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EXCURSIONS OF A MARKOV PROCESS!

By R. K. GETOOR
University of California, La Jolla

The excursion straddling ¢ and the first excursion exceeding « in length of
a Markov process are compared in a general setting. These results are then
specialized to the excursions from a point, and to specific processes. The main
tool is the general theory of excursions as developed by Maisonneuve and
others.

1. Introduction. During the past few years there has been a considerable body
of work dealing with what might be called the general theory of excursions of a
Markov process. Perhaps the definitive work in this direction is Maisonneuve [10].
Shortly thereafter Chung [2] made a penetrating analysis of the excursions of
Brownian motion from the origin. However, Chung did not make use of the general
theory; rather he worked by hand using the special properties of Brownian motion.
(See also [4] and [5] for some interesting results on Brownian excursions from the
‘origin.) The purpose of this paper is to apply Maisonneuve’s general theory to
specific excursions and processes.

We shall now give a rough description of some of our results. Let X be a nice
Markov process and let F be a closed, finely perfect subset of its state space; a
much more general situation is considered in Sections 2 through 6. If ¢ > 0, let
G =sup{s<t:X,EF)and D,=1t+ Tr° 0, =inf{s >t : X, € F}. Then the
interval ]G,, D,[ is called the excursion interval (from F) straddling ¢, and U, =
X(G, + 5),0<s <L, where L, = D, — G, is called the excursion process. If
u > 0, let G* be the left endpoint of the first maximal open interval, , with length
strictly greater than u such that 7 M {t: X, € F} is empty, and let D* be its
right endpoint. Then 1G*, D*[ is the first excursion interval (from F) exceeding u in
length. Let V, = X(G* + 5), 0 <s < L¥ = D* — G* be the corresponding excur-
sion process. After some preliminaries in Sections 2 and 3, we investigate the
relationship between these two excursion processes. The main result, Theorem 5.9,
states that if 4, = t — G, is the age of the excursion straddling ¢ at time ¢, then the
law of the process (U,) conditional on 4, = u, 0 < u < t, and X(G,) is the same as
the law of the process (¥,) conditional on X(G*). Moreover, the finite dimensional
distributions of these processes are written down explicitly in Sections 4 and 5. It is
also interesting to note that G* and the process (V) are conditionally independent
given X(G*), but that this is not the case for G, and (U,). In Section 6, under
somewhat stronger hypotheses it is shown that X(G,) and X(G*) may be replaced
by X(G, — ) and X(G* - ) respectively in the above statements.
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In Sections 7 through 10 we consider the case where F consists of a single point
b. Here, under various hypotheses, one obtains many nice formulas. These results,
in turn, may be specialized to specific processes. For example, in Section 10 (see
(10.25) and (10.26)) it is shown that if X is a stable process of index a > 1 on the
real line and b = 0, then the distributions of G, and G* under P° depend only on a
and not on the asymmetry parameter 8 in the characteristic function, (10.16), of X.

I would like to thank M. J. Sharpe for several very helpful discussions, especially
in connection with Section 9.

2. Preliminaries. In this section we shall establish our basic notation and recall
the fundamental theorem on excursions in the form given by Maisonneuve [10]. Let
(E, &) be a Lusinien space and let X = (2, ¥, %,, X,, 6,, P*) be the canonical right
continuous realization of a semigroup (P,) satisfying the “hypothéses droites” of
Meyer. We assume the existence of a cemetery A € E and, as usual, put { =
inf{z : X, = A}. Without loss of generality we may assume that P*({ = o) = 1 for
each x # A. We shall consistently adopt the familiar notation of Markov process
theory. See [1], [6], or [13], for example. In particular, we shall write X(¢) for X,
when convenient.

A process Y = (Y,) is said to be optional (predictable) if for each initial measure
p on E there exists a process Y* that is optional (predictable) over (22, %*, P*) such
- that Y and Y* are P* indistinguishable. A process Y is homogeneous (on [0, cof) if
foreachs > Oands >0,Y, 28, = Y., Asubset I of R* X © is homogeneous
provided its indicator function is a homogeneous process.

We now fix a closed, optional, homogeneous random set I Cc R* X Q. If M =
M(w) = {t: (1, w) € M} C R* is the w-section of IMN, then the statement that I
. is closed means that M(w) is a closed subset of R* for each w € Q. We associate
with 9 the following random variables:

R=inf{s >0:5€ M}
(2.1) Di=t+Rof =inf{s>t:s €M}

As usual, the infimum of the empty set is + oo. It is well known that for each ¢ > 0,
D, is a stopping time and that ¢t — D, is right continuous and increasing. Clearly
D, = R, and, since 9N is homogeneous, R is a terminal time. Finally we assume
that R = o0 on {R > {}. Under these circumstances Meyer [11] has shown that we
may suppose that R, and hence each D, is ¥* measurable, where ¥* is the
o-algebra of universally measurable sets over (2, $°). Therefore in the sequel we
shall assume that R and each D, are * measurable.

Since M(w) is a closed subset of R*, its complement in R* consists of a
countable union of maximal (relatively) open intervals of R*. We call these
maximal open intervals in R* — M(w) the contiguous intervals of M.

(2.2) DrerINITION. G = G(w) is the set of strictly positive left endpoints of the
contiguous intervals of M(w).
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Observe that G ]0, oo[ and that
(2.3) G={s>0:D,_=s,D >s}
Also, if s € G, then D, = s + R ° 0, is the right endpoint of the contiguous
interval whose left endpoint is 5. Define
24) F={x:P(R=0)=1}.
Then F is a finely closed nearly Borel set. We may now state Maisonneuve’s
theorem in a form convenient for us.
(2.5) TureoreM. (Maisonneuve [10]). There exist an adapted additive functional B
with a bounded one potential and a family of measures (P*; x € E) on Q for which
x — P*(A) is & * measurable when A € %*, and such that if Z > 0 is an optional
process and K > 0 is F* measurable, then for all x € E

(2.6) E*S,.cZ,K 0, = EX[$Z EXC)(K) dB,.

Moreover, each P* is o-finite and satisfies ﬁx(R =0) =0, E (1 — e ®)y=1for all
x. If x & F, then P* = ¢(x)P* where c(x) = [E*(1 — e~ ®)]™\. The continuous part
of B is carried by F and the discontinuous part by E — F. For each x the process
(X,)r~0 is strong Markov with semigroup (P) relative to the measure P*; that is, if T
is an (3%.) stopping time with ﬁ"(T = 0) = 0, then for all positive ¥, measurable
H and %° measurable J one has

2.7) E*[HJ ° 8] = E*[ HEX™)(J)].

Note that 1 < ¢(x) < oo for x € E — F.
There is a useful extension of (2.6) that we shall often use. Let ¥ denote the
~ Borel sets of R* and let K (w) be a positive B X J* measurable function; then

(2.8) E*3,cZK, ° 0, = E*[$Z,EXXK,) dB,,

for Z a positive optional process.
The reader should consult [10] for the proofs of these results. This paper also
contains many other interesting results related to the above facts.

3. Entrance and exit laws. We define the semigroup (Q,) of the process X killed
at R by

@3.1) Q.f(x) = BX[ f(x); t <R].
If x € F, Q(x, ) =0 for all + > 0. Since F is finely closed it is immediate that
R < T, almost surely. Consequently '
0(x, F) = EX(1,(X); t <R} = 0;
that is, the measures Q,(x, +) do not charge F. _
For each ¢ > 0 and x € E define a measure Q,(x, +) on E by

(3'2) Q~t(x’f) = Ex[f(Xt); t < R]'
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Since E *(1 - e ®) = 1, it is immediate that each Q(x, -) is a finite measure on E
and t— Q,(x, 1) is a decreasing right continuous function on ]0, co[. We also
define

(3.3) [(x, dt) = P*[R € dt],

and observe that I'(x, Jt, ©]) = P*(R > ) = Q,1(x). By definition x € F if and
only if I'(x, -) = g, while if x & F, I'(x, -) is a probability on ]0, co] since
P*(R = oo) may be strictly positive.

(3.4) ProrosITION. For each x, {Q~,(x, -)} is an entrance law for (Q,); that is,

Oris(x, +) = 0ix #)Q(y, )3 t>0,5>0.
In particular Q~,(x, +) does not charge F, and
(3:5) 0,+:1(x) = fO,(x, #)P’[ R >s5].

Proor. By 2.7)ift >0
Q~t+s(x’f) = E~x[f(X1+s); t+s< R]
=Ex[f(Xs)°0;§5<R°0,,t<R]

= E~"|:EX(')[f(XS); s<R];t< R] = 0,(x, 0.f)
proving (3.4).
REMARK. For each x, Q,1(x) =I'(x, ¢, «]) is an exit law for (Q,) since
Qr+51(x) = Q(Q,1)(%).
4. The excursion straddling r. For each ¢ > 0 define
4.1) G, =sup{s <t:s€ M},

where the supremum of the empty set is taken to be zero. Since 9N is optional,
each G, is & measurable and clearly t — G, is right continuous. If 0 < G, < ¢, then
G, is the left endpoint of a contiguous interval of M. In this case D, = t + R © 8, is
the right endpoint of the corresponding interval, and following Chung [2], we shall
say that ]G,, D,[ is the excursion interval straddling ¢. Note that if 0 < G, < ¢, then
t & M, and since M is closed D, >¢. Thus ¢t € ]G, D[ when 0 <G, <t. Let
L, = D, — G, be the length of this interval. Of course, D, and L, may be infinite,
but in any case D, is a stopping time.

Let H and g be positive and §* and & measurable functions on @ and E
respectively. Observe that 0 <s= G, <t if and only if s € G and s <t <s +
R o .. Let Z be a positive optional process and apply (2.8) with

K, = Hg(Xt—s)1{0<l—s<R)
to obtain
42)

EX{ZG,g(XI)H o 06,; 0< G < t} = ExEsEGZch o 0:
= E*fy (ZEX{Hg(X,_)); 1 ~ s <R} dB,.
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This formula contains all of the information about the U] = U, = X(G, + s)
defined on the random interval 0 < s < L,. We shall call the process (U;; 0 <s <
L,) the excursion process straddling t. From (4.2) we shall compute the joint law of
G,, L,, X(G)), and this excursion process.

(4.3) LeMMA. Let (s, x) be a positive B X &* measurable function on R* X E.
Then for each positive optional process Z one has
Ex[ B(Gv XG,)ZG,; 0< Gt < t] = Exf]O, t[Zs:B(S’ Xs)él—s(Xs’ 1) st'
Proor. It suffices to prove (4.3) when 8 and Z are bounded. Suppose first

B(s, x) = ¢(s)f(x) with ¢ and f bounded Borel. Then the process Z @(s)f(X,) is
optional and applying (4.2) to this process (take H and g identically one) we obtain

(44) EX[ZG,¢(Gt)f(XG,)’ 0 < Gt < t] = Exf]O, I[Zs(p(s)f(xs)él—s(xs’ 1) st

But for Z and ¢ fixed both sides of (4.4) are measures in f and so it holds for
bounded f > 0 in &*. Now for Z fixed both sides of the formula in (4.3) are
measures in B and since they agree for B(s, x) = @(s)f(x) with ¢, f positive and
%3, & * measurable respectively, they agree on B X & *.

Define for a positive H in $*, 5 > 0, and x € E,

(4.5) K(x,s, H) = E*[H; s <R].

For H bounded, x — K(x, s, H) is &* measurable and s — K(x, s, H) is right
continuous on [0, co[. Consequently (s, x) —» K(x, s, H)is B X & * measurable for
each positive H in *. If Z is a positive optional process and H > 0 is F*
measurable, then (4.2) implies

< (4.6) E"[ZG[H °05;0<G, < t] = E*fp 4Z.K(X,,t — s, H) dB,.
But if p <HKI1, K(x,s5, H) < Q~S(x, 1) and so if we let B(s, x) = K(x, t —
s, H)/Q,_,(x, 1) where 0/0 = 1, then (4.3) applied to the second term in (4.6)
yields
(47) E*[ZgH °85;0<G, <]

= B ZoK(X, 1 — Gy H)/ B, (Xg, 1); 0< G, <],

Let A, = ¢t — G, be the age of the excursion at time ¢. Applying (4.7) with
Z, = @(s)f(X,) for positive Borel functions ¢ and f we find

E*[9(G)f(XG)H ° 85; 0 < G, < 1]
(4.8) = Ex[(p(Gz)f(XG,)K(XG,’ A, H)/Q~A,(XG,’ 1)§ 0<G < t]
= [o(s)f()K(p, t — 5, H)/ O, (y, Ym*(ds, dy),

where
(4.9) m(ds, dy) = P*[ G, € ds, X; € dy; 0 <G, <1]
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is the joint distribution of (G,, X;) on the set {0 < G, < ¢} under P*. Moreover, it
is clear from (4.3) that m* does not charge sets of the form R* X N where N is of
B-potential zero and is carried by 0, {[ X E.

Next suppose H is of the form

(410) H= Hli(=lf;'(Xs,)‘P(R)1{sk<R}

where 0 <s; < - - - <&, and f; and ¢ are bounded positive Borel functions on E
and [0, oo] respectively. If y is a point for which (X)), is Markov with transition
function (P,) relative to P”, then using the Markov property repeatedly one obtains
forO0<s <t

K(y,t—s,H) = Ey[H’,;lfi(xsi)\b(R); s <Rjt—s< R]
(4.11) =/ fés,(ya “3’1)f1()’1)Qsz—s,(Y1, ) f(y)) - - -
X st—skgl(yk—l’ ayk)f;c(yk)f](t—s)\/sk, oo]r(yk’ dr — s;)¥(r).

Finally combining (4.8) and (4.11) we obtain the following proposition.

(4.12) PROPOSITION. Let 0<s5; < -+ <5, <r, 0<7<t, t —1v<r, and U,
= X(G, + s) be the excursion process straddling t. Then

P*[G € dr,Xs Ed; U, €Edyy,- -, U, Edy, L, € dr]
= mtx(dT’ dy)[ét—-r(y’ 1)] _lés,(y’ dyl)Qsz—s,(yl’ d}’z)
X Qs Dkev )T (2, dr — ).

(4.13) CoROLLARY. If0<s < --- <s <rand0<u<(tAr),then
Px[l]s,Edyl""’(]skedyk’LIEdrlAt=u’XG,=yJ

= [Q~u()’: 1)]_1Q~s,()’, &) - st—sk_,(yk—l’ YT (Vi dr = 51),
and
Px[Lt >rld, = u, XG, =Y] = Q~r(y3 1)/Q~u(y’ 1).

In particular the process (U,),~,, under P* and conditional on A, =uand X(G) =y
is an inhomogeneous Markov process with state space E — F and whose entrance law
p.(dv) and transition function Pls,y; t, dz], 0 < s < 1 are given by (a* = sup(a, 0)

Jor a € R)
= Qs(x’ @)Q(a—s)+ (y’ 1)

Q,-,(y; dz)Qu-n* (2, 1)
Flssosm el = Q<u_s)+((y, )1) '

ProOF. This follows directly from (4.12).
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5. The first excursion exceeding » in length. Let © > 0 be fixed. Let |G*, D¥[
be the first contiguous interval of M whose length strictly exceeds u. If no such
interval exists we set G* = D* = 0. If G* < o0, then L¥ = D¥ — G¥ = R o .
> u. It is known [3] that 7% = 4 + G* and D* are stopping times. Clearly G* € G
if 0 < G* < 0. Observe that if s > 0, then s = G¥ < o if and only if s € G,
s < D* and R ° 8, > u. (For later reference, note that if almost surely M has no
isolated points, then one may replace s < D* by s < D* in the preceding sentence.)
Let H and g be positive and respectively %* and & measurable. If Z is a positive
optional process, then Z 1, 5 is optional since D* is a stopping time. Apply (2.6)
to this optional process and with K = Hg(X,)1 z~,,; to obtain
(5.1)

EX[ZGug(XTu)H HG"’ 0 < G < w] Exzsecz Ko 0 1[0 Du[(s)
= E f[O, DM[ZSEX(S)[Hg(Xu); u < R] dBS
If we set
(52) B = [10,51110, p4(?) dB,,
then (5.1) may be written
(5.3)

E*[Z;8(Xp)H © 05, 0 < G* < 0] = E"f3°ZSE~X(S)[Hg(Xu); u < R] dB}.

Arguing exactly as in the proof of (4.3) and (4.7) one obtains:

(54) E*[B(G* X5)Zs; 0 < G* < 0] = E*[§Z.B(s, X,)0.(X,, 1) dB*
for B a positive % X & * measurable function and Z a positive optional process;
and
(5.5)
E*[ZgH ° 0540 < G* < 0] = E*[FZK(X,, u, H) dB}
= EX[ ZgK(Xgu, u, H)/ 0(Xgu, 1); 0 < G* < 0]

for Z a positive optional process and H a positive % * measurable random variable
where K(x, s, H) is defined in (4.5).

Let
(5.6) M;(ds, dy) = P*[G" € ds, X(G*) E dy; 0 <G* < 0]
be the distribution of (G*, X(G*)) under P* on the set {0 < G* < o0}. Note that
(5.4) gives an alternate expression for M.

Define VY = V, = X(G* + s) on the random mterval 0 <s < L% Then we

shall call (¥;; 0 <s < L*) the excursion process on the interval ]G*, D*[. Arguing
exactly as in the proof of (4.12) and (4.13) one obtains the following result.

(5.7) PROPOSITION.
() Let 0<s5;, < -+ <5, <r,0<s<00,and 0 <u <r.
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Then
PG € ds, Xgu Edy, V, Edyy,- -, V, Edy, L* € dr]

= M(ds, ) 0.0, D] 0. (», #)Q,, . (71 B)
X st—sk_l(yk—l’ HIT (v, dr — s,).
() If0<s; <+ <5, <r,0<s<00,and 0 <u<r, then
PV, €Edy,- -+, V, Edy, L* €dr|G* = 5, Xgu = y]

=[Q~u(y’ 1)]_1Q~s,(J’: ) st—sk_,(yk—l’ YT (v, dr — i)

But the right-hand side of (5.7 ii) does not depend on s. Consequently if
0<s,<---<s <randu<¢one has

(58) P*[V, Edy,- -, V, Edy, L* €dr, G* < 0|Xgu = y]
=[Q~u(y’ 1)]_1Q~s,(y’ dyy) - - st—s,‘_,(yk—l,dyk)r(yk’ dr — ),

and G* and the excursion process (V,, 0 <s < L¥ L*) are conditionally indepen-
dent given X(G*) with respect to each P*.
Comparing (4.13) and (5.8) we obtain the following result.

(5.9) THEOREM. Fixt > 0and 0 <u < t. Then the excursion process straddling t,
(U,, 0 <s < L,, L) conditional on A, = u and X(G,) has the same distribution under
each P* as the excursion process on the interval 1G*, D*[,(V,,0 <s < L*, L¥)
conditional on X(G*).

6. The predictable version. Under suitable conditions one can obtain a “pre-
dictable” version of Theorem 2.5. Conditions under which this is possible are given
in [9] — see especially the discussion on page 379 and pages 393—-394; also example
(4.13) on page 398 is illuminating in this matter. In the present paper we shall not
strive for the utmost generality, but shall be content with a result that covers the
applications we have in mind.

In the remainder of this paper we assume that X is a Hunt process and that there
exists a o-finite reference measure ¢. The assumption that almost surely { = oo is
still in force. Recall that a nearly Borel subset N of E is admissible provided
Ty =inf{t > 0: X,_ € N} almost surely. It is known that every finely perfect set
is admissible, and that if X satisfies Hunt’s hypothesis (B)—in particular under
duality assumptions—every nearly Borel set is admissible.

We now suppose that

(6.1) M={t:X,€F}

where “—"" denotes closure and F is a finely closed admissible set. Under these
conditions R = T almost surely and {x: P*(R=0) =1} = F'—the set of
points regular for F. (Note that F” is the set which was denoted by F in Section 2.)
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Under these circumstances one may take the dual predictable projection in (2.6)
and obtain the following result.

(6.2) THEOREM. Let M be of the form (6.1). Then there exist a predictable additive
functional | = (1) with a finite 1-potential and a family of measures (P*; x € E) on
Q with x - P*(A) &* measurable whenever A € F$*—if, in addition, E is Polish
x— F"(A) is Borel whenever A € ¥ °—and such that if Z is a positive predictable
process and K(w) is B X F* measurable, then

(6.3) E*S,c6ZK(8,) = EX[$ZEXV[ K] dI,

for all x. Moreover, E*(1 — e %) < 1 and P*(R = 0) = 0 for all x.

One may prove the strong Markov property of the measures P* (ie., (2.7))
exactly as the strong Markov property of the measures P~ is proved in [10]. Let f be
the indicator of the complement of F. Because F is admissible it follows that almost
surely if ¢ is an isolated point of M, then both X, and X,_ are in F. As a result
almost surely Z, = f(X,_) = 0 for s € G. Apply (6.3) with this Z and K, = (1 —
e~ %) independent of s to obtain

0= EX[SA(X, )EXO(1 — e™R) dl, = E*[Sf(X)EXN1 — e F) di,.
But 0 < E”(1 — e ®) < 1 for all y, and hence / is carried by F. Finally it is easy to
see and well known that if F is projective, in particular if F is finely perfect and

closed, then / is continuous.
Define for ¢ > 0

(6.4) O.(x, f) = E*[ f(X)); t <R].

Then it follows just as in Section 3 that for each x, { Q,(x, *)} />0 1S an entrance law
for (Q,), and that Q,(x, -) does not charge F". In fact all of the results of
Proposition 3.4 are valid with O replaced by Q; of course, F” is now playing the
role of Fin (3.4).

The results of Sections 4 and 5 may be recast in the present situation. However,
in order to carry over the argument in the first paragraph of Section 5 one seems to
need an additional hypothesis. For example, if almost surely M contains no
isolated points, then 0 <s = G“ < oo if and only if s€ G, R° 8, >u, and
s < D*.Now Iy . is predictable and so one obtains the following analog of (5.1):

(65) E*[Zgg(Xru)H ° 85,50 < G* < 0]

= Exflo’ Du]ZsE_X(S)[Hg(Xu); u < R] dls
for positive predictable Z, and g and H as in (5.1). Once this result is established
the remainder of Section 5 goes just as before. In particular, if F is finely perfect,
then almost surely M has no isolated points.
In rephrasing the results of Sections 4 and 5 one replaces Q, B, X(G,), and X(G*)

by Q, I, X(G, —), and X(G* — ) respectively. For example, (5.9) becomes the
following.
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(6.6) THEOREM. Assume M is of the form (6.1) and has no isolated points almost
surely. Fix t > 0 and 0 < u < t. Then the excursion process straddling t, (U, 0 <s
< L,, L) conditional on A, = u and X(G, —) has the same distribution as the
excursion process on the interval 1G*, D*[,(V,, 0 <s < L* L") conditional on
X(G* = ). In particular, if 0 < s; < - - - <s, <randu <r, then

PV, € dy -, V, € dy L' € d, G < ol X(G* =) = ]

=[2., D] 0. DO, () - - -
X st_,—sk(yk—l’ Y (v dr — s,).

Moreover G* and (V,0 <s < L* L*) are conditionally independent given
X(G* —). In addition (V,),~, conditional on X(G* — ) = y under P* is an inhomo-
geneous Markov process whose entrance law and transition function are given by
(4.14) with O replaced by Q.

In the sequel we shall use the predictable versions of the results of Sections 3, 4
and 5 when M is of the form (6.1) with F finely perfect without special mention. If,
in addition to being finely perfect, F is closed, then, as remarked above (6.4), / is a
continuous additive functional with a finite 1-potential that is carried by F.

7. Excursions from a peint. As in Section 6 we assume that X is a Hunt process
with a o-finite reference measure £. We fix a point b € E and we assume that b is
regular (for itself), that is, P?(T, = 0) = 1 where T, = inf{¢t > 0: X, = b} is the
hitting time of b. Then F = {b} is a finely perfect closed set, and so all of results of
the previous sections apply to

< (1.1 M= {t:X =b}".
Under these assumptions / is a continuous additive functional carried by {5}, and

so ! is a local time for b. If we define P* = P?, then, because / is carried by {b},
(6.3) takes the form

(72) EXE:EGZsKs(os) = EfoOZsE*[Ks] dls

for Z a positive predictable process and K (w) a positive B X F* measurable
function. Similarly we shall write

(7.3) *f = Qub, f) = E*[ f(X,); t <R]
for the associated entrance law. In the present case R = T, almost surely and we
shall usually write 7, in place of R in our formulas. :

The continuous additive functional / is determined by its A-potential, #*, which is
finite for A > 0 and given by

(7.4) uMx) = E*[Fe ™M dl, = E*[Fe ™™ d,
= E*(e M)E’[Fe™™ dI, = uNb)E*(e ).

Let r = (1,) be the right continuous inverse of /. Then it is well known that 7 is a
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strictly increasing subordinator under P?, and so

(7.5) Eb{e ™) = 7180,

(7.6) gA) = YA + [10 wje Mv(db)

where y > 0 and » is a measure on ]0, oco] satisfying f(1 A s)r(ds) < co. The
possible mass of » at oo corresponds to a jump to oo by 7. This, in turn,

corresponds to sup{¢ : X, = b} < 0.
In the sequel the function

(7.7) h(u) = »(Ju, 1)
will play an important role. Clearly 4 is a right continuous decreasing function on
10, oo] with lim, _,,, A(u) = »({o0}) and satisfying [oh(u) du < oo for each t < oo.
In particular, lim, , uh(u) = 0, although A(0 + ) may be infinite. In fact, since
7,>0,if t > 0, (0 + ) = oo if ¥y = 0. By a simple change of variables
(7.8) ur(b) = Ebfye ™ dl, = Eb[Xe ™ dt = 1/g(M).

Also of importance is the measure m(dt) = dE®(l). If ¢ > 0, then

Jo(t)ym(dr) = E°[q(t) dl, = E®[o(r,) dt;

so that m is just the potential measure of 7. It follows from (7.8) that
(7.9) J&eMm(dr) = 1/g(N).

If we assume a bit more about the process X, we can say more about m. Suppose
first that:
(7.10) Each point x € E is regular and Y(x, y) = E*(e™ ") is jointly Borel measur-

able.
Under (7.10) there exists a local time /* for each x € E satisfying almost surely

(&(dx) = dx)

(7.11) Jof(X) ds = [f(x)]" dx

for all bounded Borel f and ¢ > 0 simultaneously. Moreover, if we define

(7.12) uMx,y) = EXffe ™ ™Mdl), A>0,

then it follows from (7.11) that

(7.13) E*[Fe™Mf(X,) dt = [uN(x,y) f(y) &

for A > 0 and positive Borel f. See [7] for a proof of these facts. Comparing (7.4)
and (7.12) we see that we may suppose that / = /% and then «*(x) = u*(x, b). (This

may involve replacing P* by cP* where ¢ is a constant.) Next suppose that
X has a transition density p(t, x, y) with respect to § such that

(7.14) uN(x,y) = [Fe (1, x, y) dt
forall x,y in E and A\ > 0.
Then from (7.8) and (7.12), (b, b) = [g(A)] %, and hence (7.9) implies

(7.15) m(dt) = p(1, b, b) dt.
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We explicitly shall state when we are assuming that (7.10) and (7.14) hold, and we
shall refer to this situation as the nice case.

In general, it is known, see [8] for example, that if 1, denotes the indicator of
{b}, then [{1,(X,) ds = vl,, and hence
(1.16) UMb, (b)) = E*[ge™™1,(X,) dt = yE*[Se ™ dI, = v/g(N).

In particular y = 0 if and only if {4} is of potential zero, and if y > 0, then
(7.17) m(dt) = y~'P,(b, {b}) at.

We now specialize the results of the previous sections to the present situation.
Then it is clear that (Q,) is the semigroup of the process (X, T,) — X killed when it
first hits 5. We first note that if # > 0, then almost surely
(7.18) {(G,=t}={G, =t=D}={X,=b}.

To see this suppose firstly that G, = ¢t > 0. Then either X, = b or X,_ = b, and
since the quasi-left-continuity of X implies that X, = X,_ almost surely, we see that
almost surely {G, = ¢} C {X, = b}. On the other hand if {X, = b}, then G, = ¢,
and D, = ¢ almost surely on {X, = b} since b is regular. Combining these observa-
tions yields (7.18).

Clearly {G, = 0} = {T, > t}. Here and henceforth all equalities of this type are
understood to hold almost surely unless explicitly stated otherwise. We now apply the
predictable version of (4.2) with Z and H identically one to obtain in light of (7.18)
and the previous remark (we decompose {2 as the disjoint union of {G, = 0},
{G, =t},and {0 <G, <1t})

(71.19)  Pf(x) = QSf(x) + E*{f(X); X, = b} + [3Q" .f m*(ds),

- where m*(ds) = dE*(l,). Note that m® = m. Of course, (7.19) is the celebrated
“last exit” decomposition. Let x = b in (7.19). Then, since Q,(b, -) =0, taking
Laplace transforms we obtain in view of (7.9) and (7.16)

(7.20) M f) = g U(b) — f(b)
where u*(f) is the Laplace transform of Q*f. Clearly (7.20) determines the entrance
law (Q). In particular if f = 1, then U1 = A~! and so (7.20) becomes

(721) pM(1) = 59%\1—731.
On the other hand
g) = YA = [0, (1 — e7¥)p(ds) .
= k(o) = [§(1 = e )d[ h(s) — h(0)]
= h(o0) '+ Mffe‘"’[h(s) — h(0)] ds
= A[PeMh(s) ds.

Since both Q*1 and A(f) are right continuous we have made the following
identification.
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(7.22) ProOPOSITION. QF1 = h(?).
In the present case I'(x, df) = P*[T, € dt], and it follows from (7.4) and (7.8)
that

(1.23) fEe~MT(x, df) = uN(x)/uNb) = uM(x)g(N).

Clearly (7.23) determines the exit law I(x, -). In the nice case ¥ (x) = u*(x, b) =
/e p(t, x, b) dt.

Next we consider the excursion straddling ¢ where ¢ > 0 is fixed. Since b is
regular, P%(G, = 0) = P%(T, > ) = 0. Applying (7.2) with Z = ¢(s) and K, =
SX,_ (s + Ty) o< s<1,) and using (7.18) results in
(724) E°[9(G)f(X)UD,)] = ¢(1) f(B)¥(1)P*[ X, = b]

+[o@()E*[ (X, _J¥(s + Tp); t — s < T, m(ds).
Because of the Markov property of P* the last term in (7.24) may be written
Sop(s)m(ds)[ QF (dy) f(»)[¥(t + r)T(y, dr).

Consequently if 0 <s < ¢ < r one has
(125) P°[G, € ds, X, € dy, D, € dr] = e(ds)e(dr)e,(dy) P(b, {b)})
+m(ds)Qr ()T (y, dr — )ocscicry-
Integrating (7.25) over the appropriate variables and using (7.22) and (3.5) for Q}

one obtains the following formulas. Recall from (7.7) that »(dr) = — dh(r) is the
Lévy measure of 7.
(7.26) P®[ G, € ds, D, € dr] = &(ds)e(dr)P(b, {b})

+m(ds)v(dr — s)1{0<s<t<r)’

(7.27) P*(G, € ds) = &(ds)P(b, {b}) + h(t — s)m(ds)l(oc,sy,

(7.28) PY(G, € ds, X, € dy) = ¢(ds)e,(dy)P(b, {b})
+m(dg)Qt*—s(dy)l(0<s<t}s
(7.29) PP[X, € &|G, = 5] =%’£;¢S))), 0<s<t.

For (7.29) to be valid one must require A(x) > 0 for all ¥ < ¢. These formulas take
an especially pleasing form in the nice case.

We turn next to the first excursion exceeding u > 0 in length. It is easy to see,
using the fact that /.. is the time of the first jump of = which exceeds u in length,
that P?[G* = 0] = lim,_, e "™, Hence P*(G* = o0) = 0 if h(x) > 0 and P*(G*
= o0) = 1 if A(u) = 0. Thus, in what follows, we shall suppose that ¥ > 0 and
h(u) > 0, or equivalently that ¥ > 0 and P?(G* < ) = 1. Recall that 7% = u +
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G*. Applying (7.2) with Z = <p(s)1[0, Du](s) and K, = f(X (s + T,)1 w<t,) W
obtain
(7.30)

E*{@(G*) [[X(T*)]W(D*)} = E*[S(s)E*[ f(X (s + T,); u <T,] di.
But /, is constant on the interval [G*, D¥], and so introducing the measure
(7.31) m*(ds) = dE*(L, 5 p) = dE*([ pgu)s
and using the Markov property of P*, (7.30) yields

(7.32) P”[G“ € ds, X(T*) € dy, D* €E dr] = m*(ds)Q*(ady)T(y, dr — u — 5);
O<u+s<r.

Once again this formula may be specialized in many ways. We record here only the
following:

(7.33) PP[G* € ds]| = h(u)ym*(ds)
(7.34) PY[X(T*) € dy, L* € dr] =[h(w)]” ' QX(d)T(p,dr — u), 0 <u <r

where, as before, L = D* — G* is the length of the first excursion exceeding u in
length. It is now immediate that G and (X(T*), L") are independent under Pb,

Since the definition of m* involves D* (or G*), formula (7.32) is less satisfactory
than (7.25) in which m is obtained directly from /, and in the nice case, directly
from the transition function of X by (7.15). In Section 9 we shall express m*, or at
least its Laplace transform, directly in terms of ». See (9.3). Note, however, that
" from (7.33) the total mass of m* is [A(u)]".

We now translate Theorem 6.6 to the present case. As before U, = X(G, + s),
0<s<L, and V, = X(G*+ 5),0 <s <L* are the two excursion processes.
Under the current assumptions X(G, — ) = b = X(G* — ) almost surely P, As
before A, = t — G, is the age of the excursion straddling ¢ at time ¢. Observe that
0 < A4, < t almost surely P°.

(7.35) THEOREM. Let 0 <u < t. Then the process (U,, 0 <s < L,; L,) conditional
on A, = u has the same law as (V,, 0 < s < L*; L*) which is given by

PV, €dyy,- -+, V, Edy, L* € dr|
= [h(u)]_lQ::(dyl)Qsz—sl(yb &) - st—sk__,(y;c—l’ AT (Y dr — ;)

where 0 <s; < + - + <5, <randu <r. Moreover G* and the process (V, 0 < s <
L*; L*) are independent.

(7.36) REMARK. Of course, (6.3) also contains the joint distribution of X(G,) or
X(G*) with any of the previously discussed variables. Define a measure Q,” on
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E X E fort > 0 by
(7.37) 0.%(a) = E*[a(X,, X,); t <R]

for a(x,y) a positive & X & measurable function. Note that Q*f = Q*(1 ® f)
where (1 ® f)(x,y) = f(»). Then, for example,

(138)  PP[G* € ds, X(G*) € dx, X(T*) € dy, D* € dr]
= m*(ds)Q,*(dx, dy)T(p, dr — u — s)

for 0 <u + s < r. Similarly one may express the law of (V,, 0 <s < L*; L*), and
also the analogous quantities involving G,. We leave it to the interested reader to
write down the appropriate formulas.

8. An invariant measure. The assumptions in this section are the same as in
Section 7. The first part of the following theorem is due to Silverstein [12],
However, our proof differs in some details from his. We would like to thank
Professor Silverstein for pointing out an error in our original version of this
theorem.

(8.1) THEOREM. Let p(f) = [FOX(f)dt. Then w = p+ ye, is an invariant
measure for (P,) if and only if h(0) = 0. Let A = {x : PX(T, < o0) > 0}. Then p. is
o-finite on A and if h(oo) = 0, p is carried by A.

(8.2) REMARKS. If h(oco) =0, then (8.1) states that n is a o-finite invariant
measure for (P,); that is, nP, = 5 for all ¢ > 0. It is immediate from the discussion
_ in the first part of Section 7 that each of the following is equivalent to A(c0) = 0:

(i) PX(T, = o) = lim, ,,, @*1 = 0.

(i) g0 +)=0.

(i) E°(/,) = oo.
In the nice case each of these is equivalent to [&p(¢, b, b) dt = co.
(8.3) Remark. If P*(T, = oo) = 0 for all x, then A(c0) = 0. To see this let # > 0
and observe

PY[T,=o0]=P*T,°8 =o0,t<T,]
= E*[PX(’)(T,, =w); < T,,] = 0.
Note that this also shows that if ¢(x) = P*[T, = o], then ¢ = 0 a.e. Q* for each
t > 0 whenever h(o0) = 0. ‘
We turn now to the proof of (8.1). Since Q1 = h(¢), it is immediate that
(84) pP(f) = [§e~PQrf dr = E*[TrePf(X,) dt

is a finite measure if 8 > 0. Clearly u?(f )1 u(f) as B0 when f > 0. Let f be
positive, bounded, and continuous. Then for 8 > 0 and A > 0 using the Markov
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property for P* we find
pP(UY) = E*[fre PEXO e~ Nf(X,) ds dt

= E*[lie=B-=Nifoe~M(X Yds dt = T, + J,,
where

J, = E*[Be BNt Toe=Nf(X ) ds dt

= A - B)7'[#AH) - NN

and, since P*(T, = 0) = 0,
E*[fie= BNt 2ef(X,) ds dt

= UY(6)(B = N[ A1) - (D]
Combining these formulas with (7.20) and (7.21) yields
85) wA(UY) = A = B) [ wh(f) — BuP()U(b) + ¥f(B) — YAU'f(B)]-

Since f is continuous, ¢ — P,f(x) is right continuous, and hence we may invert (8.5)
with respect to A to obtain

J2

(8.6) pP(Pf) = e®[ pP(f) + f(b)] — YPS(D)
— B[ uP(1) + v]/beP "I P,f(b) ds.

Let 810. Then pf1pu and Buf(l) = E*(1 — e #%) > P*(T, = o0) = h(o0). There-
. fore (8.6) becomes

8.7) w(Pf) + YPf(b) = p(f) + vf(b) — h(o0)[oP.f(b) ds,
and this implies that n = p + ye, is invariant for (P,) if and only if h(e0) = 0.
Let ¢(x) = P*(T, = ). Then 1,. < ¢. If h(c0) = 0, then

*(A4°) < OX(p) = E*[ PXN(T, = 0); t < T,]
= P*[T,°0,=o0; 1 <T,] <PHT,=o0)=0,

and so u(4°) = 0.

To complete the proof of (8.1) it remains to show that p is o-finite on 4. Let
Y(x) = E*(e” ") and let 4, = {¢ > 1/n}. It then follows from (III-5.16) of [1]
applied to the multiplicative functional ¢ — 1, 7,/(¢) that V1, is bounded where
Vf(x) = E*f3f(X,) dt is the potential operator for (X, T}).

Let a, = sup(l, sup V1, ). Then 1 < @, < co. Let f = =% (@,2")"'1, . Then f
is bounded by 1, f is strictly positive on A = U 4, and Vf < 1. Therefore

JoQFfdt < [oQF1 dt = [oh(1) dt < o,
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and
rOrfdt = [N fdt = [FOQ.f dr
= QOFVf < 0}l < c0.
Hence p(f) = [°Q*f dt < oo and since f > 0 on A4, p is o-finite on A.

9. The measure m". In this section we shall compute the Laplace transform of
the measure m* defined in (7.31). In view of (7.33) this is the same as computing
the Laplace transform of the distribution of G*. It is interesting that even in the
case of Brownian motion it does not seem to be possible to explicitly invert these
transforms. The results of this section are valid for any subordinator  whose right
continuous inverse / is continuous, but we shall state them within the framework of

Section 7.
We fix u > 0 with A(x) > 0 and define

9.1 g(u, A) = YA + [io (1 — e )p(dr).

Thus g(u, -) is the subordinator exponent that corresponds to truncating the Lévy
measure v at u.

(9.2) PROPOSITION. Eb(e~2¢") = W%%;T)

PrOOF. We write 7, = 7! + 72 where 7! and 72 are independent subordinators
with 7! having exponent g(u, ) and 72 having exponent [, w1 — e Myv(dr).
Thus ' contains all the jumps of = which are less than or equal to « while 72 is a
compound Poisson process containing all the jumps of = which exceed u. Let R be
the time of the first jump of 72 Then R is the time of the first jump of 7 that

. exceeds u and hence
PP[R € dt] = h(u)e™ ™ d.
Clearly R = [;. and s0 G* = 7, _ = 7_. But R and 7' are independent and so
P[G*<v]=Prh_< o] = [FP?[1) < v]h(u)e™ ™ 4y
= h(u)[FP?[ 7} < v]e™"® gy,
since ¢ — 7, has at most a countable number of discontinuities. Taking Laplace
transforms we obtain

Eb[e_"G"] = h(u)f3°Eb[e_>‘"']e_"‘(“) dt
— - h(u)
= o0 1g(u, A) th(u) = —_—
h(u)[&e e dt W) + g )’
proving (9.2).
(9.3j COROLLARY.
@) f&e™Nm*“(dr) = [h(u) + g(u, N}~
1

(i) E%(e?P") = My(dr).

h(u) + g(u, N) S i
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PrOOF. The first assertion is an immediate consequence of (9.2) and (7.33). For
the second note that D* = G* + L* and, as remarked below (7.34), G* and L* are
independent. But from (7.34), P’[L* € dr] = [h(u)]~'w(dr) for r > u, and so (9.3
ii) follows from (9.2).

10. Additional hypotheses and examples. Under additional hypotheses that are
often satisfied in specific examples the preceding results take an especially pleasing
form. In this section we shall present a sampling of such results. However, we shall
not strive to obtain results under minimal hypotheses.

Throughout this section we assume that we are in the nice case; that is, (7.10)
and (7.14) hold. Moreover, we assume that £ does not charge points. In particular
this implies that P,(x, {b}) = O for each x € E, b € E, and ¢ > 0. In addition, we
impose the following regularity assumptions on the transition density p(t, x, y) in
(7.14):

(10.1) REGULARITY ASSUMPTIONS.
@) p(t, x, y) is continuous on |0, o[ X E X E.

(i) Given disjoint compact subsets K and L of E, p(t, x,y) — 0 as t|0 uni-
formly for x € K,y € L.

(ii)) Given e > 0, M, = sup{p(t,x,y): t > e, x EE,y €EE} < 0.

If we put p(0, x, y) = 0 for x # y, then it is evident under (10.1) that p(¢, x, y) is
uniformly continuous on [0, s] X K X L for s < o0, K and L disjoint compact
subsets of E.

If + > 0, then

PX(T, = t) < P(x, {b}) = 0.

Therefore, using the strong Markov property, we have

(10.2) Pf(x) = Qf(x) + EX{P,_pf(b); T, <1}
for t > 0 and f > 0. Define
(10.3) r(t,x,y) = EX{p(t = T,, b,y); T, < t}.

Since (s, y) — p(s, b, y) is uniformly continuous on [0, f,] X K for f, < o and K a
compact subset of E which does not contain b, it is easy to see that the family
{r(:, x, -) : x € E} is equicontinuous on [0, co[ X E, where r(0, x,y) = 0 and E, =
E — {b}. Now (10.2) implies that (¢, x, y) < p(t, x, y) almost everywhere in y and
hence this inequality holds everywhere on E,. (Actually it is easy to see that this
inequality holds everywhere on E if ¢+ > 0.) Define for ¢ > 0

(104) q(t$ x’y)_=p(t’ x?.y) - r(t> x>y)'

Then (¢, y) — q(t, x, y) is continuous on ]0, o[ X E, and on [0, o[ X(E — {b, x}).
Clearly g(t, x, -) is a density for the measure Q,(x, -). Recall that if x # b, Q,(x, -)
does not charge {b} and that if x = b, Q,(x, -) = 0. But (¢, b, y) = p(t, b, ), and
soq(t,b,y)=0fort > 0andyin E,.
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Next observe that
fr(t - & X, z)p(s, Z’y) dz = Ex{p(t - T, b?)’); T, <t- E}Tr(t> x,y)
as €]0, and hence

(10.5) Jq(t — & x, 2)p(e, 2, y) dziq(t, x, p).
It follows from the semigroup property of (Q,) that for f and s > 0
(10.6) q(t + 5, x,5) = [q(t, x, 2)q(s, z,y) dz

almost everywhere in y. Replace s by s ~ ¢ in (10.6), multiply both sides by
p(e, v, w), and integrate over y. Then let ¢/0 and use (10.5) and the monotone
convergence theorem to see that (10.6) holds identically in y. Hence ¢(¢, x, y) for
t>0,x #b,and y # b is a good transition density for Q,(x, -).
If +t >0, define for 0 <s <¢

(10.7) q*(t, b,y) = [QNdx)q(t — 5, X, »).

Because of (10.6) and the fact that (Q) is an entrance law for (Q,), it is clear that
q*(t, b, y) does not depend on the choice of s, 0 < s < t. Moreover, it is evident
that g*(¢, b, -) is a density for Q*(-) with respect to &dy) = dy. Finally using
(10.1-i), (10.1-iii), and the equicontinuity of {r(-, x, -); x € E} it is easily seen that
(t,¥) — q*(t, b, ) is continuous on ]0, co[ X E,. Also sup{g*(¢,b,y) :t > ¢,y €
E} < o for each ¢ > 0 since g(¢, x, y) < p(t, x, y) and QF is a finite measure. We
have included the explicit dependence of ¢* on b in our notation since in the
following paragraphs we shall consider ¢* as a function defined on 0, oo[XE
where E = {(x,y) EE X E:x +#y}. This is possible since each point b € E
satisfies our hypotheses.

We shall now assume the existence of a dual process X relative to £ satisfying the

" hypotheses of Section VI-1 of [1]. We shall use the standard notation of [1] without
special mention. It follows easily from (10.1) that X has a transition density
P(t, x, y) given by p(¢, x, y) = p(¢,y, x) and we assume [p(¢, x,y) dx = 1fort > 0
and y € E. Also (VI-1.25) of [1] implies that b is regular if and only if it is
coregular; that is, regular for X. Since (10.1) is symmetric in x and y, X satisfies all
of the hypotheses imposed on X in the first part of this section. Let I® be a local
time for X at b normalized so that

(10.8) Ex[ee~™ di* = iM(x, b) = ub, x).
The subordinator exponent of 7 under P? is then given by
(109) g(b,N) = (b, )" = uM(b, b) ™' = g(b, N).

Thus for the Lévy measure #° we have #® = »?, and hence A(b, 1) = h(b, 1). Note
that we have now introduced the dependence of g, », and 4 on b; so that g(b, A) is
what we previously wrote as g(A\) and so on. Since X satisfies the same hypotheses
as X we can construct the density 4(¢, x, y) = §(¢, x, y) for the process X killed
when it first hits >—denoted by (X, T,)—just as before. Using the well-known fact
that the potential kernels v*(x,y) and éM(x,y) for (X, T,) and (X, T,) satisfy
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oMx, y) = 6N, x) on E, X E,, it follows that 4(t, x, y) = q(t,y, x) on E, X E,.
Finally we let §*(¢, b, y) be the density for the entrance law Q, = Q (b, -) defined
by the formula dual to (10.7). Again we regard 4* as defined on ]0, o[ X E where
E={(x,y)) EE X E:x #y).

The next proposition gives explicit representations for ¢* and §*, and also for the
exit laws I?(x, -) and T*(x, -).

(10.10) ProposITION. If ¢t > 0 and x #y, then
(@) g*(t, x,y) = (d/dt)[oh(x, t — s)p(s, x, y) ds
(i) §*(t, x, ) = (d/dO)foh(x, t — 5)p(s, y, x) ds.

If x %y, then on 10, oo

(iii) (x, df) = P¥[T, € di] = §*(1, y, x) dt
@(v) V(x, dfy = P*[T, € di] = g*(t,y, x) dt.

ReEMARK. If u*(x, x) does not depend on x, which is the case, for example, if X
has stationary independent increments, then »* and A(x, -) do not depend on x;
and consequently (i) and (i1) of (10.10) imply that g*(¢, x, y) = §*(¢, y, x). Proposi-
tion (10.10) takes an especially nice form in this situation.

Proor. Fix b € E. Then (7.20) implies that for each A > 0
(10.11) [&e~Ng*(t, b, y) dt = g(b, N)u’(b,y)

almost everywhere in y. But the monotone convergence theorem implies that the
integral in (10.11) is right continuous in A while the right side is continuous.
Therefore one can find a fixed set E, C E with §(Ey) = 0 such that if y & E|, then
(10.11) holds for all A > 0.

We shall next show that (10.11) holds for each y € E, and each A > 0. From
(10.7)

q*(t’ b>y) = fq*(S, b, Z)q(t -5 2 )’) dz
for 0 <s <t and y € E. Integrating in s over |0, [, and then taking Laplace
transforms, we obtain in light of (10.11)

(10.12) [&e~Nig*(t, b, y) dt = g(b, \)[uM(b, 2)0*(z,y) dz

identically in A > 0 and y. But the right side, and hence the left side, of (10.12) is
cofinely continuous in y on E, since it is A-excessive for the semigroup (Q,”). Fix
y & E,. Then (10.11) holds identically in A > O for this y, and, using the monotone
convergence theorem, it is easy to see that for A >0

(10.13)  f&e™1g*(t, b, y) dt = — (g(b, Nu (b, y)Y
‘ = —g(b, \YuM(b, ) + g(b, \) [P Mp(t, b, y) at,

where the prime denotes differentiation with respect to A. But the right side of
(10.13) is continuous in y while the left side is cofinely continuous on E,. Since
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(10.13) holds for all y & E; and &(E,) = 0, it follows that (10.13) holds identically
for A > 0 and y € E,. Then integrate (10.13) over A, oof to obtain (10.11) identi-
cally for A > 0 and y € E,, because

(b, N (b, y) = 5(b, NdM(y, b) = E”(e ) 50

as A — o0 if y # b.
Next divide (10.11) by A and take inverse transforms to obtain

(1014) fé)q*(s’ b’y)dg = fé)h(b> [ - S)P(S’ b’y)dy
fory # b and ¢ > 0. (Under our assumptions, it is easily checked that both sides of
(10.14) are continuous in ¢.) But the left side of (10.14) is differentiable in ¢ because
5 — q*(s, b, y) is continuous on ]0, oo[, and consequently differentiating (10.14) we
obtain the first (and by duality, the second) assertion of (10.10).

In the present situation (7.4) may be written

E*(e™%) = g(b, Nu(x, b) = (b, Ni*(, x),

and comparing this with the dual of (10.11) we obtain (10.10-iii). This completes
the proof of (10.10).

ReEMARK. If y 5 x, then the measure I”(x, -) does not charge {0}, but
IV(x, {o0}) = 1 — [§G*(¢, y, x) dt may be positive.

Under the present assumptions the results of Section 7 take an especially
pleasing and symmetric form. We leave it to the interested reader to write out such
formulas using Proposition 10.10.

We close this section by discussing the stable processes of index a > 1 on the
teal line. Let X be such a process. Then X is a real valued process with stationary
independent increments whose distribution is determined by

(10.15) E%(eMX®) = E* (mXO-XOD) = o=
(10.16) $(n) = %Inl"[l + iBsgnytan 2 ]

where 1 <a < 2 and —1 < B < 1. Because of the factor ;7 in (10.16), X is the
standard one dimensional Brownian motion when a = 2. Let p(t, x) = p* #(¢, x)
be the density of X, with respect to Lebesgue measure under P°. Then p(¢, x, y) =
p(t, y — x) is the transition density of X,. It is immediate from (10.15) and (10.16)
that

(10.17) p(t, x) = t~Vep(1, V%),
(10.18) poA(1,0) < p=°(1, 0) = 21/“I‘(é)/a7r.

It is now evident that X satisfies all of the hypotheses of Proposition 10.10. From
(10.17)

(10.19) u(b, b) = uN0,0) = p(1, O)T(1 — 1/a)A /=",
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and so by (7.8)

(10.20) g(b,N) = g\) =[p(1, OT(1 — 1/a)]7'A' 71/
Consequently (7.21) gives

sin 7/« /a1
p(1, 0)

By (10.10), g*(t, x, ) is a function of y — x in the present case, say g*(t, +), and
G*(t, x,¥) = q*(t, », x) = g*(t, x — ). The function ¢*(s, z) is given by

(10.21) h(b, t) = h(1) =

i d -
10.22 *(¢ _sinm/a d 0, /a1
(1022) 0*(1,2) = A g o = 9 lp( ) ds
for t > 0 and z # 0, or by its Laplace transform
(10.23) fe~Ng*(t, z) dt = g(W)u™(0, z).
In this case of Brownian motion (a = 2) one has the explicit evaluation
(10.24) g*(t,z) = —IZ|—1e_(zz/2’), z#0,¢>0.
(2#t’)?
From (9.2) one obtains in the present case
-1
(10.25) E%e™2¢") = {e"‘“ + ()\u)l_l/“y(%, )\u)]

where y(o, x) = [5° 'e”" dt is the incomplete gamma function, ¢ > 0. It is of
some interest to note that (10.25) states that the distribution of G* depends only on
« and is independent of B. On the other hand we obtain the familiar explicit
formula

(1026) PG, € ds)=n""sin % (t—s)/* 's™Veds, 0<s<t,

from (7.27) for the distribution of G,. Again it depends only on a and is indepen-
dent of 8.
It follows readily from (10.25) and (10.26) that

E%GY) = (a« — Du; E%G,) = ("‘ - l)t.

The interested reader may find it amusing to write down the corresponding
quantities for the asymmetric Cauchy processes.
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