
Execute This!

Analyzing Unsafe and Malicious Dynamic Code

Loading in Android Applications

Sebastian Poeplau∗†, Yanick Fratantonio∗, Antonio Bianchi∗, Christopher Kruegel∗, Giovanni Vigna∗

∗UC Santa Barbara

Santa Barbara, CA, USA

Email: {yanick,antoniob,chris,vigna}@cs.ucsb.edu
†University of Bonn

Bonn, Germany

Email: poeplau@cs.uni-bonn.de

Abstract—The design of the Android system allows applica-
tions to load additional code from external sources at runtime. On
the one hand, malware can use this capability to add malicious
functionality after it has been inspected by an application store
or anti-virus engine at installation time. On the other hand,
developers of benign applications can inadvertently introduce vul-
nerabilities. In this paper, we systematically analyze the security
implications of the ability to load additional code in Android. We
developed a static analysis tool to automatically detect attempts
to load external code using static analysis techniques, and we
performed a large-scale study of 1,632 popular applications from
the Google Play store, showing that loading external code in
an insecure way is a problem in as much as 9.25% of those
applications and even 16% of the top 50 free applications. We
also show how malware can use code-loading techniques to avoid
detection by exploiting a conceptual weakness in current Android
malware protection. Finally, we propose modifications to the
Android framework that enforce integrity checks on code to
mitigate the threats imposed by the ability to load external code.

I. INTRODUCTION

Recent years have seen the Android platform gain more and
more popularity, and a considerable number of mobile phones
and tablet computers ship with Android. Specifically, Google
announced at its developer conference Google I/O in May
2013 that 900 million Android installations have been activated
since the launch of the system in 2008. The large number of
devices running the Android operating system provides great
opportunities for developers to reach a broad audience while
only having to develop for a single platform. Unfortunately,
the same economic incentives appeal to criminals as well.
By targeting Android, they have the opportunity to conduct
malicious activity on millions of devices. Accordingly, the
amount of malware for and attacks against Android is steadily

increasing [24], [34]. For example, malicious applications steal
users’ private information or use cost-sensitive functionality
such as premium SMS to generate revenue for the attackers.

In order to counter the spread of malicious content in
Android’s main application store, the Google Play store,1

Google introduced a vetting mechanism for applications in
2012 [21]. This system, called Google Bouncer, analyzes
every application for malicious functionality that is submitted
to Google’s store. The analysis is performed offline, i.e.,
applications are analyzed in a centralized location before being
admitted to the store. The alternative would be to conduct the
application analysis online, i.e., directly on the users’ devices.
However, this is impractical due to the large importance of
battery life for mobile devices and the access restrictions
that the system enforces for all applications, including anti-
virus software. The inner workings of the Bouncer are not
precisely known to the public, but experiments by Oberheide
and Miller indicate that Google uses dynamic analysis to
examine applications [25].

A powerful way for malware to circumvent the Bouncer is
by loading external code at runtime. For example, imagine
an application that pretends to be a simple game. During
the Bouncer’s analysis, the application does not expose any
malicious behavior, and even its code does not contain any
malicious functionality. But once the application has been
approved by the Bouncer, admitted to the store and installed
by users, it starts to download and execute additional code that
performs harmful activities. We show that using this technique,
applications are able to evade detection by the Bouncer and
several mobile anti-virus products.

We would like to stress that such evasion techniques that
rely on the ability to load arbitrary code at runtime are more
powerful than the ones presented in the past. In fact, this
class of techniques exploits a conceptual problem of offline
vetting mechanisms: First, these mechanisms can never be sure
that they see all the code that an application will eventually
execute on users’ devices. The application could just download
additional code from the Internet on any device and at any
point in time. Secondly, techniques to load code at runtime are

1https://play.google.com/store/apps

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’14, 23-26 February 2014, San Diego, CA, USA
Copyright 2014 Internet Society, ISBN 1-891562-35-5
http://dx.doi.org/doi-info-to-be-provided-later



often used by benign applications as well. Therefore, vetting
systems cannot use the mere presence of such functionality as
a feature to detect malware.

In this paper, we present a large-scale study that analyzes
the use of code-loading techniques in applications on Google
Play. We find a surprisingly large number of applications
that use the techniques for a variety of legitimate reasons.
In particular, the results emphasize that the mere ability of
applications to load external code is not an indication of
malicious intentions.

Unfortunately, the existence of mechanisms that allow
applications to load code from external sources in Android
introduces yet another problem: Benign applications use the
techniques for legitimate reasons, but their use is prone to
introducing vulnerabilities. In fact, we found that Android does
not enforce appropriate security checks on the external code,
and application developers are often unaware of the risks or
do not succeed in properly implementing custom protection
mechanisms.

As part of our experimental study, we apply static analysis
techniques to automatically detect if a given application is able
to retrieve and execute additional code and if it does so in an
unsafe way. To our surprise, we find severe vulnerabilities both
in Android applications and in third-party frameworks. We
present two example exploits, which would enable an attacker
to mount code injection attacks against more than 30,000
applications on Google Play, affecting several tens of millions
of users. We notified the affected developers and collaborated
with one framework vendor in an effort to mitigate the risk to
the users as quickly as possible.

As a remedy to both types of attacks – malware escaping
offline analysis as well as code injection into benign appli-
cations – we propose a modification of Android’s Dalvik
virtual machine. Our protection system aims to add the miss-
ing mandatory checks of code from external sources to the
operating system. The checks are computationally cheap and
do not require extensive changes to the Android system, while
effectively protecting the users from attacks that are currently
possible due to applications’ ability to load external code.

Our main contributions can be summarized as follows:

1) We systematically analyze the Android platform for
techniques that allow applications to load code at
runtime, and examine their respective security impli-
cations.

2) We develop an efficient static-analysis tool that au-
tomatically detects problematic behavior associated
with dynamic code loading in applications. Our tool
can detect vulnerabilities in benign applications as
well as support the analysis of potentially malicious
applications.

3) We conduct an analysis of 1,632 popular applications
on Google Play, each with more than one million
installations, revealing that 151 (9.25%) of them are
vulnerable to code injection attacks.

4) We propose and implement a modification to An-
droid’s Dalvik VM, which prevents all attacks that
are possible due to external code loading.

II. BACKGROUND AND THREAT MODEL

In this section, we introduce concepts and terminology
related to Android security on which we will rely in the
remainder of this paper, and we present the threat model that
our work is based on.

A. Android

The following concepts of the Android system in general,
and Android security in particular, are important in the context
of our work.

1) Android permissions: Android restricts the access of
applications to sensitive functionality by means of permissions.
Permissions regulate access to sensitive APIs that can cause
financial damage (e.g., SMS services and phone calls), com-
promise the user’s privacy (e.g., record sound or video, use
the Internet) or negatively affect device usability (e.g., lock the
screen). Each application has to declare the set of permissions
that it requires.

Whenever an application is installed, Android presents
the user with a list of the requested permissions and asks
for approval. The user can either accept all permissions or
cancel the installation. It is not currently possible to selectively
remove permissions from applications.

Internally, Android enforces permissions by using high-
level checks in Java code as well as common Linux security
concepts, e.g., file permissions, user and group IDs.

2) Application stores: Applications are commonly installed
from stores, entities that offer large collections of applications
for users to download. The main application store is the Google
Play store – most Android devices have the application to
access this store preinstalled. At a press event in July 2013,
Google announced that the Google Play store offers more than
one million applications.

Android provides the option to install applications that
access alternative stores, such as the Amazon application
store. Note that the system treats the store that the device
manufacturer prefers differently from others: In order to install
APKs from other stores, users have to enable the so-called
sideloading setting, which allows the user to install APKs from
arbitrary sources, while otherwise the system rejects anything
that does not originate from the preferred store.

Since the amount of malware on Google Play was grow-
ing, Google introduced a system called Google Bouncer in
February 2012 [21]. The Bouncer checks every application
that is submitted to Google Play for malicious behavior. Its
internal workings are not precisely known, but there have been
successful attempts to circumvent or attack it, e.g., by finger-
printing the analysis system that the Bouncer is based on [25].
As mentioned previously, the experiments by Oberheide and
Miller suggest that the main component of the Bouncer is
dynamic analysis conducted in Qemu.

We will show that by loading code from the Internet at
runtime an attacker can circumvent the checks imposed by the
Bouncer.

2



3) Native code: Android applications are usually written
in Java and compiled to Dalvik bytecode. For computationally
expensive tasks, Android provides the option to run so-called
native code, i.e., machine code for the device’s processor. The
common way of invoking native code on Android is through
the Java Native Interface (JNI), a standardized interface for
interaction between Java and native code. At the system
level, loading native code means that Dalvik, Android’s virtual
machine, loads a Linux shared object and allows Java code to
make calls to the contained native functions (and vice versa).

Native code runs in the same sandbox as Java code.
Specifically, the same permissions are enforced on native code
as on Java code.

4) Application frameworks: When developing applications,
many developers rely on frameworks. Such frameworks pro-
vide additional functionality, such as components that down-
load and display advertisements within the application.

Different developers usually maintain frameworks and ap-
plications, so that their update cycles generally do not coincide.
Updated applications can be published in application stores
and pushed to users immediately. New versions of frameworks,
however, first need to be included in all affected applications
by the application developers before they can be installed on
the users’ devices with the next version of the application.
This means that it is considerably more difficult for frame-
work developers to deploy updates than it is for application
developers.

B. Threat model

Before we examine the attacks and our proposed counter-
measures in more detail, we outline the threat model that our
work is based on. We consider two different attack scenarios:

1) Evasion of offline analysis systems: In this first scenario,
an attacker creates a malicious application and tries to publish
it in an application store such as Google Play. In order to
avoid detection, she designs the application in such a way that
it does not contain any clearly malicious code itself, but rather
downloads additional code after being installed on a device.
Since most of the application analysis mechanisms work in
a central place, such as the various application stores, the
malicious code can easily circumvent the checks. Note how it
is conceptually impossible for offline analysis systems, such as
the Google Bouncer, to detect the malicious functionality: The
code that they analyze does not contain anything malicious,
and they have no way of knowing what additional code the
application might download at a later point in time. Since
benign applications use code-loading techniques as well, the
detection system cannot reject applications that load external
code per se. An analysis of a large corpus of Android malicious
applications conducted by Zhou and Jiang uncovered malware
samples that already use this technique to evade detection [37].
For demonstration purposes, we designed an application that
makes use of the same approach and uploaded it to Google
Play to confirm that the application can be distributed without
Google checking the additional code that might be downloaded
later (see Section III-D1 for details).

2) Code injection against benign applications: The second
scenario involves applications that load additional code for

benign reasons (see Section III-B for a discussion of possible
motives). As the operating system does not enforce security
checks on the loaded code, an attacker could replace the
original code with malicious one. At this point, a vulnerable
application would load the malicious code, not recognizing
that it is different from the intended one, and executes it. This
gives attackers a way to run arbitrary code in the context of
an application on the user’s device (in particular, with the
application’s permissions and with full access to its data).
In Section III-D2, we discuss different ways to exploit such
vulnerabilities, and, in Section V-B, we present attacks against
two popular application frameworks.

The protection system that we propose is designed to defeat
both types of threats.

III. INVESTIGATION OF CODE LOADING

In this section, we first examine different techniques that
applications can use to load external code at runtime, and
briefly outline why they can cause security issues. We then de-
scribe reasons for benign applications to load additional code.
Finally, we point out typical mistakes of benign applications
when using code-loading techniques.

A. Techniques to load code

We identified several ways to let Android load external
code on behalf of an application. These techniques can be
used by malware to avoid detection, and improper use can
make benign applications vulnerable.

1) Class loaders: Class loaders are Java objects that allow
programs to load additional classes, i.e., Java code. Android
applications can use class loaders to load classes from arbitrary
files. The Android class loaders support different file formats
(APK, JAR, pure dex files, optimized dex files). They do not
impose restrictions on the location or provenance of the file
containing the code. For instance, an application can download
an APK file from the Internet and use DexClassLoader to load
the contained classes. By invoking the classes’ methods, the
application executes the downloaded code.

Benign applications are at risk of code injection, i.e.,
an attacker can replace the file that is to be loaded with a
malicious one, if it is stored in a writable location. The Android
system does not check the integrity of class files in any way. In
particular, running applications do not require a signature when
loading APKs. In Section V-B1, we present an exploit that
injects code into an application by hijacking the application’s
connection to the server that it downloads code from.

2) Package contexts: Whenever Android loads an applica-
tion, it associates it with a Context object. The context, among
other things, provides access to the application’s resources,
such as image files or code. Android provides applications
with an API (createPackageContext) to create contexts for
other applications that are installed on the system, identified
by their package name. Using this API, an application can
retrieve the context of another application, provided that it
knows the other application’s package name. By specifying
certain flags when creating the package context, the appli-
cation can cause the system not only to load another ap-
plication’s resources, but also create a class loader for its

3



code. This way, an application can load the Java classes
contained in another application. Under certain circumstances
(i.e., if both the flags CONTEXT INCLUDE CODE and
CONTEXT IGNORE SECURITY are specified in the call to
createPackageContext), the system does not verify that the
applications originate from the same developer or that the
application to be loaded satisfies any criteria at all. This means
that an application can load and execute any other application’s
code.

Despite the alarming name of the necessary flag CON-
TEXT IGNORE SECURITY, we found a large number of
applications using this technique, apparently ignoring the re-
sulting security implications (see Section V for details).

Package contexts offer another way for attackers to inject
code into benign applications: If an attacker manages to install
an application with the same package name as the expected le-
gitimate one and the loading application is careless in verifying
integrity and authenticity, then the attacker’s code is executed
within the loading application (and with that application’s
privileges). We found many applications that are vulnerable to
this attack, putting millions of users at risk. Even well-known
frameworks do not take appropriate measures to avoid attacks.
In Section V-B2, we show how to use this attack to exploit any
application that is based on a very common app framework in
versions from before July 2013.

3) Native code: As described in Section II-A, Android
applications are generally written in Java, but they are allowed
to execute native code (i.e., ARM assembly for most of the
current Android devices) at any time. Using the Java Native
Interface (JNI), the Java portion of an application can interact
with the native portion, which is commonly developed in C.

As mentioned previously, Android enforces the same priv-
ilege checks on native code as on Java code. For instance, an
application cannot open an Internet socket from native code
without permission to access the Internet. However, there is
one distinctive advantage for attackers when running native
code: While they have to go through a well-defined API to
load code into the Java environment, they can easily load and
execute code from native executables in a variety of ways.
The fundamental advantage for attackers is that there is no
distinction between code and data at the native level, while
Java requires an application to explicitly load a class file in
order to run its code. This significantly complicates protection
against malicious native code.

With respect to attacks against benign applications it should
be noted that Android imposes no restrictions on location or
provenance of native code that an application loads. So in
theory, if attackers can modify the files that benign applications
load, they can cause them to load and execute malicious code.
We mention this attack only for completeness – in our analysis,
we did not find an application that is vulnerable to such an
attack, because applications usually only load native code from
their own APK (which is not writable for applications) and use
the other techniques described in this section if they need to
load code from external sources.

4) Runtime.exec: The Java class Runtime provides a
method exec, which allows applications to execute arbitrary
binaries. Internally, exec is roughly equivalent to the Linux sys-
tem calls fork and exec. Thus, it provides a similar functionality

as the well-known C function system(), which gives a program
access to a system shell. Again, the operating system does not
check where the binary is located or where it comes from. A
malicious application can therefore use system binaries, such
as /bin/sh, to execute arbitrary commands.

5) APK installation: On Android systems, the Package
Manager Service is responsible for installing and removing
applications. While this service is commonly used as back-
end for market applications, such as Google Play or Amazon
Market, applications can also directly request the installation of
APKs. In such a case, the package manager prompts the user
whether or not to install the APK, displaying the requested
permissions along with information about the application. If
the user agrees, the application is installed on the system just
like any application downloaded from an application store.

While not as stealthy as the techniques presented above,
APK installations still provide attackers with a way to down-
load and install malicious code at runtime. The package
manager ensures that APKs carry a valid signature before it
installs them, but there are no requirements as to the trust
level of the signature. In fact, the package manager accepts
any self-signed certificate for use in a package signature. Thus,
the signature does not provide any guarantees about the origin
of an application. It is only used to determine whether two
applications originate from the same developer, e.g., to ensure
that the same developer created an application and the alleged
update. If an attacker is able to replace the APK that a benign
application tries to install with a malicious one, the installing
application does not detect the attack unless it implements a
custom verification mechanism.

Note that the user has to enable sideloading in the system
settings first in order to install applications from any source
other than the preferred store of the device manufacturer (cf.
Section II-A). However, any user who wants to use an alterna-
tive application store has to do the same. In an effort to assist
users in the process of setting up their devices, the providers
of such application stores usually offer detailed instructions
on how to find the sideloading setting, often without warning
about potential security implications. For this reason, we can
assume that sideloading is enabled on a considerable portion
of Android devices.

We found that APK installations are used by many well-
known applications. For example, Facebook used direct APK
installations rather than regular updates through Google Play
in certain cases in April 2013 (further discussed below).

B. Motivation for loading external code

We found that many benign applications load additional
code at runtime. There are legitimate reasons for this behavior,
which we will present in this section.

1) A/B testing and beta testing: It is common for software
manufacturers to test modified versions of their applications
with a small subset of their users in order to evaluate user
satisfaction in comparison to the established version. This
approach is usually referred to as A/B testing. Until recently,
Google Play did not offer a way for developers to roll out an
update only to a portion of their users, so some developers
used the techniques presented previously to achieve the same

4



Android system

Framework applicationApplication A

Framework stub

Application B

Framework stub

load code

Application code Application code

Common
framework

Fig. 1. Several applications load code from a common framework.

effect. Most notably, Facebook used APK installations starting
in April 2013 to install updates on selected users’ devices.
There are also several frameworks that offer support for
beta testing to application developers, often based on APK
installations (see Section V). In June 2013, Google announced
the introduction of A/B testing mechanisms for the Google
Play store at the developer conference Google I/O. This will
allow application developers to refrain from implementing
custom (and potentially insecure) techniques.

2) Common frameworks: On most desktop operating sys-
tems, including Windows and Linux, it is common to install
libraries centrally on the system rather than bundling them
separately with every binary that uses them. This is useful to
save disk space and to avoid conflicting versions of libraries
on the same system. The same concept can be employed for
Android applications. In this scenario, multiple applications
are based on the same framework, which is installed on the
device as a separate application. All the applications based
on the framework contain stub code (usually provided by the
framework’s developers) that causes them to load code from
the framework application. See Fig. 1 for an illustration.

If an attacker is able to install an application that pretends
to provide the common framework, e.g., by convincing the user
to install a seemingly benign application that internally uses
the same package name as the framework, then applications
based on this framework will load the attacker’s code instead
of the real framework. Without custom integrity checks, the
applications will run the malicious code with their own per-
missions, and the attacker gains full access to their internal
data.

The approach of loading a common framework was em-
ployed by a well-known company developing web and multi-
media software. They used it for their multi-platform applica-
tion framework until June 2013, when they began to bundle
the framework with every Android application that uses it. In
Section V-B2, we demonstrate a code injection attack against
applications based on this framework.

3) Framework updates: As outlined in Section II-A, many
current applications bundle various frameworks for additional
functionality. Well-known examples are advertisement frame-
works, which display advertisements to the user and function
largely independently from the rest of the application. As
mentioned previously, it is particularly difficult for framework
developers to ensure that the latest version of their software
is used by all applications. Therefore, some frameworks use
the previously discussed techniques to load external code
in an effort to implement a self-update mechanism that is

Android system

Application B

Application code

Framework

Application A

Application code

Update 

server

request new version

Fig. 2. Some frameworks implement self-update functionality, downloading
and executing code from remote computers.

independent from updates of the containing application. Fig. 2
illustrates the concept.

Our analysis shows that such update mechanisms are often
implemented in a vulnerable way that allows attackers to
replace the legitimate updates with malicious code. This effec-
tively makes every application that is based on such a frame-
work vulnerable to code injection attacks. In Section V-B1, we
show an attack against an application that contains a vulnerable
advertisement framework.

4) Loading add-ons: Some applications can be extended by
add-ons that are installed as separate applications. Examples
that we found during our analysis include an SMS application
that loads design themes and a game that loads additional
levels. In most cases, the additional content that applications
loaded contained not only data, but also executable code.

When identifying and loading add-ons, applications have
to ensure that the external code they execute is indeed part of
a valid add-on. We found that such checks, if existent at all,
are often implemented in an insecure way. Thus, malware can
pretend to provide add-ons for legitimate applications, which
those applications erroneously load and execute.

Clearly, these are legitimate reasons for benign applications
to load external code. Thus we arrive at the conclusion that
entirely removing the ability to load additional code at runtime
would limit Android applications too much. For this reason,
we develop a protection system that provides a secure way for
applications to load code.

C. Policy change for Google Play

Google changed the content policy for Google Play in April
2013, adding the following sentence [16]:

“An app downloaded from Google Play may not
modify, replace or update its own APK binary code
using any method other than Google Play’s update
mechanism.”

The statement does not address all of the previously
described code-loading mechanisms, but even if it did, there
are several reasons why we believe that this change in policy
would by no means constitute a solution to the issue: As
discussed above, there are legitimate reasons for applications
or application components to load and execute external code.
If Google tried to prohibit the use of those techniques entirely,
they would remove a valuable mechanism from application and
framework developers. Furthermore, at the time of writing, the

5



new policy is not technically enforced. There is still a large
number of applications on Google Play that load external code
(see Section V). Finally, when we developed our detection
tool for code-loading behavior in Android applications, we
found that, in some cases, it is very challenging to determine
reliably whether or not an application loads additional code
(see Section VII).

D. Problems with loading external code

After having discussed the mechanisms that allow applica-
tions to load code and the reasons for benign applications to
do so, we now show how the ability to load additional code
can lead to severe security issues. Corresponding with the two
threat scenarios defined in Section II-B, we present two types
of attacks:

1) A malicious application that is able to evade detection
by the Google Bouncer, so that it is made publicly
accessible on Google Play.

2) Code injection attacks against benign applications
that use code-loading techniques, affecting millions
of users.

1) Code loading as evasion technique: Authors of malware
can use code loading to evade offline analysis systems such as
the Google Bouncer, as described in Section II-B.

We developed a proof-of-concept application to show the
viability of this attack scenario: We demonstrate that an
attacker can write a minimal application that passes the checks
imposed by Google Play and downloads the actual malicious
code only after it is installed on users’ devices, i.e., after the
store’s vetting process.

Our demonstration application requests permissions to ac-
cess the Internet and to write to external storage. It contains
only one single activity with a download button and a log view.
The download button causes the application to connect to our
server and download an APK. It loads the APK and executes
whatever code the file contains.

Note that our server has not offered malicious code at any
point in time. It only ever answers requests from our own test
devices, and the code that it serves just opens the browser on
the system. Thus, our experiments did not impose any risk on
users who might have installed our application from Google
Play.

We submitted the application to the Google Play store in
April 2013, where it was accepted within approximately 90
minutes. After that, the application was publicly accessible in
Google’s application store. The Google Bouncer did not detect
the application’s potential to download and execute malicious
code. Since we logged all requests to our server, we know
that the Bouncer did not even request the current payload at
the time before admitting the application. The application is
essentially free to download any code from our servers and
execute it on the users’ devices. Thus, an attacker could use
this technique to circumvent the checks that Google imposes.

As of July 2013, the application has been installed 255
times by users of Google Play, although it is not advertised
in any way. Even after it gained some popularity, it was not
re-checked and removed from the store. Essentially, there is

no way for the Bouncer to know that we do not distribute ma-
licious code. So any malware could follow the same approach
to evade detection. We believe that this is a conceptual flaw
in Android’s security model.

Furthermore, we evaluated the effectiveness of anti-virus
software in detecting malicious code that is dynamically loaded
by an Android application. Specifically, we developed a simple
downloader application that, as soon as it is opened, downloads
a malicious APK file from our server and asks the user to
install it. The malicious APK that our server provided was a
sample of the well-known Android malware family PJApps.
We then used two meta-anti-virus scanners (VirusTotal2 and
AndroTotal3) to evalute the detection rate of several anti-
virus applications on both the original PJApps sample and the
downloader application we developed. When presented with
the PJApps sample, 33 out of 46 anti-virus applications used
by VirusTotal and all 7 used by AndroTotal correctly flagged
the APK as malicious. However, no anti-virus was able to
detect the malicious nature of our downloder application. The
anti-virus software employed by VirusTotal did not perform
any connection to our server to obtain the malicious sample.
The scanners used by AndroTotal performed connections to
our distribution server from three different IP addresses, but
still were unable to identify the application as malicious.

Our proposed protection system (see Section VI) mitigates
all of these threats by enforcing signature checks on any code
– including any external code – so that attackers cannot escape
analysis and detection by downloading code at runtime.

2) Code loading as source of vulnerabilities: Improper use
of the code-loading techniques presented in Section III-A can
introduce severe vulnerabilities in benign applications. There
are many subtle aspects to consider, and our analysis of ap-
plications from Google Play shows that application developers
often fail in their attempt to implement the mechanism securely
(as we will describe in more detail in Section V).

The essential problem is that Android directs responsibility
for checking the integrity and authenticity of external code to
the application or framework developers. Those developers’
main concern is the application or framework’s functionality,
and they are often unaware of the security implications of their
applications’ behavior. This leads to opportunities for attackers
to replace the expected legitimate code with malicious one.
Without proper checks, applications will not detect the attack
and execute the malicious code.

The most common problems we found are the following:

a) Insecure downloads: Some applications download
external code via HTTP. Since HTTP connections are vulnera-
ble to man-in-the-middle attacks, it is possible for attackers to
modify or replace the downloaded code. Fahl et al. showed that
the use of HTTP and improper use of HTTPS are a widespread
problem in Android applications in general [15].

b) Unprotected storage: We observed applications that
download additional code (often in the form of APKs) and
store it in the device’s file system. In many cases, the storage
location was improperly chosen in such a way that other

2https://www.virustotal.com/
3http://andrototal.org/

6



applications had write access to it (e.g., directories on the
external storage of the device, often an SD card). This allows
other applications on the device to tamper with the code. By
modifying an APK before it is installed, for instance, attackers
can gain full access to the new application’s data.

c) Improper use of package names: Every application
that is installed on an Android system is identified via its
package name. The developer can freely specify the package
name, but it must be unique on the device. Applications can
use the package names of other applications to locate and load
their code (see Section III-A for details). However, application
developers often do not consider the possibility that a particular
package name can be used by several applications, as long as
they are not installed on the same device. In particular, the
application that uses a given package name first, “reserves”
it on that device. The package name is not displayed to the
user during application installation, so that an attacker can
choose a package name for her application that is normally
used by a well-known application (such as a framework that
many applications load code from). If a user installs such a
malicious application, then any application that uses the well-
known package name will load the malicious code instead.
Note that the malicious application must be installed before the
benign one, because the system does not allow the installation
of applications with a package name that is already used on
the device.

In Section V-B, we will present exploits against real-world
applications using the above attack techniques.

IV. AUTOMATIC DETECTION

In order to assess how widespread the previously described
problems are among popular Android applications, we devel-
oped a tool that extracts information about the (mis)use of
code loading techniques by means of static analysis.

At a high level, our detection tool receives an APK as
input and looks for indications of problematic code loading.
The analysis is performed directly on top of Dalvik bytecode,
and does not require the source code of the application to
be analyzed. The output of the tool consists of an informative
report that shows whether the given application could possibly
load additional code at runtime. If this is the case, the report
also indicates the category of every detected code-loading
attempt (as described in Section III-A).

In this section, we describe the design and implementation
of our tool, while we will present the results of our analysis
in Section V-A.

A. Basis for the tool

We developed a static-analysis tool for the detection of
code-loading behavior.

We would like to note that parts of this work were
developed for other, already published research [14]. We do not
claim those parts of the tool as contributions, but in this section
we will describe all the relevant details for completeness. In
the following, we will clearly state which parts of the tool are
novel.

The tool first uses Androguard [13] to disassemble the
Dalvik byte code and to obtain information about classes,

methods, basic blocks, and the individual Dalvik bytecode
instructions. Based on this data, it transforms the code into
static single assignment (SSA) form [10]. It then performs
Class Hierarchy Analysis (CHA) and it builds the control flow
graph (CFG) for each individual method.

B. Construction of the sCFG

On top of this, the tool constructs the super control flow
graph (sCFG), which represents possible method invocations
between the different methods. In particular, an edge in the
sCFG means that a given invoke instruction could possibly
direct control flow to the given method’s entry point.

Even though the construction of the sCFG is a well-studied
task in the program analysis literature, it is not straightforward
to build a precise call graph. The key difficulty is that Dalvik
bytecode (like most object oriented languages, such as C++
and C#) heavily relies on the dynamic dispatch mechanism
to determine which method a given invoke instruction will
jump to. For the purpose of this work, we chose to apply
a class-hierarchy-based algorithm that scales well while being
reasonably precise at the same time. From a high-level point of
view, the tool determines the possible targets for each invoke
bytecode instruction by combining the information about the
targets’ types from the invoke instructions and the results
provided by the class-hierarchy analysis.

More specifically, we implemented the algorithm as fol-
lows. Given an invocation i of a method m of class c, we first
use the class hierarchy to find all non-abstract subclasses of c.
If c is an interface, then we locate all classes that implement
the interface, and their subclasses. We place c and all classes
found so far in the set X . Then we check for each class x

in X whether the class implements a method with the same
signature as m (i.e., the class overrides m). If this is the case,
we accept the candidate as a possible target and connect it to
the invocation i in the sCFG. Otherwise, we traverse the class
hierarchy upward starting from class x, to check whether a
compatible method is implemented in classes extended by x:
the first method we encounter will be considered as the target
of the invocation i.

Note that this algorithm produces an over-approximation
of the sCFG: In other words, we introduce edges between
invoke instructions and method entry points that might never
be used at runtime. However, as we will discuss below, this
does not pose a problem for the heuristics we developed for
our analysis.

C. Backward slicing

The type of analysis we aim to perform requires the
capability of program slicing. Based on the control flow
information, the tool is able to compute slices of the analyzed
application. We implemented a backward slicing algorithm that
works on top of the sCFG, based on work by Weiser [35].

Given an instruction i and a register r used by the instruc-
tion, a slice s(i, r) is a set of instructions that can possibly
influence the value that register r contains when executing the
instruction i. We compute the slice by starting at instruction i

and walking back in the method’s CFG, tracing the flow of data
toward r in the SSA representation of the code. Whenever the

7



slicing algorithm reaches the beginning of a method, it uses the
sCFG to locate all possible callers and recursively continues
the analysis. Our implementation also keeps track of class and
instance variables, so whenever such variables are used, the
analysis recursively continues at all points in the code that
assign values to the respective variables.

D. Heuristics to detect code loading

The following heuristics were implemented on top of the
existing tool specifically for the work presented in this paper.

The goal of our analysis is to find uses of the loading
techniques detailed in Section III-A. Therefore, the detection
tool looks for invocations of methods that are associated
with the respective techniques (e.g., createPackageContext to
load code via a package context). If it detects a suspicious
invocation, it uses the slicing mechanism described above to
further analyze the call. In the previous example, a mere call
to createPackageContext is not enough to conclude that the
application loads external code. Instead, we have to make
sure that the flags CONTEXT INCLUDE CODE and CON-
TEXT IGNORE SECURITY are passed as parameters (see
Section III-A). We do so by computing a slice from the call
instruction and the register that contains the flags parameter.

We implement several heuristics to detect issues with code-
loading:

1) General detection: In order to identify candidate ap-
plications for further analysis, we detect the use of all code-
loading techniques presented in Section III-A by identifying
the associated method invocations. If a technique requires a
method invocation with specific parameters, we check their
presence by computing slices for the respective argument
registers.

2) Storage location: For APK installations, class loaders
and native code, we analyze the storage location of the code
to be loaded. If the code is stored in a world-writable location
such as the device’s external storage, we consider the load
operation to be vulnerable, because other applications can
maliciously modify the code.

3) Code provenance: For the same set of techniques, we
search for indications that the code is downloaded via HTTP.
We flag such cases as problematic, because HTTP is vulnerable
against man-in-the-middle attacks.

4) Package names: We consider code-loading based on
package names a security risk at all times, because a given
package name is not guaranteed to belong to the desired
application (see Section III-D2). In particular, creating package
contexts and using them to load code is a vulnerable operation,
since the target application is always identified by its package
name.

With the help of our tool, we identified a large number of
vulnerable applications on Google Play, among them even very
popular applications with millions of users (see Section V-A).

V. LARGE-SCALE ANALYSIS OF BENIGN APPLICATIONS

In the previous section, we described a tool for automatic
detection of code-loading behavior. We applied the tool to
various sets of real-world applications in order to assess

TABLE I. USE OF DIFFERENT CODE-LOADING TECHNIQUES IN 1,632
POPULAR APPLICATIONS FROM GOOGLE PLAY.

Category
Applications in the category

(relative to the whole set)

Flagged vulnerable

(relative to the whole set)

Class loaders 83 (5.01%) 31 (1.90%)

Package context 13 (0.80%) 13 (0.80%)

Native code 70 (4.29%) 0

APK installation 155 (9.50%) 117 (7.17%)

Runtime.exec 379 (23.22%) n/a

Total 530 (32.48%) 151 (9.25%)

the prevalence of code-loading techniques and the associated
security issues. We found that the techniques are very popular
and lead to vulnerabilities in a number of applications. In this
section, we first present the results of our study and afterward
detail two severe vulnerabilities that we found during the
analysis.

A. Use of code-loading techniques

We applied the detection tool to the following sets of
applications from Google Play:

1) A set of 1,632 applications chosen randomly in May
2012 from among those applications on Google Play
with more than one million installations.

2) The 50 most popular free applications from Google
Play in November 2012.

3) The 50 most popular free applications from Google
Play in August 2013.

We ran our detection tool on the applications in those three
test sets with a timeout value of one hour. In 10% of the cases,
the runtime exceeded the timeout value. In the remaining cases,
the mean runtime was 74.9 seconds per application with a
standard deviation of 55.3 seconds. Taking all executions into
account, including those that timed out, the median runtime
was 69.8 seconds. The mean size of the analyzed code files
was 3,303 KB, the standard deviation 2,152 KB.

Tables I, II and III show the use of code-loading techniques
by applications and the number of vulnerabilities detected
by our tool in the different test sets, respectively. Note that
a single application can use multiple techniques. Also, note
that code-loading using Runtime.exec does not usually lead to
vulnerabilities, because it is commonly only used to execute
system binaries. The surprisingly high numbers of applications
containing code for this technique is partially due to multi-
platform frameworks: Runtime.exec, as opposed to the other
code-loading mechanisms presented in this paper, is not spe-
cific to Android. We found Java frameworks in the analyzed
applications that exclusively use Runtime.exec when executed
on non-Android systems.

Our results show that loading code at runtime is indeed
a widespread phenomenon among benign applications. We
found a surprisingly high number of potentially vulnerable
applications. The analysis of the large test set indicates that
9.25% of the applications on Google Play are vulnerable to
code-injection attacks (see Table I). The situation in the top 50
free applications at the time of writing is even more alarming:
16% of the applications contain vulnerable code (see Table III).

8



TABLE II. CODE-LOADING IN THE TOP 50 FREE APPLICATIONS AS OF

NOVEMBER 2012. VULNERABILITIES MANUALLY CONFIRMED.

Category
Applications in the category

(relative to the whole set)

Flagged vulnerable

(relative to the whole set)

Class loaders 8 (16%) 1 (2%)

Package context 1 (2%) 1 (2%)

Native code 4 (8%) 0

APK installation 4 (8%) 2 (4%)

Runtime.exec 12 (24%) n/a

Total 20 (40%) 3 (6%)

TABLE III. CODE-LOADING IN THE TOP 50 FREE APPLICATIONS AS OF

AUGUST 2013. VULNERABILITIES MANUALLY CONFIRMED.

Category
Applications in the category

(relative to the whole set)

Flagged vulnerable

(relative to the whole set)

Class loaders 17 (34%) 2 (4%)

Package context 0 0

Native code 10 (20%) 0

APK installation 11 (22%) 7 (14%)

Runtime.exec 24 (48%) n/a

Total 31 (62%) 8 (16%)

When comparing the top 50 free applications from May
2012 (see Table II) with the top 50 free applications from
August 2013 (see Table III), we find a disquieting tendency:
While only 3 out of the top 50 applications were vulnerable
in November 2012, the share has since increased to 8 out of
50 in August 2013. We confirmed all vulnerabilities reported
by our tool for these two test sets by manual analysis. Further
manual analysis showed that the vulnerabilities are mostly due
to frameworks. For example, several of the top 50 applications
use frameworks that allow testers to install beta versions of the
containing applications. We found that the two frameworks
used by the top 50 applications from August 2013 both down-
load beta versions in the form of APKs to the device’s external
storage, from where the APKs are installed. Since external
storage is writable by any application with the appropriate
permission in Android, any application on the device could
replace the benign APK with malicious code.

The previous example illustrates an important property of
our results: Applications that our tool marks as vulnerable
contain vulnerable code, but the tool does not guarantee that
the code is executed on all devices and in the default configu-
ration of the application. In the previous example, a user must
participate in the developers’ beta-testing programs for the
applications to expose vulnerable behavior. Nevertheless, we
found sufficient evidence that many applications are vulnerable
even in the default configuration and on any device, as the two
sample exploits in Section V-B will show.

We manually analyzed some of the applications in the
current top 50 that use code-loading techniques but were not
flagged as vulnerable by our tool (see Table III). The reason
is that the detection tool is rather conservative in classifying
applications as vulnerable, so that the reported numbers of
vulnerable applications can be interpreted as a lower bound.
Three of the manually analyzed applications make use of a
framework developed by the provider of a large application
store and manufacturer of Android devices. We found that the
applications contain stub code to load the framework, which
is installed as a separate application. The code identifies the

application by its package name, which most likely makes
the applications vulnerable to an attack similar to the one
presented in Section V-B2, thus increasing the real number
of vulnerabilities above the conservative estimate of our tool.

B. Exploits against vulnerable applications

We now demonstrate how improper use of loading tech-
niques can make benign applications vulnerable to exploitation
by presenting attacks against vulnerable real-world applica-
tions (cf. the second attack scenario described in Section II-B).
We found the vulnerabilities using our automatic detection tool
during the study presented above.

1) Self-update of an advertisement framework: This is our
first example of a code injection attack against a benign
application. The application in question – a game with a
number of installations between five and ten million according
to Google Play – includes an advertisement framework. This
framework has the capability to update itself via the Internet.
Whenever the application is started, it checks with the servers
of the framework developer whether a new version is available.
If this is the case, it downloads the new version and loads
it via DexClassLoader on subsequent application starts. The
connection between the application and the web server uses
HTTP instead of HTTPS. Since HTTP does not protect the
integrity of the transferred data nor authenticate its source, it
is possible to provide the application with a bogus update.

An attacker has several ways to mount an attack. She
can, for instance, tamper with the DNS resolution of the
victim’s device (e.g., in an unencrypted WLAN) to redirect
the connection to a server she controls, or execute a man-in-
the-middle attack against the HTTP connection.

In our example exploit, we take over the connection and
serve the application a custom file instead of the expected
update. The application does not verify that the downloaded
code originates from a trustworthy source. It only receives
an MD5 hash from the update server along with the actual
update file in order to detect transmission errors. We provide
the application with a custom APK and the matching MD5
hash. The victim application does not detect the code injection
and loads our APK the next time it starts. The only requirement
for the malicious APK is that it contains a class with a specific
name defining a certain method – both can be easily extracted
from the application’s Dalvik bytecode. As our APK meets
the requirements, the application now runs the code that we
injected, and we are free to use its permissions to our advantage
and access its internal data.

By design, our exploit works against any application that
uses the framework, and applications are vulnerable in the
default configuration on every device with Internet access.
According to AppBrain, this framework is included in 0.78%
of all applications on Google Play and 3.21% of the top 500
applications [3]. It is likely that all those applications are
vulnerable.

We informed the company behind the advertisement frame-
work about the vulnerability in July 2013. They responded
within a few hours and acknowledged the severe security
issue. Moreover, they confirmed that their framework is used
in more than 10,000 applications, putting millions of users

9



at risk. Within a few days, they published a new version of
their framework without the vulnerable update component. We
refrain from naming the framework or the company, because
it will take time for the patch to be included in the affected
applications and to be pushed to the users’ devices.

2) Bootstrapping mechanism of a shared framework: The
lack of verification of loaded code is not only a problem when
downloading code from the Internet. In this next exploit, we
attack applications that load code locally and fail to verify
its integrity. The target application, downloaded from Google
Play, is based on a framework by a well-known company in
web and multimedia technologies.

The framework allows application developers to create
applications for several different platforms. The developer
essentially designs a Flash file, which the device-specific
framework runtime can execute on a variety of systems. The
Android version of the runtime is installed as a standalone
application that any application based on the framework has
to load at start-up. The code that loads the framework is
generated automatically for the application developer. It uses
createPackageContext (see Section III-A) with a hard-coded
package name to load the framework runtime into the current
application. However, the loading code does not verify the
integrity of the loaded application, so that any package with
the right name is accepted. This allows us to mount a code
injection attack as described below.

We install a custom application with the required package
name and the expected class on a test device. When we launch
an application based on the framework, it loads our application
(which it mistakes for the framework runtime) and executes
our code. Note that in order for the exploit to work, the
attacker has to be able to install an application on the device
before the user attempts to install the real framework runtime.
However, this application does not need any permissions at
all – the code “inherits” all permissions from the exploited
application, so that it is relatively easy for an attacker to lure
users into installing her malicious code. Again, verification
of the integrity and authenticity of loaded code could have
avoided this attack.

In May 2013, the company that develops the framework an-
nounced that future versions will package the runtime directly
with each application rather than load it from a shared package,
so that this exploit will not work with applications based on
later versions of the framework. However, our exploit works
against any application that is built on top of the framework up
to the version that was published in June 2013. It can attack
those applications in their default configuration. According to
AppBrain, the framework is used in 2.13% of all applications
on Google Play and 2.81% of the top 500 applications [3]. It
is likely that a large portion of the applications that use the
framework has not been updated to the latest version and is
thus vulnerable.

We notified the company in July 2013 and provided details
on the vulnerability we discovered. As of August 2013, we
have not received any response.

VI. DESIGN OF THE PROTECTION SYSTEM

In the previous sections, we described the problematic
behavior of loading code dynamically at runtime, the risks

Android device Google Play

Amazon Appstore

Other stores...
Verification 
provider A

Verification 
provider B

download apps

download verification results

check apps

Fig. 3. Overview of the infrastructure that we propose. The dashed parts are
our addition to the current system.

arising from it, and a tool that analyzes existing applications
for such behavior, detecting a large number of vulnerable
applications. We now focus on a possible solution. We start
with a high-level overview of the protection system before
examining details of the implementation.

A. High-level overview

In general, it is a bad decision to delegate responsibility
for system security to application developers if protection can
be implemented by the operating system itself. The protection
system that we propose adds a missing verification mechanism
to Android, making it mandatory for all applications. Checking
the integrity of the code before executing it can mitigate all
attacks resulting from the ability to load external code. For
instance, the advertisement framework that we attacked (see
Section V-B1) could have used SSL to make sure that the
update originates from a trustworthy source and was not tam-
pered with by an attacker. Similarly, applications based on the
exploited multi-platform framework (see Section V-B2) could
check the integrity of the common framework application be-
fore executing its code, e.g., by means of signature verification.
However, Android leaves the burden of implementing such
checks to the application or framework developer.

At its core, our modification enforces that an authority
that the user trusts approves every piece of code that an
application loads. We envision different application verifiers
that analyze applications, each according to a custom set of
criteria and with different algorithms. If an application verifier
deems an application benign, it issues the equivalent of a
signature for the application and makes it accessible to the
public. Application verifiers are independent from application
stores – the store offers applications for download, while the
verifier provides approvals for applications. Although store
providers are free to act as applications verifiers, this approach
has the advantage that there is no need for store providers to
change anything. We only add the verifiers to the ecosystem.
Fig. 3 illustrates the changes that we envision.

Users can choose which verifiers to trust. We see several
advantages in this design decision:

Different users may have different priorities, so application
verifiers can focus on different sets of criteria when analyzing
applications. For example, enterprises will employ different
evaluation criteria for applications on their employees’ devices
than home users do for their private phones or tablets. Users
get the freedom to choose verifiers according to their priorities.

Furthermore, users do not depend on a single verifier, as
is the case in the iOS ecosystem (where devices can typically
only run software approved by Apple).

10



Finally, by decoupling application verification from appli-
cation stores, we achieve the same level of security for all
applications regardless of the store distributing them. At the
moment, users of alternative stores to the one preferred by the
device manufacturer (usually Google Play) are inherently at
risk, because Android only distinguishes two modes: “allow
only applications from the preferred store” and “allow any
application” (the sideloading setting, as described in Sec-
tion II-A). This means that users of alternative stores have
no choice but to open their devices to all APKs, regardless
of their origin. On the other hand, our solution focuses on
individual binaries rather than stores, so that it protects users
of all available stores equally.

Note that the Java Virtual Machine (JVM), the standard
Java environment, uses its Security Manager to deal with the
tasks of authenticating and verifying untrusted code. Android,
in contrast, accomplishes most of the Security Manager’s tasks
(except code authentication and verification) by means of its
permission system already. The JVM leverages signatures for
code verification, which is similar in spirit to our approach.
The difference is that we trust code after a verification check,
whereas the JVM trusts code if it originates from a developer
that presents a certificate.

We implemented our protection system as a modification
to Android 4.3, the most recent version of Android at the time
of writing.

B. Detecting attempts to load code

Before we describe our implementation, we make the
following crucial observation: In a Java application, it is not
directly possible to execute externally loaded Java code. In
order to make it executable, applications have to ask the Java
runtime environment to load it (e.g., using a class loader).
This provides us with the unique opportunity to impose checks
on the code that is to be loaded, whereas in other scenarios,
such as raw machine code, we could easily miss the fact
that an application is loading code. Therefore, our system
is implemented as a modification of the Dalvik VM, the
component of Android that executes Java code. This means
that our protection system does not require changes to the
operating system as a whole and can be easily applied.

Whenever an application asks the Dalvik VM to load code,
we check the integrity of the code from within Dalvik (details
on the nature of our checks follow shortly). At first glance, it
seems possible to implement the integrity checks at a higher
level in the system, e.g., as a modification of the Java frame-
work that Dalvik provides to applications. However, the reason
for us to choose the lower level is reflection, a Java mechanism
for introspection: Reflection allows Android applications to
call any Java method irrespective of its protection attributes.
This would allow applications to escape our protection system
if we implemented it in Java. For example, imagine a Java
method that checks code integrity and subsequently calls the
(private) native method provided by Dalvik to load the code.
Then a malicious application could just call the native method
directly using reflection, thus circumventing the check. As a
result, we have to implement any checks in Dalvik’s native
code.

Similarly, one might argue that rooting the protection
scheme deeper in the Android system would constitute a
more comprehensive way to address the issue. However, we
refrained from doing so mainly for two reasons:

1) A separate branch of the Linux kernel is maintained
for each device, so that modifications to the kernel
are more difficult to adopt on all devices than modi-
fications to higher levels of the Android system.

2) Our approach is based on a key property of Java, so
there is no need to work at a lower level than the
Java virtual machine. Doing so would only introduce
unnecessary complexity.

Since our system relies on the necessity to make code-
loading operations explicit in Java, native code imposes a
challenge. Native machine-code instructions, as opposed to
Java byte code, provide a variety of ways to execute additional
code or modify existing one. We cannot prohibit the use
of native code, because applications use it legitimately, e.g.,
to accelerate computationally expensive tasks [1]. Zhou et
al. found in 2012 that 4.52% of applications from different
markets use native code [39]. However, applications always
start by executing Java code in the Dalvik VM. By hooking
the interface in Dalvik that applications have to use in order to
load native libraries, we can detect when an application tries
to execute native code. We enforce an integrity check on any
native code that the application tries to load.

It is the responsibility of the verification service that
approves an application to make sure that the application’s
native-code part does not load any additional code. Note that
this decision is much easier for the verification service than it
would be for our protection system: Application developers can
provide verification services with additional material to prove
that their native code does not load any additional external
code (e.g., source code under appropriate agreements). Our
protection system, on the other hand, can only rely on the
bare assembly code at runtime, which makes it much harder to
assess the code’s properties. Even without loading any external
code, techniques such as return-oriented programming allow
applications running native code to execute arbitrary programs,
leveraging code that is already present in memory [8], [30].
While the obligation to provide proof for properties of native
code is an obstacle for developers, we believe that the resulting
large improvement of system security justifies it.

C. Signature scheme based on whitelists

The integrity check that we enforce on loaded code is
a lookup in a signed whitelist. Note that keeping whitelists
signed by verification providers is an equivalent approach
to attaching signatures to applications, but it has additional
advantages: A signature in the common formats [7] is just a
hash of the file in question that is signed by the issuer’s private
key. Similarly, a (signed) whitelist provided by a verification
provider is essentially a signature for multiple files. We do not
attach the verifier’s signature directly to the APK in order to
keep store and verification service separate. This has the advan-
tage that nothing changes in the way stores work, and existing
stores can continue to operate as before. Conceptually, the
verification systems are simply an addition to the ecosystem.
They provide signatures, but do not have to offer applications

11



Android processes

Dalvik instance

Whitelist updater

Dalvik instance Dalvik instance

Shared 
whitelistupdate

look up hashes

Whitelists
on disk load

External 
code

check hashes
External 

code

Fig. 4. The architecture of our protection system. Instances of the Dalvik VM
share a system-wide whitelist, which is backed by the device’s file system.

for download. So, the user’s device downloads applications
from stores – as before – and validates the executables with
signatures that it downloads from verification services. Due to
the relatively small size of the hashes, we combine all hashes
of the same verification service into one file that can be cached
on the device. The file contains a signed list of hashes – the
whitelist.

Upon receiving a request to load code, our modified version
of the Dalvik VM computes a hash of the code that is to be
loaded and checks it against a system-wide whitelist. We use
the SHA-256 implementation of the OpenSSL library that is
part of Android for the hash computation. This computation
has to be done only once per code file, because Dalvik keeps
a cached version of the file in a private location after the first
load operation. If the computed hash is not contained in the
whitelist, the VM cancels the load procedure immediately. The
whitelist is shared among all instances of the VM on the device
and managed via files in a system-protected directory. Thus,
only system applications (i.e., applications that are signed with
the same key as the system itself) can update the whitelist files,
which are immediately reloaded into shared memory after a
modification. Fig. 4 illustrates the design.

D. Whitelist management

We envision that each verification service that the user
configures on the device provides a single whitelist file that
is updated regularly. A system application periodically down-
loads the latest version of the whitelists and stores them
in the dedicated system directory from which our modified
Dalvik VM loads them into shared memory. Note that updating
whitelists in face of newly emerging malware is not as critical
as is the case for blacklists: Malware that is detected after
the creation date of the whitelist still cannot execute on the
protected system, because its hash is not part of the whitelist.
Forging a malicious application with the same hash as a
whitelisted benign one requires breaking the hash function
(SHA-256 in our case), which is generally assumed to be a
hard problem.

In our implementation, we just combine the whitelists from
different providers by a set union (a Boolean OR of the
approvals). It is sufficient for one of the trusted verification
services to approve code in order for the system to execute it.
It is conceivable to use more complicated expressions in future
versions (e.g., “accept code if it is approved by verification
service A or by verification services B and C”). Such behavior
is easy to add to the current system.

Additional considerations are necessary for DexClass-
Loader. As described previously, DexClassLoader allows the

user to specify the cache directory on which the system relies
for subsequent load operations (see Section III-A). Thus, an
attacker can override the files in the cache directory after our
verification succeeded. The mitigation of such an attack can
be implemented as follows: If the verification of the original
file succeeds during the first load operation, the system can
“extend” the trust to the corresponding optimized file in the
cache directory by adding its hash to a temporary whitelist.
Subsequently, any modification of the cached file can be
detected.

E. Permission for Runtime.exec

The API Runtime.exec (previously mentioned in Sec-
tion III-A) allows applications to execute arbitrary binaries on
the system. This way, applications can use system binaries
that are very generic in nature (such as a shell). It is difficult
for verification services to classify such generic binaries into
categories like “benign” and “malicious” – they can be used
for legitimate purposes as well as for malicious ones.

A classic example is the system shell /system/bin/sh: It is
present on all Android systems and not malicious in itself,
but it has inherent potential to be misused by malicious
applications. Due to its ability to carry out almost arbitrary
tasks on the system and to launch other binaries, malware
can use it to conduct unwanted activities. Thus, a verification
service cannot approve /system/bin/sh per se.

Instead, we require applications that use Runtime.exec to
ask for explicit permission using the Android permission
system. The reason is that we expect developers to be able
to prove the non-malicious character of their JARs, APKs or
native code libraries in order to have them approved by a
verification service, whereas Runtime.exec enables applications
to use binaries that are too generic for such a classification.

Any application that uses Runtime.exec has to declare this
intention in its manifest, so that the user is made aware
of the potentially dangerous behavior at installation time.
We implement the permission by modifying the Android
framework. Like some of the already existing permissions
(e.g., the permission to access the Internet), our permission
is enforced by Linux groups: An application that has been
granted permission for Runtime.exec executes in a process that
contains a particular Linux group in its set of complementary
groups. Our implementation of Runtime.exec verifies the group
membership before taking any action. By doing this, we can
make sure that applications have to explicitly declare to the
user that they will use the dangerous API.

From a technical point of view, executing an arbitrary
binary is no different from loading native code through JNI.
However, native libraries are usually not as generic as some
system binaries, because they are designed to support a single
application, whereas system tools, such as the shell, are
designed to accomplish a wide variety of tasks. Thus, we
expect it to be much easier for developers to prove the non-
maliciousness of a native library to application verification
services. Therefore, we believe that a distinction between JNI
native libraries and binaries executed through Runtime.exec is
appropriate.

Note that the introduction of the new permission requires
developers to change the manifest file of their applications if

12



they use Runtime.exec. However, we believe that this is the
only way to mitigate the risk that uncontrolled use of this
particular API imposes on the overall system’s security.

F. Evaluation

After having presented our protection system’s design, we
now assess both its effectiveness and efficiency.

1) Effectiveness: For an assessment of the protection sys-
tem’s effectiveness, we created a simple application that
exercises all the code loading techniques described in Sec-
tion III-A. We verified that, in an unmodified Android system,
they all led to the execution of external code. We tried to use
the same techniques in our protected version of Android, with-
out whitelisting the code that the application tries to load and
without giving the application permission for Runtime.exec.

The protection system successfully blocked all attempts
to load external code. The techniques using class loaders,
native code and package contexts, respectively, were detected
and blocked immediately. The attempt to execute code using
Runtime.exec was prohibited by the framework due to the
missing permission. APKs can be installed, but the system
does not allow launching the installed applications.

Note that it would be possible to intercept APKs dur-
ing installation already, for a more user-friendly experience.
This would require hooking the Package Manager Service.
However, we refrained from doing so in order to modify the
operating system and its services as little as possible while
still achieving complete protection against all presented code-
loading techniques.

In a further test, we tried to execute the two attacks
presented in Section V-B against a device running our protec-
tion system. As expected, the protection system blocked both
exploits because the injected code files were not trusted.

2) Efficiency: For the analysis of the system’s efficiency,
we examine performance and memory overhead.

In order to assess the performance overhead, we measured
the time that the modified Dalvik VM needs to check code
during the first load operation. The check consists of a SHA-
256 computation over the file that is to be loaded and a lookup
in the in-memory whitelist. Running on a 2.8 GHz Intel Core i7
CPU, the release build of our system needs 0.25 milliseconds
on average in the Android emulator to look up a hash in a
whitelist with 1,000,000 entries, and by varying the number of
entries we find that the lookup time increases logarithmically.
The SHA-256 computation uses the OpenSSL implementation
of the hash function and takes 123 milliseconds on average for
an APK file of 20 MB in size.

The second important aspect of the protection system’s effi-
ciency is memory consumption. The only factor that influences
its memory consumption is the number of whitelist entries
that are used on the device. Since we use 32-byte long SHA-
256 hashes, the space required in memory can be specified
as 32 · w + c bytes, where w is the number of entries in the
whitelist and c a constant smaller than 100. For example, a
whitelist containing the approximately 1,000,000 applications
from Google Play would consume roughly 30.5 MB of mem-
ory. Our current implementation reserves a memory block of

fixed size for simplicity, but it is easy to replace this behavior
with a strategy that adjusts the amount of reserved memory
based on the number of entries in the system whitelist.

We believe that the whitelisting mechanism will not lead
to scalability issues. Should the number of applications grow
so fast that the size of the whitelist turns problematic, the
following modification will fix the issue: In our current system,
Android devices download complete whitelists from verifica-
tion services, containing the hashes of all applications that a
respective service approves. A future version of the system
could just download hashes for installed applications during
the installation process. So, whenever the user would choose
to install an application, the system would ask all trusted
verification services for corresponding signatures. This would
eliminate any problems with storage space at the cost of
requiring the user to be online while installing applications.
While this would constitute a limitation, we believe that it
would not normally affect users. Applications are usually
installed from online stores, so that connectivity is provided
during installation.

Note that the specified amount of memory is the total
amount allocated on a device. Since all Dalvik instances share
a global whitelist, space needs to be reserved only once for all
of them.

VII. LIMITATIONS

While we believe that our system addresses the major
issues with runtime code loading, it has certain limitations.
In this section, we discuss such limitations and suggest future
improvements to address them.

A. Automatic detection tool

Our detection tool for dynamic code-loading behavior uses
static analysis techniques. Therefore, it does not have any
information per se whether a given code fragment is executed
in the default configuration of the application. This issue
could be addressed by more sophisticated data-flow analysis,
which would yield the conditions that are necessary for the
application to execute the vulnerable functionality.

Furthermore, the detection tool does not detect if an ap-
plication secures the code-loading operation by implementing
custom integrity checks. While we did not find such custom
checks in the applications reported as vulnerable that we ana-
lyzed manually, we might have to add detection capabilities for
them in the future, as developers become aware of the security
risk and start to implement custom protection. Good starting
points for the detection of integrity checks in applications are
hash computations, because common mechanisms to verify the
integrity of data usually involve hash functions.

Finally, there are several Android-specific challenges that
need to be addressed in order to perform precise static analysis
of Android applications. For example, one would need to
model the life-cycle of each application’s Activities, as well as
the implicit method calls that the Android framework performs
as a reaction to user input (such as the click on a GUI button).
One approach would be to manually add support for these
Android-specific features, but as with all manual modeling,
the results are likely to be incomplete.

13



B. Protection system

A central question is the practicality of our proposed
protection mechanism. The system requires every piece of
code that an application likes to load to be submitted to
a verification service. However, we consider this a feature
because it prevents Android devices from loading unknown
and potentially dangerous code. Google already conducts an
extensive analysis on every application submitted to Google
Play, so it seems completely feasible for them to also run
checks on additional code that applications load dynamically.
Furthermore, it is entirely possible for existing stores, such as
Google Play, to act as verification providers. Thus, no new
entities are necessary in the ecosystem. Our system simply
provides the option to add verification providers independently
from application stores in order to grant the users additional
freedom.

Note that our protection system requires changes in the
Android source code, meaning that only reinstalling or updat-
ing the operating system can deploy it. We acknowledge that
this constitutes an obstacle for fast and widespread adoption.
Nevertheless, we believe that the severe security threat imposed
by dynamic code-loading techniques (as documented in this
paper) makes changes at the operating-system level in Android
unavoidable in order to establish a reliable security model for
the handling of external code.

Another concern is the need to prove the benign character
of native code to verification providers. A reliable proof
technique likely poses considerable overhead on application
developers. The question how to alleviate this burden is
subject to ongoing research. One possible approach could be
to encapsulate native code in a sandbox environment similar
to Google Native Client [29], [36].

In theory, attackers can write an interpreter for a scripting
language in Java and download and execute scripts once
the application is installed on the victim’s device. Such an
application would not have to load code in order to behave
maliciously – the loaded script would just be data that the
application can interpret. Percoco and Schulte used a similar
approach in 2012 to circumvent detection by the Google
Bouncer [27]. Their approach is based on WebViews – Luo et
al. examined the security of WebViews in detail [23]. However,
note that the application’s Java code has to contain all the
functionality that the scripting language offers to the attacker.
The ability to read the user’s contacts, for instance, must be
present in the Java code if the attacker wants to use it from the
scripting language. Thus, verification services might be able
to recognize that the application provides a lot of seemingly
unused functionality.

A more general concern is that an attacker could use
reflection for a similar purpose. In this scenario, an application
would just receive class and method names as strings and
invoke the corresponding methods via reflection. For such an
application, the detection approach outlined above would not
work, because it would not contain any suspicious API calls.
Furthermore, it is difficult to detect in an automated analysis
that an application implements such a “reflection VM.” A
possible remediation is for verification services to reject all
applications that make extensive use of reflection.

VIII. RELATED WORK

A. System protection

Google introduced a security mechanism in Android 4.2
that contacts the Google servers whenever an application is
installed via sideloading [2]. The system computes a SHA-
256 hash of the APK and sends it to Google along with
other information about the application, asking if it is known
to be malicious. If so, the system warns the user instead
of installing the application. Google effectively implements
a blacklist approach with this protection mechanism. Such a
system has the considerable disadvantage that it is restricted
to known malware. Note that the protection scheme is only
active if Google Play is installed on the device and a network
connection is available. If the device is not currently connected,
the system silently allows the user to install the application.
Furthermore, the protection mechanism is only invoked during
application installations, so most of the techniques described
in Section III-A can be used to circumvent it.

Apple uses a technique called Mandatory Code Signing
in iOS [11]. It enforces at a memory-page level that all exe-
cuted code is signed. Developers sign their applications with
certificates issued by Apple. Additionally, from the moment
the system is powered on, it ensures that only signed code
is executed, including verification of the boot loader and the
operating system itself (the Secure Boot Chain) [4]. The chain
starts from a key that is hard-coded into read-only memory
on the chip of any device running iOS. While this approach
provides a high level of security against code injection and
execution of unapproved code, it requires modifications deep
within the operating system as well as changes to the hardware.
We feel that Android cannot adopt a similar mechanism in
the near future due to the extensive changes to hardware
and software that would be necessary. Furthermore, Apple’s
approach ties the user to a single application verification entity:
If Apple does not approve an application, then there is no
way to run it on an iOS device (as long as the device is
not “jailbroken”). Our approach addresses this issue by giving
users the possibility to choose which verification services to
trust.

Smalley and Craig ported the well-known security kernel
extension SELinux [28], [33] to Android [32]. SELinux is able
to enforce policies on the behavior of running applications,
thus limiting the interaction of a surveyed process with its
environment to those activities that it legitimately requires.
However, without tailoring policies specifically to the applica-
tion in question, only general rules can be established. Thus,
SELinux on Android does not restrain an application that
loads and executes additional code but only conducts activities
within the limits of its permissions. Alternatively, application
developers would have to write policies for their applications.
The risk in such a scenario is that developers write policies that
are not strict enough to avoid malicious activity. Also, the need
to define a policy in SELinux’s extensive policy language [31]
would slow down application development and would thus be
difficult to enforce.

Another widely researched technique to protect Android
systems is Dalvik bytecode rewriting [20]. The basic idea
is to detect the portions of an application that call security-
sensitive APIs and to redirect the calls to a monitor service

14



that implements fine-grained access control. This modification
of the bytecode can take place offline if static analysis is
used. However, external code that an application might load
at runtime poses a problem [12]. If rewriting takes place
before the application is installed, then code loaded at runtime
evades the rewriting process and is thus not restricted by
the added protection mechanisms. To counter this attack,
bytecode rewriters would have to run on the Android device
and constantly watch for attempts to access sensitive APIs that
have not been rewritten. This is computationally expensive and
not desirable on mobile devices, where system resources are
limited and battery life is a crucial factor.

B. Vulnerability analysis

In a study on the use of SSL in Android applications,
Fahl et al. show that a large portion of applications does not
make appropriate use of the security benefits of SSL [15]. In
fact, they demonstrate that many popular applications from
Google Play are vulnerable to various attacks, because the
developers did not implement security mechanisms correctly.
They conclude that one part of the problem is the lack of
easy-to-use security features for application developers. Their
results emphasize the necessity of security mechanisms that
the operating system enforces for all applications, independent
from the individual application developers, as implemented in
our approach.

In 2010, Jon Oberheide demonstrated how to download ar-
bitrary additional code in Android applications at runtime [26].
He used the technique to distribute root exploits to devices
running his application.

Bellissimo et al. demonstrated in 2006 that many update
mechanisms of applications and operating systems are inse-
cure [6]. Their attacks are similar to those that we apply against
Android applications, but targeted at desktop software.

We are not the first to use static analysis in order to
detect vulnerabilities in Android applications. Au et al. use
it to find a mapping between Android APIs and required
permissions for different versions of Android [5]. Lu et al.
employ static analysis techniques to detect applications that
expose components to other applications in an insecure way,
leading to the risk of what they call component hijacking [22].
Zhou and Jiang find similar vulnerabilities – they detect
applications that expose access to content providers in a way
that allows other applications to read or modify protected
content [38]. Chin et al. analyze the general communication
interface that an application provides to other applications in
order to detect possibilities of information leakage [9]. Grace et
al. detect capability leaks in preinstalled Android applications,
i.e., permissions that are requested by system applications, but
not properly protected against unauthorized use by third-party
applications [17].

The previously presented approaches focus on detecting
specific vulnerabilities in applications. They could be used by
the verification services that we propose in order to detect
vulnerabilities in benign applications.

In 2012, Grace et al. used static analysis to detect some
of the code-loading techniques discussed in this paper [18].
Specifically, they searched for uses of native code and Dex-
ClassLoader in Android applications in an effort to identify

malicious applications in stores. However, their work does not
cover the other categories of code-loading techniques discussed
in Section III-A, nor do the authors propose a protection
scheme to systematically prevent the risks associated with
dynamic code loading. Similarly, another publication by Grace
et al. leverages static analysis to find uses of DexClassLoader
during the analysis of advertisement frameworks [19] but also
falls short of detecting the other code-loading techniques or
offering a protection mechanism in solution.

IX. CONCLUSION

Our analysis shows that the ability of Android applications
to load code at runtime causes significant security issues. We
were able to demonstrate that a surprisingly large portion of
existing applications is vulnerable to code injection due to
improper use of different loading techniques. This is made
worse by the fact that the vulnerabilities are often found in
frameworks that are used by large numbers of applications.
Additionally, we showed that attackers could use dynamic
code-loading to avoid detection by offline application analysis
engines, in particular the Google Bouncer. In order to auto-
matically detect such vulnerable or malicious functionalities,
we implemented a static analysis tool and we showed its
effectiveness in detecting interesting samples.

Furthermore, we presented a modification to the Android
system that prevents exploits resulting from vulnerable loading
techniques by ensuring that all loaded code is approved by
an application verification service. Based on this mechanism,
we proposed a general architecture of different verification
services that users can choose from. We showed that our
protection system is able to prevent all attacks presented in
this paper. It is our hope that the proposed modification will
find its way into a future release of Android in order to be
distributed to as many devices as possible.

ACKNOWLEDGEMENTS

This material is based on research sponsored by DARPA
under agreement number FA8750-12-2-0101. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright nota-
tion thereon. The work was also supported by the Office of
Naval Research (ONR) under grant N000140911042, the Army
Research Office (ARO) under grant W911NF0910553, and by
Secure Business Austria.

REFERENCES

[1] “Android NDK.” [Online]. Available: http://developer.android.com/
tools/sdk/ndk/index.html

[2] “Security Enhancements in Android 4.2,” accessed July 2013.
[Online]. Available: https://source.android.com/devices/tech/security/
enhancements.html

[3] “Android library statistics,” AppBrain, URL shortened to protect
users of the vulnerable framework. [Online]. Available: http:
//www.appbrain.com/stats/libraries

[4] iOS Security, Apple, October 2012. [Online]. Available: http:
//images.apple.com/iphone/business/docs/iOS Security Oct12.pdf

[5] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: analyzing
the android permission specification,” in Proceedings of the ACM

Conference on Computer and Communications Security. ACM, 2012,
pp. 217–228.

15



[6] A. Bellissimo, J. Burgess, and K. Fu, “Secure software updates:
disappointments and new challenges,” USENIX Hot Topics in Security,
2006.

[7] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer,
“OpenPGP Message Format,” RFC 4880. [Online]. Available:
http://tools.ietf.org/html/rfc4880#section-5.2

[8] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy, “Return-oriented programming without returns,” in
Proceedings of the ACM Conference on Computer and Communications

Security. ACM, 2010, pp. 559–572.

[9] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-
application communication in Android,” in Proceedings of the Inter-

national Conference on Mobile Systems, Applications, and Services.
ACM, 2011, pp. 239–252.

[10] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“Efficiently computing static single assignment form and the control
dependence graph,” ACM Transactions on Programming Languages and

Systems, vol. 13, no. 4, pp. 451–490, 1991.

[11] D. A. Dai Zovi, “Apple iOS 4 security evaluation,” Black Hat USA,
2011.

[12] B. Davis, B. Sanders, A. Khodaverdian, and H. Chen, “I-arm-droid:
A rewriting framework for in-app reference monitors for android
applications,” Mobile Security Technologies, vol. 2012, 2012.

[13] A. Desnos, “androguard – Reverse engineering, Malware and goodware
analysis of Android applications . . . and more (ninja !).” [Online].
Available: http://code.google.com/p/androguard/

[14] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical
study of cryptographic misuse in android applications,” in Proceedings

of the ACM Conference on Computer and Communications Security.
ACM, 2013, pp. 73–84.

[15] S. Fahl, M. Harbach, T. Muders, M. Smith, L. Baumgärtner, and
B. Freisleben, “Why Eve and Mallory love Android: An analysis of
Android SSL (in) security,” in Proceedings of the ACM Conference on

Computer and Communications Security. ACM, 2012, pp. 50–61.

[16] “Google Play Developer Program Policies,” Google, Inc.,
accessed July 2013. [Online]. Available: https://play.google.com/
about/developer-content-policy.html

[17] M. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic detection of
capability leaks in stock Android smartphones,” in Proceedings of the

Network and Distributed System Security Symposium, 2012.

[18] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker: scal-
able and accurate zero-day android malware detection,” in Proceedings

of the International Conference on Mobile Systems, Applications, and

Services. ACM, 2012, pp. 281–294.

[19] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe exposure
analysis of mobile in-app advertisements,” in Proceedings of the ACM

Conference on Security and Privacy in Wireless and Mobile Networks.
ACM, 2012, pp. 101–112.

[20] H. Hao, V. Singh, and W. Du, “On the effectiveness of API-level access
control using bytecode rewriting in Android,” in Proceedings of the

ACM SIGSAC Symposium on Information, Computer and Communica-

tions Security. ACM, 2013, pp. 25–36.

[21] H. Lockheimer, “Android and security.” [Online]. Available: http:
//googlemobile.blogspot.com/2012/02/android-and-security.html

[22] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically vetting
android apps for component hijacking vulnerabilities,” in Proceedings

of the ACM Conference on Computer and Communications Security.
ACM, 2012, pp. 229–240.

[23] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin, “Attacks on WebView in
the Android system,” in Proceedings of the Annual Computer Security

Applications Conference. ACM, 2011, pp. 343–352.

[24] McAfee Threats Report: First Quarter 2013, McAfee,
2013. [Online]. Available: http://www.mcafee.com/us/resources/reports/
rp-quarterly-threat-q1-2013.pdf

[25] J. Oberheide and C. Miller, “Dissecting the android bouncer,” Summer-

Con New York, 2012.

[26] J. Oberheide, “Android hax,” SummerCon New York, 2010.

[27] N. J. Percoco and S. Schulte, “Adventures in bouncerland,” Black Hat

USA, 2012.

[28] N. Peter Loscocco, “Integrating flexible support for security policies
into the Linux operating system,” in Proceedings of the FREENIX Track,

USENIX Annual Technical Conference. The Association, 2001, p. 29.

[29] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko, K. Schimpf,
B. Yee, and B. Chen, “Adapting software fault isolation to contemporary
cpu architectures.” in Proceedings of the USENIX Security Symposium,
2010, pp. 1–12.

[30] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the ACM

Conference on Computer and Communications Security. ACM, 2007,
pp. 552–561.

[31] S. Smalley, “Configuring the SELinux policy,” NAI Labs Rep, pp. 02–
007, 2002.

[32] S. Smalley and R. Craig, “Security Enhanced (SE) Android: Bringing
Flexible MAC to Android,” in Proceedings of the Network and Dis-

tributed System Security Symposium, 2013.

[33] S. Smalley, C. Vance, and W. Salamon, “Implementing SELinux as a
Linux security module,” NAI Labs Report, vol. 1, p. 43, 2001.

[34] T. Vidas, D. Votipka, and N. Christin, “All Your Droid Are Belong
to Us: A Survey of Current Android Attacks.” in Proceedings of the

USENIX Workshop on Offensive Technologies, 2011, pp. 81–90.

[35] M. Weiser, “Program slicing,” in Proceedings of the International

Conference on Software Engineering. IEEE Press, 1981, pp. 439–449.

[36] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native client: A sandbox
for portable, untrusted x86 native code,” in Proceedings of the IEEE

Symposium on Security and Privacy. IEEE, 2009, pp. 79–93.

[37] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in Proceedings of the IEEE Symposium on Security and

Privacy. IEEE, 2012, pp. 95–109.

[38] ——, “Detecting passive content leaks and pollution in android applica-
tions,” in Proceedings of the Network and Distributed System Security

Symposium, 2013.

[39] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my
market: Detecting malicious apps in official and alternative android mar-
kets,” in Proceedings of the Network and Distributed System Security

Symposium, 2012.

16


