CHI'83 Proceedings

Executable Specifications for a Human-Computer
Interface

FKobert J. K. Jacob

Naval Research Laboratory
Washington, D.C. 20375

It is useful to be able to specify a proposed human-computer interface formally
before building it, particularly if a mockup suitable for testing can be obtained directly
from the specification. A specification technique for user interfaces, based on state
transition diagrams, is introduced and then demonstrated for a secure message sys-
tem application. An interpreter that executes the resulting specification js then
described. Some problems that arise in specifying a user interface are addressed by
particular features of the technique: To reduce the complexity of the developer's task,
a user interface is divided into the semantic, syntactic, and lexical levels, and a
separate executable specification is provided for each. A process of stepwise
refinement of the syntactic specification, leading from an informal specification to an
executable one is alsc presented. Since the state diagram notation is based on a non-
deterministic model, constraints necessary to realize the system with a deterministic

December 1983

interpreter are given.

Writing a formal specification of the user
interface of a computer system before building
it permits the interface designer to consider a
variety of possible user interfaces and describe
them precisely and compactly without actually
having toc code them. It also permits the appli-
cation of human performance models to the
specifications to obtain information about the
user interfaces they describe before building
them [1,15]. The specifications can be checked
for certain undesirable properties of the user
interface, such as almost-alike states [14],
interactive deadlock [4], and character-level
ambiguity {18]. Further benefits accrue if a pro-
totype or mockup of the user interface of the
proposed system can be constructed directly
from the specification. Problems with the pro-
posed user interface can then be identified early
in the design process, when they are easier to
fix. While many prospective users will find a for-
mal specification of a proposed system difficult
to understand, they will have much less trouble
evaluating a mockup system and identifying
deficiencies in its user interface, both through
informal demonstrations and formal experi-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-121-0/83/012/0028 $00.75

28

ments.

This paper describes a specification tech-
nique for user-computer interfaces and its use
in the development of a secure military message
system. The specifications are executed inter-
pretively to provide a working prototype of the
system. The paper describes the specification
technique by means of an example. Then, it
shows the decomposition of both the design pro-
cess and the specification itself into the seman-
tic, syntactic, and lexical levels and describes
how stepwise refinement can be used at the syn-
tactic level. The constraints on the specification
necessary for a system to be realized with a
deterministic interpreter are given, and the
implementation of the interpreter is described.

Overview of the Specification Technique

Time sequence is an important aspect of
the surface structure of an interactive system
as seen by a user. Specifications based on state
transition diagrams are most suitable for
describing interactive human-computer inter-
faces largely because they represent time
sequence explicitly, in contrast to BNF, in par-
ticular, where it is implicit [1R]. The state tran-
sition model has also been found useful in
describing a user’'s mental model of an interac-
tive computer system [4, 13]). Several investiga-
tors have proposed different specification nota-

CHI'83 Proceedings

December 1983

tions based on state transition diagrams
[2,8,5,86, 14,17,20]. Each provides some unique
benefits but alsc has some disadvantages [10].
Only a few are sufficiently formal or complete to
be executed directly, and fewer still have inter-
preters [5, 18].

The present technique is based on the state
transition diagrams introduced in [12] and has
been refined based on experience applying it to
a message system. It is an attempt to syn-
thesize the most useful features of previous
notations and to permit an interpreter to exe-
cute the specification. Using this approach, a
working prototype of a receive-only secure mili-
tary message system has been specified and
constructed as one member of a family of proto-
types built in the Secure Military Message Sys-
tems project at the Naval Research Laboratory.
Experience with the prototype has shown that
the design of the user interface is critical in a
multi-level-secure system, both to ensure that
the user maintains the security of the system
and to prevent security considerations from
hampering the progress of his or her work.

Details and Example of the Specification Tech-
nique

To describe the technique, consider a sec-
tion of the syntax portion of the executable
specification of the protatype message system,
as shown in Figure 1. (The full executable
specification is given in [11].) Each state is
represented as a circle. The start state is the
one at the left side of the diagram; the end state
(or states) is named inside its circle. Each tran-
sition between two states is shown as a directed
arc. It may be labeled with one or more of the
following:

« The name of an input token (which begins with
i followed by a name in upper case, like iQUIT)

s An output token (o followed by upper case, like
oLLOGNAME)

« A nonterminal (in all lower case, like login),
which is defined by a separate diagram that is
called like a subroutine and must be traversed
from start to end to complete this transition

+ A condition, which may make arbitrary tests
on external variables and must be true for this
transition to be taken (testret, shown here, is
a special type of condition that examines the
state through which a called nonterminal
diagram with several exits returned)

s An action, which may manipulate the external
variables and which will be executed if this
transition is taken (no examples appear in Fig-
ure 1).

Description of tokens and nonterminals
called by mms. The output tokens oLOGIN and

ns
mesT T
///
"// Cond }‘atrl((lud)
(Cform wu_,(fnmL_mmugo_u

29

Figure 1. Specification of the prototype mes-
sage system syntax—first diagram.

oLOGNAME display an empty login template and
a prompt for the user’s name, respectively, and
are described in a separate lexical-level
specification in the same notation. iQUIT and
illOGOUT are input tokens whose internal details
are also described in the lexical-level
specification. login is a nonterminal consisting
of the entire log-in sequence; its definition is not
shown here, but it does have two possible exits,
depending on whether the user entered valid
login data. The setup nonterminal initializes a
user session and displays incoming messages.
The emd nonterminal describes the user com-
mands and is given below.

When the system is started, the login tem-
plate and then the prompt for the user’'s name
are displayed. The user can then attempt to log
in or else enter a quit command to exit from the
system entirely. If the login is successful, the
user is prompted for a command, or he may log
out. After each command other than logout, a
fresh command template (oCMD) is displayed,
and the user is prompted (cCMDNAME) to enter
another command name.

Text form. This same diagram can be
represented in text form, as shown in Figure 2.
The diagram in this form is the actual input to
the interpreter, as well as to the program that
produced Figure 1. Each diagram begins with a
header line that gives the name of the diagram
(This is the name by which it could be called as a
nonterminal from another diagram.) and the
name(s) of its exit state(s). Then, each transi-
tion is listed in a line of the form:

st; oLOGIN -»promptlog

dencting a transition from state st to state
promptlog that produces output token oLOGIN.
Examples of how input tokens, nonterminals,
and conditions are expressed in this notation
appear in Figure 2. The use of various typefaces
in the printed version is incidental; the plus
signs dencte '"user-visible” states, discussed
later.

CHI'83 Proceedings

December 1983

mms -+end

st: oLOGIN -»promptlog
promptlog: oLOGNAME -getlog
+getlog: login —»gotlog

+getlog: iQUIT »end

gotlog: cond:testret("ok"); »setup
gotlog: cond:testret("bad"”); ~badlog
badlog: oBADLOG ~st

setup: setup »promptemd
prompicmd: oCMDNAME -gefcmd
+geternd: cmd ~»ready

+getcmd. iLOGOUT -end

ready: oCMD -spromptemd

Figure 2. Text form of first diagram of the

message system specification.

Additional nonterminals. Figure 3 shows
more of the specification of the protctype mes-
sage system. First, it shows a portion of the
diagram for the cmd nonterminal, which was
called from Figure 2. (Most of the individual
commands left out because they are repetitive.)
cmd obtains a command name, calls the
appropriate nonterminal diagram (such as
copy—mc) to get the arguments to the com-
mand if any and execute it, and then decides
whether to return immediately, to display out-
put using the scroll nonterminal and then
return, or to display an error message
(oCMDERR) and return. Figure 3 alsc shows the
nonterminal that obtains the arguments to cne
of the commands and executes it (copy_mc).

Actions and conditions. An action or condi-
tion is represented as one or more function
calls. Function names in upper case (eg.,
COPY_.ME) denote commands that create,
medify, or display message system data objects.
These commands constitute the semantics of
the system and are described and implemented
separately. Functions names in lower case
represent operations on local variables (like
equal or assign); many of these would be pro-
vided by a typical programming language, but,
to keep the interpreter language simple, they
are treated as external functions here. A vari-
able name preceded by an asterisk denctes a

30

cmd -»ret

+geten: iDISPLAY_MSG -ce__display
+geten: iCOPY_MC ~ce_copy
+geten: iCREATE_MF -ce_create
ce_display: oCLRERR -+do_display
ce_copy: oCLRERR -do_copy
ce_create: oCLRERR -»do_create
do_display: display—msg —+test
do_copy: copy—mece —test

do_create: create_mf —»test

test: cond:testret("noshow”); »ret
test: cond:testret("show’); »show
test: cond:testret("err"); »err
show: scroll »ret

err: oCMDERR -ret

El

copy_me - (noshow,err)

prompin: oMSGNUM -~gein

+getn: IMSGNUM -promptf

promptf: oFILENAME -getf

+getf: iFILENAME -test
act:COPY_ME(*voCMDERR,
viMSGNUM, GLOBAL__curmf,
viFILENAME);

test: cond:equal(veCMDERR, "OK");
-*noshow

test: cond:NOT equal(voCMDERR, "0OK");
-err

Figure 3. Additional diagrams from the

message system specification.

reference parameter; a]l other parameters are
passed by value. The actual value received by an
input token (such as the actual number entered
for the token iIMSGNUM) is available in a variable
named v plus the token name (e.g., viMISGNUM).
When output tokens are to display variable data
(rather than constant messages or prompts),
such data may be passed to them with
similarly-named variables (e.g., the variable
voCMDERR contains the actual error message
that will be displayed by the token oCMDERR, it
was set by COPY_ME). All variables contain
character strings of arbitrary length.

CHI'83 Proceedings

December 1983

Three Levels of the Specification

To reduce the complexity of the designer’s
task, the process of designing a user interface is
divided into three levels. A specific notation
suitable for each level is then provided. Foley
and Wallace [8] introduced the notion of describ-
ing an interactive user interface at the seman-
tic, syntactic, and lexical levels, and that model
is followed here. An attempt is made to del-
ineate the three levels more precisely, particu-
larly with respect to output, and to provide a
specific notaticn for specifying each of them
separately to an interpreter.

The three levels are defined by Foley and
van Dam [7]: The semantic level describes the
functions performed by the system. It tells
what information is needed to perform each
function and the result of performing it. The
syntactic level describes the sequences of
inputs and outputs. For the input, this means
the rules by which sequences of words (tokens)
in the language are formed into proper (but not
necessarily semantically meaningful) sentences.
The lezical level determines how input and out-
put tokens are actually formed from the primi-
tive hardware operations (lezemes).

The Semantic Level

In the actual specification, the semantic
level is concerned with the manipulation of
internal variables; no actual input or output
operations are described at this level, although
the manipulation of values read in as inputs and
the generation of values to be displayed as out-
puts are described. The semantic-level
specification consists of descriptions of func-
tions that operate on these internal data, that
is, the function parameters, their types, and the
eflects of the functions. Specification of the
eflects is not considered here, as it is a general
problem in software specification, not unique to
user interfaces. Techniques such as pseudo-
code or algebraic specifications would be
appropriate. The semantic functions are simply
supplied to the specification interpreter as code
in a conventional programming language (C).

In the prototype message system imple-
mentation, the bulk of the semantic functions
are implemented in a separate program written
in LISP [9]. The LISP interpreter runs as a
separate process and provides the semantic
operations upon request from the process run-
ning the state diagram interpreter. The func-
tions actually executed by the diagram inter-
preter simply send requests to and receive out-
put from the process running the LISP program,
which may thus be viewed as an abstract
machine that implements the semantics of the
message system. The operations provided by

3

that machine are described in a separate
specification [8]. The details of the semantic-
level specification of the user interface are
thereby partitioned from the syntactic- and
lexical-level specifications and treated
separately [12].

The Syntactic Level

The specification of the syntactic level
describes the sequence of the logical input, out-
put, and semantic operations, but not their
internal details. A logical input or output opera-
tion is an input or output tocken. Its internal
structure is described in the lexical-level
specification, while the syntactic-level
specification calls it by its name, like a subrou-
tine, and describes when the user may enter it
and what will happen next if he does (for an
input token) or when the system will produce it
(for an output token). The syntactic-level
specification is written entirely in state transi-
tion diagram notation and is directly executable.
Figures 1 through 3 show syntactic-level
specifications. A transition in one of these
diagrams may call a lexical diagram for a token,
another syntactic diagram for a nonterminal
symbol, or an action or condition consisting of
one or more of the semantic functions defined
above.

With the present technique, a state transi-
tion may be associated with an input token or an
output- token, but not both. Treating outputs as
separate tokens on separate transitions (rather
than as a special kind of action) in the
syntactic-level specification permits the
specification to be more symmetric in the way it
describes input and output. It is analogous both
to Shneiderman’s multi-party adaptation of BNF
[16] and Singer’s version of state transition
diagram notation [17] in that similar kinds of
tokens or transitions are used separately for
input and output.* It differs from most other
state transition diagram-based notations that
have been used to describe the syntax of
interactive languages in that they describe user
input on state transitions, but then append to
the transitions actions that both produce output
and modify internal data. Thus they describe
the input syntax clearly but confound the output
with internal actions and input transitions.

*This could gbviously be extended to more than
two-way conversations by choosing better names for the
directions of the multi-party conversation than the
present iTOKENNAME and oTOKENNAME, which stand for
input and output token names.

CHI'83 Proceedings

December 1983

The Lexical Level

The lexical level specification describes the
physical embodiment of each of the input and
output tokens, including identifying the devices,
display windows, and positions with which they
are associated and the primitive lexemes that
constitute them. All information about the
organization of a display intc areas and the
assignment of input and output tasks to
hardware devices is confined to this level.

The executable lexical-level specification is
written in the same state transition diagram
notation, avoiding introducing another notation
and another interpreter. As shown in Figure 4,
the lexical-level specification consists of a
separate state diagram for each input or output
token, each of which may be called from the
syntactic-level diagrams just as they call other
sub-diagrams for nonterminals. At this leve],
output is described by special actions tacked
onto the state transitions; such actions are
expressed and coded as function calls in the
same way as the semantic actions; and they per-
form the actual output. These functions may
only be called at the lexical level. At the syntac-
tic level, output is only performed by output
token transitions, to avoid mixing output actions
with input transitions. At the lexical level, all
outputs (other than lexical echoes) have already
been separated from inputs.

For an input token, the lexical-level
specification gives the sequence of primitive
input lexemes (for example, key presses) and
the device for each lexeme by which the token is
entered as well as any lexical output that is pro-
duced. Lexical output constitutes prompts and
acknowledgments for the individual lexemes
that make up a token; most often, it consists of
echoes. The lexical-level specificationn consists
of state diagrams that call lexemes, which are
either individual hardware input actions (with
names entirely in upper case, like NEWLINE) or
else sub-diagrams that directly call those
hardware actions (with names of the form 1 fol-
lowed by a lexeme name in upper case, like 1UL-
CHAR, any upper- or lower-case alphabetic char-
acter). Lexical outputs (echoes) are given using
the special output actions.

For an output token, the lexical
specification tells how (that is, with which dev-
ices, windows, positions, formats, colors, and the
like) the token is presented to the user. The
actual information to be presented by an ocutput
token may have been set by a semantic action
(for semantic output) or may be constant (for
syntactic output). The lexical specification gives
the format in which the data should be
displayed, and, in the case of syntactic output,
the contents. The lexical-level output

32

oBADLOG -»ret

st: IERRWIN »refresh

refresh: IREFRESH -print

print: -»ret act:print("Sorry, try again -
or press ESC to exit");

oCHMDERR -ret

st: IERRWIN —»refresh

refresh: IREFRESH -»print

print: -ret act:print(voCMDERR);

)

iCOPY_MC -ret

st: ICMDWIN -getit

getit: IFKEY7 »ret
act:print("copy—mece");

iFILENAME -ret

st: ICMDWIN - firsichar

firstchar: IULCHAR -»mwre
act:{print(viULCHAR);
assign(*viFILENAME, vIULCHAR)};

mare: IULCHAR -»more
act:{print(viULCHAR);
append(*viFILENAME, viULCHAR)};

more: NEWLINE -»ret

Figure 4. Examples of lexical specifications
from the message system.

specification is also written in state diagram
notation, again calling the special actions to per-
form the actual output. Some primitive objects
used for producing output are defined as output
lexemes, specified in their own sub-diagrams. In
particular, all window selections are considered
lexemes (e.g.,, INAMEWIN), so that each token
specification can make explicit which window it
uses by calling the lexeme for that window,
rather than putting that information in the out-
put function definitions.* The diagram is exe-
cutable, like the other diagrams, but it is gen-
erally just a linear sequence of lexeme and func-
tion calls.

*Shneiderman [16] introduced a comparable
scheme to an extended form of BNF. By making the win-
dow selection an output lexeme here, the notation need
not be extended to handle this situation.

CHI'83 Proceedings

December 1983

Stepwise Refinement of the

Specification

While the first aspect of the syntax to be
designed should usually be the input syntax,
more details must eventually be provided, still
at the syntactic level, to yield a complete (exe-
cutable) specification. Beginning with a
specificaticn of the input language, a description
of the output is added in a process of stepwise
refinement that leads toc a complete syntactic
specification.

Syntax

The first step is a diagram of the input syn-
tax only, with no actions or outputs. At every
state in this specification, the computer is wait-
ing for input from the user. Next, informal
descriptions of the actions and outputs are
added to each transition, but the sequence of
the actions, outputs, and conditions associated
with any single transition is not formally
specified. In the third step, new states are
introduced into the diagrams. Each individual
action and condition is put on its own state tran-
sition, and each cutput operation is defined as a
separate output token and put on its own transi-
tion. This means that new "internal" states are
introduced into the specification, in which the
system is not waiting for user input. The user
never observes the system in any of these
states; he only sees it in the states in which'it is
waiting for input. The latter are called wuser-
wisible states and may be marked with plus
signs in the specification. In the fourth step, the
individual actions and conditions are specified
formally, that is, as function calls to specific
semantic-level functions. Figures 1 through 3 ali
show syntactic-level specifications correspond-
ing to this step. Finally, provisions for handling
errors and features, such as help, abort-
command, and escape to monitor, are made in
the fifth step. State transitions for these pur-
poses are added to some or all of the user-visible
states.

To aid in the early stages of this process of
stepwise refinement, the specification inter-
preter may be told to provide stubs for missing
sub-diagrams in a specification and simply to
print descriptions of actions instead of trying to
execute them. Thus, the specification in its
early, informal stages may still be parsed,
drawn, and executed automatically.

Restrictions on Nondeterminism

Introducing output tokens into the syntax
diagrams on their own separate transitions
implies that there should not be a "fork” in a
diagram (a state with more than one transition
leading from it) where there is an output token.
That is, any state with a choice of transitions
leading from it must make that choice by

33

accepting different input tokens (or testing con-
ditions), rather than different oufput tokens,
since a transition with an cutput token is always
"selected.” This is actually a special case of a
more general restriction that must be placed on
these specifications to make them realizable by
a deterministic interpreter, irrespective of
whether output is specified by separate tokens.
The syntax diagrams describe a nondeterminis-
tic automaton, which is simulated by a deter-
ministic interpreter. The interpreter selects an
arbitrary path, tries it, and, if it reaches a dead
end, backtracks and tries another path instead.
In an interactive system, it is meaningless to
backtrack over a path that has already gen-
erated output to the user. The fcllowing con-
straint will prevent this: Starting af each state
at which there is a fork, the inputs that will
cause the machine to reach any transition thot
will produce an output to the user must be dis-
joint from the inputs that will cause it to reach
any other transition with an oufput. That is,
from any state, the same initial input cannot
cause two different output transitions, even
though subsequent input might disambiguate
them.

Implementation

The specification interpreter is written in C
{about 2000 lines of code) and runs under UNIX
on a VAX. A common front end, constructed
with YACC and LEX from a BNF descripticn of the
specification language, is used to parse the
specification, both for interpreting it and for
converting it to diagram form. The semantic
functions and the output functions used by the
lexical-level specification are coded in C and
then linked with the interpreter. Device-
independent facilities for full-screen text termi-
nals and also graphical output devices are avail-
able to these functions.

Conclusions

This paper has presented a technique for
specifying the user interface of an interactive
computer system and described how it has been
used to produce a formal and executable
specification of the user interface of a military
message system. The technique permits the
designer of a user interface to describe the
interface completely and obtain a prototype of it
directly from the specification. The notation
uses state transition diagrams to emphasize the
time sequence aspects of the user-visible
behavior of the system. It permits both the
specification and the design process to be
separated into the semantic, syntactic, and lexi-
cal levels, and it supports a process of stepwise
refinement at the syntactic level.

CHI'83 Proceedings

December 1983

Acknowledgments

[would like to thank Connie Heitmeyer,

Mark Cornwell, and Carl Landwehr for their help-
ful suggestions and comments on this work.
This work was suppoerted by the Naval Electronic
Systems Command under the direction of H.O.
Lubbes.

References

1.

10.

11.

T. Bleser and J.D. Foley, *Towards Specify-
ing and Evaluating the Human Factors of
User-Computer Interfaces,” Proc. Human
Factors in Computer Systems Conference,
pp. 309-314 (1982).

MUMPS Development Committee, MUMPS
Language Standard, American National
Standards Institute, New York (1977).

M.E. Conway, ‘‘Design of a Separable
Transition-Diagram Compiler,”” Comm. ACM
6 pp. 396-408 (1963).

J. Darlington, W. Dzida, and S. Herda, 'The
Role of Excursions in Interactive Systems,”
International Journal of Man-Machine Stu-
dies 18 pp. 101-112 (1983).

M.B. Feldman and G.T. Rogers, “Toward the
Design and Development of Style-
independent Interactive Systems,” Proc.
Human Factors in Computer Systems
Conference, pp. 111-116 (1982).

J.D. Foley and V.L. Wallace, ""The Art of
Graphic Man-Machine Conversation,”
Proceedings of the IEEE 62 pp. 462-471
(1974).

J.D. Foley and A. van Dam, Fundamentals
of Interactive Computer Graphics,
Addison-Wesley, Reading, Mass. (1982).

C.L. Heitmeyer, '‘An Intermediate Com-
mand Language (ICL) for the Farmily of Mili-
tary Message Systems,”” Naval Research
Laboratory Technical Memorandum 7590-
450:CH:ch (13 November 1881).

C.L. Heitmeyer, C.E. Landwehr, and M.R.
Cornwell, **‘The Use of Quick Prototypes in
the Military Message Systems Project,”
ACM SIGSOFT Software Engineering Notes
7 pp. 85-87 (1982).

R.J.K Jaccb, *“Survey and Examples of
Specification Techniques for User Inter-
faces,”” NRL Report, Naval Research
Laboratory, Washington, D.C. (1983).

R.J.K. Jacob, "“Formal Specification of the
User Interface of a Receive-only Secure Mil-
itary Message System Prototype,” Naval
Research Laboratory Technical Memoran-
dum 7590:RJI:rj (1983).

12.

13.

14.

15.

18.

17.

18.

19.

20.

34

R.J.K. Jacob, "‘Using Formal Specifications
in the Design of a Human-Computer Inter-
face,” Comm. ACM 26 pp. 259-264 (1983).

T.P. Moran, “The Command Language
Grammar: A Representation for the User
Interface of Interactive Computer Sys-
tems,” Mnternational Jouwrnal of Man-
HMachine Studies 15pp. 3-50 (1981). The
Interaction Level of the Command
Language Grammar is similar to a state
transition diagram specification.

D.L. Parnas, “On the Use of Transition
Disgrams in the Design of a User Interface
for an Interactive Computer System,”
Proc. 24th National ACH Conference, pp.
379-385 (1969).

P. Reisner, ““Formal Grammar and Human
Factors Design of an Interactive Graphics
System,” IEEE Transactions on Software
FEngineering SE-7 pp. 229-240 (1981).

B. Shneiderman, ‘‘Multi-party Grammars
and Related Features for Defining Interac-
tive Systems,”” [EEE Transactions on Sys-
tems, Man, and Cybernetics SMC-12(2) pp.
148-154 (March 1981).

A. Singer, “Formal Methods and Human
Factors in the Design of Interactive
Languages,” Ph.D. dissertation, Computer
and Information Science Dept., Univ. Mas-
sachusetts (1979).

H. Thimbleby, *“‘Character-level Ambiguity:
Consequences for User Interface Design,”
International Journal of Man-Machine Stu-
dies 18 pp. 211-225 (1982).

A.l. Wasserman and D.T. Shewmake, ““Rapid
Prototyping of Interactive Information Sys-
tems,” ACM SIGSOFT Software Engineer-
ing Notes 7 pp. 171-180 (1982).

W.A. Wocds, ““Transition Network Grammars
for Natural Language Analysis,” Comm.
ACHM 13 pp. 591-606 (1970).

