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ABSTRACT

Powerful servers and growing DRAM capacities have initi-
ated the development of main-memory DBMS, which avoid
lock-based concurrency control by executing transactions
serially on partitions. While allowing for unprecedentedly
high throughput for homogeneous workloads consisting of
short pre-canned transactions, heterogeneous workloads also
containing long-running transactions cannot be executed ef-
ficiently. In this paper, we present our approach, called ‘ten-
tative execution’, which retains the high throughput of serial
execution for good-natured transactions while, at the same
time, allowing for long-running and otherwise ill-natured
transactions to be executed. To achieve this, we execute long-
running transactions on a consistent snapshot and integrate
their effects into the main database using a deterministic
and short apply transaction. We discuss various implemen-
tation choices and offer an in-depth evaluation based on our
main-memory database system prototype HyPer.

1. INTRODUCTION
For hiding I/O latencies, traditional disk-based database

systems rely on parallelism which often requires explicit con-
currency control mechanisms like two phase locking. Recent
main-memory database systems like VoltDB [29], HANA [9]
or HyPer [19] use serial execution on disjoint partitions to
achieve high throughput without explicit concurrency control.
This allows removing the lock manager entirely, which – even
in disk-based database systems – has been shown to be a
major bottleneck [15, 27]. In main-memory, data accesses
are orders of magnitude faster than disk accesses. The lock-
manager, however, does not inhibit a significant speedup
since it has always resided in main-memory. Therefore, re-
turning to explicit concurrency control is not an option for
handling long-running transactions in main-memory DBMSs.
While yielding unprecedented performance for good-natured

workloads, serial execution is restricted to a constrained set
of transaction types, usually requiring suitable transactions
to be extremely short and pre-canned. This makes main-
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Figure 1: Schematic idea of tentative execution.

memory database systems using serial execution unsuitable
for “ill-natured” transactions like long-running OLAP-style
queries or transactions querying external data – even if they
occur rarely in the workload.

In our approach, which we refer to as ‘tentative execution’,
the coexistence of short and long-running transactions in
main-memory database systems does not require recommis-
sioning traditional concurrency control techniques like two
phase locking. Instead, the key idea is to tentatively execute
long-running transactions on a transaction-consistent snap-
shot of the database illustrated in Figure 1, thus converting
them into short ‘apply transactions’. While the snapshot is
already available in our main-memory DBMS HyPer, which
will be used and discussed in the evaluation, other systems
can implement hardware page shadowing as used in Hy-
Per or employ other snapshotting- or delta-mechanisms as
illustrated in Section 3.
Since the transaction-consistent snapshot is completely

disconnected from the main database, delays like network
latencies or complex OLAP-style data processing do not
slow down throughput of “good-natured” transactions (green
transactions in Figure 1) running on the main database. If a
transaction completes on the snapshot, a validation phase
ensures that its updates can be applied to the main database
under the predefined isolation level of the DBMS.
The remainder of this paper is structured as follows: In



the following section, we discuss the breadth at which the
workload for main-memory DBMS is extended by this work
as well as the concrete scenarios discussed in this paper. In
Section 3, our tentative execution approach is introduced in
detail and implementation choices are offered. Afterwards,
in Section 4, we offer a discussion of the system performance
when using two phase locking which we compare to the
performance of tentative execution in Section 5. There, we
also discuss our prototypical implementation of tentative
execution which we added to our main memory database
system, HyPer. Section 7 concludes this paper.

2. WORKLOAD EXTENSION
In this section, we discuss the range of workloads that will

benefit from a more general transaction processing paradigm
and give pointers to real-world applications regularly employ-
ing transactions of this nature.

2.1 Duration
The focus on short transactions is essential for serial exe-

cution as no other transaction running on the same partition
can be admitted while another long-running transaction is
active. This – of course – causes throughput to plummet mak-
ing long-running transactions nearly impossible to execute
in a vanilla serial execution scheme. Recent research in the
area of hybrid database systems, which can execute OLTP
transactions as well as OLAP queries on the same state of the
database, has lead to the development of the HyPer database
prototype [19]. In HyPer, long-running read-only queries can
be executed on a consistent snapshot without interfering with
transactional throughput, therefore alleviating the problem
in the read-only case.

Transactions with a runtime higher than few milliseconds
that are not read-only cannot be executed in most recent
main-memory database prototypes. This kind of transac-
tion, though, is far from being hard to find. For example,
the widespread TPC-E benchmark entails transactions with
complex joins which require substantial time to execute.

Apart from complex transactions with high computational
demands and therefore long runtime, we additionally iden-
tify interactive transactions as a workload that is currently
incompatible with the idea of partitioned serial execution.
Recently, work involving user-interactive transactions, so
called Entangled Queries [14], received broad attention in
the community highlighting the importance of supporting
this workload type. Additionally, we have identified Available

to Promise as both, a complex as well as a user-interactive
transaction type. Here, users are presented with an avail-
ability promise for their orders which requires transactional
isolation until the user has made a decision. Computing the
stock level and therefore availability of the selected products
is computationally expensive while interactivity occurs when
waiting for the user’s decision.

Another source of long-running transactions is application
server interactivity. Frequently, application servers retrieve
substantial amounts of data from a DBMS, make a complex
decision involving other data sources and write the result of
this operation back to the DBMS in one single transaction.
In this scenario, latencies are typically smaller than waiting
times for a user but are still significantly higher than what
can be tolerated in a serial execution scheme.

2.2 Partitioning
Among the benchmarks used in the area of main-memory

database systems – for example the TPC-C1, the
CH-benCHmark [5] or the voter benchmark2 – many can
be partitioned easily and inhibit only few or no partition
crossing transactions. Most prominently, the TPC-C can be
easily partitioned by warehouse id limiting the number of
transactions that access more than one partition to about
12% as noted in [6]. Oftentimes, the partition crossing charac-
teristics of a benchmark are even removed for the evaluation
of main-memory database systems.
Unfortunately, not all workloads can be partitioned as

easily as in the case of the benchmarks mentioned above.
Curino et al. [6] show that the TPC-E3 is hard to parti-
tion manually though they succeed in finding a promising
partitioning scheme using machine learning. Commercial
database applications – for instance SAP R/3 – have orders
of magnitude more tables than the TPC-E and therefore
make finding a simple partitioning which requires only few
partition crossing transactions doubtful.

2.3 Scenario used in this work
In this paper, we will focus on application server interactiv-

ity since it is a natural addition to widely used benchmarks
like the TPC-C. Additionally, it introduces an increase in
execution time which is severe enough to render serial ex-
ecution useless for this kind of transaction. Furthermore,
application server interactivity is usually employed in cases
where transactional isolation is an absolute requirement mak-
ing solutions which decrease the isolation level to allow for
efficient execution impossible.

3. TENTATIVE EXECUTION
The execution of “ill-natured” transactions takes place on

a consistent snapshot. Alternative methods like execution on
delta structures or using undo log information are in principle
possible, as all general results presented here also apply to
other mechanisms.
When an ill-natured transaction is detected, it is trans-

ferred to the tentative execution engine. The transaction is
queued for the next snapshot being created after its arrival.
Monitoring is employed during execution on the snapshot
to allow for a validation phase on the main database. If the
transaction aborts on the snapshot, the abort is reported
directly to the user. If the transaction commits, a so called
‘apply transaction’ is enqueued into the regular sequential
execution queue as pictured in step 4), Figure 2. As implied
by the name, the apply transaction validates the execution
of the original transaction and then applies its writes to the
main database state. If validation fails, an abort is reported
to the client. Otherwise, successful execution of the original
transaction is acknowledged after the apply transaction has
committed on the main database.

The remainder of this section details the specific concepts
used for identifying transactions that should be run ten-
tatively, monitoring, validation and the general execution
strategy of tentative transactions.

1See www.tpc.org/tpcc/default.asp
2See voltdb.com/sgi-achieves-record-voltdb-benchmarks
3See www.tpc.org/tpce/



3.1 Identification of ill-natured transactions
Different mechanisms can be used to separate the workload

into good- and ill-natured transactions. A simple approach
is limiting the runtime or number of tuples each transaction
is allowed to use before it has to finish. When a transaction
exceeds this allotment – which can vary depending on the
transactions complexity or the number of partitions it ac-
cesses – it is rolled back using the undo log and re-executed
using tentative execution.
If no interactivity is allowed inside transactions, the roll-

back after a timeout is transparent to the user. This is
because no decision about the success of the transaction,
commit or an abort, has been made and no intermediate
results of the transactions could have been observed by the
user. This strategy is displayed as step 2) in Figure 2. If
it is decided that a transaction should rather be executed
tentatively, it is rolled back and reinserted (see step 3)) into
the transaction queue with a label marking it as a ‘snapshot
transaction’. Although simple, a limit-based the approach
yields satisfactory results for workloads consisting of many
deterministic and short transactions and only some very
long-running analytical queries.

Snapshot

Main

Tx Tx Tx 1) 2)
commit/

abort

3) Reenqueue as snapshot tx

4) Reenqueue as short tx

Figure 2: Schematic representation of the tentative
execution approach presented in this work.

Apart from limit-based mechanisms, static analysis can be
used for the execution of stored procedures. Here, potentially
slow accesses to external data which take more than, e.g.,
a few microseconds to complete, can be identified à priori.
Transactions that have already been identified to be long-
running by the analysis can be tentatively executed from the
start. Instead of relying on automated analysis, the user can
also explicitly label transactions as tentative and therefore
force execution on the snapshot if that behavior is deemed
favorable.

Another possible option for identifying transactions which
should be run using tentative execution is collecting statistics
on previous executions of each transaction. When limit-based
detection has frequently failed executing a certain transaction
serially, the scheduler can use this knowledge to schedule the
transaction for tentative execution instead of again trying to
execute it serially.

3.2 View-serializability
To achieve view-serializability, a tentative transaction’s

read set on the snapshot must be equal to the read set that

would have resulted from executing the transaction on the
main database. To achieve this, we monitor all reads on
the snapshot and validate them against the main database.
This ensures that none of the writes performed on the main
database by short good-natured transactions invalidate the
visible state a tentative transaction was executed on.

Formally, we define view-serializability [30]: Let s be a
schedule and RS(s) be its reads-from relation. Intuitively, the
reads-from relation contains all triples (ti, x, tj) for which a
transaction tj reads the value of the data element x previously
written by transaction ti (A formal definition, which we
omit for brevity, can be found in Definition 3.7, [30]). Two
schedules s and s′ are said to be view-equivalent denoted
s ∼v s′ if their reads-from relations are equal:

s ∼v s
′

⇔ RF (s) = RF (s′)

A schedule s is called view-serializable iff. a serial schedule
s′ exists for which s ∼v s′. Intuitively, a schedule s is
view-serializable when the state of the database read by the
transactions in s is the same as the state of the database read
by some serial execution of those transactions. We ensure
this property by monitoring the reads a tentative transaction
performs and validating them against the writes performed
in parallel on the main database as detailed below.

3.3 Snapshot isolation
In addition to view-serializability, we offer snapshot iso-

lation [1]. Here, the writes of a tentative transaction must
be disjoint from those performed in parallel on the main
database. This requires monitoring all writes performed on
the snapshot such that conflicts with writes performed on
the main database can be detected.
Formally, snapshot isolation can be defined as the set

of schedules which can be generated when enforcing the
following two rules [10, 25]:

1. When a transaction t reads a data item x, t reads
the last version of x written by a transaction that
committed before t started.

2. The write sets of two concurrent transactions must be
disjoint.

We enforce 1. by running a transaction t on a snapshot that
contains all transactions that have committed before t was
admitted and by enforcing a concurrency control protocol
like strict 2PL on the snapshot. The latter allows for writes
to be done in-place on the snapshot without the danger
of a concurrent transaction reading uncommited data from
another tentative transaction. The disjoint write sets rule
2. is enforced using the monitoring approach described in the
following section.

3.4 Intertransactional read-your-own-writes
While read-your-own-writes within one transaction as de-

fined in the SQL standard [16] is fulfilled under both snapshot

isolation and view-serializability, another related anomaly
can be observed when using snapshot isolation, which we refer
to as the intertransactional read-your-own-writes violation.
As an example in the context of tentative execution, con-

sider a user u successfully executing a short transaction t1
on the database which adds an order with a total value of
$100. Since the transaction is not long-running, it is executed
using the sequential execution queue on the main database
and commits. Then, u executes a new transaction, t2, which



counts all orders valued at $100. If – under snapshot iso-
lation – t2 was dispatched to a snapshot created before t1,
u would not see the effects caused by her previously com-
mitted transaction t1, an anomaly which we refer to as an
intertransactional read-your-own-writes violation.
To avoid intertransactional read-your-own-writes viola-

tions, we require order preservation analogously to [30, page
102]. For every two transactions t and t′ the following must
hold: If t is executed entirely before t′, all operations of t
must come before all operations of t′ in the totally ordered
history. Intuitively, this ensures that for every transaction t′,
all effects of all transactions which finished and committed
before t′ are visible. This behavior is favorable, since users
would expect that their transaction – for which a commit
was already received – is part of the observed database state.

In our prototypical implementation of the tentative exe-
cution approach, adherence to intertransactional read-your-

own-writes is given under view-serializability. Here, the read
set is validated such that tentative transactions read the lat-
est committed value for each data item, therefore implicitly
fulfilling intertransactional read-your-own-writes.

Under snapshot isolation, transactions need to be executed
on a snapshot which was created after the transaction was
admitted. Since we refresh the snapshot periodically as
indicated in Section 5.1, we queue all arriving tentative
transactions until the next time the snapshot is refreshed, at
which point we start their execution. As we can have multiple
active snapshots in parallel (cf. Figure 7) and since snapshot
creation is cheap, this causes only a minor delay which is
noncritical since tentative transactions are long-running in
nature.

3.5 Conflict Monitoring
Our approach is optimistic in that it queues and then exe-

cutes transactions on a consistent snapshot of the database.
This is advantageous as no concurrency control is required
for the short- and apply-transaction execution. Similarly
to other optimistic execution concepts, for instance [21, 17,
4], a validation phase is required which makes some form of
monitoring necessary.
We formalize our monitoring approach as follows. An

action that requires monitoring so that it can be verified
during the apply phase is called an access. Under snapshot
isolation, every write is an access and has to be monitored,
whereas under view-serializability, every read is an access.

For each access performed by the tentative transaction
under a given isolation level, we record a 2-tuple

(tid, snapshotVersion(tid))

and add it to L, the set of monitored accesses. Here,
snapshotVersion(tid) is defined as the version of a tuple iden-
tified by tid at the point the snapshot was taken. Therefore,
it holds that

snapshotVersion(tid) = currentVersion(tid)

right after a snapshot of the database has been taken.
A tentative transaction is successful if a) it commits on

the snapshot and b)

∀(tid, ver) ∈ L : currentVersion(tid) = ver

holds.
Note that a version does not necessarily require a concrete

version number or counter per tuple, its value can also be used

Page 1 Page2 Page3
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Figure 3: Monitoring using version numbers. The
orange diamonds mark possible places where version
counters can be employed to achieve different mon-
itoring granularities.

as a version identifier. We exploit this fact for monitoring
accesses which touch only very few tuples and attributes.

In detail, we employ an adaptive monitoring strategy that
depends on the nature of the SQL statement being executed.
For requests using the primary index or other unique indexes,
we do not use explicit per tuple version numbers but log the
values of all attributes which are accessed. If compression is
employed, it is sufficient to log the compressed value as long
as decompression is possible at a later point in time, during
the validation phase.

By logging an attribute value, the version of the accessed
data is given implicitly through its value. Therefore,
snapshotVersion(tid) is equal to currentVersion(tid) iff. all
values of all accessed attributes of the tuple are equal on
both the snapshot and the main database.
For statements that access multiple tuples, we vary the

granularity at which accesses are logged depending on the
access patterns observed on a table. A natural way of notic-
ing changes to the underlying data is to introduce version
numbers representing the state of a cluster of tuples. For
instance, an entire relation can be versioned as a whole – that
is a version counter is increased on every update performed
on the relation. When the versions used on the snapshot
during tentative execution as well as the version found when
applying the transaction on the main database are equal, the
datasets used by each transaction are disjoint and therefore
conflict free, causing validation to succeed. To achieve other,
finer granularities, version counters can be introduced on
each column of a relation, on parts of the index, for example
B+-tree leaf nodes or on each memory page.

Our prototype implements the log as attribute values writ-
ten to a chunk of shared memory. For each read/write of
a request that has to be logged, we write all used attribute
values as well as the cardinality of the request’s result to
the log. Since we use shared memory, the tentative transac-
tion and the apply transaction can both access the same log
structure which simplifies data sharing and makes explicitly
copying the log unnecessary.
For view-serializability, we log selects and validate their

result against the result of an equivalent select to the main



database during the apply phase. For snapshot isolation, we
log the set of overwritten tuples and validate that we over-
write the same data on the main database and therefore the
data being overwritten has not changed since snapshot cre-
ation, fulfilling the disjoint write set requirement of snapshot
isolation.

In our setting, monitoring is preferential over methods like
predicate locking which could be used to track overlaps in
read/write sets as well: Monitoring is only required for the
few long transactions running on the snapshot, not for the
many short transactions operating on the main database.
Tracking selection and update predicates would be required
on both the main database and the snapshot causing a sub-
stantial slowdown for otherwise good-natured transactions.

3.6 Apply phase
During the apply phase, the effects of the transaction

as performed on the snapshot are validated on the main
database and then applied. This is done by injecting an
‘apply transaction’ into the serial execution queue of the
main database. As opposed to the transaction that ran on
the snapshot, the apply transaction only needs to validate
the work done on the snapshot, not re-execute the original
transaction in its entirety or wait for external resources.
Specifically, we distinguish between two cases: When se-

rializability is requested, all reads have to be validated. To
achieve this, it is checked whether or not the read performed
on the snapshot is identical to what would have been read on
the main database. Depending on the monitoring granularity,
the action performed here ranges from actually performing
the read a second time on the main database to comparing
version counters between snapshot and main.

When snapshot isolation is used, the apply transaction
ensures that none of the tuples written to on the snapshot
have changed on the main database, therefore guaranteeing
that the write sets of both the tentative transaction as well as
all transactions that have committed on the main database
after the snapshot was created are disjoint. This is achieved
by either comparing the current tuple values to those saved
inside the log or by checking that all version counters for
written tuples are equal both during the execution on the
snapshot and on the main database.

3.7 Concurrency
Since tentative execution is used for transactions which

are unsuitable for sequential execution, it is essential to sup-
port concurrency on the tentative execution snapshot. As
transactions are compiled differently if they are scheduled to
be executed tentatively, we can support popular concurrency
control techniques as used in traditional database systems
– for instance two-phase locking. In contrast to using 2PL
for the entire database, adding the overhead of a centralized
lockmanager inside the tentative execution engine is uncrit-
ical: Relative to a transaction’s runtime and other costs,
locking overhead is minimal for transactions executed on
the tentative execution snapshot, whereas the overhead of
locking would be massive for the short transaction which we
execute serially.
When the view serializability isolation level is used with

tentative execution, a simpler concurrency control mechanism
is possible. Since the read set of a tentative transaction is
verified during the execution of the apply transaction, we can
have multiple transactions run in parallel on the snapshot

using latches to maintain physical but not necessarily logical
integrity. If two tentative transactions interfere with each
other, the conflict will be detected during validation in the
apply transaction causing one of the conflicting transactions
to abort. Therefore, when using view serializability, we can
employ this type of optimistic concurrency control on the
snapshot. Note that the simplified concurrency paradigm is
not applicable for snapshot isolation, since writes could be
based on an inconsistent view of the database which does
not correspond to a previous consistent version.

3.8 Queries
OLAP queries constitute a special case of long-running

transactions which do not contain a write component. The
tentative execution approach introduced in this work requires
no extension for such workloads; OLAP queries are simply
forwarded to the snapshot where they are executed analo-
gously to the OLAP execution pattern originally introduced
for HyPer [19]. Since no writes are performed, the result of
the execution is directly reported to the user without the
need for an apply transaction.
Under snapshot isolation, no verification needs to be per-

formed since the write set of the OLAP query is empty and
therefore cannot conflict with writes on the main database.
Under view-serializability, the reads-from relation of a read-
only transaction t is equal to the reads-from relation of the
serial schedule in which t is executed serially right after the
consistent snapshot of the database was taken. Therefore,
the execution of OLAP queries using tentative execution
fulfills the view-serializability requirements as defined in Sec-
tion 3.2. It is based on multiversion concurrency control
like for instance [22] with its mode of execution most closely
resembling the multiversion mixed synchronization method,
as described by Bernstein, Hadzilacos and Goodman [2, Sec-
tion 5.5]. There, updaters generate a new version for every
update they perform on the database whereas queries work
on a transaction consistent state that existed before the query
was started.

3.9 Summary
Tentative execution converts an ill-natured transaction

into a good-natured one by collecting unknown external
values during the execution on the snapshot. From that,
an apply transaction which does not require interactivity is
generated, which can be executed using high-performance
serial execution. In case of successful validation, the apply
transaction commits and its effects are equal to the original
transaction being run directly on the main database with the
specified isolation level. If validation is not successful, the
transaction aborts just as if a lock could not be acquired due
to a deadlock situation in a system using locking or as if an
illegal operation had to be performed when using timestamp
based concurrency control (cf. [30]).
When used for the execution of read-heavy OLAP style

transactions, coarse granularity monitoring can be used to
allow for quick validation of otherwise large amounts of read
data. Additionally, snapshot isolation can be used to reduce
overhead when appropriate – for instance for the concurrent
calculation of approximate aggregate values.

4. 2PL IN A MAIN-MEMORY DBMS
Two phase locking is a well known and well researched

mechanism for concurrency control in database systems
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Figure 4: The TPC-C benchmark with 8 warehouses executed using 2PL on the left, partitioned serial
execution on the right.

which is widely used, for instance in IBM’s DB2 database
system. To validate that research in the area of optimizing
and extending partitioned serial execution is indeed worth-
while, we have conducted investigations into the overhead
that 2PL causes in a main-memory setting. In order to get
exact measurements of the overhead, we modified HyPer
which currently uses only partitioned serial execution.

We implemented multiple granularity locking with a to-
tal of 5 locking modes (IS, IX, S, SIX, X) in a Gray and
Reuter [13] style lock manager. For deadlock detection, we
rely on an online cycle detection approach as introduced by
Pearce et al. [28] for pointer analysis, which we apply to the
wait-for graph. Our locking scheme uses coarse granularity
locks for accesses which touch more than 5 tuples and fine
granularity per-tuple locks otherwise. Since we operate en-
tirely in main-memory, locks are usually held for only a few
microseconds rendering a tall locking hierarchy inefficient.
To illustrate the overhead incurred by using 2PL, we ran

the well known TPC-C benchmark scaled to 8 warehouses
and measured the transactional throughput. In the case
of partitioned execution, we partitioned the database by
warehouse allowing for many accesses to be restricted to a
single partition with an average of 12.5% of the transactions
touching multiple partitions. When partitioned execution
encounters a so called partition crossing transaction, it locks
the entire database effectively disabling parallelism for the
duration of said transaction.

In Figure 4, we show how throughput in the TPC-C bench-
mark varies between 2PL and partitioned execution. We
measured the throughput in transactions per second over a
100 seconds long run of the benchmark for a varying number
of threads. Clearly, partitioning performs better than locking
both in terms of throughput increase per added thread as
well as in terms of peak throughput.

The poor performance of 2PL can be explained by looking
at profiler information on where time was spend during the
execution of the benchmark. In our implementation, roughly
70% of the execution time is spend for locking related tasks
as depicted in Figure 5

The comparably high overhead of locking is due to the fact
that each transaction inside the TPC-C requires the acquisi-
tion of multiple locks on different hierarchy level. During the
benchmark run shown in Figure 4, 6.5 million transactions
were started which required the acquisition of roughly 400
million locks. 1 Million of these locks could not be fulfilled

without waiting for another transaction to release the lock.
40,000 transactions had to be aborted, either because of a
cycle in the waits-for graph or because of an unfulfillable
lock upgrade request.

Everything else

33%

LockWaiting

14%

LockRequesting
16%

MutexWaiting

17% MemoryManagement

20%

Figure 5: Areas in which time is spend during trans-
action execution.

Compared to 2PL, partitioned execution scales noticeably
better peaking at roughly 350,000 transactions per second
(note that redo logs were not persisted in this scenario causing
an performance increase of roughly 10%). Here, the overhead
of locking shared data which is necessary for the execution of
roughly 12,5% of all transactions accounts for about 20% of
the execution time. The remaining 80% is exclusively spent
on transaction execution explaining the large difference in
throughput in which partitioned execution is a factor 7 faster
than two-phase locking.

We investigated ways of improving the performance of 2PL
in the setting of executing a benchmark like the TPC-C, a
benchmark exclusively containing short, pre-canned trans-
actions. The most significant improvement we discovered is
replacing lock waiting using condition variables with busy
waiting. This is due to the fact that transactions are ex-
tremely short and context switches to another thread do
not usually pay off, as waiting periods are in the order of a
few microseconds. Sadly, this improvement – which allows
performance gains of about 20% – is no help when it comes
to the execution of transactions different from those in the
TPC-C. When an ill-natured transaction is executed with
busy waiting enabled, all threads waiting for a lock held by
said transaction would actively spin and thus use memory
bandwidth as well as completely block an execution unit.
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5. EVALUATION
In the following Section, we will evaluate the performance

of tentative execution in regard to abort rate, throughput
and overhead when varying snapshot freshness and executing
different workloads.

5.1 HyPer: Snapshot-based OLTP&OLAP
We evaluated our approach on our HyPer prototype data-

base system. HyPer is a hybrid OLTP&OLAP main-memory
database system relying on partitioned serial execution for
transactions and allowing the execution of long-running read-
only workloads by executing them on a consistent snapshot.
Since a versatile snapshotting mechanism [23] that has a
small memory footprint [11] already exists in HyPer, its
usefulness is extended by tentative execution.

HyPer uses hardware page shadowing by cloning the OLTP
process (fork) which allows for the cheap creation of an ar-
bitrary number of snapshots which can coexist and share
data (cf. Figure 6). Until a modification occurs on a page,
memory pages are shared between all snapshots. On mod-
ification, a single copy of the memory page is created and
the modification is performed on the copy, leading to the
original page still being shared by all snapshots on which no
modification took place.
This allows for the seamless refresh of a snapshot by

cheaply recreating a new snapshot which still shares most
pages with both the current snapshot as well the the original
database. All transactions queued for execution on the old
snapshot can still finish and be applied to the main database
whereas the new snapshot can already be used for tentative
execution while the old one finishes its work queue.
Using virtual memory for snapshots also allows for opti-

mizing how read/write set logging is done: On most architec-
tures, we could use the dirty-bit available for virtual pages
to identify whether or not a page has changed. This is due
to the fact that we can unset the dirty-bit when a snapshot
is created and it is automatically set for each page when
the page is modified. Therefore, no overhead is incurred
for regular, good-natured transactions. On apply, we can
find conflicts on virtual page granularity by checking the
dirty-bits on pages touched by a tentative transaction.

LM
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Old Snapshot

LM

MON

Snapshot

Main

TxTx

TxTx

TxTx

Tx Tx Tx

Tx Tx Tx

Tx Tx Tx

Figure 7: Architecture of the tentative execution ap-
proach with two snapshots for tentative execution.
The Snapshot is a recent snapshot of the database
used for executing tentative transactions whereas
the Old Snapshot finishes the execution of its trans-
action queue without delaying the creation of a new
snapshot or the need for transactions to abort.

5.2 Database compaction for faster forks
In order to execute transactions with tentative execution, a

recent snapshot and therefore the ability to create a snapshot
of the database at any time are important. Fresh snap-
shots minimize unnecessary conflicts with the main database
caused by outdated data inside the snapshot. This work uses
the compaction mechanism introduced by Funke et al. [11]
to further minimize the cost of hardware supported page
shadowing as used in the HyPer database system which was
originally evaluated in [23].
Compaction is based on the working set theory of Den-

ning [7]. It uses lightweight clustering to separate the data-
base into a hot and a cold part.

While the hot part of the database can be updated in place
and resides on small pages in memory; the cold part of the
database – which is assumed to rarely change – is stored
in an immutable fashion on huge memory pages. When a
tuple inside the cold part needs to be updated, it is marked
as deleted using a special purpose data-structure containing
deletion indicators, copied into the hot part of the database
and updated there.

Effectively, this causes cold tuples to be “warmed up”when
a modification is required. Hot pages, which do not change
anymore, are asynchronously moved to huge pages inside
the cold storage part. Funke et al. show, that their mech-
anism has a negligible runtime overhead for both, OLTP
transactions as well as read-only OLAP queries running on
a snapshot.
Separating the data into hot and cold parts and storing

those parts on differently sized pages increases fork perfor-
mance since huge pages hold substantially more data per page
table entry than small pages. Since ‘forking’ the database
copies the pagetable eagerly and all data in a lazy fashion,
the eager copying of the page table becomes faster due to
reduced page table size.

5.3 Overhead incurred by tentative execution
First, we want to illustrate the overhead which is incurred

by dispatching a transaction to a snapshot, executing it with
additional monitoring and applying it to the main database.
To show that our approach does not accumulate high runtime
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Figure 8: Comparison of 2PL and Serial Execution
with a Multi-Programming Level of 1.

costs, we ran the TPC-C benchmark and flagged all of its
five transactions as being long running. This causes each of
the transactions to be run by the tentative execution engine,
which we switched to execution without concurrency on the
snapshot for a more accurate comparison to regular HyPer.

We ran 10 million transactions distributed as required by
the TPC-C and compared the throughput using tentative
execution with regular execution of the TPC-C on our Hy-
Per database system. We evaluated both, execution with
snapshot isolation as well as serializable isolation level.
As a baseline comparison, we executed the TPC-C with

Multi-Programming Level 1 to measure the baseline overhead
of lock acquisition without taking contention or rejected
lock requests into account. Figure 8 shows that going lock
management – even without contention – slows processing
down by a factor of approximately 3.
Figure 9 shows the throughput of vanilla HyPer versus

HyPer with the two tentative execution variants on 100
batches of 100,000 transactions. Separate measurements
show that when all transactions are executed tentatively (the
worst-case scenario), the throughput is approximately cut in
half compared to HyPer without tentative execution. This
is caused by a multitude of factors: First, each transaction
has to be executed just like in vanilla HyPer, so cost cannot
possibly be lower. Second, every transaction needs to log
the entire read set to memory which effectively converts each
read into a read with an additional write operation to the log.
Third, the data written to the log will later – in the validation
phase – be accessed by a different process, reducing locality.
Fourth, we identify records logically in our prototype and
therefore need to perform every index lookup both on the
snapshot as well as on the main database, thus doubling
lookup costs.
With snapshot isolation, throughput is lower than with

serializability. This seems counter-intuitive at first since the
TPC-C reads more tuples than it updates and therefore the
amount of data that needs to be logged and verified should
be smaller for snapshot isolation compared to serializability.
It is caused by the fact that view-serializable transactions
can concurrently execute on the snapshot using latching
whereas transactions under snapshot-isolation require a more
complex concurrency control system on the snapshot, in our
case two phase locking although others are possible. Note
that although traditional concurrency control is a major
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Figure 9: Throughput comparison between vanilla
HyPer without any long running transactions and
HyPer with long-running transactions using tenta-
tive execution.

source of overhead for short, good-natured transactions, no
slow overhead for good-natured transactions is added when
concurrency control is only used on the snapshot.
When comparing both tentative execution variants with

vanilla HyPer, a different slope of the curves can be observed
for the first million transactions. The decrease in throughput
for vanilla HyPer comes from tree indexes rapidly growing
in depth at the start of the execution. For the two tentative
execution variants, the increase in throughput is due to copy-
on-write operations used for snapshot maintenance being less
frequent once old tuples are no longer updated and only new
tuples are inserted and later updated.
For the frequent case of only a small fraction of the

workload being identified as tentative, Figure 9 displays a
throughput comparison. Here, a small fraction varying be-
tween 0.1% and 1% of the workload was executed using
tentative execution. After a short ramp-up phase – which is
caused by copy-on-writes after snapshot creation – through-
put increases up to a level of roughly 80% of the transaction
rate achievable with an unmodified version of HyPer.

In the unlikely worst-case where every transaction has to be
executed tentatively, tentative execution takes about twice as
long compared to regular execution in HyPer. This is caused
mainly by added monitoring and validation overhead as well
as operations like index lookups which have to be performed
twice, once on the snapshot and the second time on the main
database. In total, we consider the added overhead to be
negligible for the expected ratio of ill-natured transactions.

5.4 Snapshot freshness versus commit rate
To measure the effect of snapshot freshness on commit

rates, we added a third kind of payment transaction to the
TPC-C which requires a credit check during the transaction
before adding funds to a customers account and committing.
The delay caused by the credit check varies between 1ms
and 10ms with uniform distribution. Since a customer is
technically able to commence another order and pay for it
using a different method, the customers account balance can
change during execution forcing the transaction to commit.
The code for our ‘paymentByCredit’ transaction can be found
in Appendix B.

Figure 10 shows the commit rate of the tentative ‘payment-
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Figure 10: Commit rate and throughput of a ten-
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Figure 11: Throughput of tentative execution
with varying refresh intervals compared to exe-
cution of the same workload using 2PL.

ByCredit’ transaction as well as the total system
throughput depending on the snapshot refresh interval. At
32s on the x-Axis, the snapshot is being refreshed every 32s
seconds causing more tentative transactions to abort due
to reading invalid data than when the snapshot is refreshed
more frequently, for instance every 4 seconds. Therefore, as
can be seen in the figure, the commit rate of the ‘payment-
ByCredit’ transaction decreases with less frequent refreshes
and converges towards zero. This is an expected result as
data becomes severely outdated when the snapshot is not
refreshed. It should be noted that the transaction rate of
40,000 transactions per second combined with a total number
of only 150,000 customers, each customer on average issues
an order at the unrealistic rate of every 9 seconds, making
the snapshot and the main database diverge quickly.

Total throughput, as opposed to the commit rate, increases
with longer refresh intervals as can also be witnessed in Fig-
ure 10. This is due to the fact that ‘re-forking’, i.e. recreating
the snapshot and therefore refreshing it, requires the system
to be quiesced when using hardware page shadowing as is the
case in HyPer. With longer usage intervals before a snapshot
is refreshed, transaction processing is quiesced less frequently
causing an increase in throughput.

Even with very short re-fork intervals, tentative execution
still performs favorably compared to execution using 2PL,
as illustrated in Figure 11. The throughput for tentative
execution is substantially higher than for locking, even when
the snapshot is refreshed every second. The oscillations vis-
ible in the three instances of tentative execution displayed
in Figure 11 stem from quiescing the database to fork which
lowers throughput for some of the data points. The effect
is less pronounced for long re-fork intervals, for example
every 32s as pictured in blue, as only one refresh happens
during the course of the benchmark. The red line, displaying
tentative execution with a refresh interval of 1 seconds, ex-
hibits a higher oscillation frequency with the lowered overall
performance being due to the cost of quiescing the system
and initial copy-on-write costs after creating a new snapshot.

5.5 Snapshot isolation versus serializability
While serializability offers classical consistency guarantees,

snapshot isolation is widely used in commercial database
systems and its implications are well understood [25]. In the

following section we offer a brief summary of the effects of
the different isolation levels on tentative execution and try
to give guidelines in which scenario each isolation level is
useful in this context.

5.5.1 Monitoring memory consumption

By definition, the amount of information that needs to
be verified after a transaction has finished on the snapshot
varies between snapshot isolation and view serializability.
Snapshot isolation only requires the write set of tentative
and regular transactions to be conflict free, whereas view

serializability requires that the read set on the snapshot as
well as main database is equivalent. Therefore, in terms
of memory consumption, snapshot isolation is favorable for
read-heavy workloads. This is emphasized as inserts do
not need to be validated in terms of write set collisions
but only constraint violations, which in our prototypical
implementation is free as we recompute all inserts during the
apply phase instead of explicitly logging the inserted values
(cf. Section 3.5).

One way of monitoring the readset of a transaction to
achieve view-serializability is logging all data read as well as
the cardinality of all index accesses. If the actual data as well
as the index cardinality are equivalent between snapshot and
main database, the user transaction would have made the
same decisions on either copy of the database and therefore
the transaction can commit. Figure 1 shows the number
of tuples deleted, inserted, updated and read during each
read/write transaction of the TPC-C benchmark as well as
the size of the tentative execution log for read logging. In
addition to read-set logging, the log size required for write
set logging as used under snapshot Isolation is shown.

Write log size is computed by adding the number of bytes
deleted and updated to the log. The rationale behind this
is that write conflict checking requires to check if the values
overwritten or deleted are similar on the snapshot as well
as on the main database. Apart from the actual content,
the number of deleted and updated tuples has to be saved
in the general case. In Table 1, an optimization is possible:
Since all updated or deleted tuples are accessed using unique
indexes, the update and delete operations are guaranteed to
either fail (causing a rollback on the snapshot and therefore
causing the log to be discarded) or succeed for exactly one



Tx Unit Avg Min Max
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tuples delete 0.09 0 14
bytes deleted 7.31 0 1120
tuples inserted 11.98 4 17
bytes inserted 851.70 320 1252
attrs updated 1.01 1 2
bytes updated 4.04 4 8
attrs read 55.01 25 80
bytes read 602.16 260 887
index accesses 24.02 13 34

AVG read log
602.16B + 24.02*8B

= 794.32B

AVG write log
7.31B + 4.04B

= 11.35B

d
e
li
v
e
ry AVG read log

1636.34B + 249.39*8B
= 3631.46B

AVG write log
120B + 518.78B

= 638.78B

p
a
y
m
e
n
t

AVG read log
640.27B + 6.2*8B

= 689.87B

AVG write log
74.18B + 64.00B

= 138.18B

Table 1: Log sizes in the read/write transactions of
the TPC-C.

tuple. For inserts, it suffices to recheck for key violations
during the apply phase.
The read log size is determined by the space required

for logging all attributes which have been read during the
execution on the snapshot. Additionally, the cardinality of
all select statements has to be written to the log to ensure
that no tuples were “missing” on the snapshot which are now
visible on the main database. For both, read and write logs,
all externally supplied values, for instance by the user or an
external application server, are also added to the log to be
incorporated in the apply transaction.

As illustrated in Table 1, the three read/write transactions
of the TPC-C differ in terms of the size of their read vs.
write log. This is expected since, for instance, neworder
only inserts tuples which are implicitly checked during the
apply phase by making sure no index properties are vio-
lated. Updates are only performed on one integer which
is incremented with the next neworder id, causing only a
minimal amount of data to be written to the write log. The
neworder transaction accesses multiple tables to read data
used in the newly created order entry, resulting in the higher
memory consumption of the read log. For the three TPC-C
transactions shown here, read-log size is consistently larger
than write-log size.

5.5.2 Abort rate

The selected isolation level has a direct impact on the
number of transactions that have to be aborted due to con-
flicts. For serializability, no changes to the read set of a
tentative transaction are allowed during its runtime to allow
the transaction to eventually commit on the main database.
This includes changes to tuple values as well as changes in
the cardinality of each selection’s result. This can lead to

long-running transactions suffering from high abort rates due
to reading frequently-changing (hotspot) tuples.

Consider a transaction which computes and saves the total
turnover for a warehouse (see Appendix A for an example).
Here, the read set for the transaction will likely vary be-
tween snapshot and main database since an order might
have arrived for the warehouse between snapshotting and
the application of the tentative transaction, leading to a high
number of aborts under view serializability. It is however
likely, that the computed sum needs to represent a valid state
but not the most recent one, which can be achieved using
snapshot isolation. Here the transaction would apply iff.
the aggregate being written has not been modified between
snapshot creation and the tentative transaction’s commit.
Besides the isolation level, the degree of detail in moni-

toring directly influences the number of transactions which
commit. If, for example, a set of tuples is monitored using
version counters on the B+-Tree leafs of the primary index, a
modification of one of the indexed tuples leads to all tentative
modifications of any of the tuples indexed by the same leaf
node to be rejected and therefore causes an abort. Thus, finer
log granularities reduce the number of unnecessary aborts
while at the same time increasing the overhead in both time
and space caused by monitoring read/write sets.

6. RELATED WORK
Snapshot isolation, as Berenson et al. [1] pointed out, is

an important relaxed isolation level for database systems. It
has well-researched properties and anomalies which were, for
instance, examined in [25, 18]. Jorwekar et al. [18] investi-
gated the automatic detection of anomalies under snapshot
isolation. Extending snapshot isolation to gain serializable
schedules has been investigated by Fekete et al. [10]. Snap-
shot isolation is being used in practice, for instance as the
default isolation level in Oracle database systems [26].
Harizopoulos et al. [15] found that concurrency control,

primarily using a lock manager, is a major bottleneck in
disk based database systems. Focussing more specifically on
the contention which occurs in a 2PL lock manager, Pandis
et al. [27] found that the central nature of the lock manager
is a major source for lock contention causing a significant
slowdown – especially as the number of cores increases. They
devised data centric execution for disk-based systems imple-
mented in their prototype database system, DORA. There, a
chunk of data is assigned to each thread instead of assigning a
specific transaction to each thread. Their approach increases
data locality and reduces contention inside the lock manager.

Jones et al. [17] describe an approach to increase through-
put in a distributed cluster setting by hiding delays caused by
using two phase commit. They allow the tentative execution
of new transactions as soon as a partition crossing transac-
tion has finished work on one but not all partitions. Through
optimistically executing followup transactions, they show
that the throughput of pre-canned deterministic transactions
can be significantly increased.
Bernstein et al. [3] introduced Hyder an optimistic ap-

proach for high performance transaction processing in a
scaled out environment without any manual partitioning.
Their key algorithm, called MELD [4], merges the log-file
structured transaction states and handles conflicts during
optimistic execution. Without any partitioning, MELD en-
sures that finished distributed transactions are merged into
the last committed database state if they do not conflict.



Dittrich et al. [8] use a log-file structure to allow executing
both OLTP as well as OLAP on the same database.

Larson et al. [21] discuss efficient concurrency control mech-
anisms for main-memory database systems. Apart from
single-version locking, they introduce and evaluate multi-
version locking and multi-version optimistic concurrency con-
trol based on timestamps ranges. They find that optimistic
multi-version storage performs favorable compared to locking,
especially when long-running transactions are part of the
workload.

Nightingale et al. [24] employ speculative execution in the
context of distributed file systems. They show that optimistic
execution can be used to hide network delays when the
outcome of a resource modification is highly predictable.
Changes to resources r are done in place and an undo log
structure is created for each updated resource. If another
transactions tries to access a modified resource, it blocks
or is marked as speculative and therefore dependent on the
outcome of the transaction which originally modified r.
Gray et al. [12] explored using condensed apply transac-

tions in disconnected application scenarios. Actually, their
mechanism predates this papers in calling transactions which
are run independently from the main database and later
validated tentative transactions. Gray et al. validate their
apply transactions (which they refer to as base transactions)
with hard coded acceptance criteria instead of read or write
set logging. They reduce synchronization cost on both main
as well as disconnected databases.
The issue of managing long-running workloads in tradi-

tional, lock-based DBMSs has been investigated by Krompass
et al. [20]. They use policy based scheduling taking multiple
target dimensions into account to reduce the negative impact
caused by long-running transactions in the workload.

7. CONCLUSION
Two emerging hardware trends will dominate database sys-

tem technology in the near future: Increasing main memory
capacities of several TB per server and an ever increasing
number of cores to provide abundance of compute power.
Therefore, it is not astonishing that main-memory database
systems have recently attracted tremendous attention. To
effectively exploit this massive compute power it is essential
to entirely re-engineer database systems as the control and
execution strategies for disk-based databases are inappropri-
ate. In main-memory, databases using serial execution scale
extremely well as there is no I/O latency slowing down the
execution of transactions. This observation also led to the
design of VoltDB/H-Store.
Unfortunately, so far, the serial execution paradigm ex-

cluded complex queries and long running transactions from
the workload. With this paper, we have achieved a decisive
step in allowing universal long duration transactions to co-
exist with short, pre-canned transactions – without slowing
down their serial execution. This coexistence is achieved by
exploiting the snapshot concept that was originally devised in
HyPer to accommodate complex queries on the transactional
data. Here, we developed the tentative execution method to
pre-process long-running transactions in such a workload and
then re-inject them as “condensed” apply transactions into
the regular short transaction workload queue. Our perfor-
mance evaluation proves that the high throughput for short
transactions can indeed be preserved while, at the same time,
accommodating “ill-natured” long-running transactions.

In conclusion, combining a state of the art main-memory
database system, snapshotting using hardware page shadow-
ing and tentative execution allows executing a wide range
of workloads. With tentative execution, we can now sup-
port short, pre-canned transactions at high throughput while
at the same time executing OLAP queries as well as long-
running read/write transactions on a consistent snapshot.
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[21] P.-Å. Larson, S. Blanas, C. Diaconu, C. Freedman,
J. M. Patel, and M. Zwilling. High-performance
concurrency control mechanisms for main-memory
databases. PVLDB, 5(4):298–309, 2011.

[22] D. B. Lomet, A. Fekete, R. Wang, and P. Ward.
Multi-version concurrency via timestamp range conflict
management. In ICDE, pages 714–725, 2012.
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APPENDIX

A. WAREHOUSEREVENUE

transaction aggregateWarehouseTurnover(int w_id) {

select sum(ol_amount) as turnover

from orderline ol where ol.w_id=w_id;

update turnover_aggregates ta

set ta.turnover=turnover where ta.w_id=w_id;

}

B. PAYMENTBYCREDIT TRANSACTION

transaction paymentByCredit(int w_id,int d_id,

int c_w_id, int c_d_id,timestamp h_date,

numeric(6,2) h_amount,timestamp datetime,int c_id)

{ select c_data,c_credit,c_balance

from customer c where c.c_w_id=c_w_id and

c.c_d_id=c_d_id and c.c_id=c_id;

var numeric(6,2) c_new_balance+=h_amount;

-- Approval processing

approval_check(c_id,h_amount);

if (c_credit=’BC’) {

var varchar(500) c_new_data;

sprintf (c_new_data,’%s |%4d %2d %4d %2d ’+

’%4d $%7.2f %12c’,c_data,c_id,c_d_id,

c_w_id,d_id,w_id,h_amount,h_date);

update customer set

c_balance=c_new_balance,c_data=c_new_data

where customer.c_w_id=c_w_id and

customer.c_d_id=c_d_id and

customer.c_id=c_id;

} else {

update customer set c_balance=c_new_balance

where customer.c_w_id=c_w_id

and customer.c_d_id=c_d_id

and customer.c_id=c_id;

}

insert into history values(c_id,c_d_id,c_w_id,

d_id,w_id,datetime,h_amount,’credit’);

}

C. DEMO DESCRIPTION
Our demonstration will show how partitioned serial execu-

tion excels with good-natured workloads. The main bench-
mark used for the demonstration uses a pre-canned version
of the TPC-C where wait times have been removed to demon-
strate high transaction rates without the need for loading
thousands of separate warehouses. We also demonstrate how
HyPer executes read-only workloads on an arbitrarily recent
snapshot of the database as illustrated in Figure 6. Our
benchmark setup, called the CH-benCHmark, is a combina-
tion of the TPC-C and the TPC-H in parallel. A detailed
specification is available in [5].

Tentative execution is demonstrated using the same basic
benchmark extended with long-running transactions which
trigger the tentative execution mechanism. We will offer an
interactive GUI to monitor throughput, change the workload
and observe commit rates. Therefore, the audience can
try other long-running demo transactions different from the
examples shown in this paper to test custom usage scenarios
and the versatility of the system.

The demonstration takes place locally on a portable demo
machine as well as remotely on a Dell PowerEdge R910 server,
currently being sold for roughly 40,000e equipped with 4x
8 cores (16 hardware threads) Intel Xeon X7560 processors
and 1TB of memory. The increased number of cores helps
demonstrating the wider range of workloads a system with
tentative execution can achieve by increasing the utilization
of the available hardware.

In total, our demonstration encompasses a full functional
implementation of tentative execution. This allows to demon-
strate a main-memory database system capable of execution
heterogeneous workloads consisting of short transactions,
OLAP-style queries and ill-natured long transactions – that
do not interfere with each other.


