
CH1'83 Proceedings December 1983

Executable Specifications for a Human-Computer
Interface

Robert J.K. Jacob

Naval Research Laboratory
Washington, D.C. 20375

It is useful to be able to specify a proposed human-computer interface formally
before building it, particularly if a mockup suitable for testing can be obtained directly
from the specification. A specification technique for user interfaces, based on state
transition diagrams, is introduced and then demonstrated for a secure message sys-
tem application. An interpreter that executes the resulting specification ~s then
described. Some problems that arise in specifying a user interface are addressed by
particular features of the technique: To reduce the complexity of the developer's task,
a user interface is divided into the semantic, syntactic, and lexical levels, and a
separate executable specification is provided for each. A process of stepwise
refinement of the syntactic specification, leading from an informal specification to an
executable one is also presented. Since the state diagram notation is based on a non-
deterministic model, constraints necessary to realize the system with a deterministic
interpreter are given.

Writing a formal specification of the user
interface of a computer system before building
it permits the interface designer to consider a
variety of possible user interfaces and describe
them precisely and compactly without actually
having to code them. It also permits the appli-
cation of human performance models to the
specifications to obtain information about the
user interfaces they describe before building
them [1, 15]. The specifications can be checked
for certain undesirable properties of the user
interface, such as almost-alike states [14],
interactive deadlock [4], and character-level
ambiguity [18]. Further benefits accrue if a pro-
totype or mockup of the user interface of the
proposed system can be constructed directly
from the specification. Problems with the pro-
posed user interface can then be identified early
in the design process, when they are easier to
fix. While many prcspective users will f_nd a for-
mal specification of a proposed system difficult
to understand, they will have much less trouble
evaluating a mockup system and identifying
deficiencies in its user interface, both through
informal demonstrations and formal experi-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0'89791-121-0/83/012/0028 $00.75

ments.

This paper describes a specification tech-
nique for user-computer interfaces and its use
in the development of a secure military message
system. The specifications are executed inter-
pretively to provide a working prototype of the
system. The paper describes the specification
technique by means of an example. Then, it
shows the decomposition of both the design pro-
cess and the specification itself into the seman-
tic, syntactic, and lexical levels and describes
how stepwise ref.nement can be used at the syn-
tactic level. The constraints on the specification
necessary for a system to be realized with a
deterministic interpreter are given, and the
implementation of the interpreter is described.

O v e r v i e w o f t h e S p e c i ~ t . i o n T e c h n i q u e

Time sequence is an i m p o r t a n t a s p e c t of
the surface structure of an interactive system
as seen by a user. Specifications based on state
transition diagrams are most suitable for
describing interactive human-computer inter-
faces largely because they represent time
sequence explicitly, in contrast to BNF, in par-
titular, where it is implicit [12]. The state tran-
sition model has also been found useful in
describing a user's mental model of an interac-
tive computer system [4, IS]. Several investiga-
tors have proposed different specification nora-

28

CH1'83 Proceedings December 1983

t ions b a s e d on s t a t e t r a n s i t i o n d i a g r a m s
[2, 3, 5, 6, 14, 17, 20]. Each p rov ides s o m e unique
benef i t s b u t also has s o m e d i s a d v a n t a g e s [10].
Only a few a r e suff ic ient ly f o rm a l o r c o m p l e t e to
be e x e c u t e d d i rec t ly , and fewer still have i n t e r -
p r e t e r s [5, 19].

The p r e s e n t t e c h n i q u e is b a s e d on the s t a t e
t r a n s i t i o n d i a g r a m s i n t r o d u c e d in [12] and has
b e e n re f ined b a s e d on e x p e r i e n c e apply ing it to
a m e s s a g e s y s t e m . I t is a n a t t e m p t to syn-
thes i ze t he m o s t useful f e a t u r e s of p rev ious
n o t a t i o n s and to p e r m i t a n i n t e r p r e t e r to exe-
c u t e the speci f ica t ion . Using this a p p r o a c h , a
working p r o t o t y p e of a r ece ive -on ly s e c u r e mili-
t a r y m e s s a g e s y s t e m has b e e n speci f ied a n d
c o n s t r u c t e d as one m e m b e r of a fami ly of p r o t o -
t y p e s bui l t in the S e c u r e Military Message Sys-
t e m s p r o j e c t a t the Naval R e s e a r c h Labo ra to ry .
E x p e r i e n c e with t h e p r o t o t y p e has shown t h a t
the de s ign of the u s e r i n t e r f a c e is c r i t i ca l in a
mu l t i - l eve l - s ecu re s y s t e m , b o t h to e n s u r e t h a t
t he use r m a i n t a i n s t he s e c u r i t y of t h e s y s t e m
and to p r e v e n t s e c u r i t y c o n s i d e r a t i o n s f r o m
h a m p e r i n g the p r o g r e s s of his o r he r work.

I}ets i ls a n d E x a m p l e of t h e Spec i f i ca t i on T e c h -
n i q u e

To d e s c r i b e the t echn ique , c o n s i d e r a sec -
t ion of t h e s y n t a x po r t i on of t h e e x e c u t a b l e
spec i f i ca t ion of the p r o t o t y p e m e s s a g e s y s t e m ,
as shown in F igure 1. (The full e x e c u t a b l e
spec i f i ca t ion is g iven in [11].) Each s t a t e is
r e p r e s e n t e d as a circle. The s t a r t s t a t e is the
one a t the left s ide of the d i ag ram ; t h e end s t a t e
(or s t a t e s) is n a m e d inside i ts circle . Each t r a n -
s i t ion b e t w e e n two s t a t e s is shown as a d i r e c t e d
arc . It m a y be labe led with one or m o r e of the
following:

• The n a m e of an inpu t t o k e n (which begins wi th
i followed by a n a m e in u p p e r case , l ike iQU1T)

• Art o u t p u t t o k e n (o followed by u p p e r case , l ike
N.,0G~Auz)

• A n o n t e r m i n a l (in all lower case , l ike login),
which is def ined by a s e p a r a t e d i a g r a m t h a t is
ca l led l ike a s u b r o u t i n e a n d m u s t be t r a v e r s e d
f r o m s t a r t to e n d to c o m p l e t e th is t r a n s i t i o n

• A condi t ion, which m a y m a k e a r b i t r a r y t e s t s
on e x t e r n a l va r i ab l e s a n d m u s t be t r u e for th is
t r a n s i t i o n to be t a k e n (t e s t r s t , shown here , is
a spec i a l t y p e of cond i t ion t h a t e x a m i n e s the
s t a t e t h r o u g h which a ca l led n o n t e r m i n a l
d i a g r a m with s e v e r a l exi t s r e t u r n e d)

• Art ac t ion , which m a y m a n i p u l a t e t he e x t e r n a l
va r i ab l e s and which will be e x e c u t e d if th is
t r a n s i t i o n is t a k e n (no e x a m p l e s a p p e a r in Fig-
u.re 1).

Descr'i.pti, o~ o f tolce~s and nonterrninals
caged by re, m-q, The o u t p u t t o k e n s oLOGIN and

I l~ure I. Specification of the prototype mes-
sage system syntax-first diagram.

29

oLOGNAME display an empty login template and
a prompt for the user's name, respectively, and
are described in a separate lexical-level
specification in the same notation, iQDIT and
iLOGOUT are input tokens whose internal details
are also described in the lexical-level
specification, login is a nonterminal consisting
of the entire log-in sequence; its definition is not
shown here, but it does have two possible exits,
depending on whether the user entered valid
login data. The setup nonterminal initializes a
user session and displays incoming messages.
The e m d n o n t e r m i n a l d e s c r i b e s t h e u s e r c o m -
m a n d s a n d is g iven below.

When the s y s t e m is s t a r t e d , t he login t e m -
p l a t e and t h e n the p r o m p t for the u s e r ' s n a m e
a r e d i sp layed . The u s e r can t h e n a t t e m p t to log
in or e l se e n t e r a q u i t c o m m a n d to exi t f r o m the
system entirely. If the login is successful, the
user is prompted for a command, or he may log
out. After each command other than logout, a
fresh command template (oCMD) is displayed,
and the user is prompted (oCMDNAUE) to enter
another command name.

Text form. This same diagram can be
represented in text form, as shown in Figure 2.
The diagram in this form is the actual input to
the i n t e r p r e t e r , as well as t o the p r o g r a m t h a t
p r o d u c e d F igure 1. E a c h d i a g r a m begins with a
h e a d e r line t h a t g ives the n a m e of the d i a g r a m
(This is the n a m e by which it could be ca l led as a
n o n t e r m i n a l f r o m a n o t h e r d i ag ram.) and the
n a m e (s) cf i ts exi t s t a t e (s) . Then, e a c h t r ans i -
t ion is l i s ted in a line of t h e fo rm:

st: oLOGIN -~prornptlog

denoting a transition from state st to state
promptlog that produces output token oLOGIN.
E x a m p l e s of how inpu t tokens , n o n t e r m i n a l s ,
etud condi t ions a r e e x p r e s s e d in th is no t a t i o n
a p p e a r in F igure 2. The use of va r ious t y p e f a c e s
in t he p r i n t e d ve r s i on is inc identa l ; the plus
signs d e n o t e "user-vis ib le" s t a t e s , d i s cus sed
l a t e r .

CH1'83 Proceedings December 1983

mm~ -*er~d

st:

prornptlog :

+getlog :
+getLog :

go ttog :
gottog :

badlog:

se~'up :

1oromptcmd:

+getc~,zz~:
+getcmd:

ready:
.

oLOGIN -*prornptlog

oLOGNAME -*getlog

login -*gotlog
iQUIT ~end

e o n d : t e s t r e t (" o k ") ; -*set'up
c o n d : t e s t r e t ("bad"); -*badlog

oBADLOG -~st

setup -*pro rnptcrnd

oCMDNAME -~ge tc rnd

cmd -,ready
iLOGOUT -*end

oCMD --~rornptcrnd

I F igu r e 2. Text fo rm of first d i ag r am of the
m e s s a g e s y s t e m specif icat ion.

AddShional nonterm~,nals. Figure 3 shows
m o r e of the spec i f ica t ion of t he p r o t o t y p e mes -
sage s y s t e m . First , it shows a p o r t i o n of the
d i a g ra m for the c m d non te rmina l , which was
cal led f r om Figure 2. (Most of the individual
c o m m a n d s lef t ou t b e c a u s e t h e y a re r epe t i t ive .)
c m d obta ins a c o m m a n d name , calls t he
a p p r o p r i a t e n o n t e r m i n a l d i a g r a m (such as
c o p y _ m e) to ge t t he a r g u m e n t s to the com-
m a n d if any and e x e c u t e it, and t h e n dec ides
w h e t h e r to r e t u r n immed ia t e ly , to display out-
pu t using t h e sc ro l l n o n t e r m i n a l and t h e n
r e t u r n , or to display an e r r o r mes sag e
(oCMDERR) a nd r e t u r n . F igure 3 also shows the
n o n t e r m i n a l t ha t ob ta ins t h e a r g u m e n t s to one
of the c o m m a n d s and e x e c u t e s it (copy mc) .

Act/o~,s a n d co~,dit'~orts. An ac t i on or condi-
t ion is r e p r e s e n t e d as one or m o r e func t ion
calls. F u n c t i o n n a m e s in u p p e r c a se (e.g.,
COPY ME) d e n o t e c o m m a n d s t ha t c r e a t e ,
modify, or display m e s s a g e s y s t e m d a t a objec ts .
These c o m m a n d s c o n s t i t u t e the s e m a n t i c s of
the s y s t e m and a r e d e s c r i b e d and i m p l e m e n t e d
sepa ra t e ly . Func t ions n a m e s in lower case
r e p r e s e n t ope ra t i ons on local var iab les (like
equal or ~ i g n .) ; many of these would be pro-
vided by a typ ica l p r o g r a m m i n g language, but ,
to keep the i n t e r p r e t e r l anguage simple, t h ey
a re t r e a t e d as e x t e r n a l func t ions here . A vari-
able n a m e p r e c e d e d by an a s t e r i sk d e n o t e s a

emd -*ret

+getcn:
+getcn:
+getcn:

c¢_d~,.Rolmj :
ce_co2~Y:
c e _ c r e ~ t e :

do--d~,sptcgu :
do_copy:
do_create:

test:
test:
test:

iDISPLAY_.MSG -*ce_display
iCOPY_MC -*ce_copy
iCREATE_MF -*ce_create

oCLRERR -*do_display
oCLRERR -*do_copy
oCLRERR -*do_create

display_xnsg -wrest
copy_me -,test
create_.mf -.test

cond:testret ("noshow"); -->vet
cond:testret ("show'); -*show
eond:testret ("err"); -*err

s h o ~ : scroll -*ret

e r r : oCMDERR -*ret

c ~ p y _ m c -* (vtosho'w, err)

promptn: oMSGNUM -*getn

+getn: iMSGNUM -.prornptf

pro rnptf. oFILENAME -*getf

+getfl iF~LENAME -*test
act:COPY_ME(*voCMDERR,
viMSGNUM, GLOBAL cu rmf ,
viFILENAME);

test: ~nd=equal(voCMDERR, "OK");
-*~'tO$]zo~

test: cond:NOT equal(voCMDERR, "OIC);
-*err

I I~qgure 3. Additional diagrams from the
message system specification.

reference parameter; a~l other parameters are
passed by value. The actual value received by an
input token (such as the actual number entered
for the token iM~NUH) is available in a variable
named v plus the token name (e.g., viI~SGNUM).
When output tokens are to display variable data
(rather than constemt messages or prompts),
such data may be passed to them with
similarly-named variables (e.g., the variable
voCMDERR contains the actual error message
that will be displayed by the token oCMDERR it
was set by COPY ~.). All variables contain
character strings of arbitrary length.

30

CH1'83 Proceedings December 1983

T h r e e Leve ls o f t h e S pec i f i c a t i on

To r e d u c e the c o m p l e x i t y of the d e s i g n e r ' s
t a sk , the p r o c e s s of des ign ing a u s e r i n t e r f a c e is
d iv ided in to t h r e e levels. A speci f ic n o t a t i o n
su i t ab l e for e a c h level is t h e n prov ided . Foley
and Wallace [6] i n t r o d u c e d the not ion of d e s c r i b -
ing a n i n t e r a c t i v e u s e r i n t e r f a c e a t the sern~n-
t#,c, s~mtactt'Lc, and lexi, c a / l e v e l s , and t h a t mode l
is followed here . An a t t e m p t is m a d e to del-
i n e a t e the t h r e e levels m o r e p rec i se ly , p a r t i c u -
lar ly with r e s p e c t to ou tpu t , and to p rov ide a
speci f ic n o t a t i o n for spec i fy ing e a c h of t h e m
separately to an interpreter.

The three levels are defined by Foley and
van Dam [7]: The sezruzntic level describes the
functions performed by the system. It tells
what information is needed to perform each
function and the result of performing it. The
xb, rttactW, c level describes the sequences of
inputs and outputs. For the input, this means
the rules by which sequences of words (to/cons)
in the language are formed into proper (but not
necessarily semantically meaningful) sentences.
The tez'/cat level determines how input and out-
put tokens are actually formed from the primi-
tive hardware operations (lezezn.es).

The Semant i c Level

In the actual specification, the semantic
level is concerned with the manipulation of
internal variables; no actual input or output
operations are described at this level, although
the manipulation of values read in. as inputs and
the generation of values to be displayed as out-
puts a r e desc r ibed . The s e m a n t i c - l e v e l
spec i f i ca t ion cons i s t s of d e s c r i p t i o n s of func-
t ions t h a t o p e r a t e o n t h e s e i n t e rna l da ta , t h a t
is, the f unc t i on p a r a m e t e r s , t h e i r t ypes , a n d the
e f fec t s of the func t ions . Spec i f i ca t ion of the
e f fec t s is not c o n s i d e r e d he re , as it is a g e n e r a l
p r o b l e m in so f tware spec i f ica t ion , no t un ique to
u s e r i n t e r f ace s . Techniques s u c h as p seudo -
code or a l g e b r a i c spec i f i ca t ions would be
a p p r o p r i a t e . The s e m a n t i c func t ions a r e s imp ly
supp l i ed to t h e spec i f i ca t ion i n t e r p r e t e r as code
in a conven t iona l p r o g r a m m i n g l anguage (C).

In t he p r o t o t y p e m e s s a g e s y s t e m imple -
m e n t a t i o n , t he bu lk of the s e m a n t i c func t ions
a r e i m p l e m e n t e d in a s e p a r a t e p r o g r a m w r i t t e n
in LISP [9]. The LISP i n t e r p r e t e r runs as a
s e p a r a t e p r o c e s s a n d p rov ides t h e s e m a n t i c
o p e r a t i o n s upon r e q u e s t f r o m t h e p r o c e s s run-
ning the s t a t e d i a g r a m i n t e r p r e t e r . The func-
t ions ac tua l l y e x e c u t e d by the d i a g r a m in t e r -
p r e t e r s imp ly s end r e q u e s t s to and r ece i v e ou t -
p u t f r o m the p r o c e s s runn ing the LISP p r o g r a m ,
which m a y thus be viewed as an a b s t r a c t
m a c h i n e t h a t i m p l e m e n t s t h e s e m a n t i c s of the
m e s s a g e s y s t e m . The o p e r a t i o n s p r o v i d e d by

that machine are described in a separate
specification [8]. The details of the semantic-
level specification of the user interface are

thereby partitioned from the syntactic- and
lexical-level specifications and treated
separately [12].

The Syntactic Level

The specification of the syntactic level
describes the seq'~e~tce of the logical input, out-
put, and semantic operations, but not their
internal details. A logical input or output opera-
tion is an input or output token. Its internal
structure is described in the lexical-level
speci f ica t ion , while t he syn t ac t i c - l ev e l
spec i f i ca t ion calls it by i ts n a m e , like a s u b r o u -
t ine, and d e s c r i b e s when the u s e r m a y e n t e r it
and what will h a p p e n n e x t if he does (for a n
inpu t t oken) or w h e n the s y s t e m will p r o d u c e it
(for an o u t p u t token) . The s y n t a c t i c - l e v e l
spec i f i ca t ion is w r i t t e n e n t i r e l y in s t a t e t r ans i -
t ion d i a g r a m n o t a t i o n a n d is d i r e c t l y e x e c u t a b l e .
F igures 1 t h r o u g h 3 show syntac t ic - leve l
spec i f ica t ions . A t r a n s i t i o n in one of t h e s e
d i a g r a m s m a y call a lexical d i a g r a m for a token ,
a n o t h e r s y n t a c t i c d i a g r a m for a n o n t e r m i n a l
symbol , or a n a c t i o n o r cond i t ion cons i s t ing of
one or m o r e of t h e s e m a n t i c func t ions de f ined
above.

With t he p r e s e n t t echnique , a s t a t e t r an s i -
t ion may be associated with an input token or an
output-token, but not both. Treating outputs as
separate tokens on separate transitions (rather
than as a special kind of action) in the
syntactic-level specification permits the
specification to be more symmetric in the way it
describes input and output. It is analogous both
to Shneiderman's multi-party adaptation of BNF
[16] and Singer's version of state transition
diagram notation [17] in that similar kinds of
tokens or transitions are used separately for
input and output.* It differs from most other
state transition diagram-based notations that
have been used to describe the syntax of
interactive languages in that they describe user
input on state transitions, but then append to
the transitions actions that both produce output
and modify internal data. Thus they describe
the input syntax clearly but confound the output
with internal actions and input transitions.

*Th.is could obviously be extended to more than
two-way conversations by choosing better names for the
directions of the multi-party conversation than the
present i~I]NAIE and oTOI~NAItl]K which stand for
in pv2 and ozdput token names.

31

CH1'83 Proceedings December 1983

T h e Lexical Level

The lexical level specification describes the
physical embodiment of each of the input and
output tokens, including identifying the devices,
display windows, and positions with which they
are associated and the primitive lexemes that
cons t i tu te them. All information about the
organizat ion of a display into areas and the
assignment of input and output tasks to
hardware devices is confined to this level.

The executable lexical-level specification is
written in the same state transition diagram
notation, avoiding introducing another notation
and another interpreter. As shown in Figure 4,
the lexical-level specification consists of a
separate state diagram for each input or output
token, each of which may be called from the
syntactic-level diagrams just as they call other
sub-diagrams for nonterminals. At this level,
output is described by special actions tacked
onto the state transitions; such actions are
expressed and coded as function calls in the
same way as the semantic actions; and they per-
form the actual output. These functions may
only be called at the lexical level. At the syntac-
tic level, output is only performed by output
token transitions, to avoid mixing output actions
with input transitions. At the lexical level, all
outputs (other than lexical echoes) have already
been separated from inputs.

For an input token, the lexical-level
specification gives the sequence of primitive
input lexemes (for example, key presses) and
the device for each lexeme by which the token is
entered as well as any lexical output that is pro-
duced. Lexical output constitutes prompts and
acknowledgments for the individual lexemes
that make up a token; most often, it consists of
echoes. The lexical-level specification consists
of state diagrams that call lexemes, which are
either individual hardware input actions (with
haines entirely in upper case, like NEWLINE) or
else sub-diagrams that directly call those
hardware actions (with names of the form l fol-
lowed by a lexeme name in upper case, like]IJL-

any upper- or lo'wer-cese alphabetic char-
acter). Lexical outputs (echoes) are given using
the special output actions.

For an output token, the lexical
specification tells how (that is, with which dev-
ices, windows, positions, formats, colors, and the
like) the token is presented to the user. The
actual information to be presented by an output
token may have been set by a semantic action
(for semantic output) or may be constant (for
syntactic output). The lexical specification gives
the format in which the data should be
displayed, and, in the case of syntactic output,
the contents. The lexical-level output

o B A D L O G -~ret
s t: 1ERRWIN - . re fresh.
refresh.: 1REFRESH -sprint
p'rizzt: -*ret a e t p r i n t (" S o r r y , t r y again -

or press ESC to exit");

oCMDERR - , re t
st: 1ERRWIN -~re f r e s h
refresh,: 1REFRESH -*p'r/nt
Im'¢nt: -Fret aetprint(voCMDERR);

iCOPY_MC -~ret
st: 1CMDWIN -~get'~t
gen t : 1FKEY7 -~re t

a c t p r i n t ("copy_mc");

i.FIT.]~[AME -vret

st: 1CMDWIN -~ f l rs tch .~r

f l r s t c h a r : IULCHAR -*more
act:{ print(vlULCHAR);
assign(*viFILENAME, vIULCHAR)];

~'l,oTe: 1ULCHA_R -*m, ore
act:~ print (vlULCHAR);
append(*viFILENAME, vlULCHAR)I;

more: NEWLINE -~ret

I Figure 4. Examples of lexical specif icat ions]
from the message system.

specification is also wri t ten in s t a t e d iagram
notation, again calling the special act ions to per-
form the actual output. Some primitive objects
used for producing ou tpu t are defined as ou tput
lexemes, specified in their own sub-diagrams. In
par t icular , all window select ions are cons idered
lexemes (e.g., INAI~WI[b O, so tha t each token
specification can make explicit which window it
uses by calling the lexeme for tha t window,
r a the r than putt ing that informat ion in the out-
put funct ion definitions.* The diagram is exe-
cutable, like the o the r diagrams, but it is gen-
erally just a l inear sequence of lexeme and func-
tion calls.

*$hneiderrnan [16] introduced a comparable
scheme to an extended form of BNF. By malting the win-
dow selection an output lexeme here, the notation need
not be extended to handle this situation.

32

CH1'83 Proceedings December 1983

Stepwise Refinement of the Syntax
Spec i f iea t icm

While t he first a s p e c t of t he s y n t a x to be
de s igned should usua l ly be t h e inpu t syn tax ,
m o r e de ta i l s m u s t e v e n t u a l l y be p rov ided , st i l l
a t t h e s y n t a c t i c level, to yield a c o m p l e t e (exe-
cu t ab l e) spec i f ica t ion . Beginning with a
spec i f i ca t i on of the inpu t language, a d e s c r i p t i o n
of the o u t p u t is a d d e d in a p r o c e s s of s t epwise
r e f i n e m e n t t h a t l eads to a c o m p l e t e s y n t a c t i c
spec i f ica t ion .

The first s t ep is a d i a g r a m of t h e inpu t syn-
t ax only, with no a c t i o n s or ou t pu t s . At eve ry
s t a t e in th is spec i f ica t ion , t h e c o m p u t e r is wait-
ing for input f r o m the user . Next, i n fo rma l
d e s c r i p t i o n s of the ac t ions and o u t p u t s a r e
a d d e d to e a c h t r ans i t i on , bu t t he s e q u e n c e of
the ac t ions , o u t p u t s , and cond i t ions a s s o c i a t e d
with any single t r a n s i t i o n is not fo rma l ly
specif ied. In t he t h i rd s t ep , new s t a t e s a r e
i n t r o d u c e d into the d i ag rams . E a c h individual
a c t i on and cond i t ion is pu t on i ts own s t a t e t r a n -
si t ion, and e a c h o u t p u t o p e r a t i o n is def ined as a
s e p a r a t e o u t p u t t o k e n and pu t on i ts own t r ans i -
t ion. This m e a n s t h a t new " in t e rna l " s t a t e s a r e
i n t r o d u c e d into the spec i f ica t ion , in which the
s y s t e m is no t wai t ing for u s e r input . The u s e r
n e v e r o b s e r v e s the s y s t e m in a n y of t h e s e
s t a t e s ; he only sees it in the s t a t e s in w h i c h i t is
wai t ing for input . The l a t t e r a r e ca l led u s e r -
v is ib le s t a t e s and m a y be m a r k e d with plus
s igns in the spec i f ica t ion . In the f o u r t h s tep , the
individual a c t i ons and cond i t ions a r e spec i f ied
formal ly , t h a t is, as func t ion calls to specif ic
s e m a n t i c - l e v e l func t ions . F igures 1 t h r o u g h 3 all
show syn t ac t i c - l eve l spec i f i ca t ions c o r r e s p o n d -
ing to th is s t ep . Finally, p rovis ions for handl ing
e r r o r s a n d f ea tu re s , s u c h as help, a b o r t -
c o m m a n d , and e s c a p e to mon i to r , a r e m a d e in
the fif th s t ep . S t a t e t r a n s i t i o n s for t h e s e pur -
poses a r e a d d e d to s o m e or all of t he user -v is ib le
states.

To aid in the early stages of this process of
stepwise refinement, the specification inter-
preter may be told to provide stubs for missing
sub-diagrams in a specification and simply to
print descriptions of actions instead of trying to
execute them. Thus, the specification in its
early, informal stages may still be parsed,
drawn, and executed automatically.

Restr ic t ions on Nondeterminiscm

In t roduc ing o u t p u t t o k e n s into t he s y n t a x
d i a g r a m s on t he i r own s e p a r a t e t r a n s i t i o n s
impl ies t h a t t h e r e should not be a "fork" in a
diagram (a state with more than one transition
leading from it) where there is an output token.
That is, any state with a choice of transitions
leading from it must make that choice by

a c c e p t i n g d i f f e ren t ,~,nput t o k e n s (or t e s t i n g con-
dit ions), r a t h e r t h a n d i f fe ren t o u t p u t tokens ,
s ince a t r a n s i t i o n wi th a n o u t p u t t o k e n is a lways
" se l ec t ed . " This is a c t u a l l y a spec ia l c a se of a
m o r e gene ra l r e s t r i c t i o n t h a t m u s t be p l a c e d on
t h e s e spec i f i ca t ions to m a k e t h e m rea l izab le by
a d e t e r m i n i s t i c i n t e r p r e t e r , i r r e s p e c t i v e of
w h e t h e r o u t p u t is spec i f ied by s e p a r a t e tokens .
The s y n t a x d i a g r a m s d e s c r i b e a n o n d e t e r m i n i s -
t ic a u t o m a t o n , which is s i m u l a t e d by a d e t e r -
min i s t i c i n t e r p r e t e r . The i n t e r p r e t e r s e l ec t s an
a r b i t r a r y pa th , t r i e s it, and, if i t r e a c h e s a d e a d
end, b a c k t r a c k s and t r i e s a n o t h e r p a t h ins tead .
In a n i n t e r a c t i v e s y s t e m , it is m e a n i n g l e s s to
b a c k t r a c k o v e r a p a t h t h a t ha s a l r e a d y gen-
e r a t e d o u t p u t to t h e user . The following con-
s t r a i n t will prevent this: Starting at each sta.te
at w h i c h there is a for~c, the i n p u t s tha t 'will
ca;use the rnach~ne to r e a c h a n y tv~ns4,t'ion tha t
w i l l p r o d u c e a n outp~JJ~ to the use r m u s t be d is-
jo~,nt . f r om the i,r, p u t s th, a;~ ~uiU cause i,t to r e a c h
m,~y other trcm.s/tgon w/t/z an output. That is,
f r o m any s t a t e , the s a m e initial input c a n n o t
c a u s e two d i f f e ren t o u t p u t t r ans i t ions , e v e n
t h o u g h s u b s e q u e n t i npu t m i g h t d i s a m b i g u a t e
t h e m .

Implementat ion
The spec i f i ca t ion i n t e r p r e t e r is w r i t t e n in C

(abou t 2000 l ines of code) and r u n s u n d e r UNIX
on a VAX. A c o m m o n f ron t end, c o n s t r u c t e d
with YACC a n d LEX f r o m a BNF d e s c r i p t i o n of the
spec i f i ca t ion l anguage , is u s e d to p a r s e the
speci f ica t ion , b o t h for i n t e r p r e t i n g it and for
conver t ing it to d i a g r a m form. The s e m a n t i c
func t ions and t h e o u t p u t func t ions u s e d by the
lexical- level spec i f i ca t ion a r e coded in C and
t h e n l inked wi th t he i n t e r p r e t e r . Device-
i n d e p e n d e n t faci l i t ies for fu l l - sc reen t e x t t e r m i -
nals and also g r a p h i c a l o u t p u t dev ices a re avail-
able to these func t ions .

Condtmions
This paper has presented a technique for

specifying the user interface of an interactive
computer system and described how it has been
used to produce a formal and executable
specification of the user interface of a military
message system. The technique permits the
designer of a user interface to describe the
interface completely and obtain a prototype of it
directly from the specification. The notation
uses state transition diagrams to emphasize the
time sequence aspects of the user-visible
behavior of the system. It permits both the
specification and the design process to be
separated into the semantic, syntactic, and lexi-
cal levels, and it supports a process of stepwise
refinement at the syntactic level.

33

CH1'83 Proceedings December 1983

Acknowledgments

I would like to thank Connie Heitmeyer,
Mark Cornwell, and Carl Landweh_r for their help-
ful suggestions and comments on this work.
This work was supported by the Naval Electronic
Systems Command under the direction of H.O.
Lubbes.

R e f e r e n c e s

I. T. Bleser and J.D. Foley, "Towards Specify-
ing and Evaluating the Human Factors of
User-Computer Interfaces ," Pron. H u m a n
Factors 'in Computer Systems Conference,
pp. 309-314 (1982).

2. MUMPS Development Committee, MUMPS
La~luage Stmzdard, American National
Standards Institute, New York (1977).

3. M . E . Ccnway, "Design of a Separable
Transition-Diagram Compiler," Comm. ACM
6 pp. 396-408 (1963).

4. J. Darlington, W. Dzida, and S. Herda, "The
Role of Excursions in Interactive Systems,"
InterTza,tionaZ Journal of Man-Machine Stu-
dies 18 pp. 101-112 (1983).

5. M.B. Feldman and G.T. Rogers, "Toward the
Design and Development of Style-
independent Interactive Systems," Pron.
H u m a n Factors in Computer S y s t e m s
Conference, pp. 111-116 (1982).

6. J.D. Foley and V.L. Wallace, "The Art of
Graphic Man-Machine Conversation,"
Proceedings of the IEEE 62pp. 462-471
(1974).

7. J.D. Foley and A. van Dam, Ft~ndamenta/.s
off In~vac~ve Computer Graphics,
Addison-Wesley, Reading, Mass. (1982).

8. C.L. Heitmeyer, "An In termedia te Com-
mand Language (ICL) for the Family of Mili-
t a ry Message Systems," Naval Research
Laboratory Technical Memorandum 7590-
450:CH:ch (13 November 1981).

9. C.L. Heitmeyer, C.E. Landweh_r, and M.R.
Cornwell, "The Use of Quick Prototypes in
the Military Message Systems Project ,"
ACM SIGSGFT So l~zvare Engineer~z~g Notes
7 pp. 85-87 (1982).

10. R.J.K. Jacob, "Survey and Examples of
Specification Techniques for User Inter-
faces," NRL Report, Naval Research
Laboratory, Washington, D.C. (1963).

11. R.J.K. Jacob, "Formal Specification of the
User Interface of a Receive-only Secure Mil-
i tary Message System Prototype," Naval
Research Laboratory Technical Memoran-
dum 7590:RJ:rj (1983).

12. R.J.K. Jacob, "Using Formal Specifications
in the Design of a Human-Computer Inter-
face," Comm. ACM 26 pp. 259-264 (1983).

13. T.P. Moran, "The Command Language
Grammar: A Representat ion for the User
Interface of Interactive Computer Sys-
t ems ," Interr~ational Journal of Man-
Machine S tudies 15pp. 3-50 (1981). The
Interact ion Level of the Command
Language Grammar is similar to a s ta te
t ransi t ion diagram specification.

14. D.L. Parnas, "On the Use of Transition
Diagrams in the Design of a User Interface
for an Interactive Computer System,"
Pron. 24th Na.~iona, l ACM Conference, pp.
379-385 (1969).

15. P. Reisner, "Formal Grammar and Human
Factors Design of an Interactive Graphics
System," IEEE Tra~sazfJ, ons on So#zvare
Erugineer/ng SE-7 pp. 229-240 (1981).

18. B. Shneiderman, "Multi-party Grammars
and Related Features for Defu_ing Interac-
tive Systems," [EEE Transactions on Sys-
tems, Man,, and Cybe~n.etics SMC-12(2)pp.
148-154 (March 1981).

17. A. Singer, "Formal Methods and Human
Factors in the Design of Interactive
Languages," Ph.D. dissertation, Computer
and Information Science Dept., Univ. Mas-
sachuset t s (1979).

18. H. Thimbleby, "Character-level Ambiguity:
Consequences for User Interface Design,"
Intel,'n, ational Jou~"n,a2 of Ma~-Mach,ine St'u-
dies 16 pp. 211-225 (1982).

19. A.I. Wasserman and D.T. Shewmake, "Rapid
Prototyping of Interactive Information Sys-
t ems ," ACM SIGSOFT So]2"ware Eag/~,eer-

NoSes 7 pp. 171-180 (1982).

20. W.A. Woods, "Transit ion Network Grammars
for Natural Language Analysis," Comm.
ACM 13 pp. 591-606 (1970).

34

