different mesons are siinilar in shape, the ratios of IT to K to p, form factors 

2 2 2 2 should be approximately f : f„ : 2f - 1 : 1.5 : 2.5 for Q large (becoming exact 
II K. p 

2 

a s Q -*• =°) . 

An important const ra in t on the nature of the d i s t r ibu t ion amplitude for 

K-mesons can be obtained from the Kr-Kg t r a n s i t i o n form factor which i s 

measurable a t large t imelike Q in the react ion e e~ •* KrKg. The K° wave-

function 

6, 
K ' » - "• ' " s " d 



where, because of the large m /m. ratio, f . need not be symmetric in s a K W 

2 2 x +-»-x,. The transition form factor Tv v (Q ) at large Q can then be s a K.S -*• K L 

written in the form of Eq. (1.12) with 

iH(«1.y1.Q) 
16™ «T>C 

[• d̂ d 
(3.4) 

and thus 

K S > K L V 3 / Q 2 Ln(even) m(odd) n m \ A 2 / 

x |_1 + o(a s (Q 2 ) ,m/Q)] 

2 ^ , 

(3.5) 

Thus the form factor requires the odd (asyirar eric under x = x. - x- -*• -x) 
Gegenbauer components of the K distribution amplitude. Asymptotically, 
the transition form factor vanishes with an extra anomalous dimensions: 

2 , auJUW^-sl f ' 
FK S.K,« 2> 

V > Q «)-(y(-sr (3.6) 

where Yj = (8/3)(Cp/B) (a-0.4 for n f « 3 ) . If ..his ratio of form factors is 
indeed appreciable Ci.e., of order 1], then the odd, asynmetr'fc components 
play a major role in the structure of the kaon wavefunction. This would also 
imply a strong violation of the relation F +(Q )/F . (Q ) £ f /fjj at sub-

o asymptotic Q . All of these results can, of course, be extended to mesons 

containing heavy quarks. 
Since quark helicity ie conserved at each vertex in T„, it is diagonal 

in hadronic helicity up to corrections of order m/Q. Further, to leading 
order in 1/Q only terms with 2J Sj = S contribute in $(x.,Q). Consequently 

final (hf) hadrons [1,2,27]: 

(a) Ah = h £ ~ h i * 0 (for timelike photon: hj = -h„) 

(b) |h| - | h ± > f | * 1/2 
(3.7) 
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The second rule is easily derived from the first in the Breit frame. There 

the net change in the hadron's angular momentum along the direction of motion 

- h- = -2h, because the helicity is unchanged while the momentum 

is reversed. As the photon has spin 1, only |h] £ 1/2 is permitted, up to 

corrections of 0(ra/Q). 

Applying these selection rules co e e collisions beyond the resonance 

region, for example, we find that the final states Tip, p_p , p p are 
2 2 suppressed by ~m /Q (in the cross section) relative to TTTT, KK and p p final 

states. 

The selection rules are direct consequences of the vector nature of the 

gluon. In contrast, e e~ •+ p p is not suppressed In a theory with scalar 

gluons. Furthermore while each of the 'allowed' form factors is positive 
2 at large Q in QCD, they are negative in scalar gluon theories, and then must 

2 vanish at some finite Q (since F(0) = 1). Scalar theories are probably 

already ruled out by existing data. 
2 In the case of baryons, the evolution equation to leading order in a (Q ) 

has a general solution of the form 

+(x±,Q) = XjX2x3 2-. a^Ui) ( £ n 2) 

(Ml 
2/36 

|b| = 1/2 

(3.8) 

,-2/(! 
Ihl - 3/2 

where the leading 6 , y are given in Ref. [23, and h is the total quark 

helicity (= hadron's helicity since L = 0). However in practice it is 

generally more efficient to integrate the evolution equation numberlcally 

rather than expanding <J> as in (3.8). 

Convoluting the hard-scattering amplitude T„ (see Fig. 2) with ^(x^.Q) 

then gives the QCD prediction [1,2] 



- 2 7 -

N N 
t~Y -Y 

2 n2(02\ I 2 f 4 / 3 B 

*-g-C - ^ - ^ n ^ j <-._,) ( 

where e* te_n) * s the mean t o t a l charge of quarks with h e l i c i t y p a r a l l e l 

( a n t i - p a r a l l e l ) to the nucleoli 's h e l i c i t y (in The ful ly symmetric f lavor-

y . i l i c i ty wavefunction). For protons and neutrons we have 

€ l l - 1 /3 (3.10) 

The constants b , C are generally unknown for baryons; however, by isospin 

symmetry, they are equal for protons and neutrons, and thus QCD predicts the 
2 ratios of form factors as Q -*• t a . 

Figure 4 illustrates the predictions for Q *£(Q ) assuming a wave function 

• ( X ^ Q Q ) * 6( X l-l/3)S(x 2-l/3) at Q Q - 2 GeV 2 (the absolute normalization is 

undetermined) and various values of the QCD scale parameter C28]. Again we 
2 —2 include an extra factor (1+.71/Q ) in (3.9) to allow a smooth connection 

o with data at low Q . Similar curves are obtained for any reasonably smooth 

0.6 

i I ' l 1 1 • 1 

1 
1 • 

-

0.4 — 
A 2 . 

__0.000l _ 

- _ 0 . 0 I 

\ \ ~ ~ - _ o.i 
-, ^ \ ~- -; ' \ \ •v v 

0.2 V *• — 1.0 -
i "̂  -- -^ ^ -« - i/oz 

— »*. -

n • • • " • • 

Fig. 4. (a) Prediction for Q*c£(Q2) 
for various QCD scale parameters A 2 

(In GeV 2). The data are from Ref. 
C28J. The initial wavefunction is 
taken as i(xM <* 6C»! - l/3)6(x2 - 1/3) 
at A 2 - 2 GeV 2. The factor 
(l + m 2/Q 2)-2 is included in the 
prediction as a representation of 
mass effects, and the overall 
normalization is unknown. 

10 20 
Q 2 (GtV2) 



distribution amplitude ^(x^Qp). Only the ratio G£(Q 2)/GJJ({; 2) is particularly 

sensitive to the shape of the distribution amplitude. For illustration, this 

ratio is plotted versus n. in Fig. 5 where ifrt^.Q) - ( x ^ x - ) 1 1 is assumed for 
2 a given Q • For each choice of r\f the ratio decreases to zero with increasing 

Q 2 as (in Q 2 / A 2 ) Y 0 " Y 3 - (j,n q 2 / A
2 ) - 3 2 / 9 0 . The ratio Gg/c£ - -1 at Q 2 for the 

6-function distribution amplitude used in Fig 4. For comparison* note that 

in a theory with scalar or pseudo-scalar gluons, diagrams in which the struck 

quark has anti-parallel hellcity vanish. Thus scalar QCD predicts a ratio 

GJJ/GL. -*• e^/e.. * -1/3 independent of the distribution amplitude (assuming only 

symmetry under exchange x. «-»-x~). 

As for mesons, form factors for processes in which the baryon's helicity 

is changed (Ah 1*0), or in which the initial or final baryon has |h| > 1, are 

suppressed by factors of m/Q, where m is an effective quark mass. Thus the 

helicity-flip nuclion form factor is predicted to fall roughly as F« ~ raM/Q . 

The reaction e e •* A A is dominated by baryons with |h.| * 1/2; the cross 

section for production of |h^| -3/2 pairs or deltas with |h &| -3/2 and 1/2 is 

suppressed. Again most of these predictions test the spin of the gluon. For 

example, transitions ep •*• eA (|h, ] • 3/2) are not suppressed in scalar QCD. 

An important feature of the perturbative QCD predictions — again true 
2 to all orders *n a (Q ) — is that all of the helicity-conserving electroweak 

form factors [43 involving nucleons can be expressed as linear combinations 

4>(*\.Q)~(*\*Z*ZV 

G£<O!G£|>O 
Fig. 5. The ratio of proton to neutron 
magnetic fo»m factors for various dis­
tribution amplitudes. 
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2 2 of just two basic form factors — G (Q ) and G»(Q ) — corresponding to 

amplitudes in which the current interacts with a valence quark with helicity 

parallel or anti-parallel to the helicity of the nucleons, respectively. 

The coefficients are determined by the corresponding SU(2),xU(l) quark charges. 

Thus the nucleon magnetic form factors Gjj(Q ) and G*J(Q ) are sufficient to 

predict the weak nucleon form factors. The assumption of the standard heli-

city-flavor symmetry for the baryon wavefunctions at short distances then 

leads to the specification of a^ the leading electroveak octet and decouplet 

form factors. The spatial wavefunctions can be assumed to be symmetrical with 

respect to the quarks having the same helicily, a feature which is preserved 

under perturbative QCD evolution. At Q -*•=>, the spatial wavefunction becomes 

totally symmetric. ^ ( x ^ Q ) -*• x ^ x ^ l o g Q /A ) ~ B , and thus the helicity-

flavor structure of the baryon states satisfies exact S0(6) symmetry. The 

detailed results are given in Ref. [43. 

4, Perturbative QCD Predictions for the x ~ 1 Behavior of Structure 

Functions — QCD Evolution and High Twist Contributions 

As we have emphasized in Sect, 2, one of the most important areas of 

study of perturbative quantum chromodynamics is the behavior of the hadronic 

wavefunctions at short distances or at far off-shell kinematics. This behavior 

can be tested not only in exclusive reactions such as form factors at large 

momentum transfer but also in deep inelastic scattering reactions at the edge 

t-f phase space. In this section we will review the QCD predictions for the 

behavior of the hadronic structure functions F. (x,Q) in the endpoint x,. - 1 
i -Bj 

region [6,291. The endpoint region is particularly interesting because one 

must understand in detail (a) the contributions of exclusive channels* (b) 

the effect of high twist terms (power-law scale-breaking contributions) which 

can become dominant at large x, and (c) the essential role of the available 

energy W in controlling the logarithmic evolution of the structure func.ions. 

Note that as x ~ 1, essentially all of the hadron's momentum must be carried 



by one quark (or gluon), and thus each propagator which transfers this 

momentum becomes far-off shell: k - -(it \*M )/(l-x) -*• -» [see Fig. 6J. 

Accordingly* if the spectator mass *M is finite the leading power-law behavior 

in (1-x) is determined by the minimum number of gluon exchanges required to 

stop the hadronic spectators, and only the valence Fock states, [qqq> for 

baryons, and |qq> for mesons, contribute to the leading power behavior. If 

one simply computes the connected tree graphs, as in Fig. 7, then the pertur-

bative (1-x) power-law behavior is given by Eqs. (2.22) and (2.23) of Sect. 2. 

<B 
4>Q 

^ 
(o) 

Fig. 6. Kinematics 
for inelastic struc­
ture functions. 

Fig. 7. 
Perturbative QCD 
tree diagram 
for computing 
the x — 1 power 
behavior of 
baryon and meson 
structure func­
tions . 

(b) 

Let us now consider how these results for the power-lav behavior emerge 

within the complete perturbative structure of QCD. Including corrections from 

gluon radiation, vertex and self-energy corrections, and continued iteration 

of the gluon-exchange kernel, one finds for the nucleon's quark distribution 

C293. 

< W X ' Q ) (1-x)3 a* ( A 

N 

j»0 • (-5)' yx.Q) 

[ 1 +*(°s< k*>' 1 / (0] W-i) 

The powers of a and (J-x) reflect the behavior of the hard-scattering ampli­

tude at the off-shell value k* - (<k*> + .4r2)/(l-x) where <k 2> Is set by the 

spectator transverse momentum integrations. The anomalous dimensions y. are 

the anomalous dimensions of the nucleon's valence Fock state wavefunction at 
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short distances. Their contribution to G , (x,Q) are due to the evolution 
q/p 2 2 of the wavefunction Integrated up to the transverse momentum scale I < k 

as in the corresponding exclusive channel analyses. The last factor F (x,Q) 

represents the target-independent evolution of the structure function due **o 

gluon emission from the struck quark: (C p*4/3) 

4C F€(Q) P q(x,Q) ~ Cl-x) (4.2) 

A *l Ugqg/A2/ 
(4.3) 

The lover limit Q. of the gluon's transverse momentum integration is set by 

the mean value of the spectator quark's transverse momenta and masses. This 

hadronlc scale sets the starting point for structure functions evolutions. 

Equation (4.1) then gives the light-cone momentum distribution for parallel-

helicity quarks with x near 1 at the transverse momentum scale Q. 

It should be emphasized that the actual momentum scale probed by various 

deep inelastic inclusive reactions depends in detail on the process under 

consideration; the actual upper limit of the transverse momentum integration 

is set by kinematics. For example, if we consider the contribution of Fig. 8 

to the deep inelastic structure functions, the propagator (or energy denomina­

tor) associated with the top loop reduces to the usual Bjorken structure 

3L q I q 

x.iu j i ^ 

y 1̂ 
Fig. 8. Perturbatlve QCD diagrams 
for structure function evolution. 
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2 2 2 2 
2q-p - Q /x + ie only if k ± « (l-y)<T s (l-x)Q where fc is the quark's 
transverse momentum and y £ x is the light-cone variable indicated in the 
figure. The remaining structure factorizes into a form which defines 
G , (x/y,k ) . Thus the actual relation between the structure function and 
the momentum distribution for x ~ 1 is [6,29,303 

F2(x,Q) = E«J*B faj^M + 4 G

q j / p < V Q ) ] < 4 ' 4 ' 

2 2 dk2 a (k 2 /y) 

o ( l -y)Q Z i 

" { G q/ P

( x / ^ k ,> *J*T^ - G q / P

( * ' V } ( ^ 5 ) 

2 2 2 corrects for the fact that the top loop is integrated to k < (l-y)Q (< x R W ) 
not Q . [The argument of a is also crucial here.] Other inclusive reactions 
have to be individually examined: in the case of che Drell-Yan process 
- + — 2 2 

q q. -*- u u „ the structure functions evolve to (1-y )Q and (1-y. )Q not 
Q2 = (P ++PJ 2. 

The actual evolution of structure functions in deep inealstic lepton 
2 scattering is thus controlled by the available energy x f i W t and is more 

moderate at x. **• 1 than would be expected from lowest order expectations. 
Analytic forms for the ,1-x) behavior are readily computed C293- The most 
important features are the following: (1) The 6G/G correction to leading 

a (Q )/4irJlog n terms in the struc­
ture function moments as calculated using the operator product expansion and 
renormalization group. In our analysis a series of terms of all orders in 
i 2 \P / 2 \P 
(o log (l/l~x)} or (a log n) arises simply from the fact that the natural 
evolution parameter for the structure functions F.(x,Q) and moments*M (x,Q) 

2 2 2 
is controlled by (l-y)Q < (l-x)Q and not Q ; the basic momentum distri­
butions G(x»Q) do not contain the anomalous double-log terms and have a 
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straightforward perturbative evolution. (2) The extended evolution equations 

based on Eqs. (£.4) and (4.5) have a number of phenomenological advantages. 

After taking into account the appropriate evolution limits, each deep In­

elastic process can be related to the basic distribution G (x,Q), avoiding 

large kinematic corrections. The scale parameter A which has been introduced 

to eliminate the strong n-dependent of the higher order corrections to the 
2 

moments is unnecessary. The fact that xW controls the evolution suggest Its 

use in structure function parameterizations and studies of moment factori­

zation in fragmentation processes. (A study of the application of this method 

to photon structure functions is in progress.) (3) The exclusive-inclusive 

connection fails in QCD [29,313. At fixed but large \T, F 2 N(x,Q) falls as 
3+5 (1-x) where <5 > 0, whereas, modulo logarithmic factors, exclusive channels 

3 -4 
in QCD give contributions ~(l-x) from the Q scaling of the leading nucleon 
iorm factors. Thus exclusive channels will eventually dominate the leading 

2 2 twist contributions to inclusive cross sections at fixed W , Q •+• ». 

A complete treatment of the hadron structure functions must take into 

account higher twist contributions. Althcugh such contributions are suppressed 

by powers of 1/Q , they can have fewer powers of (1-x) and, accordingly, may 

be phenomenologically important in the large x domain [17,32]. In the case of 

nucleons, the £ + qq -*• S-'+qq subprocess (In which the lepton recoils against 

two quarks) Is expected to lead to a contribution "*(l-x)/Q since only 

one quark spectator Is required. A large longitudinal structure function is 

also expected [32,33,34J. Although complete calculations of such terms have 

not been done, the presence of such terms can reduce the amount of logarithmic 

scale-violation required from the leading twist contributions in phenomeno-

logical fits [32,353. 

The analysis of meson structure functions at x * 1 Is similar to that of 

the baryon, with two striking dlfferneces: (1) The controlling power behavior 
o 

of the leading twist contribution is (1-x) from perturbative QCD [24,363. 
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The extra factor of (1-x) — compared to what vould have been expected from 

spectator counting — can be attributed to the mismatch between the quark 

spin and that of the meson. (2) The longitudinal meson structure function 

has an anomalous non-scaling component [33,37] which is finite at x -*• 1: 

F (x,Q) - Cx /Q . This high twist term, which romes from the lepton scattering 

off an instantaneous fermion-line in light-cone perturbation theory, can be 

rigorously computed and normalized in perturbative QCD. The crucial fact is 

that the wavefunction evolution and spectatcc transverse momentum integrations 

in Fig. 9 can be written directly in tortus of a corresponding calculation of 

the meson form factor. The result for the pion structure function to leading 

order in a (k 2) and a (Q 2) is [37,38] 

Q 2 

dk 2 a (k 2) F (k2) (4.6) 

2 2 2 which numerically is F_ ~ x /Q (GeV units). 

The dominance of the longitudinal structure functions in the fixed W 

limit for mesons is an essential prediction of perturbative QCF Perhaps the 

most dramatic consequence is in the Drell-Yan process ^p "*• ft ft X; one predicts 

[33] that for fixed pair mass Q, the angular distribution cf the ft (in the 
2 pair rest frame) will change from the conventional (1+cos &+) distribution 

2 to sin (9 ) for pairs produced at large x, . A recent analysis of the 

Chicago-Illinois-Princeton experiment [39] at FNAL appears to confirm the QCD 

high twist prediction with about the expected normalization, see Fig. 10. 

Striking evidence for the effect has also been seen in a Gargamelle analysis 

[403 of the quark fragmentation functions in vp -+ TT u X. The results yield 

a quark fragmentation distribution into positive charged hadrons which is 

consistent with the predicted form: dN+/dzdy ~ B(l-z) + (C/Q )(l-y) where 

the (1-y) behavior corresponds to a longitudinal structure function. It is 
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tvlst contribution for meson production at large p_, will be discussed else­

where [37]. 

V--»i+Ql,« 
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Fig. 9. Perturbative 
contribution to the 
meson longitudinal 
structure function 

C/Q2. 
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5. Exclusive Processes in QCD: The Two-Photon Processes 

As we have emphasized In this talk, the predictions of perturbative 

quantum chromodynamics can be extended to the whole domain of large momentum 

transfer exclusive processes. The results lead to a comprehensive new range 

of rigorous predictions of QCD which test both the scaling and spin properties 

of quark and gluon Interactions at large momentum transfer as well as the 

detailed structure of hadronic wavefunctions at short distances. The two-

photon reactions (H - ir,K,p,oi,...) 

-„ at large s • (k,+k«) 
~ (rr + MM) l 2 

a c and fixed 6 

cm. 

provide a particularly important laboratory for testing QCD since these 

"Compton" processes are, by far, the simplest calculable large-angle exclusive 

hadronic scattering reactions. As we discuss below, the large-momentum-

transfer scaling behavior, the hellclty structure, and often even the absolute 
normalization can be rigorously computed for each two-photon channel £413. 
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Conversely, the angular dependence of the YY "* MM amplitudes can be used to 

determine the shape of the process-independent meson "distribution amplitudes," 

$u(x»Q). the basic short-distance wavefunctions which control the valence quark 

distributions in high momentum transfer exclusive reactions [1,2]. 

A critically important feature of the YY •* MM amplitude is that the con­

tributions of Landshoff pinch singularities are power-law suppressed at the 

Born Ipvel — even before taking into account Sudakov form factor suppression. 

There are also no anomalous contributions from the x - 1 endpoint integration 

region. Thus, as in the calculation of the meson form factors, each fixed-

angle helicity amplitude can be written to leading order in 2/Q in Lhe 

factorized form [Q 2 = p = tu/s; Q x = minfxQ,(l-x)Q)J: 

1 1 

^YY-MM - /**/<* V ^ V V ^ ' ^ c . - J Vx-5x> «•» 
o o 

where T f i is the hard-scattering amplitude YY •+ (qq) (qq) for the production of 

the valence quarks collinear with each meson (see Fig. 11), and t)>M(x,Q) is the 

(process-independent) distribution amplitude for finding the valence q and q 

with light-cone fractions of tl.* meson's momentum, integrated over transverse 

momenta k. < Q- The contributions of nonvalence Fock states are power-law 

suppressed. Further, the Bpin-selection rules of QCD predict that vector 

mesons M and M are produced with opposite helicities to leading order in 1/Q 
2 

and all orders in a (Q ) -

Fig. 11. Factorization of the 
YY * MM amplitude. 



Detailed predictions for each yy •* MM helicity amplitude can be worked 
2 

out to leading order in Q_(Q ) from the seven diagrams for T„ shown in Fig. 12. 

The general result is 

aa (Q ) _ , 2 2 \ " V Y m 
^ ^ M > l ( s ' 9 c . m . > = - V - ^ ^ ^ c . m . ) ^ ^ ) 

[l+^(as(Q2).m/Q)J (5.2) 

where the first factor follows from the fixed angle scaling of T„. The y 

are the universal logarithm anomalous dimensions for helicity 0 or helicity 1 

mesons as derived from the operator product expansion at short distances [13j, 

or equivalently, the QCD evolution equation for $ M(x,Q). Modulo logaritlunic 

corrections, Eq. (5.2) implies s do/dt (yy -*- MM) scaling at fixed 6 . 

Fig. 12. Leading order contributions 

-:^ _*? 
to the hard-scattering amplitude T. H" 

The QCD predictions for y> •* u n and yy •+ IT IT to leading c er in a (Q ) 

are shown in Fig. 13. For asymptotic Q T(x,Q) => /3f x(l-x) and the 

Fig. 13. Perturbative QCD predictions 
for YY + TITT at large momentum transfer. 
Predictions for other helicity-zero 
mesons only differ in normalization. 
ThR curves (a),(b) and (c) correspond 
to the three distribution amplitudes 
described in the text. 

0.2 0.4 0.6 
z 2 * cos* <S) 



predictions [curve (a)] become exact and paramater-free. For subasymptotic 
2 

Q » d (x»Q) depends on the details of hadronic binding. Curves (b) and (c) 
I, 

correspond to the extreme examples £ « Ex(l-x)] and A * 6(x-%), respectively. 

In each case it is convenient to rescale the results in terms of the meas_red 

pion form factor. 

The prediction for other helicity-zero mesons are identical up to overall 

normalization factors: 

^ Y Y - * ™ '" ̂ Y Y + K K : *^YY"^P LP L 

• Z - 4 • - P 

1 : -1.5 : -2.5 . (5.3) 

For comparison, s 2 do/dt (YY •*• U +V~) 3 4irtt2(l+z2)/(l-z2> S 260 nb GeV* at 

+ -We note that the YY "*" * ~n cross section is insensitive to the shape of 

amplitude is strongly sensitive to the distribution amplitude: in fact, the 

z = cosB dependence oi *Jt + 0 0 resolves the x-dependence of * (x,Q) in 

the same way that the Xj, -dependence of the structure functions. The strong 

coupling of the x, y. and cos8 variables in ji' „- can be traced to the c m . Y Y + H H 
gluon propagators in the last two diagrams for T„ shown in Fig. 12. 

We have also computed the cross section for transversely polarized vector 

mesons with opposite helicity, such as yy + P TP T- The predictions in Fig. 14 

assume $ (x,Q) = i^(f /f_.Hff(x,Q) independent of p-helicity (although this 

cannot be strictly true at asymptotic Q ) . The YY **" P«P T rate vanishes for 

4 * 6(x-*s). We also note that the predicted cross section for YY "*" P P~ 

(suntried over polarization) is quite large: 

GeV'Vs* (5.4) 
da/dt (YY + v^v~) 

Tl/2. 

do/dt (YT - p p~) ^ ? G e V 4 / _ 2 
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Fig. 14. Perturbative QCD 
prediction for YTf "*" PjPx a t 

large momentum transfer, 
corresponding to the normali­
zation and choices of A 
described in the text. 

0 0.2 0.4 0.6 0.8 1.0 
z 2 = cos2(fi) 

In summary, we note that yy -+ MM processes can provide a detailfd check 

of the basic Born structure of QCD: the scaling of quark and gluon propagators 

and interactions, as well as the constituent charges and spin. The form of the 

predictions are exact to leading order in a (Q ) . Power-law Cm/Q) corrections 

can arise from mass insertions, higher Fock states, pinch singularities and 

non-perturbative effects. 

The most extraordinary feature of these results is the fact that the 

angular dependence of some of the two-photon reactions can directly determine 

the form of the hadronic wavefunctions at short distances. The determination 

of 4>u(xpQ) will remove a major ambiguity in the prediction of the meson form 

factor. The extension of the results to the baryon channels YY "•" BB and 

•yB -*• -yB is thus of obvious Interest. The results presented here can also 

be used to study the occurrence of the fixed Regge singularity at J * 0 , and 

the analytic connections to tr.-iditional hadronic phenomena: vector meson 

dominance, finite energy sum rules, and the low energy behavior of the 

YY "+ MM amplitudes. 

I0« 

1 1 1 1 

(b). / 

Jy ^ 
3" 

yy—p'"' ^^ —/i°i V 

; / / AM 
as / y f 
*« I0 2 

'J/ 
i 

I0 1 / / , - i , •: 
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6. Contrasts Between QCD and Farton Model Dynamics 

The property of asymptotic freedom is QCD justifies the apfilicability of 

many parton model [42] concepts in hadron dynamics. In addition, the Fock 

state description of hadrons defined at equal time on the light-cone (see 

Sect. 2) provides a convenient parton-like interpretation of hadron wave-

functions and structure functions at infinite momentum. On the other hand, 

QCD gives a new perspective into hadron dynamics which is often in direct 

contradiction to what had been expected in parton or multiperipheral model 

descriptions. As a summary to this talk we shall list some of these dis­

tinguishing charactp-lstics of QCD: 

(1) Hadron states of definite particle (quark and gluon) number exist at 

infinite momentum or at equal time on the light-cone [13. This is a special 

consequence of the color neutrality of hadrons; it is not true for particles 

carrying a gauged current. As we have discussed in Sect. 2, the probability 

of finding a pion in its [iq> valence state can be calculated C3] from its 

TT -»• u\> and tr -+ YY decay rates- The valence probability is ~l/5 to 1/4. 

(2) Exclusive processes at large momentum transfer such as form factors 

are dominated by hard-scattering subprocesses involving the valence quarks in 

the hadron's minimum Fock state. The hard-scattering amplitude is then 

convoluted with the hadron wavefunction evaluated at short distances. This 

is in striking contrast to parton model mechanisms based on the scattering 

of a leading quark at x - 1 in a Toe1: state with an arbitrary number of wee 

spectators. As we have emphasized in Sect. 4, the endpoint x ~ 1 contributions 

are always suppressed by the quark Sudakov form factor, relative to the leading 

hard-scattering contributions. [In the case of helirity zero meson form 

factors and -p- -+ MM large momentum transfer two-photon processes, the endpoint 

regions are suppressed by additional kinematic powers of m/Q.] Because of 

this suppression, the pcrton model exclusive-inclusive connection fails in QCD. 

We emphasize that the power-law scaling [43] and helicity dependence of the 

hard-scattering contributions in exclusive reactions reflect the basic scale-
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invariance and spin structure of QCD at short distances. The QCD helicity 

selection rules £1,2] (see Sect. 3) provide crucial tests of gluon and quark 

spin. 

(3) The leading power-law behavior of inclusive structure functions 

£1,6,24,25,43] at x near 1 is controlled by the minimum valence Fock state 

components of the hadron wavefunctions, again in contrast LO partcn model 

expectation. The perturbative QCD predictions reflect the elementary scaling 

of quark and gluon propagators in the far-off shell domain. A striking QCD 

prediction is that the h«licity of the hadron tends to be carried by the 

constituent with the highest x. 

(4) The Fock state structure of QCD at infinite momentum is more complex 

than usually assumed in phenomenological applications. In addition to the 

"extrinsic" gluons generated by QCD evolution, there are always "intrinsic" 

gluons and non-valence quark components in the hadron wavefunction which are 

insensitive to the momentum scale of the probe £44]. For example., transverse 

gluons exchanged between quarks, boosted to infinite momentum, yield an 

intrinsic gluon component to the Fock states. An even mure striking example 

is the prediction [453 of "intrinsic charm" in the proton and meson wave-

functions. One can estimate [463, using the bag model and perturbative QCD, 

that the proton bound state has a |uudcc> component with a probability of 

~l-2%. When this state is Lorentz boosted to infinite momentum, the con­

stituents with the largest mass have the highest x. Thus heavy quarks (though 

rare) carry most of the momentum in the Fock state in which they are present. 

The usual parton model assumption that non-valence sea quarks are always found 

at low x is incorrect. The diffractive disassociation of the proton's 

intrinsic charm state provides a simple explanation why charmed baryons and 

charmed mesons which contain no valence quarks in commoii with the proton are 

diffractively produced at large x_ with sizeable cross sections at ISR 

energies [47], 
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(5) It is also interesting to note that nuclear Fock states are much 

richer in QCD than they would be in a theory in which the only degrees of 

freedom are hadrons. For example, if we assume that at low relative momentum 

a deuteron is dominated by its usual n-p configuration, quark-quark scattering 

automatically generates color-polarized 6-quark states such as I(uuu)0(ddd)a> 
o o 

at short distances. The implications of QCD for large momentum transfer 

nuclear form factors and the nuclear force at short distances is discussed 

in Ref. £483. 

(6) As we have discussed in Sect. 1, the naive procedure of smearing 

leading twist quark and gluon cross sections with probabilistic parton 

distributions G(x,k ) is incorrect in QCD. The correct procedure for in­

corporating the effects of wavefunction transverse momenta requires a hard-

scattering expansion [12] over higher twist subprocesses. The constituent 

interchange model [493 represents a first attempt to model such contributions; 

it is, however, incomplete since only a subset of QCD higher twist diagrams 

(those with quark exchange or interchange) is included. 

(7) The existence of many higher twist contributions in QCD inclusive 

reactions is a direct consequence of the composite structure of the inter­

acting hadrons. Although they complicate many QCD analyses, particularly 

hadron production at large transverse momentum, higher twist processes are 

at the heart of QCD dynamics. In the case of the meson structure function, 
2 

QCD predicts [25,27,333 a (longitudinal) component F, - C/Q which dominates 
x ~ 1 quark distributions and z ~ 1 fragmentation phenomena. As we have 

discussed in Sect. 4, this higher twist term can be absolutely normalized [63 

in terms of the form factor scale. We are thus led to critical tests for QCD 

which are in direct contradiction to parton model predictions. Recent experi­

mental evidence [39,403, in fact, supports the QCD highei- twist predictions 

for the pion structure and fragmentation functions. 
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(8) Some of the most important tests of QCD involve real photons. In 

contrast to vector-meson dominance ideas, point-like interactions are predicted 

to dominate the hadronic interactions of on-shell photons in large momentum 

transfer reactions [51!]. This feature is particularly clear in the QCD 

predictions for the two-photon inclusive C52] and exclusive processes [5] 

YY •* jet +jet and Yi' "*" *M, and the photon structure function at large momentum 

transfer. Higher twist terms should be relatively less important in photon 

reactions compared to hadron reactions. 

(9) The generation of hadron multiplicity is not completely understood 

in QCD. However a number of features are anticipated which appear to differ 

strongly from parton model expectations: For example, in QCD (a) the final 

state multiplicity reflects the color separation set up in the collision [53]; 

this is believed to even hold in low p_ hadrou collisions since the basic 

interactions involve color exchange; (b) the evolution in space-time corres­

ponds to an inside-outside cascade — the slowest hadrons are created first; 

(c) the final state multiplicity in the Drell-Yan process AB -+• JUX is expected 

to reflect the creation of 3 and 3 spectator systems at the moment of 

annihilation C533; and (d) the multiplicity of gluon jets and other color 

octet systems should reflect its higher color charge relative to color triplet 

systems C533. It is clear that QCD provides a novel perspective for multi-

particle phenomena. 

(10) Another critical testing ground of QCD dynamics is the study of 

quark and gluon interactions in nuclear targets 1553. For example, consider 

the Drell-Yan process pU •*• u ji~X. If the factorization theorem for inclusive 

reactions is correct the cross section at l^rge pair mass Q is given by the 

convolution of the anti-proton structure function Gg-/n^x
a»Q) with the nuclear 

2 

distribution function G / u(Xj | tQ) — which for large Q is ~AG /jjCx^Q). 

Thus the factorization theorem predicts no absorption of the constituents 

of the anti-proton despite the fact that the p suffers repeated inelastic 

collisions in its passage through the nuclear volume! If this is really 
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correct, then only wee quarks and gluons with x ~ 0 (finite momentum in the 

lab frame) can be strongly absorbed; the nucleus is then essentially trans­

parent to the valence Fock state of the hadron. 

From a physical point of view, it seems much more reasonable that an 

incident hadron's Fock state will be strongly altered because of Glauber 

inelastic collisions during its passage through the nucleus [563. Standard 

QCD evolution then applies to the altered structure function — i.e., the 

"initial conditions" are not the same as in deep inelastic lepton scattering. 

This is of course in contradiction to the QCD factorization theorem. We also 

expect that the effects of nucleon absorption and collisions will be strongest 

for those Fock components of the incident hadron which are largest in trans­

verse spatial extent, i.e., Fock states with a high multiplicity of wee quarks. 

The nucleus then acts as a differential absorber where the valence Fock state 

(and hence quarks with large x) suffer the least absorption. The crucial test 
+ -of this idea is the A-dependence of the Drell-Van cross section pA •* u u X as 

a function of the momentum fraction ^ of the annihilating antiquark, to see 

whether nuclear absorption sets in at x < x where x is fixed or vanishes with 

increasing momentum as required by the factorization theorem [57]. 
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