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Abstract

Exclusive processes and hadron dynamics at short distances by S. J. Brodsky
(Stanford Linear Accelerator Center, Stanford University, Stanford,
California 94305) and G. F. Lepage (Laboratory of Nuclear Studies, Cormell

University, Ithaca, New York 14853).

The predictions of perturbative QCD for a number of areas of hadron dynamics
are discussed, including exclusive processes at large momentum transfer, the
endpoint behavior of hadrcaic structure functions, and the Fock state struc-
ture of hadron wavefunctions ~- especially their behavior at short-distance.
New results for exclusive two-photon processes, the normalization of high
twist contributions to the meson structure function, and the calculation of
the valence Fock state probability of the pion are presented. We also

review the contrasting features of QCD and parton model dynamics.



1, Introduction

One of the most important areas of applications of quantum chromodynamics
is the study of hadron dynamics at short distances. As we have discussed in
a series of recent papers [1-6], large momentum transfer exclusive processes
and the short distance structure of hadronic wavefunctions can be systemati-
cally analyzed within the context of perturbative quantum chromodynamics [7].
The analysis provides a systematic method for calculating elastic and in-
elastic form factors and the hard-scattering contributions which dominate
fixed-angle hadronic scattering amplitudes as a perturbation expansion in
the QCD running coupling constant, L Many of the predictions such as those
for the meson form factors [B,9], two-photon processes Yy +MM [5], and the
structure of the hadron wavefunctions at large momentum transfer are derived
at the same level of rigor as the QCD predictions for the structure function
moments and the annihilation ratio o(ete” +X)/o(efe™ +ufum).

Thus far, the most extensive efforts in testing perturbative QCD have
been concentrated in the area of inclusive reactioms. 1In the case of deep
inelastic lepton scattering, lepton-pair production, and e*e” annihilation
cross sections, the basic scale-invariance of QCD 1s revealed through loga-
rithmic modifications of QED or weak interaction amplitudes which must be
verified over a large range of kinematics. Direct checks of the coupling
of QCD at the Born level are possible in inclusive reactions such as ete”
annihilation into three or more jets, and the production of hadroms, jets,
or photons at very iorge transverse momenta in hadron-hadron collisions.

As we shall discuss here, large momentum transfer exclusive reactions
provide an extersive, experimentally accessible, and perhaps definitive
testing ground for perturbative QCD. In particular, the power~law behavior
of these reactions directly tests the scale-invariance of the basic quark
and gluon interactions at short distances, as well as the SU(3)-color

symmetry of the hadronic valence wavefunctions. The normalizations of the
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exclusive amplitudes (both relative and absolute) test the basic flavor and
spin symmetry etructure of the theory as well as the asymptotic boundary
condition for meson valence state wavefunctions obtained from the meson
leptonic decay rates. The angular variation, helicity structure, and absolute
sign of exclusive amplitudes test the spin and bare couplings of quarks and
giuvons. In addition the predicted logarithmic modifications of exclusive
amplitudes reflect the asymptotic freedom varjation of the running coupling
constant and the singularities in the operator product expansion of hadronic
wave functions at short distances [1,2], In particular, the process—
independent distribution amplitudes ¢(xi,Q) (which specify the longitudinal
momentum distributions for valence quarks collinear up to the scale Q) have
a logarithmic dependence in Q which is completely determined by QCD evolution
equations, or equivalently, by the operator product expansion of the hadronic
Bethe~Salpeter wavefunction near the light-cone. The large transverse
momentum tail of the hadrondic wave functions u-(xi,k“_) is thus calculable

in perturbative QCD; we emphasize that (modulo calculable logarithms),
\a’f(xi,kn) falls only as llkfi at large quark transverse momenta —— not
exponentially as is often assumed in phenomenological applications.

The underlying link between different hadronic phenomenon in quantum
chromodynamics 1t the hadronic wavefunction. Many features of the Fock
state wavefunctions in QCD are quite different from that which had been
expected in the parton model. We will define [11] the states at equal time
t=t+z on light~cone in the light-cone gauge A+-A°+A3-0. The amplitude
to find n (on-mass-chell) gquarks and gluons in a hadron with 4-momentum P
directed along the 2-direction and spin projecticn Sz 1s defined (kt-kotk:i)

(see Fig. 1)

LT
pttle ety Fig. 1. The amplitude to find
[ n (on-mass-shell) quarks and
PS, \&»——— gluons in & hadron.
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The valence Fock states (which in fact domipate large momentum transfer
exclusive treactions) are the Iqa) (n=12) and |qqq) (n=3) components of the
meson and baryon. For each fermion or anti-fermion constituent
(n) > ¥ >
wsz (kli’xi’si) multiplies the spin factor u(ki)//E; or v(ki)//irl The
wavefunction normalization condition is
(n) 2r.2 =
> f’ws (k,q0%p08,) | [ e = 1, (1.2)
(n)(si) z

where
2

n g%
[a%,] = 16ﬂ36(2)(zi:ku) n—t

i=] 16%

[ax] = 6(1- Zi:xi) 1ljl dx, .

By studying the wavefunctions themselves, one could in principle under-
stand not only the orizin of the standard structure functions, but also the
nature of multi-particle longitudinal and tramsverse momentum distributions,
helicity depeudences, as well as the effects of coherence. For example,
the standard quark and gluon rtructure functions (probability distributioms)

which control large momentum transfer inclusive reactions at the scale Q2 are
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(1.3)

where d;l(qz) is due to the wavefunction renormalization of the constituent
a. Note that only terms which fall-off as }wlz -~ (kfa)‘l (modulo logs)
contribute to the Q2 dependence of the integral. These contributions are
analyzable by the renormalization group and correspond in perturbative QCD
to quark or gluon pair production or fragmentation processes associated with
the struck comstituent a. In general, unless x is close to 1, all Fock states
in the hadron contribute to Ga/H' Multi~particle probability distributions
are simple generalizations of Eq. (1.3).

Inclusive cross sections in LCD are then obtained by a summation over

incoherent hard-scattering subprocess cross sections:
1 1
do =2 (ax [ax 6, D6 o (x B a5t (1.6
s a | ¥ %a/at¥ar™ Sp/a'¥pe ab+X :
< o

where each subprocess do is computed for on-shell constituents a and b which
are collinear with A and B. This result is obtained by integrating the
hadronic wavefunctions up to the momentum transfer scale Q; the exact
definition of 6 is discussed in Sect, 4. The correct prescription for
including kT fluctuations from the wavefunctions is to sum over higher-twist
aubprocesses daab where a and b are each clusters of quarks and gluons in the
Fock stave wavefunctions. The hard-scattering summation procedure [12]
handles the offwshell kinematics of the constituents correctly and can done
in a well-defined gauge-invariant manner. The naive procedure of smearing
the leading twist cross section leads to infinite results {in the case of
pluon-exchange processes) and cannot be justified in QCD.

Exclusive reactions at large transverse momentum can alsp be writtem in
a form which factorizes the dynamics of the hard-scattering processes from

the physics of the hadronic wavefunctions. A simple picture emerges from
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our analysis of these prncesses. For example, consider the proton's magnetic
form factor, GH(QZ). at large -qz-Qz. This is most easily understood in the

infinite womentum frame where the proton is initially moving along the z-axis

i and then is struck by a highly virtual photon carrying large transverse
momentum q}-—qz. The form factor is the amplitude for the composite hadron
to absorb large transverse momentum while remaining intact. In effect, an
"intact" baryon can be pictured as three valence quarks, each carrying some
fraction Xy of the baryon's momentum (1-%1 xi-l) and all moving roughly

? parallel with the hadron. As we shall see, the more complicated non-valence
Fock states in the proton (i.e., qqqqq,qdqg,...) are unimportant as Q2->-°.

The form factor is then the product of three probability amplitudes:

{(a) the amplitude, ¢, for finding the three-quark valence state in the incoming
proton; (b) the amplitude, T,, for this gquark state to scatter with the photon
producing three quarks in the final state whose momenta are roughly collinear;

and (c) the amplitude, ¢*, for this final quark state to reform into a hadrom.

Thus the magnetic form factor can be written (see Fig. 2a) [1,2]

1 1
6@ = f [ax] f [a5] #* (3, 8)) Ty (xg94,@) 00y Y[ 1 +0@?70D) (1.5)
o (]

where ax = min (xiq).

(o)

(b)

-+ -+ + 3 + oo
5 092
- wisar

Fig. 2._ (a) The general factorized structure of the nucleon form factor at
large Qz in QCV. (b) Leading contributions to the hard-scattering amplitude TB'
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To leading order in as(Qz), the "hard-scattering amplitude" Tli is the
sum of all Born diagrams for Y+ 3q + 3q in perturbative QCD [see Fig. 2bJ.
The transverse momentum fluctuations of the quarks in the initial and fimal
protons are negligible relative to q,, as are all particle masses. These can
be ignored in TH so that in effect each hadron is replaced by collinear on-
shell valence partons. Since the final quarks are collinear, momentum of
J(ql) +» must be transferred from quark line to quark line (via gluons) in
TH' This justifies our use of perturbation theory in computing TH’ since all |
internal propagators in the Born diagrams must then be off-shell by 0(02).
Furthermore the most impsrtant dynamical feature of the form factor -- its
power-law fall-off - can then be traced to the behavior of TH’ which falls
for increasing QZ with a factor (05(023/02) for each constituent, after the
first, scattered from the incident to the final direction: i.e.,

2 2
a_(Q%)
) = () 1)1, a.e

1
i

where uS(QZ) = (4n/8)(&n 02/1\2)_ is the running coupling constant.

It is now clear that non-valence Fock states in the proton cannot con-
tribute since all such states contain four or more constituents, each of
which wmust be turned to the final direction. Thus '1'H for these states falls
as (as(Qz)/Qz)3 or faster and is negligible relative to (1.6) as QZ-»w.

{This observation, while strictly true in light-cone gauge (n‘A=A+-O),
has a different fnterpretatiom in covariant gauges.l} Thus non-valence ("sea')
quarks and gluons in the proton do not contribute. Tte quartity ¢(x,Q) is

the "distribution amplitude” for fiading the valemce quark with light-cone

fraction x; in the hadron at relative separation b, ~ &(1/Q). In fact [1,2],

1] 3 kfi N Qz
$(x;,8,,0) = il:{l[d'il(oz)] f [d’-kl]w(“)(ku,x,_,si).(1.7)

This amplitude is obviously process independent. It contains the essential

physics of that part of the hadronic wavefunction which affects exclusive
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processes with large momentum transfer. The distribution amplitude is only
weakly dependent on Qz, and this dependence is completely specified by an
evolution equation of the form (in leading order)

@

1

a

5 _3% #lxguQ) = f[dY] Vlegayy 2oy, -8
o

where V ran be computed from a single gluon exchange kermel. The general
solution of this equation is
w -
2\""n
= ) 3
¢(xi,Q) X RpXy Z an(ln 5 ¢u(xi) . (1.9)
n=0 A
Combining this expansion with Egqs. (1.5) and (1.6), we obtain the general
form of GH:
2
2 ~Y =Y,
o_(Q°) 2\) n 'm
g = | -2 Yoo [ & ; (1.10)
QZ am 2/

n,m A

The factorized form of Eq. (1.5) implies a simple space-time picture.
The exchange of large transverse momentum in the hard-scattering amplitude
TE occurs only when the relative separation of the comstituents approaches
the light-cone -- 1.e., —(z(i)-z(j))2 ~ (zfi) —zfj))z +0(1/Q2). The
distribution amplitude ¢ is the probability amplitude for finding the valence
quarks sufficiently near the light-cone; by the uncertainty principle, tais
corresponds to a momentum space wavefuncti{on smeared over all kf < l/zf ~ Q2
as in Eq. (1.7). Each (polynomial) eigensoluticn 'Jn(xi) [Eq. (1.9)] of the
evolution equation is directly related to a term in the operator product
expansion of the wave function evaluated near the light-cone. The eigen~
values Y, are the corresponding anocmalous dimensions.

Beyond leading order, both the hard-scattering amplitude and the

potential in the evolution equation have expansiomns in us(Qz):
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a

Ty(x;2.Q) = (_sq—z—) {To(xi’yi) + a @I ey + e }
1.1y

V(xi.yi.as(qz)) =Y (x,,y,) + us(Qz)Vl(xi,yi) + . .

These corrections can be systematically evalvated and the basic equations
(Eqs. (1.5) and (1.8)] made exact to any order imn us(Qz).

An essential part of the derivation of these results is an analysis of
the endpoint behavior of the %, and ¥y integrations in Eq. (1.5), and es-
pecially of the region xi-rl or yi-’l. So long as (l—xi) >> m/Q, we find
that the distribution amplitude vanishes as ¢(xi,6) ~ (l—xi)‘(a) with
e(@ > 1 as ¥; >~ 1. This follows from a perturbative analysis of the Xy~ 1
region coupled with the realization that e(a) + 2 as Q+=, which is a
necessary consequence ~. the evolution equation (1.8). Consequently ¢ and
4" vanish sufficiently quickly that the LI integrations are well behaved,
at least for (l—xi) >> mfN. In particular, the evolution of the amplitude
eliminates any patential logarithmic singularities iIn the region
1> (l-xi) >> m/Q.

The region l—xi < m/Q must be analyzed separately. Contributions from
this reglon were first discussed by Drell and Yan, and West [14]. They
related the Q2 dependence of these contributions to the x ~ 1 belavior of
the deep inelastic structure function vwz. Taking ““2 ~ (l—x)3 as x+ 1,
in accord (roughly) both with experiment and with naive theoretical expec-
tations, the Drell-Yan-West connection implies a term in the form factor
which falls as I/QA -~ 1i.e., just as in Eq. (1.10). However, a detailed
examination reveals that this term is suppressed by at least two full powers
of uB(Qz) relative to (1.i0). Furthermore, in perturbation theory, gluonic
corrections to the quark-photon vertex result in a Sudzkov form factor which
suppresses the endpoint contrilLutions by an additional pouer(m/Q)é. Thus the

infinitesimal region l-xi < m/Q makes only a negligible contribution to the
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form factor. It is also clear then that the Drell-Yan-West connection
between deep inelastic scattering and hadronic form factors is invalid in QCD.
It should be emphasized that, given that the Sudakov form factor S(Q) is a
decreasing function of Qz, the short distance domain where (l-x) >> m/Q gives
the correct asymptotic QCD behavior for ihe baryon form factor up to correc-
tions of relative order az(Q)S(Q) from the Drell-Yan-West region. In the case
of meson form factors, Fﬂy(Qz), Yy MH, etc., the endpoirt region (l-x) < m/Q
i1s suppressed by a kinematic factor of m/Q allowing a direct proof of short
distance dominance using operator product and renorwalization group methods
[1,2,6]. Further discussion of the exclusive-inclusive connection will be
glven in Sect. 4.

Following the above prescription, we can reduce the pion's electro-

magnetic form factor to the form:

2k 2

2 d ld 11 x

AR H G0 C2] Bt w bl RN L CTERL RN R
n

1
f[dx][dy] #*(r00Q,) T {p074,Q) 6 (48, ) (1.12)

where T contains all two-particle irreducible amplitudas for Y‘-Fqﬁ + gq. and
6y = min(yiQ), ax = min(xiq). The leading contribution comes from one-gluon

exchange

2
lenCoa_{Q°) [ e e ,

where e and €, are the charpes carried by particles 1 and 2 (in units of e).
The properties of ¢ insure there is no singularity in (1.12) at ¥y or ®; ~ Q.
Consequently, in leading order, we can replace 6x and ay by Q in (1.12) to

obtaln the QCD prediction fer the pion form fector [1,8,9]

2
2 =,
4ucCoa_(Q) 2\ 'n
2 al F
F(Q) = _Q_zs._ - an(ln %5) [1+0’(as(02),m/0)] .

(1.14)
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The n=0 term dominates as Qz becomes very large and we obtain [[0]

. (1.15)

ol

2 2
F.@Q%) + 16n a_(@%) ;

Thus, each hadronic scattering amplitude can be computed at large momentum
transfer Q from a hard-scattering amplitude TH<x1’Q’ec.m.) —- calculated by
replacing each hadron by collinear on-shell valence quarks —— convolutzad with
the distribution amplitudes ¢(xi,5) for finding the constituents with light-
cone momentum fractions X, at transverse separations ~ 0(1/52), with
5 = (min xi)Q. By definition, all loops containing collinear divergences
are summed in the distribution amplitudes rather than in TH. The gauge~
invariant distribution amplitude ¢(x1,Q) plays the same role in exclusive
amplitudes as the quark and gluon probability distribution functions q(x,Q)
and g(> ') play in inclusive reactions [15]. In each case, the large Q2
behavior of these functions can be analvzed from the operator product expansion

or, equivalently, evolution equations
8F(x,0°) /2 1og Q* = fV(x,y,uS(cz))F(y,QZ)ay (1.16)

with distinct kernels V(x,y,us(QZ)) for each quantity. After renormalization,
TH aad V can then be developed in a perturbative expansion in uS(Qz). All the
results are covariant and gauge-iunvarilant, although the analysis is most easily
carried out in the light-cone gauge using light-cone perturbation theory (see
Appendix A of Ref. [2]). The infrared singularity which occurs in the gauge-
dependent anomalous dimension for colored fields in this gauge always cancels
in physical matrix elements. A completely covariant analysis for FﬂY(QZ) and
the connections with the Bethe-Salpeter wavefunction and the procedures
required to extend the analyses to higher order in us(QZ) are outlined in

Ref. [2]. Alternarively, one could obtain the higher order conmections by
calculating the perturbative amplitude for the scattering of collinear, mass-

less on-shell quarks to a given order, and then ider~.fy the contributions
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not already included in the leading order results given here, in analogy to
the methods used for inclusive processes.

The most important dynamical features of the hadronic amplitudes at large
momentum transfer -- their power-law fall-off in Qz, their angular dependence,
and their helicity dependence -- are all determined by the Borm contributions
to TH(xi'Q'gc.m.)' We arc rhus lead to a large number of detailed, experi-
mentally testable, predictions of QCD which critically reflect its elementary
scaling and spin properties at short distances. In particular there are two
sets of universal predictions of QCD which follow from the properties of
TH(x,QZ,BC.m_) to leading order in 1/Q and to all orders in us(Qz) f1,27:

{A) The dimensional counting rules for the power-law behavior of exclusive

processes: %~ Qh-n, wvhere n is the minimum number of extermal
elementary fields (leptons, quarks, transversely-polarized gluons or
photons) participating in TH'

(B) The QCD helicity selection rules: Ah=0 (hadron helicity conservation).

In the case of eclectromagnetic or weak form factors, hadron helicity
conservation leads to an even more restrictive rule: [h[ s 1/2 (minimat
helicity for each interacting hadron). These helicity rules are special
features of a vector gluon gauge theory.

Thus form factors for processes in which the hadron's helicity is changed,
or in which the ipitial or final hadron has helicity > 1 are suppressed by
powers of m/Q where m i an effective quark mass. Form factors for particles
with opposite helicity dominate for q2 timelike. The QCP selection rules
imply power-law suppression of Fg(QZ)/F?(Qz), y*p + A(h=13/2), and ete™ » wp,
PLPrs PPy A¢h=3/2) + 8(h=-3/2), etc. Further discussian is given in Sect. 2.

The techniques developed here can be readily extended to other hadronic
systems, including large womentum transfer reactions involving nuclei, pure
gluonic states, heavy quark bound states, ete. Applications to the elastic

and inelastic weak and electromagnetic form factors of baryons are given in

Ref. [4]1. We have also used similar methods to analyze the endpoint x + 1
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behavior of meson and baryon structure and fragmenta: .. functions in pertur-
bative QCD, taking into account the correct kinematic limits on structuses
function evolution [1,6]. As we emphasize in Sect. 4, the Drell-Yan-West
connection does not work in detail in QCD: for example, the perturbative
diagrams which control the x + 1 behavior of baryon structure functions
(giving the nominal power Fz(x) ~ (l—x)a) lead to contributions to ba-von
form facters which are suppressed by at least two powers of aS(QZJ and the
Sudakov form factor. In the case of large angle exclusive hadron-hadron
scattering processes, Sudakov form factors suppress the contribution of the
Landshoff pinch singularities. [Discussions and references are given in Ref. 2.]
We can also apply the methods of this paper to the calculation of "high
twist" subprocesses in inclusive reactions, such as C/Q2 terms in the weson
longitudinal structure function [16], power-law suppressed terms in the baryon
structure function, and subprocesses involving more than the minimal number of
interacting fields in high transverse momentum reactfons [17] (see Sects. %
and 6).
The testing of QCD in exclusive reactions is just beginning, but already
there are a number of important phenonmenological successes. The power-laws
predicted by QCD for the pion, nucleon (and deuteron) form factors, and for
large angle pp*pp, Np-+np, ﬂ:p-r'ntp, YPp*YP, and yp +n+n scattering are
consistent with the data. A review is given in Ref. [2]. These scaling
results give the best test so far for the essentilal scale invariance of qq-+qq
scattering and the q and g propagators. We emphasize that the specific
integral powers predicted by perturbative QCD reflect both the scale-invariance
of the basic interactions and the fact that the minimal color singlet wave-
functions of hadrons contain either 3 quarks or quark plus antiquark (or 2 or
3 gluons). The dynamics and symmetries of QCD are thus directly tested. The
fact that logarithmic modifications are not yet apparent in the data --~
particularly in clodcldt(pp +pp), which should roughly scale at fixed angle

as u:o(s). gives evidence that us(Qz) is slowly varying -- i.e., that the QCD
8
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scale-constant f is relatively small: Aeff < 100 to 300 MeV. [The larger
value is only possible if mass corrections are important.]

A more qualitative success of QCD is the fact that the pion form factor,

computed with the asymptotic wavefunction normalized to the pion decay con-
stant, is within a factor of ~2 of the observed space-like data. The
definitive check of the predictions for F"(QZ) will require an evaluaiion

j of the order us(Qz) correction, as well as further constraints on the pion
distribution amplitude ¢(x,Q). As we shall show in Sect. 5, measurements of
the scaling properties and angular dependence of the two-photon processes

= +,0 +,0
do/dt(yy>MM), with M = ">, pL’T and their ratio to the corresponding
>

ete” » M cross sections can provide extraordinary checks on QCD and
important constraints on the form of the distribution amplitudes at non-
asymptotic momenta. These two-photon processes are the simplest non~trivial
hadronic scattering amplitudes computable in perturbative QCD. Pinch contri-
butions are power-law suppressed in this case, We also emphasize the import-

ance of experimentally checking the ratio of o K+ to p: form factors which

2 :
p ~1l:l.sz2.5.

are predicted to asymptotically approach the ratics f: :fi: 2f
The fact that the pion form factor has the same sign as its value at Q2=O
(i1.e., no zeroes) is a non-trivial check of QCD; for scalar gluons, the meson
form factor would change sign as QZ increases. Another qualitative success

of QCD 1s its apparent explanation of the surprisingly large normalization of

the »p->pp and 7p + 7p scattering amplitudes and the magnitude of large momentum

|
!
i

transfer nuclear form factors. It remains an open question whether the large
spin polarization observed in large angle pp-+pp scattering at Argonne can be

explained in terms of perturbative QCD mechanisms.
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2. Constraints on Hadronic Wavefunctions

The quark distribution amplitudes ¢(xi,Q) ~f dzklv’(xi’kli) which control
exclusive reactions at large momentum transfer, and the quark probability
distributions q(xi,Q) ~/9d2kl ,w(xi’kli)lz (summed over all Fock states),
which control inclusive reactions at large momentum transfer, are each deter-
mined by the hadronic Fock state wavefunctions w(xi,kli). In orinciple the
W(xi’kli) describe all hadronic matrix elements. A central goal of hadronic
physics will be to utilize these wavefunctions to unify short and long dis-
tance physics, and make contact with hadronic spectroscopy, low momentum
transfer reactions, and the whole range of non-perturbative physics.

Although the compleie specification of hadronic wavefunctions clearly
will require a solution of the non-perturbative bound state problem in QCD,
there 1s a large number of properties of the wavefunctions which can be derived
from the theory and experimental phenomena. In this section we will discuss
the following constraints [3]:

(a) The predictions of perturbative QCD for the large transverse momentum
tall of the = -k state infinite momentum wavefunction w(kli,xi). These results,
which also follu.. from the operator product expansion near the light-cone [13],
lead to evelution equations [1,2] for the process-independent distribution
amplitudes ¢(xi,Q) which control large cransverse momentum exclusive reactions
sucan as form factors, and for the distribution functions Gq/H(xi’Q) and
Gg/H(xi’Q) which control large transverse momentum inclusive reactions.

(b) Exact boundary conditions for the valence Fock state meson wave-—
functions from the meson decay amplitudes. In particular we shall show hoa
the 7% +vyy decay amplitude for massless gyuarks specifies the pion wavefunction
at zero kl. This is a new type of low enersy theorem for the pion wavefunction
which is consistent with chiral symmetry and the triangle ancmaly for the axial
vector current [18]. This large-distance result, together with the constraint
on the valence wavefunction at short distance from the m+uv leptonic decay

amplitude, leads to a number of new results for the parameterization of the
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pion wavefunction. In partiecular, we show that the probability of finding
the valence |qg> state in the total pion wavefunction is ~0.2 to 0.25, for
a broad range of confining potentials.

(c¢) As noted above the wavefunction for the Fock states of the hadrons
on the light-cone (or at infinite momentum frame) wé:)(kli,xi,si) completely
specify the quark and gluon particle content of the hadrons. The coherent
aspects of the wavefunction are required for comstructing the distriburion
amplitudes which are not only necessary for exclusive processes, but also for
the multi-particle, high twist subprocesses which enter inclusive reactions
and control transverse momentum smearing effects. We show that the evolution
equations which specify the large Q2 behavior of the distribution amplitudes
and of incoherent distribution functions G are correctly applied for Q2 2 <&,
where {&> is the mean value of the off-shell (light-cone/infinite momentum
frame) energy in the Fock state wavefunction

n K2+m2
&= Zi"@i =y (l_“_)i ) (2.1

i=1
To first approximation, (&> is the "starting point" Qg for evolution due to

perturbative effects in QCD.

Let us now discuss the constraints on meson wavefunctions imposed by
their decay constants. The leptonic decays of the mesons give an important

constraint on the valence Iqa) wavefunction at the origin. As shown in Ref.

[1,2]

3 .
Ffﬂnlxz for =
c
1if; ¢H(xi,Q) = ag¥|%y = (2.2)
Q /2

—=f x.x for oy

qplZ

where fn % 93 MeV 1s the pion decay constant for n+->u+v and fD = 107 MeV is

+

the leptonic decay constant from p® + e'e”. The analogous result holds for

all zero helicity mesons. Because the Q2->w distribution amplitude has zero
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anomalous dimension, this copnstraint is independent of gluon radiative

correction and can be applied directly to the non-perturbative wavefunction:
R 'non— t
=6 f [ax)[a%, ; PEEE (K, o) . (2.3

On the other hand we can also obtain an exact low ener,v co:stiaint on
W(kJ_*U,X) for the pion in the chiral limit mq-bO. The y."n°->y vertex

defines the 7° -y transition form factor F“Y(Qz) (q2=-Q“7),

= - BV P °
I‘u 1e L (Q ) EU\"PU € . (2.4a)
where
. 1 2 2.1
Fpy () = 2 ng(ed - e2) 7 . (2.4b)

This result, derived by the Schwinger, Adler. Tell and Jackiw [18], gives for

2
"g m3l-2 (0) = 7.63 eV compared to

o
e 3 the © +yy decay rate, T .

o yy

Texpt = (7.95+0.55) eV.

1f mq-»O, then the valence |qgq> contribution to F”(Qz) is [2]

2.2
1 X7Q 2
Loak gk )

(Q)-2 (e -eg) fdxlf 5 > +(x - x, l (2.5)
5 4 2y

16m Q X

In fact, as shown in Ref. (191, gauge-invariance requires that the valence
|qc—1> state should give exactly 1/2 of the total decay amplitude for q2 + 0.

Thus from Eqs. (2.4b) and (2.5), we find

e
ylk, =0ux; ) = . (2.6)

Therefore the pion wavefunction is constrained both at large and small
distances.

In order to implement these comstraints it 1s convenlent to construct
a simple model of the hadronic wavefunction. By using the connection (2.19)
below for the two particle state from the harmonic oscillator model (207 we

can get the wavefunction in the infinite momentum frame
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(2) 2 Kf + m2 kf + m2
'] (I(L,x].-,si ) = Aexp|-R _4"1 + -—qxz B 2.7)

Perhaps the simplest generalization for the n-particle Fock state wave-—

functions in the non-perturbative domain is the Gaussian form:
(n) - 2
¢Sz (kii’xi'si) An exp -Rn

] -]:2 +m2
=Anexr>[—llr2l Z(—L—x—i] . (2.8)

1=1

The parameterization is taken to be independent of spin. The full wave-
function is the ¢§:)(kli,xi,si) multiplied by the free spinor
u(ki,si)/vif or v(ki,si)/VEI. The Gaussian model corresponds to a harmonic
oscillator-confining potential V « ;2 in the CM frame. This ansatz for the
wavefunction has the additional analyiic simplicity of (a) factorizing in the
kinematics of each constituent and (b) satisfying a 'cluster” property when
the constituents are grouped into any rearrangement of subcomposites A,B,...
If we adopt the Gaussian form for the meson wavefunction Eq. (2.7) then

constrains (2.3) and (2.6) imply (miRz << 1, nc=3)

1
R’Z;I'FT;Q 0.17 fm N
and
2,2
/3 mgR
a=pPed . (2.9)
n

The probability of finding the valence qq state in the ,ion is thus
P = | [axfe®k ] otk p)? = L (2.10)
aq 4 el oxy 7 - .
Alcernatively, if we use a powar-law form

w(kl.xi) = -——2—92——-'—“ (2.11)
K+ m
x{1-x)
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we find (mi < uz)

P@D) = 3 225 . (2.12)

which again leads to 1/4 for large a. For the linear potential case, where
a=3, we have P(qq) =1/5.

Let us consider the implications of these results for exclusive large
momentum transfer processes. As discussed in Sect. 1, we require the behavior

of the distributicn amplitude ¢(x i,Qz) defined in Eq. (1.7), which is the

18
probability for finding valence quarks at relative transverse separation
bl ~ 0(1/Q). The large Q2 dependence of ¢ (i.e., the large kl tail of y)
is in fact ccmpletely determined by the operator product expansion near the
light-cone, and in QCD can be calculated from the perturbative expansion in

the irreducible kernel for the quark constituents. To order as(Qz) one only

requires single gluon exchange, and we find, using the evolution equation [1,2]

Q 2 2
C. © o de 3
2 2 F s gl
$(x,,Q7) = ¢lxy,Qp) + 5 f — f[dy] “s(——‘y.(x-y ))
42 ii i 1

x [Vorgyy) - sGx-pleraeh .13

where

{
Vex,y) = Zixlyze(yl-xl)(6h152+ ylfx‘ ) + (l«.z)}

= V(y,x) . (2.14)
This result is derived in the region Ef/yl(l-yl) is large compared to
.he off-shell energy (€ > in the wavefunction. Thus the natural starting
point for the evolution of the distribution amplitude is [Qg/xl(lvxl)] ~ (&>,

i.e., to the first approximation we can ifdentify

) pert Cp ae? f zf
#0xg,QY) = 9" G + £ —z Jlev] “s(?‘(T-'?_)
xl(l-xl)«%’) l.l. 1 !

x [vex,p - 6(x—y)]¢(yl.2f) » (2.15)
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where

¢non—pert(xi) - [ [ dzk;.] wnon_Pen(i:f»xi) . 2.16)

Assuming the wavefunctior’ given by Eqs. (2.7) and (2.9;, the shape and

the normalization of onon—pert(xi) depends only upon the quark mass. The

application of perturbative QCD for [ﬂ.f/yl(l-yl)] > &> i reasonable here,

since <& ~ 0.7 GeV2 for this wavefunction is much larger than QCD Asz.
An (approximate) connection between the equal-time wavefunction in the

center of mass frame and the infinite momentur frame wavefunction can be

n 2
established by equating the energy propagator MZ -& = Hz- ( Z k';) in
i=1

the two frames:
n 2 n
(X o 23 =0 [
= [(€D] = i

—

. (2.17)

(Ml

2 k=0
1 11
Thus the rest frame wavefunci' -m w\’l.“(a(i)) wvhich controls binding and hadrenic
spectroscopy implies a form for the IMF wavefunction er("i-"u) 1f we
kinermatically identify

+ 0, 3
k +
B (_“_"ﬁ ) (2.18)

iE n
P th;
3

and

-

>
kig < 9y

For a two particle state, there is thus a possible connection;

k2+m2

1

2

2 2
wm(l-x -m)«-rwm(q) s (x=x1—x2) . (2.19)

An equivalent rz2sult was also obtained recently by Karmonov [21] using a

different method.
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Let us, for 1llustration and simplicity assume the n-particle Fock state
wavefunction Ib(n) is a symmetric function of the relativistic kiaetic energy
€i= [(.l:‘z+m2)/x]i. Independent of the form of ¢, it Is easy to show

—-Dev 2ng,~1 5
! 144 i
G (xa) %, 1 a- xa) * I"(‘5’111_’|.n) ’ (2.20)

al%

where n, = :nin(n.ﬂ-na) is the minimm number of spectator consiltuents in the
hadron H after removing the particle (or subcomposite) a, and gim = mi/xi
i{s the minimum value of €1. This result which follows from the definition
(1.3) by changing variables from dzk;.i to dzk;i/xi is independent of the form
of w(é"i) as long as it is squnare-integrable under [dzkl]. Examples of this
result for qu and Gq/B have recently been given by de Rujula aund Martin
[22]. Notice that if we can neglect the quark masses (i.e., for (l—xa) >>

m2/<kf>) we obtain the spectator rule proposed in Ref. [23]

- 2n,~1
gt skl G IE e B I ,
mz (2.21)
x_ ~1 (1-x) »> 55— .
( a ’ a’ (k?>)

In fact if we neglect mzl<kf> the non-perturbative contribution can dominate
the perturbative prediction in the x ~ 1 domain! For example, the pertur-

bative power-law behavior is [24]

aapert 2 2
AGq/H X1 us(l-x) R (2.22)

ard [25]

(1 -x)3 parallel g and B helicity
pert 4
A6 /3 31 % 5 L2239
a (1-x)" anti-parallel q and B helicity

Since flavor and spin are correlated in the baryon wavefunction, perturbative
QCD predicts AGu/P ¥ ZAGd/P' In fact if we assume the baryon wavefunction
gsatisfies SU(6) symmetry (which is a rigorous result for ¢B(xi,q), Q+=),

we have AGu/P - SAt;ﬂ/p for x » 1 [25]. The question of whether the non-
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perturbative or perturbative contribution dominates the structure functions

at x + 1 can thus be studied using spin and flavor correlations.

3. Form Factors end Hadronic Wavefunctions

Figure 3 {llustrates the QCD predictions for QZF" given three different
initial wavefunction at Qg =2 GeV2 [26]:
(a) 9(x4,Qp) = xyx,
) ¢(x;,00) = &(x;-1/2) @a.n
3%
(€} 6(x,Qp) = (x3x,))
with representarive values of the QCD scale parameter Az. In each case the
uormalization is uniquely determined by (2.2); all curves ultimately converge
to the asymptotic limit (1.15). For Fig. 3, we have multiplied (1.14) by
(1-'-|:|1§/Qz)—1 to allow a smooth connection with the low Q2 behavior suggested

by vector dominance models.

0.5

- T — T +—
[EN g H a2y $(x.0p} T yxp
03 :
oz} o .
LY T S ———
0.0
051 —
= o4r H ${1,,Q0) T Bix;~172) .
S o3 1
& o2 b ] Fig. 3. QCD predictions for the
Y pion form factor assuming various
o1 | E distripution amplitudes ‘(x.‘_,Qo)
at Qf = 2 GeV< and various values
0S5 of the QCD scale parameter A<.
04 b The data are from the analysis cf
osl y electroproduction e™p + e” + % +n;
" C. Bebek et al., Ref. [26].
o2t 1 -
ol T
o . - L —

S to 20 40 eo0
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The behavior exhibited in Fig. 3 can be radically modified 1f o(xi,Qo)
has nodes or other complex structure in x;. However such behavior is unlikely
for ground state mesons such as the pion. For these, one intuitively expects
a smooth, positive~definite distribution amplitude, peaked about %)%y ~ 1/2.
Given these constraints, the normalization of FH(QZ) 1s largely determined by
the breadth of the distribution —- broad distributions (Fig. 3c) result in a
large form factor, narrow distributions (Fig. 3b) in a small one. The
magnitude of the form factor also depends to some extent upon the scale
parameter 22 through the factor GS(QZ) in (1.14).

Notice that we can completely remove dependence upon the distribution

amplitude by comparing Fﬁ to F". In fact a measurement of each provides a

Y
direct determination of as(Qz):

2 232 2
2 e(ey - eq) F. (@D 2 2
a @) = , +0(a2@))
] TTCF Q2|F‘"Y(QZ)|Z 3
2
F (@)
= ﬁ u + o(az(QZ)) . (3.2)

&lr, @

The electromagnetic form factors of ¥ - meson and logntiudinally polarized
p+;mesons follow from the same amalysis but with f“ replaced in the sum rule
by fK and /ifp respectively. If the quark distribution arplitudes for these
different mesons are similar in shape, the ratios of m to K to oL form factors
should be approximately f: :fi :2f§ ~1:1.5:2.5 for Q2 large (becoming exact
as Q2 + @),

An important constraint on the nature of the distribution amplitude for
K-mesons can be obtained from the R, Kg transition form factor which is

measurable at large timelike Q2 in the reaction efe” + KLKS. The K° wave-

function

O

ba

_ - ¢ (x sk
;_—2 {dfs‘-d‘s’} %—2 (3.3)

¥
0
K s d

e
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where, because of the large mS/m':1 ratio, ¥ _, need not be symmetric in

Kl)
X ++>Xy. The transition form factor Fl(s»KL(Qz) at large Q2 can then be

written in the form of Eq. (1.12) with

2
16ma_(Q°)C e- e
_ s g s d
TH(xi'yi’Q) . QZ [xdyd * xgyg] ’ (3.4

and thus

2
Bwus(Q )CF

2 1 Q& "7 o
*
FKs*‘&(Q ) =(5) @ aa. (ln Az) + h.c.]

x |1+ 0fa (@) ,0/q)] . (3.5)

[n(even) m(odd)

Thus the form factor requires the odd (asymr :ric under x = xd-x§ + -x)
Gegenbauer components of the K® distribution amplitude. Asymptotically,

the transition form factor vanishes with an extra anomalous dime-sions:

-~
4 3 ) 2\ 1
O S R

vhere v, = (8/3) (CF/B) (0.4 for nf=3). If .kis ratio of form factors is

2
T, @

(@)

indeed appreciable [i.e., of order 1], then the odd, usymmetrfc components
play a major role in the structure of the kaon wavefunction. This would also
imply a strong violation of the relation F“+(Q2)/FK+(Q2) 2 f:/fi at sub-
asymptotic QZ. All of these results can, of course, be extended to mesons
containing heavy quarks,

Since quark helicity is conserved at each vertex in T,, it is diagonal
in hadronic helicity up to corrections of order m/Q. Further, to leading
order in lle only terms with ?si = §, contribute in ¢(xi,Q). Consequently
there are two selection rules restricting the helicities of initial (hi) and
final (hf) hadrons [1,2,27]:

(a) Ah = hf—hi =0 (for timelike photon: hy = —hz)

(3.7
® [n| = Ihi_fl s 1/2 .



~26-

The second rule 1is easily derived from the first in the Breit frame. There
the net change in the hadron's angular momentum along the direction of motion
is AJz = -hf -hi = ~2h, because the helicity is unchanged while the momentum
is reversed. As the photon has spin 1, only |h] < 1/2 is permitted, up to
corrections of 0(m/Q).

Applying these selection rules to e+e_ collisions beyond the resonance
region, for example, we find that the final states nmp, PP, PP, are
suppressed by ~m2/Q2 (in the cross section) relative to 7w, KK and L final
states.

The selection rules are direct consequences of the vector nature of the
gluon. Ib contrast, e+e_ + PP, is not suppressed in a theory with scalar
gluons. Furthermore while each of the 'allowed' form factors is positive
at large QZ in QCD, they are negative in scalar gluom theories, and then must
vanish at some finite Q2 (since F(0) =1). Scalar theories are probably
already ruled out by existing data.

In the case of baryons, the evolution equation to leading order in uS(Qz)

has a general ~olution of the form

N
h 2\""n
8,0 = Xy, D ad () ( = 95)

n=0 A
(3.8)
. p\-2/38
(En 92-) [n| = 172
+ CX,%,X A
v ,\-2/8
(En 95) la| = 3s2
A

where the leading zn’ y: are given in Ref. [2], and h is the total quark
mndw(=Mkm%hﬂunyﬂme%=m.lMermpmameuis
generally more efficfent to integrate the evolution equation numberically
rather than expanding ¢ as in (3.8).

Convoluting the hard-scattering amplitude '1‘H (see Fig. 2) with @(xi,Q)

then gives the QCD prediction [1,2]
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N N
2,2 oy
2 as(@%) 2\ 'n"Tm 2
2, 32 2
6,(Q") = ; EQ,. ‘?m b (.Zn %) [1 + o(us(Q ), %)]
2,2 -4/38
2 a (Q°) 2
+ B2 e (m 9-5) Ce_p (3.9)
Q A

where e (e_“) is the mean total charge of quarks with helicity parallel
(anti-parallel) to the nucleon’s helicity (in rhe fully symmetric flavor-

Lzlicity wavefunction). For protons and neutrons we have
P : L : Do e o
e) 1 e 0 € e 1/3 . (3.10)

The ronstants bnm’ C are generally unknown for baryons; however, by isospin
symmetry, they are equal for protons and neutrons, and thus QCD predicts the
ratios of form factors as Q2 + =,

Figure 4 illustrates the predictions for Q{'G:(Qz) assuming a wavefunction
$(x;,Q0) = 8(x) ~ 1/3)6(x, - 1/3} at Qg = 2 gev? (the absolute normalization ie
undetermined) and various values of the QCD scale parameter [28]. Again we
2)-2

include an extra factor (1+.71/Q in (3.9) to aliow a smooth connection

with data at low Q2. Similar curves are obtained for any reasonably smuoth

T T T
06 [~ o/ x
\/I
. / N
, -
T |4
S o4 _{f-'\ q\i:: ~‘°£°E: Fig. 4. (a) Prediction for Ql'Gg(Q )
' \\\ ~ 00 for various QCD scale parameters A2
\{ . vy ~J Ol\‘ (in Cev2). The data are from Ref.
2 M AN ~ < £28]. The initial wavefunction is
% \\ \\ taken as @(xé ) = 8(x) = 1/3)6(x3~ /D)
: RS at A2=2 Gey The factor
o2 |3 SO T~aoq @ +og/q)-2 is 1ncluded in the
. ~ ~ prediction as a representation of
. ™~ 102 mass effects, and the overall
N ™ <4 normalization 1s unknown.
ot—1 14 i 1

@ (Gev2) —
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distribution amplitude ¢(xi.Q0). Only the ratio GE(QZ)/G:(QZ) 1s particularly
sensitive to the shape of the distribution amplitude. For illustration, this
ratio is plotted versus n in Fig. 5 wheve ¢(xi,Q) = (x‘xzxa)'1 is assumed for
a given Qz. For each choice of n, the ratio decreases to zero with increasing
0% as (1 @%/42)"07 73 = {&n ¥/02)™32/%%, e ratto cB/G = -1 at Q2 for the
§~function distribution amplitude used in Fig 4. For comparison, note that
in a theory with scalar or pseudo-scalar gluons, diagrams in which the struck
quark has anti-parallel helicity vanish. Thus scalar QCD predicts a ratio
GS/G: + eﬁ/eﬁ = -1/3 independent of the distribution amplitude {assuming only
symmetry under exchange x14->x3).

As for mesons, form factors for processes in which the baryon's helicity
is changed (Ah¥#0), or im which the initial or final baryon has |k} > 1, are
suppressed by factors of m/Q, where m is an effective quark mass. Thus the
helicity-£fl1ip nuclion form factor 1s predicted to fall roughly as Fy~ mH/Qﬁ.
The reaction e¥e -+ A+d- is dominated by baryons with [hdl =1/2; the cross
section for production of lhAl = 3/2 pairs or deltas with [hAl =3/2 and 1/2 18
suppressed. Again most of these predictions test the spin of the gluon. For
example, transitions ep + el (|hAl- 3/2) are not suppressed in scalar QCP.

An important feature of the perturbative QCD predictions -- again true
to all orders in us(Qz) == is that all of the helicity-conserving electroweak

form factors [4] involving nucleons can be expressed as line:r combinatioms

2 T T -

SUx;s 0)~{xrxpr)”

ZL_,:
~NO0F
(¥
o
_'F Fig. 5. The ratio of proton to neutron
6P<ol6P>0 nagnetic fo+m factors for various dis-
e bt e tribution amplitudes.
-2 H i L
I

2
- ki v
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of just two basic form factors -- G"(Qz) and GH(QZ) -- corresponding to
amplitudes in which the current interacts with a valence quark with helicity
parallel or anti-parallel to the helicity of the nucleons, respectively.

The coefficlents are determined by the corresponding SU(Z)L xU{1) guark charges.
Thus the nucleon magnetic form factors G;(Qz) and G;(Qz) are sufficient to
predict the weak nucleon form factors. The assumption of the standard heli-
city-flavor symmetry for the baryon wavefunctions at short distances then
leads to the specification of a. the leading electroweak octet and decouplet
form factors. The spatial wavefunctions can be assumed to be symmetrical with
respect to the quarks having the same helicitry, a feature which is preserved
under perturbative QCD evolution. At Qz-rm, the spatial wavefunction becomes
totally symmetric, ¢B(xi,Q) - xlxzxj(log QZ/AZ)-YB, and thus the helicity-
flavor structure of the baryon states satisfies exact SU(6) symmetry. The

detalled results are given in Ref. [4].

4, Perturbative QCD Predictions for the x ~ 1 Behavior of Structure

Functions —- QCD Evolution and High Twist Contributions

As we have emphasized in Sect, 2, one of the most important areas of
study of perturbative quantum chromodynamics is the behavior of the hadronic
wavefunctions at short distances or at far off-shell kinematics. This behavior
can be tested not only in exclusive reactions such as form factors at large
momentum transfer but also in deep inelastic scattering reactions at the edge
¢f phase space. In this section we will review the QCD predictions for the
behavior of the hadronic structure functions Fi(x’Q) in the endpoint xnj ~1
region [6,29]. The endpoint region is particularly interesting because one
wust understand in detail (a) the contributions of exclusive channels, (b)
the effect of high twist terms (power-law scale-breaking contributions) which
can become dominant at large x, and {c¢) the essential role of the available
energy W in controlling the logarithmic evolution of the structure func.ions.

Note that as x ~ 1, essentially all of the hadron's momentum must be carried
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by one quark (or gluon), and thus each propagator which transfers this
momentum becomes far-off shell: kz ~ -(if +J(2)/(l-x) + —= [see Fig. £).
Accordingly, if the spectator mass A is finite the leading power-law behavior
in (1-x) is determined by the minimum aumber of gluon exchanges required to
stop the hadronic spectators, and only the valence Fock states, quq) for
baryons, and |qa> for mesons, contribute to the leading power behavior. If
one simply computes the connected tree graphs, as im Fig. 7, then the pertur-

bative (1-x) power-law behavior is given by Eqs. (2.22) and (2.23) of Sect. 2.

}_,a (o] Perturbat:lve QCD
tree diagre-»
s-30 392441 for coumputing
the x ~ 1 power
Fig. 6. Kinematice behavior of
for inelastic strue- j’ baryon and meson

ture functious. structure fune-
__>_<— tions.

-3t 2914a2

Let us now consider how these results for the power-law behavior emerge
within the complete perturbative structure of QCD. Including corrections from
gluon radiation, vertex and self-energy corrections, and continued iteration
of the gluon-exchange kernel, one finds for the nucleon's quark distribution

[29]. N2

2 \ 7§
Gy o 3, (-0 edad) Z b (los 2) 2 (5,0

x [1e o(a,03,1/0)] . @.1)

The powers of a, and (1-x) reflect the behavior of the hard-scattering ampli-
tude at tlhe off-shell value ki - ((kf>+.,¢2)/(1—x) where (kf) 1s set by the
spectator transverse momentum Integrations. The anomalous dimensions 1? are

the anomalous dimensions of the nucleon’s valence Fock state wavefunction at
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short distances. Their contribution to Gq/p(x,Q) are due to the evolution
of the wavefunction integrated up to the transverse momentum scale l.f < ki
as in the corresponding exclusive channel analyses. The last factor Pq(x.Q)
represents the target-independent evolution of the structure function due *o

gluon emission from the struck quark: (CF-lo/J)

4C )
P L ~ (%) Fe(@ .0
where
Q? .2
d} 2,.2
£ = f =4 a1 - 105(3’5—"?’-"—2) . “.9
3 log QO/A

2 i}
QC

The lower liwit Qg of the gluon's transverse momentum integration is set by
the mean value of the spectator quark's transverse momenta and masses. This
hadronic scale sets the starting point for structure functions evolutions.
Equation (4.1) then gives the light-cone momentum distribution for parallel-
helicity quarks with x near 1 at the transverse momentum scale Q.

It should be emphasized that the actual momentum scale probed by various
deep inelastic inclusive reactions depends in detail on the process under
consideration; the actual upper limit of the tramsverse momentum integration
15 set by kinematics. For example, 1f we consider the contribution of Fig. 8
to the deep inelastic structure functions, the propagator (or energy denomina-

tor) associated with the top loop reduces to the usual Bjorken structure

Fig. 8, Perturbative QCD diagrams
for structure function evolution.

Ir1aad
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2q°p - 02/x + ic only if kf << (1-y)Q2 < (1—x)02 where kl is the quark's
transverse momentum and ¥ 2 x is the light-cone variable indicated in the
figure. The remaining structure factorizes into a form which defines
Gq/p(x/y,ki). Thus the actual relation between the structure function and

the momentum distribution for x ~ 1 is [6,29,30]

Fy(x,Q) = ;eixnj [qu/P(xBj,Q) + ssqi/p(xaj,q)] (4.4
where
1 P L ®%ry)
86,000 = -ZCFfdy Hy f , =+ 2
o (1-¥)Q 1
x {Gq/P(x/y,kl) iﬁx;_x) - Gq/p(x,ki)} (4.5)

corrects for the fact that the top loop is integrated to kf < (l-y)Q2 (< xBjHZ)
not Qz. [The argument of ag is also crucial here.] Other inclusive reactions
have to be individually examined: in the case of the Drell-Yan process

qaab - u+u-, the structure functions evolve to (l-ya)Q2 and (l-yb)Q2 not

Q? = (P++'P_)2-

The actual evolution of structure functions in deep inealstic lepton
scattering {5 thus controlled by the available energy xBJWZ, and 1s more
moderate at xBJ ~ 1 than would be expected from lowest order expectations.
Analytic forms for the .1-x) behavior are readily computed [29]. The most
important features are the following: (1) The 8G/G correction to leading
order in o  reproduces the eritical ZCF(GS(QZ)/éﬂ)logzn terms in the struc-
ture function moments as calculated using the operator product expansion and
renormalization group. In our analysis a series of terms of all orders in
(uslogz(l/l-x))p or (uslogzn)p arises simply from the fact that the natural
evolution parameter for the structure functions Fi(x,Q) and moments yﬂ;(x,Q)
is controlled by (1-y)Q2 < (1—x)Q2 and not Qz; the basic momentum distri- ;

butions G{x,Q) do not contain the anomalous double-log terms and have a
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strajghtforward perturbative evolution. (2) The extended evolutlon equations
based on Eqs. (%£.4) and (4.5) have a mumber of phenomenological advantages.
After taking into account the appropriate evolution limits, each deep in-
elastic process can be related to the basic distribution Gq(x,Q), avoiding
large kinemstic corrections. The scale parameter An which has been introduced
to eliminate the strong n-dependent of the higher order corrections to the
moments is unnecessary. The fact that xwz controls the evolution suggest its
use in structure function parameterizations and studies of moment factori-
zation in fragmentation processes. (A study of the application of this method
to photon structure functions is in progress.) (3) The exclusive—inclusive
connection fails in QCD [29,313. At fixed but large HZ, FZN(x,Q) falls as
(l-x)3+6 where § > 0, whereas, modulo logarithmic factors, exclusive channels
in QCD give contributions ~(1—x)3 from the Q-4 scaling of the leading nucleon
form factors. Thus exclusive channels will eventually dominate the leading
twist contributions to inclusive cross sections at fixed uz, Q2 + o,

A complete treatment of the hadron structure functions must take into
account higher twist contributions. Althcugh such contributions are suppressed
by powers of I/Qz, they can have fewer powers of (l-x) and, accordingly, may
be phenomenologically important in the large x domain [17,32]. 1In the case of
nucleons, the 2+qq + %'+ qq subprucess (in which the lepton recoils against
two quarks) is expected to lead to a contribution ~(1 -x)/Qh since only
one quark spectator is required. A large longitudinal structure function is
also expected {32,33,34]7. Although complete calculations of such terms have
not been done, the presence of such terms can reduce the amount of logarithmic
scale-violation required from the leading twist coatributions in phenomeno-
logical fits [32,35].

The analysis of meson structure functions at x ~ 1 1s similar to that of
the baryon, with two striking differmeces: (1) The controlling power behavior

of the leading twist contribution is (l-x)2 from perturbative QCD [24,36].
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The extra factor of (l-x) -- compared to what would have been expected from
spectator counting ~- can be attrijbuted to the mismatch between the quark

spin and that of the meson. (2) The longitudinal meson structure function

has an anomalous non-scaling component [33,37] which is finite at x =+ 1:
FL(x,Q) ~ Cx2/Q2. This high twist term, which romes from the lepton scattering
off an instantaneous fermion-line in light-cone perturbation theory, can be
rigorously computed and normalized in perturbative QCD. The crucial fact is
that the wavefuncrion evolution and spectattr transverse momentum integrations
in Fig. 9 can be written directly in t2rms of a corresponding calculation of
the meson form factor. The result for the pion structure function to leading

order in us(ki) and us(QZ) is [37,38]

2
2 Q
Hexo = Zc f O B %) 4.6
2 5 T
R 7 ST

which mumerically is F ~ xZ/Q2 (GeV2 units).

The dominance of the longitudinal structure functions in the fixed W
1imit for mesons is an essential prediction of perturbative QCD Perhaps the
most dramatic consequence is in the Drell-Yan process Tp + 2+1_X; one predicts
[33] that for fixed pair mass @, the angular distribution cf the I (in the
pair rest frame) will change from the conventional (14—c0526+) distributiop
to sin2(0+) for pairs produced at large ¥« A recent analysis of the
Chicago-Illinois-Princeton experiment [39] at FNAL appears to confirm the QCD
high twist prediction with about the expected normalization, see Fig. 10.
Scriking evidence for the effect has also been seen in a Gargamelle analysis
{40] of the quark fragmentation functions in vp + ﬂ+u-X. The results yileld
a quark fragmentation distribution into positive charged hadrons which is
consistent with the predicted form: dN+/dzdy ~ B(l-z)zi-(C/QZ)(l—y) wherte
the (l1-y) behavior corresponds to a longitudinal structure function. It is

also crucial to check that the e'e” + MX cross sectfon becomes purely longi-
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tudinal (sinze) at large z at moderate Qz. The implications of this high

twist contribution for meson production at large Pp will be discussed else-

where [37].
20 T & —T T
Fig. 10.
q 15 - Comparison of the
[T data of Ref. [39]
T for the virtual
- 4 [} PN NN | MY SN J photon polariza-
B,y tion in nN+ptu~x
o with the high
[ = 05 4 twist QCD predie-
-k, t-x ST tion of Ref. [331.
-0 Fyre] The v+ angular
ok | distribution 1is
Fig. 9. Perturbative parametrized as
contribution to the 1+u(x1)cosze+
weson longitudinal where x; is the
structure function '0'5% ® t=Chonnel 1 ¢ womentum frac-
FL ~ £/Q2. O Collins-Soper Axis tion.
-1.0 1 [ —t
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5. Exclusive Processes in QCD: The Two-Photon Processes

As we have emphasized in this talk, the predictions of perturbative
quantum chromodynamics can be extended to the whole domain of large momentum
transfer exclusive processes. The results lead to a comprehensive mew range
of rigorous predictions of QCD which test both the scaling and spin properties
of quark and gluon interactions at large momentum transfer as well as the
detailed structure of hadronic wavefuncrions at short distances. The two-
photon reactiong (M = 7,K,0,0,...)
do = at large 8 = (kl-ch)2
dc G = eh and fixed ©

c.m.
provide a particularly important laboratory for testing QCD since these
"Compton" processes are, by far, the simplest calculable large-angle exclusive
hadronic scattering veactions. As we discuss below, the large-momentum-

transfer scaling behavior, the helicity structure, and often even the absoluce

normalization cen be rigorously computed for each two-photon channel [41].
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Conversely, the angular dependence of the yy = MM amplitudes can bc used to
determine the shape of the process-independent meson 'distribution amplitudes,”
¢H(x.Q), the basic short-distance wavefunctions which control the valence quark
distributions in high momentum transfer exclusive reactions [1,2].

A critically important feature of the yy » MM amplitude 1s that the con-
tributions of Landshoff pinch singularities are power-law suppressed at the
Born level —- even before taking into account Sudakov form factor suppression.
There are also no anomalous contributions from the x ~ 1 endpoint integration
region. Thus, as in the calculation of the meson form factors, each fixed-
angle helicity amplitude can be written to leading order in 1/Q in the

factorized form [Qz = p% = tu/s; 6x = min(xQ,(l—x)Q)]:

1 1
M = fdxfdy 08 Ty(ayiso, ) f(ed) 5D
] <]

where Ty is the hard-scattering amplitude YY + (qq) (gq) for the production of
the valence quarks collinear with each meson (see Fig. 11), and OH(K,Q) is the
(process-independent) distribution amplitude for finding the valeuce q and g
with light-cone fractions of ti.> meson's momentum, integrated over transverse
momenta k, < Q. The contributiois of nonvalence Fock states are power-law
suppressed. Further, the spin-selection rules of QCD predict that vector

mesons M and M are produced with opposite helicities to leading order in 1/Q

and all orders in uS(QZ).

Pa
K ‘a <;S,)/
3 x pﬂ

(1-x)p,

(-y)pg
Fig. 11. Factorization of the

¥,
] () =
: Yy + MM amplitude.
2 ’s
s

»”w0
2tay
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Detailed predictions for each yy ~+ MM helicity amplitude can be worked

out to leading order in us(Qz) from the seven diagrams for TH shown in Fig. 12.
The general vesult is

aa_@%)
(s.6 )= —;f— 2 a6, o (i Q¥n

c.m.

2 )“'n"’m
-J((YY - MY

0,m

< [1+ € (a @) ,m)] (5.2)

where the first factor follows from the fixed angle scaling of TH' The v,
are the universal logarithm anomalous dimensions for helicity O or helicicty 1
mesons as derived from the operator product expansion at short distances [13],
or eguivalently, the QCD evolution equation for ¢H(x,Q). Modulo logarithmic

corrections, Eq. (5.2) implies sh do/dt (yy + M) scaling at fixed ec o °

= T e
N T - - == + cessses Fig. 12. Leading order contributions
e J to the hard-scattering amplitude T,,.
. < 5 Z § ee; H

The QCD predictions for yy + ﬂ+1K_ and yy -+ 1°1° to leading ¢ er in as(Qz)

are shown in Fig. 13, For asymptotic Qz, ¢"(x,Q) = -@fﬂx(l—x) and the

T T T T
10° £ E
F ]
F 4
2, 103 3 =
2 1 3
Tk yy=mw 3
2 [ 3
< 3 . 4
vy-ny®
- 4 b Fig. 13. Perturbative QCD predictions
:" 102 for yy+nm at large momentum transfer.
g 3 Predictions for other helicity-zero
1 mesons only differ in normalization.
A The curves (a),(b) and (c) correspond
B to the three distribution amplitudes
o' L described in the text.
S RS SN VI S

o} 0.2 c.a 0.6 0.8 1.0
22 = cos? (6) -
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predictions [curve (a)] become exact and paramater~free. For subasymptotic
QZ, ¢_"(x,Q) depends on the details of hadronic binding. Curves (b) and (c)
correspond to the extreme examples ¢ « [x(l-x)];‘ and $ « §(x-%), respectively.
In each case 1t is convenient to rescale the results in terms of the meas._red
pilon form factor.

The prediction for other helicity-zero mesons are identical up to overall

normalization factors:

“”yy-»-nﬂ : ‘l{yy-sld-( : ‘l{yy-»pLEL

2 2 2
a Call £ 2,
- 1 ~1.5 : ~2.5 . (5.3)

For comparison, 52 do/dt (yy » u+u') = lmuz(1+zz)/(1—z2} ¥ 260 nb Gevl' at
z = cosBC_m_ = 0,

We note that the yy 1r+1r_ cross section is iusensitive to the shape of
¢“(x,Q). However, because of its different charge structure, the yy -+ 7°n®
amplitude is strongly semsitive to the distribution amplitude: in fact, the
z = cosBc.m. dependence of J’YY"""""’ reselves the x-dependence of :pn (x,Q) in
the same way that the x.ﬂj—dependence of the structure functions. The strong
coupling of the x, y, and cosec.m. variables in 'A'YY-'MF{ can be traced to the
gluon propagators in the last two diagrams for TH shown in Fig. 12.

We have also computed the cross section for transversely polarized vector

mesons with opposite helicity, such as yy + pTET' The predictions in Fig. 14
assume %(x,Q) = v’i(fp/fwnﬂ(x,q) independent of p-helicity (although this
cannot be strictly true at asymptotic Qz). The ry + p;p; rate vanishes for
% e §(x-%). We also note that the predicted cross section for yy =+ p+p-
(surmed over polarization) is quite large:
do/dt (yy -+ g+p'2 4, 2
~ 7 GeV /s (5.4)

dofdt Cyy > wh0)

ac e, = /2.
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In summary, we note that yy + MM processes can prcvide a detailed check
of the basic Born structure of QCD: the scaling of quark and gluon propagators
and interactions, as well as the constituent charges and spin. The form of the
predictions are exact to leading order in us(Qz). Power-law (m/Q) correctioms
can arise from mass insertions, higher Fock states, pinch singularities and
non~perturbative effects.

The most extraordinary feature of these results is the fact that the
angular dependence of some of the two-photon reactions can directly determine
the form of the hadronic wavefunctions at short distances. The determination
of ¢H(x,Q) will remove a majJor ambiguity in the prediction of the meson form
factor. The extension of the results to the baryon channels yy =+ BE and
vB » yB is thus of obvious interest. The results presented here can also
be used to study the occurrence of the fixed Regge singularity at J=0, and
the analytic connections to trzditional hadronic phenomena: vector meson
dominance, finite energy sum rules, and the low energy behavior of the

vy + MM amplitudes.
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6. Contrasts Between QCD and Parton Model Dynamics

The property of asympiotic freedom is QCD justifies the applicability of

.many parton model [42] concepts in hadron dynamics. In addition, the Fock
state description of hadrons defined at equal time on the light-cone (see
Sect. 2) provides a convenient parton-like interpretation of hadron wave-
functions and structure functions at infinite momentum, On the other hand,
QCD gives a new perspective into hadron dynamics which is often in direct
contradiction to what had been expected in parton or multiperipheral model
descriptions. As a summary to this talk we shall list some of these dis-
tinguishing characte-istics of QCD:

(1) Hadron states of definite particle {(quark and gluon) number exist at ,
infinite momentum or at equal time on the light~cone [1]. This is a special ‘
consequence of the color neutrality of hadrons; it is not true for particles
carrying a pauged current. As we have discussed in Sect. 2, the probability
of finding a pion in its lqﬁ) valence state can be calculated [3] from its
m + v and 1 + yy decay rates. The valence probabllity is ~1/5 to 1/4.

(2) Exclusive processes at large momentum transfer such as form factors
are dominated by hard-scattering subprocesses involving the valence quarks in
the hadron's minimum Fock state.. The hard-scattering amplitude is then
convoluted with the hadron wavefunction evaluated at éhort distances. This
is in striking contrast to partcn model mechanisms_based on the scattering
of a leading quark at x ~ 1 in a Foc! state with an arbitrary number of wee
spectators. As we have emphasized in Sect. 4, the endpoint x ~ 1 contributions
are always suppressed by the quark Sudakov form factor, relative to the leading
hard-scattering contributions. [1n the case of helicity zero meson form
factors and yy + MM large momentum transfer two-photon processes, the endpoint ;
regions are suppressed by additional kinematic powers of m/Q.] Because of
this suppression, the parton madel exclusive-inclusive conmnection fails in QCD.
We emphasize that the power-law scaling [43] and helicity dependence of the

bard-scattering contributions in exclusive reactions reflect the basic scale- {
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invariance and spin structure of QCD at short distances. The QCD helicity
selection rules [1,2] (see Sect. 3) provide crucial tests of gluon and quark
spin.

(3) The leading power~law behavior of inclusive structure functions
£1,6,24,25,43) at x near 1 is controlled by the minimum valence Fock state
components of the hadron wavefuncrions, again in contrast to partcn model
expectation. The perturbative QCD predictions reflect the elementary scaling
of quark and gluon propagators in the far-off shell domain. A striking QCD
Prediction is that the helicity of the hadron tends to be carried by the
constituent with the highest x.

(4) The Fock state structure of QCD at infinite momentum is more complex
than usually assumed in phenomenological applications. In addition to the
"extrinsic” gluons generated by QCD evolution, there are alwavs "“intrinsic"
gluons and non-valence quark components in the hadron wavefunction which are
insensitive to the momentum scale of the probe [44]. For example. transversc
gluons exchanged between quarks, boosted to infinite momentum, yield an
intrinsic gluon component to the Fock states. An even mure striking example
is the prediction [45] of "intrinsic charm” in the proton and meson wave-
functions. One can estimate (461, using the bag model and perturbative QCD,
that the proton bound state has a ]uuch> component with a probability of
~1-2%. When this state is Lorentz boosted to infinite momentum, the con~
stituents with the largest mass have the highest x. Thus heavy quarks (though
rare) carry most of the momentum in the Fock state in which they are present.
The usual parton model assumption that non-valence sea guarks are always found
at low X is incorrect. The diffractive disassociation of the proton's
intrinsic charm state provides a simple explanation why charmed baryons and
charmed mesons which contain no valence gquarks in common: with the proton are
diffractively produced at large x with sizeable cross sections at ISR

energies [47].
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(5) It is also interesting to note that nuclear Fock states are wuch
richer in QCD than they would be in a theory in which the only degrees of
freedom are hadrons. For example, if we assume that at low relative momentum
a deuteron is dominated by its usual n-p configuration, quark-quark scattering
automatically generates color-polarized 6-quark states such as |(uuu)8(ddd)5>
at short distances. The implications of QCD for large momentum transfer
nuclear form factors and the nuclear force at short distances 1s discussed
in Ref. [48].

(6) As we have discussed in Sect. 1, the naive procedure of smearing
leading twist guark and gluon cross sections with probabilistic parton
distributions G(x,{l) 1s incorrect in QCD. The correct procedure for in-
corporating the effects of wavefunction transverse momenta requires a hard-
scattering expansion [12] over higher twist subprocesses. The constituent
interchange model [49] represents a first attempt to model such contributions;
it 1s, however, incomplete since only a subset of QCD higher twist diapgrams
(those with quark exchange or interchange) is included.

(7) The existence of many higher twist contributions in QCD inclusive
reactions is a direct comsequence of the composite structure of the inter-
acting hadrons. Although they complicate many QCD analyses, particularly
hadron production at large transverse momentum, higher twist processes are
at the heart of QCD dynamics. In the case of the meson structure functionm,
Qcp predicts [25,27,33] a (longitudinal) component F~ C/Q2 which dominates
x ~ 1 quark distributions and z ~ ! fragmentation phenomena. As we have
discussed in Sect. 4, this higher twist term can be absolutely normalized [6]
in terms of the form factor scale. We are thus led to critical tests for QCD
which are in direct contradiction to parton model predictions. Recent experi-
mental evidence ({39,40], in fact, supports the QCD highe: twist predictions

for the pion structure and fragmentation functioms.
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(8) Some of the most important tests of QCD involve real photons. In
contrast to vector-meson dominance ideas, point-like interactions are predicted
to dominate the hadronic interactions of on-shell photons in large momentum
transfer reactions [51]. This feature is particularly clear in the QCD
predictions for the two—photon inclusive [52] and exclusive processes [5]

YY + jet+jet and y; + MM, and the photon structure function at large momentum
transfer. Higher twist terms should be relatively less important in photon
reactions compared to hadron reactions.

(9) The generation of hadron multiplicity is not completely understood
in QCD. However a number of features are anticipated which appear to differ
strongly from parton model expectations: For example, in QCD (a) the final
state multiplicity reflects the color separation set up in the collision (531;
this is believed to even hold in low Pr hadron collisions since the basic
interactions involve color exchange; (b) the evolution in space-time corres—
ponds to an inslde-outside cascade -~ the slowest hadrons are created first;
(c) the final state multiplicity in the Drell-Yan process AB + R1IX is expected
to reflect the creation of 3c and 3: spectator systems at the moment of
annihilation [$3]; and (d) the multiplicity of gluon jets and other color
octet systems should reflect its higher color charge relative to color triplet
systems [53]. It is clear that QCD provides a novel perspective for multi-
particle phencmena.

(10) Another critical testing ground of QCD dynamics is the study of
quark and gluon interactions in nuclear targets [55]. For example, consider
the Drell~Yan process pU + wTuTX. If the factorization theorem for inclusive
reactions is correct the cross section at large pair mass Q is given by the
convolution of the anti-proton structure function qui(xa,q) with the nuclear
distritution function Gq/U(xb.Q) -- which for large Q2 is ~AGq,N(xb,Q).

Thus the factorization theorem predicts no absorption of the constituents
of the anti-proton despite the fact that the p suffers repeated inelastic

collisions in its passage through the nuclear volume! If this is really
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correct, then only wee quarks and gluons with x ~ 0 (finite momentum in the
lab frame) can be strangly absorbed; the nucleus is then essentially trans-
parent to the valence Fock state of the hadron.

From a physical point of view, it seems much more reasonable that an
incident hadron's Fock state will be strongly altered because of Glauber
inelastic collisions during its passage through the nucleus [56]. Standard
QLD evolution then applies to the altered structure fumction -- i.e., the
“initial conditions" are not the same as in deep inelastic lepton scattering.
This 1s of course in contradiction to the QCD factorization theorem., We also
expect that the effects of nucleon absorption and collisions will be strongest
for those Fock components of the incident hadrun which are largest in trans~
verse spatial exteat, i.e., Fock states with a high multiplicity of wee quarks.
The nucleus then acts as a differential absorber where the valence Fock state
{and hence quarks with large x) suffer the least absorp~ion. The crucial test
of this idea is the A-dependznce of the Drell-Yan cross section pA - p+p“x as
a function of the momentum fraction < of the annihilating antiquark, to see
whether nuclear absorption sets in at X < X where % is fixed or vanishes with

increasing momentum as requived by the factorization theorem [57].
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