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ABSTRACT

High assurance systems such as those found in aircraft
controls and the financial industry are often required to
handle a mix of tasks where some are niceties (such as
the control of media for entertainment, or supporting a re-
mote monitoring interface) while others are absolutely crit-
ical (such as the control of safety mechanisms, or main-
taining the secrecy of a root key). While special purpose
languages, careful code reviews, and automated theorem
proving can be used to help mitigate the risk of combining
these operations onto a single machine, it is difficult to say
if any of these techniques are truly complete because they
all assume a simplified model of computation far different
from an actual processor implementation both in function-
ality and timing. In this paper we propose a new method
for creating architectures that both a) makes the complete
information-flow properties of the machine fully explicit and
available to the programmer and b) allows those properties
to be verified all the way down to the gate-level implemen-
tation the design.

The core of our contribution is a new call-and-return
mechanism, Execution Leases, that allows regions of exe-
cution to be tightly quarantined and their side effects to be
tightly bounded. Because information can flow through un-
trusted program counters, stack pointer or other global pro-
cessor state, these and other states are leased to untrusted
environments with an architectural bound on both the time
and memory that will be accessible to the untrusted code.
We demonstrate through a set of novel micro-architectural
modifications that these leases can be enforced precisely
enough to form the basis for information-flow bounded func-
tion calls, table lookups, and mixed-trust execution. Our
novel architecture is a significant improvement in both flex-
ibility and performance over the initial Gate-Level Informa-
tion Flow Tracking architectures, and we demonstrate the
effectiveness of the resulting design through the develop-
ment of a new language, compiler, ISA, and synthesizable
prototype.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MICRO’09, December 12–16, 2009, New York, NY, USA.
Copyright 2009 ACM 978-1-60558-798-1/09/12 ...$10.00.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General—

Hardware/software interfaces; C.3 [Special Purpose And

Application-Based Systems]: [Real-time and Embed-
ded Systems]

General Terms
Security, Reliability, Design

Keywords
High assurance systems, Gate Level Information Flow

Tracking, Timing channels, Covert channels

1. Introduction
Systems responsible for controlling aircraft, protecting

the master secret keys for a bank, or regulating access to
extremely sensitive commercial or military information, all
demand a level of trust far beyond the norm. Such High-
Assurance Systems must be secure (to prevent unauthorized
disclosure of sensitive information), safe (to prevent unin-
tended events, especially if they can be caused by external
agents), real-time (to meet critical deadlines), and fault-
tolerant (to guarantee a certain quality of service despite
failures, workload, or environmental anomalies) [20]. Creat-
ing these systems today is an incredibly expensive operation
both in terms of time and in terms of money; even assessing
the assurance of the resulting system can cost upwards of
$10,000 per line of code [2].

One of the reasons that designing and verifying these sys-
tems is so challenging, is that it is difficult to bound how and
when the different components of the system interact with
one other. One of the strictest properties one might wish to
demonstrate is non-interference, which in turn can be used
to prove that information cannot leak (for security), that
untrusted information was not used in the making of critical
decisions (for safety and fault tolerance) nor in determining
the schedule (real-time). Non-interference requires showing
that sensitive inputs can never have a measurable effect on
an output marked as non-sensitive, a task for which tradi-
tional microprocessors are very poorly suited. Almost every
recent microarchitectural technique is built around the no-
tion of optimizing the common case, an end achieved in
large part through the addition of caches, status bits, ex-
ceptions, predictors, and other behaviors that modify the
state of the machine. The problem is that, if one is protect-
ing a secret or handling untrusted data, every operation
performed on that secret will affect those internal states in
one way or another. Non-interference requires that those af-
fected internal states are then in no way visible to the other
components, including either directly through the ISA, or



indirectly through the resulting differences in behavior or
timing. Rather than trying to patch up all the compli-
cated information flow problems presented by traditional
processors with software after the fact, we propose: a) that
new architectures can be created capable of strongly con-
taining information, b) that such architectures will allow
software to easily verified for properties even as strict as
non-interference, and that c) if built in a specific way, such
properties can be verified all the way down to the gates of
the processor leaving no room for covert or timing chan-
nels due to the processor’s RTL implementation. On such
a machine it is possible to tightly quarantine computations
which are either secret (to prevent the loss of those secrets)
or untrusted (to prevent those untrusted operations from
effecting critical state)

We introduce Execution Leases, an architectural mecha-
nism that makes information flows explicit to the program-
mer, including timing, covert and implicit flows through
control/architectural state. The basic idea behind a lease
is that control of a portion of the machine is given over to
an untrusted entity for a fixed amount of time and within
a fixed range of addresses. After the lease expires, control
is yanked back to the trusted code and any remnants of the
untrusted actions are purged from the critical machine state
such as the PC (registers and main memory are not part of
the critical machine state and retain their values and their
security labels even after a lease expires). The hard part
is performing this operation with reasonable overheads and
in a way that can be demonstrated to be correct through
inspection of the gate-level implementation alone. Because
of the relative freedom provided by Execution Leases (as
opposed to the past approach of ensuring there is never any
way for untrusted or sensitive code to effect the program
counter), the resulting code can be a 100x faster in some
cases, several factors smaller, and far easier to program.
Specifically, our contributions include:

•The introduction of Execution Leases, both as a program-
ming model in the abstract and as implemented by a spe-
cific ISA for high assurance systems.

•New methods for verifiable architectural information-
containment by design, including a description of the var-
ious microarchitecture modifications needed to bound in-
formation flows in our processor.

•The evaluation of a complete Execution Leases implemen-
tation, including a new Lease-based ISA, a small language
and compiler that target this ISA, a fully synthesizable
prototype, a complete gate-level information flow analy-
sis of the final design, and results from experiments with
several hand-written applications.

We begin by more precisely defining the concept of non-
interference, the motivation behind its application by the
high assurance community, and the several other projects
most closely related to Execution Leases (in Section 2). The
specifics of the architecture, along with details of its imple-
mentation and application are presented in Sections 3 and 4.
Finally we describe experimental results in Section 5 and
conclude with Section 6.

2. Motivation and Related Work
The strict demands on the design of high assurance sys-

tems are a direct function of the cost of failure. As an exam-
ple, Boeing plans to use a single physical network for both
aircraft control data and passenger network data in its new
787 [9], and keeping these two very strictly separated is ob-
viously critical. The task of ensuring this separation falls to

custom software written to implement ARINC, an interna-
tional standard that specifies the communication protocols
between different entities in avionic systems, including the
bus protocols between processors and the interfaces between
software modules and the separation kernel. An ARINC bus
uses two different packet formats, one for critical data and
another for non-critical file transfers (such as movies), and,
as a standard, can be implemented differently by many ven-
dors. From these different software components Integrated
Modular Avionics (IMA) systems are assembled, and one
of the most critical tasks in ensuring their safety is showing
that different components executing on the same hardware
platform are strictly partitioned and cannot interfere with
one another.

To help vendors and systems integrators discuss the level
of trust that can be afforded to a particular system, the
common criterion establishes a set of 7 Evaluation Assur-
ance Levels (from EAL1 to EAL7). An EAL7 means the
product has been formally designed, tested, and verified to
be provably sound from the ground up. While no operating
system has ever been rated EAL7, the Integrity RTOS [1]
is one of the closest at EAL6+. Even getting through the
evaluation to EAL6+ required over $10K per line of code,
totaling millions of dollars over 10 years, and in the end
it is not clear that the end product will ever even make it
to EAL7 because of the difficulties in formally proving the
most critical aspects of the design. One of the primary dif-
ficulties in getting software verified at these levels is that
modern machines are simply not built with the idea of in-
formation containment in mind.

While the above examples discuss the problem of interfer-
ence between various software components on the same pro-
cessor from the view point of preserving integrity, exactly
the same problem occurs in systems concerned with secrecy.
If a secret such as a private key is used in performing an
operation, an attacker may be able to reverse engineer the
key through direct timing observations[12], cache interfer-
ence[23], even through the state of the branch predictor [4].
Once an attack has been identified and publicized, effective
countermeasures can be deployed, e.g. randomizing the re-
placement policy for the cache[16], but this constant cycle
of attack-and-respond is unsatisfying when the cost of leak-
ing some data is extraordinarily high (for example the root
private key for a bank, or a military authorization code).

To address both secrecy and integrity, one of the strongest
properties one can show about a system is non-interference.
Non-interference means that, if inputs and outputs are con-
sidered either “High” (e.g. secret) or “Low” (e.g. unclassi-
fied), then a change in a “High” input can never be ob-
served or inferred from changes in the ”Low” output. In
other words, “High” data should never leak to “Low”. This
property can then be used to ensure that no secret input
ever affects an unclassified output, or conversely that no
untrusted input ever affects a high-integrity output. To
achieve non-interference, all sensitive data must be care-
fully guarded to prevent even an adversary from observing
or inferring its contents. While this basic assumption un-
derlies countless trusted systems, preventing an adversary
from inferring any information is very difficult to ensure
in practice and even harder to verify formally. Even the
possibility of a tiny discrepancy in timing, a moment of
unplanned resource contention, or a single loose memory
access is enough to lose non-interference and open up a
host of cryptographic attacks or bring the integrity of the
result into question. Ensuring non-interference means shut-
ting down all channels of communication from “High” down



to “Low”. While non-interference is a very strong policy, it
is very useful when the integrity of certain applications is
paramount (such as aircraft controls). Further, even though
strict non-interference does not apply directly to secrecy
through encryption, the ability to demonstrate the absence
of interference except for the encrypted text can be useful
in creating software data diodes and red-black systems.

2.1 Related Work
Information flow policies have been specified and enforced

at many levels in the computing hierarchy. Programming
language based techniques use sophisticated type systems
to represent security levels and to enforce information flow
policies statically, and even provide several alternative mod-
els in addition to strict non-interference [35, 27, 22, 24].
While some timing channels can be eliminated by execut-
ing both sensitive conditional paths atomically or executing
dummy instructions [27], PL-only techniques use general
purpose processors but assume the information flow within
the processor behaves in a way that is far simpler than real
implementations dictate (often ignoring caches, arbitration,
stalls, etc.). Execution Leases can be shown to be well be-
haved (containing the flow of information) all the way down
to the gate-level implementation, providing a foundation for
software schemes to further build upon.

Information flow can also be controlled at the granularity
of operating system abstractions. Commercial embedded
systems use separation kernels like Integrity [1] to isolate
software modules with high assurance. On the other hand,
projects such as HiStar [37], Flume [14], and Laminar [25]
apply distributed information flow control (DIFC) for more
general purpose operating systems and provide finer con-
trol over information flows. Such OS level mechanisms are
subject to covert channels that may occur through sparsely
documented hardware features such as FPU flags [28], or
through timing channels inherent in the underlying hard-
ware. Karger et al, in a retrospective of the VAX VMM
security kernel [10] highlight the challenges of an OS or
hypervisor-level approach mentioning specifically that covert
channel analyses ”were done on an informal basis by engi-
neers by closely studying system design” and that ”timing
channels proved a much more serious problem [...] because
many of them were inherent in the underlying hardware”.
Their solution for timing channels was to “fuzz” potential
sources of accurate clock information so as to lower the
bandwidth of those channels. There have also been re-
cent efforts to formally prove non-interference properties
of operating systems [13, 19], that can prove absence of
covert channels through kernel data structures. However,
these approaches do not handle hardware timing channels.
Our work provides mechanisms to close such loopholes be-
cause execution leases are information tight with respect to
both covert and timing channels (and can be shown so with
GLIFT[31]).

The general idea of creating security-enhanced architec-
tures has been around for quite a long time. Encryption
and memory partitioning can be used to run trusted soft-
ware on an untrusted host where even the operating sys-
tem and main memory are not trusted [29]. Ad-hoc trusted
hardware designs such as XOM have been focused on pre-
venting software piracy [18, 36]. It is difficult, however,
to prove that incorrect information flows do not exist in
these designs and their final implementations. Intel’s tag-
based architecture takes a different approach to security,
adding hardware capable of enforcing arbitrary policies over
data structures through the use of custom call-back mecha-

nisms [17]. This idea of tag-based tracking at the architec-
ture or ISA levels has seen a recent resurgence. DIFT [30],
Minos [6], Rifle [33], Raksha [8], FlexiTaint [34], Log-Based
Lifeguards [26] have all proposed special architectures to
track flow of data through the registers and memory, while
Dytan [5], Taintcheck [3] and others explore efficient binary
instrumentation-based methods of doing the same. All the
above ISA-level proposals, while capable of exposing many
vulnerabilities, track only explicit information flows and do
not handle implicit or timing channels.

In fact, to track all information flows in a precise and
sound manner, we would need to mark all of the proces-
sor and memory state that could have been touched by any
possible path of execution that resulted from every branch.
Failure to do so creates covert channels that have been no-
toriously difficult to analyze in systems to date [32, 15, 21,
11, 10]. Past techniques suffer from the fact that they
operate exclusively at the ISA level or above – they do not
capture those implementation details (such as bus arbitra-
tion or forwarding logic) that can lead to timing channels.
Execution Leases, in comparison, is a new concept in high
assurance architectures that allow all information flows to
be explicitly tracked by providing direct hardware support
for execution that is bounded in both space and time.

2.2 Gate-Level Information Tracking
Because we want our implementation and analysis of Ex-

ecution Leases to be demonstrably sound from the gates
up, we perform this work under the framework of Gate-
Level Information Flow tracking (GLIFT [31]). To under-
stand the main idea behind GLIFT, let us consider a single
two-input multiplexer. Multiplexers are both complete (you
can create any logic function from MUXes) and exceedingly
useful in real designs. Consider a MUX with three binary
inputs (A, B, select S) and an output O. For the purpose
of discussion, let us assume that this MUX is our entire
system, and that the inputs to this MUX can come from
either tainted or untainted sources. Let us further assume
that those inputs are marked with a bit (At, Bt, and St re-
spectively) such that a 1 indicates that the data is tainted.
The basic problem of gate-level information flow tracking
is to determine, given some input (A, B, and S) and their
corresponding tainted bits (At, Bt, and St) whether or not
the output O should be marked as tainted or not (which
is then added as an extra output of the function Ot). A
MUX here is a good example because, intuitively speaking,
the result should be tainted if either a tainted input is se-
lected or the select bit is tainted. Consider the case where
A = 0, At = 1, B = 1, Bt = 0, and St = 0. If S = 0 (mean-
ing to select A), Ot should be 1, while if S = 1, Ot should
be 0. In fact this intuitive idea can be formalized quite
nicely with the following property: the output of a logical
function should only be marked as tainted if and only if
some set of tainted inputs actually had an opportunity to
affect the output. In other words, if it is possible to affect
a change in the output through any changes in any of the
tainted inputs, the output should be marked as tainted.

Gate-Level Information Flow tracking in and of itself does
not ensure that critical or untrusted data do not spread
across the whole machine, rather it only ensures that as
critical or untrusted data spread across the machine it will
always be properly tracked. It is certainly possible to im-
plement a full RISC machine in GLIFT logic, but as soon
as the PC is marked as tainted, the entire machine will
end up being tainted. Because that untrusted PC could
jump to any location, the code that is executing is derived



from untrusted data. The challenge is to create an architec-
ture capable of containing the flow of information so tightly
that, by looking only at the gate-level implementation it
is apparent that it cannot leak, while simultaneously re-
taining enough flexibility to be efficiently programmed to
a variety of uses. In [31], a very simple architecture is
used to show that this is indeed possible in principle by
removing all branch instructions (replacing them with pred-
icates) and ensuring that there is no possible way for the
program counter to ever be effected by any tainted data.
This severely restricts the usefulness of the architecture –
to even lookup an entry in a simple table of size n takes (n)
steps instead of the (1) that it would with a simple indirect
load. In this paper we show how Execution Leases allow
this and many other restrictions of this original architec-
ture to be lifted, resulting in a far easier to program and
faster system.

3. Architecture
To understand the reasons behind Execution Leases, we

begin by describing the many ways in which information
can leak in a traditional processor, and the lengths that the
original GLIFT processor went to in order to prevent them.

3.1 The Problem with Overprotecting Crit-
ical State

Constructing an efficient architecture that can strongly
contain the flow of information, yet still maintains a good
level of programmability is difficult, and the philosophy for
dealing with this problem in the original GLIFT work was
simply to ensure that critical machine state could never be-
come tainted. While this sounds straight forward, it is quite
a bit harder than it sounds. It means that the architecture
has to be constructed in such a way that it is impossible for
any data in the system (which could then turn out to be
tainted) to ever effect the program counter, the instruction
memory, or the address of a store. If any of these were to
be tainted, the entire state of the machine would quickly
(in one or two cycles) end up marked as tainted, and there
would be no way to undo that damage.

As an example: the original GLIFT architecture ensured
that it was impossible for the program counter to ever be
influenced by the the result of some computation (and thus
risk being tainted). This, of course, means no conditional
jumps of any sort, and in fact ensures that programs will
always execute a set fixed number of instructions at every
invocation. While the machine would no longer be Turing-
complete, in many cases the complete lack of conditional
jumps could be compensated for by predication. Because
predication transforms control dependencies into data de-
pendencies, almost all of the instructions in the original
GLIFT-enhanced architecture could be executed condition-
ally without ever effecting the program counter (with the
obvious exception of jumps).

Likewise, the architecture had to prevent the execution of
indirect loads and stores. Consider the information flow in
the statement M[x] = 1. In this statement, there is clearly
a flow of information from x to M[x], but there is also a
much more subtle implicit flow of information from x to
M[y] where x 6= y. Why? Because by observing that M[y]
6= 1, we have now gained some information about x. If a
store is to be executed and the target address of the store is
tainted, information flows from that store the every single
piece of memory in the system (in other words every possible
value of y). If we think about the flow of information at the
gate level, this becomes very clear. The tainted bits of the
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Figure 1: Figure shows the basic GLIFT processor running
tainted code. The taint (in gray) spreads to the entire system
state and makes it practically useless to track information flows.

address flow into the memory decoder, and as a result all of
bit-lines are tainted. When the write actually happens, we
have to assume that any of those bit-lines could have been
active and thus the write could have happened to any of the
possible memory addresses. To deal with this problem, the
original GLIFT architecture prevented any indirect loads
and stores, instead enforcing that all of the loads and store
used an address that was a constant offset from some un-
taintable counters (kept untaintable in much the same way
as the PC was above).

The final, and perhaps most obvious step to keeping the
core architectural state from becoming tainted in the orig-
inal GLIFT architecture is to never allow the execution of
tainted code. Tainted code, will always end up tainting the
PC, the load and store address, and any other state effected
by the execution of that code (i.e. everything), as shown in
Figure 1.

The ramifications of this philosophy of never allowing any
of the processor critical processor state to become tainted
are enormous. For example to do a table lookup (a very
common operation in AES and many other crypto algo-
rithms), due to a lack of indirect loads, the original GLIFT
architecture would have to loop over all of the entries and
predicate out all of the loads that were not the one specific
index that was to be looked up – a slow and code intensive
prospect. It also lead to an inability to have functions, and
to bound the effect of an execution of tainted code1. The
approach we take in this paper is far less constrained, allow-
ing all of this critical state to become tainted over bounded
periods of time, while always keeping the minimal trust-
worthy control necessary to return the machine to a fully
untainted state.

3.2 Bounding and Cleaning up Tainted
State with Execution Leases

To understand how an Execution Lease helps to solve
this problem, let us first consider the execution of arbitrary
tainted code. This case, where the bits of the actual in-
struction are tainted, is the most difficult to bound. An
untainted function foo (e.g. some trusted function), wishes
to call a tainted function bar (e.g. some arbitrary code).
On a traditional machine, this could be implemented with
a call and return. The problem is that once the PC jumps
to tainted code, everything that code does is tainted, even
the eventual return instruction.

1If you are considering a confidentiality policy where secrets
are tainted rather than untrusted data, this ability would be
particularly useful because it means that code itself could
be secret and there would be no way to learn either what the
code is or the results of its computations without observing
bits marked as tainted (secret)



Instead we need a way to jump into that tainted code such
that a) we can get back to foo without learning anything
about what happened inside bar, and b) we need a way to
bound all the state that can be changed by bar so that foo
can’t learn about bar by observing things that bar did not
do (i.e. bound the implicit flows). Because confidentiality
and integrity are different forms of the same problem we
can phrase the exact same property by just changing the
way “taint” is interpreted after the analysis is complete.

The idea behind an Execution Lease is to grant access
to a limited amount of state of the machine (including the
PC and a portion of the memory) for a fixed and predeter-
mined amount of time in such a way that i) enforcement
of the lease can never by affected by tainted data, ii) the
critical tainted state (e.g. the PC) can be scrubbed leaving
no residue of tainted data behind, and iii) that it is clear
through a gate-level analysis of the flow of information that
properties (i) and (ii) hold (e.g. it does not depend on some
property of the software or some semantics of some state to
show that (i) and (ii) hold). We implement these execution
leases with special instructions settimer and setbounds
that enforce a bound on the number of instructions that
can be executed before control is restored back to the caller
and a bound on the accessible memory region respectively.
However, to see why and how these semantics keep provably
tight control over the flow information we need to explain
the implementation of the mechanisms behind these seman-
tics.

4. Mechanism
To make sure that the called context (the leasee) does not

interfere with the calling context (the leaser), an Execution
Lease must enforce a bound on the control flow of the leasee.
This ensures that control is returned to the leaser in a man-
ner that is in no way dependent on the leasee. In contrast,
during a typical function call, the callee determines when
(and if) to return to the caller. Additionally, the leaser
must enforce a bound on the address space accessible to the
leasee to prevent information from being written explicitly
throughout the entirety of the machine. Finally, we need to
ensure that both control and address bounding can be per-
formed without ever making an architectural decision based
on the taint values. This is a subtle but very important
point. If we use the taint values in determining whether
to “admit” or “deny” a particular action, the fact that the
status of that action (admit/deny) is visible to the architec-
ture implies that a dangerous flow of information has taken
place. In such a case it may be possible to, for example,
try writing to particular addresses to see if those writes are
permissible, thus learning something about the values writ-
ten there. In a very real sense, if the architecture is not
separated from the GLIFT logic, the GLIFT logic becomes
part of the architecture logic, and would then be subject to
same potential for covert channels and implicit flows as any
other architecture logic. Later in this section, we show how
this tangling of GLIFT logic and architecture could happen
when propagating information flow for an untrusted store
instruction. Instead, we need to build an architecture that
handles space and time isolation both cleanly (so we can
see it to be true at the gate level) and inherently (to avoid
the tangling data and taint bits).

4.1 Inherent Enforcement of Time-Bounds
Instead of a call-and-return, we can ensure that control

will be restored to the leaser context using a timer. In
essence, one leases the program counter out to the leasee
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Figure 2: Execution Lease Architecture: Lease logic (dashed)
bounds tainted programs in both time and space, and prevents
the entire system state from becoming tainted. PC is restored to
an untainted restorePC value when an untainted timer expires.
Lease logic is also used to bound the memory regions the tainted
code can access.
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Figure 3: Figure shows the information that has to be stored as
part of a stack of successively nested execution leases. Note that
a restore SP (here, the cur lease and cur bound registers are
the stack pointers) is stored with each stack because we do not
want to compute the next SP from the current (possibly tainted)
SP when a lease expires.

(which may or may not be tainted and where that taint
might either indicate secret or untrusted code) for a fixed
amount of time. Once the timer expires, control is automat-
ically restored back to a return PC value that was provided
by the leaser when it invoked the lease. Figure 2 shows the
Lease architecture, and a scenario where untainted code
leases the CPU to some tainted code. The timer value it-
self and the restore PC are untainted, and when the timer
expires, a MUX is used to reset the PC to the restore PC.
Correspondingly, the GLIFT-logic observes that the MUX
output is dependent solely on untainted values (i.e the old
tainted PC has no effect), and marks the PC as untainted.
Of course nothing is ever this simple, and here the complex-
ity lies in the fact that we need to support multiple nested
leases to support multi-level procedure calls.

The need for multiple nested leases naturally suggests
maintaining a stack of lease records that stores the time
the lease is active for and the PC value that the control
must return to when the lease expires. We have to imple-
ment a stack that stores these attributes, but where the
information flow containment is inherent in its gate-level
implementation.

With each lease entry in the stack, its leaser’s location
on the stack is also recorded as part of the lease entry
(restoreSP in Figure 3). The restoreSP thus carries the
taint of the leaser, and this allows the Lease-CPU to pop
leases by setting the cur lease register to its restoreSP
value without having to compute the next cur lease value
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from its current value following the usual stack semantics.
If we always use the current value of cur lease to compute
the next, once the cur lease register is tainted, it will pre-
vent itself from ever being reset to untainted.

To implement successively nested timers, we encode the
timers as a bit-vector where each bit represents a minimum
time unit. For instance, a timer of value 00...0111 will
execute for three time units. Decrementing these timers
then requires shifting the register to the right once every
time unit with a 0 entered at the MSB. Nesting of succes-
sive timers is enforced at the bit level by using the 0s in
the right-shifted current timer value as the prefix of the
next timer. Figure 4 (right side) shows how this mecha-
nism provides gate-level guarantees as opposed to an intu-
itive scheme that used subtractors to decrement the timers
(left side in Figure 4). Using the intuitive scheme, an un-
trusted select input to a MUX decides the next timer value
from among the decremented current timer or a new timer
value provided by the settimer instruction. Even though
the decremented timer is trusted, its bit-values could differ
from the new, tainted timer value, and because the select
itself is tainted, GLIFT logic will mark the MUX output as
tainted. As a result, even though we can manually observe
that the intuitive implementation is functionally correct,
its semantics are not inherent in its gate and bit-level im-
plementation. Using our scheme, masking off the trusted,
leading bits (0s) ensures that a tainted select chooses be-
tween two trusted 0s for the leading bits of the next timer
value. As a result, the 0s in a timer value can be shown
to increase monotonically until it expires completely. On
each cycle, the processor logic detects if the current timer
has reached 0 (expired) and if it has, the processor’s PC is
assigned the current restore PC from the stack.

The timers are bit-encoded in such a way that a few very
small sizes are supported in addition to the largest function
being covered. In general, since leases require the timing
behavior of functions to be specified statically, there is going
to be a correlation between the timer encoding and the
execution time overhead as compared to a general-purpose
version of the program, and as our application suite grows,
developing encodings with a wide range will become more
important. Since very small leases are often used for small
functions and indexing into arrays, in our prototype, we
chose to assign two bits each for time granularities of 4 and
32 instructions, and four bits each for 256, 2K, 4K, and 8K
instructions. This simple encoding allows lease durations
from 4 to 58440 instructions, and is sufficient to cover our
application suite.

Finally, we note that the stack of timers come into play
only when at least one lease has been set. The processor

begins execution in GLIFT mode in a base context that has
no corresponding timer, which allows for trusted programs
that execute in never-ending loops. We expect that the
processor will begin execution in trusted mode in this base
context, and because of this the first lease entry on the PC
stack is expected to always be trusted. We have already
discussed mechanisms used to implicitly reset the taint val-
ues for important processor state like the PC, (and thus the
Instruction word) and the cur lease register. Now we dis-
cuss our mechanisms to precisely enforce memory bounds
for loads and stores, and the reason behind a power-of-2
aligned memory bounds field.

4.2 Inherent Enforcement of Memory Ac-
cessibility

Consider a scheme for enforcing memory bounds that al-
lows a store to go through to memory only if it is within
the specified bounds, and some tainted code executing a
store instruction. One intuitive option to build such a mem-
ory controller would be to use comparators to check if the
store address is within bounds, and forward the store in-
struction to memory only if it is. Figure 5 (left) shows
how GLIFT logic will propagate the taint through such a
bounds-enforcing logic. Since the address itself as well as
the memory’s chip-enable is tainted, GLIFT logic for the
memory decoder marks all the wordlines as tainted.

Instead, in our architecture (right side of Figure 5), mem-
ory bounds are stored in ternary format where trailing “∗”s
represent the desired memory bounds (for e.g. setting bounds
register to 10** enforces bounds from 1000 to 1011). A
memory controller then composes the address that is actu-
ally sent to memory by taking the high bits that are set
to either 1 or 0 from the memory bounds register and con-
catenating the lower bits from the incoming address gen-
erated by (potentially untrusted) code. Through such a
concatenation, the address sent to memory will always be
within the bounds, and the isolation is handled cleanly. Fur-
ther, this concatenation will create a new address that is
partially untainted (the bits that came from the untainted
bounds) and only partially tainted (the remaining lower bits
extracted from the tainted address). By sending this ad-
dress and its taint simply to the GLIFT-generated shadow
memory decoder, the shadow AND-gates inside the decoder
will automatically taint only the address range indicated by
the tainted “∗” bits. Thus, information flow containment
through leases is made inherent at the bit level.

To ensure that a setbound instruction creates succes-
sively nested memory bounds, the bounds are stored as
a combination of address and its mask and are thus re-
stricted to be power-of-2 aligned. Each successive bound
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Figure 5: Figure shows (on the left) the problem of implementing memory bounds in a naive fashion, where a tainted address causes
all the Word Lines and thus the entire memory to be marked as tainted. On the right, with a bit-masked memory address bound, only
the currently accessible memory range is marked as tainted by the GLIFT logic.

is composed using the current bounds’ most significant un-
masked bits and concatenating the remaining bits from the
setbound instruction. In the next section, we show how
memory bounds are used in our benchmark programs for
function calls as well as for making protected indirect mem-
ory accesses. Since these happen independently, we provide
independent stacks for the PC and memory bounds (i.e.
memory and PC bounds have independent timers). Fur-
ther, we realized that allowing for two concurrent memory
bounds makes it convenient for programs to share memory
though global memory regions while also working in their
local frames. As a result, we have two stacks that enforce
two concurrent memory bounds in addition to the stack of
PC timers.

4.3 Executing General Purpose Code
We can use the gate-level timing and memory bound

guarantees that leases offer to execute general purpose code,
specifically conditional jumps and indirect memory accesses,
within a lease. For the leasee to be able to use general-
purpose instructions, the leaser must set the Mode bit for
the lease, indicating a general-purpose lease. The mode
in which the current lease is executing (GLIFT or General
Purpose) forms part of the current context (as shown in
Figure 2). The leaser’s mode is also stored along with
each entry in the PC stack so that the current mode regis-
ter can be restored to a trusted leaser’s mode when a lease
expires. An interesting feature of our architecture is that
once a lease is set in general purpose mode, no further leases
can be set until the lease expires. Leases can only be set in
GLIFT mode to ensure that the fixed size lease stack cannot
be used to leak information covertly, while within a general
purpose lease, conventional call-and-return semantics can
be used to implement functions.

Conditional jumps help performance because they can
allow the lease time to be limited to the maximum of the
two conditional paths at an if − else branch instead of ex-
ecuting both sides of the branch. Similarly, indirect mem-
ory accesses allow programs to index into arrays arbitrarily
without having to iterate over the entire array and predicat-
ing out the desired index. In the next section, we present
the Lease ISA and how it can be used to implement a high
level language.

5. Evaluation
Now that we have described the basic microarchitectural

structures in our Execution Lease prototype, we provide
more details of how these structures are exposed to the
programmer and compiler. To demonstrate that such an
approach can lead to a correct and relatively easy to pro-
gram secure microcontroller, we have built a fully synthe-
sizable prototype instantiated on an FPGA and a compiler
that translates high-level constructs like functions, loops,
and array accesses into machine code with lease instruc-
tions, jumps and indirect memory accesses. In this section

we present performance and area results for this prototype
and describe several of the more important features of the
design through code examples and comparisons to the orig-
inal GLIFT work.

5.1 A New ISA for Execution Leases
The original GLIFT architecture uses predication to pre-

vent tainted data from ever affecting the PC, while a spe-
cial countjump instruction allowed a fixed number of un-
conditional jumps to support fixed-length loops, and spe-
cial load-looprel and store-looprel instructions allowed
programs to access a fixed range of memory addresses in the
loop (by using an immediate value for the base address).

In contrast, our Execution Lease ISA allows the caller
of the lease to set explicit bounds on the range of mem-
ory addresses that the callee is allowed to access (using
setmembound-hi or setmembound-lo), and the time the callee
will execute for (using settimer). The setbounds instruc-
tions set the address bounds for a given time duration and
along a given power-of-2 aligned boundary, while the set-
timer instruction sets a timer, the general-purpose mode,
and automatically stores a PC to be restored when the lease
expires.

Function calls in the new assembly: We have chosen
to implicitly record the third instruction after settimer (i.e.
PC + 3) as the restore-PC, allowing for one instruction in
the middle for an unconditional jump to the callee and an-
other instruction that spins in an infinite loop to wait out
any remaining time on the lease if the callee finishes early.
The address of this infinite-loop instruction is suggested as
a return address to the callee as part of the calling con-
vention. Note that even if the callee disregards the return
PC and is still executing some code when the lease timer
expires, the PC will be yanked back to the restore PC that
was recorded when the lease timer was set. The return PC
is suggested so that if a lease duration is longer than re-
quired, the callee need not be concerned with waiting out
their leases or completing the lease precisely without spilling
over into others’ code. If the time is insufficient, leases will
still ensure that the effects of an unusual code-path do not
propagate outside the current time and space bounds.

A function call looks like the snippet of assembly code in
Figure 6 (that calls an I2C bus initialization function).

Accelerated array accesses: The setbounds and set-
timer instructions are also used to enable indirect memory
accesses (used for accessing array elements). Since the
GLIFT ISA allowed only direct memory addressing, index-
ing into an array required using a loop that iterated over
the entire array. The chosen address was accessed by using
a predicated load (or store) that is set to True at the desired
index.

For example, consider a code snippet of the SubBytes
function for an implementation of the AES [7] encryption
algorithm in the original ISA (Figure 7). The function sub-
stitutes the value in the state matrix with values in the



#[Pred] Instruction Operands
[1] setboundg 1000000**, 72 #bounds for global memory for 64 instructions.
[1] ... #copy args, ret-addr to callee function.
[1] setboundl 1010100***, 72 #bounds for local stack frame.
[1] settimer 1, 72 #timer := 72. mode := 1 (general purpose).

#restorePC := PC + 3
[1] jmp i2c_init #jump to callee function.
label13: #function returns here: an infinite loop
[1] jmp label13 #to wait out remaining lease time.
[1] load-direct r0, 0x29f #arrive here when lease expires. mode <= 0.

Figure 6: Figure shows the assembly instructions generated to implement a lease called by a programmer in the high-level language.
The setboundg and setboundl instructions set the address bounds for all subsequent memory accesses for the next 72 instructions.
The settimer instruction then initializes the next lease with a mode (general-purpose or GLIFT), a timer and a restore PC, and the
following unconditional jump sets the PC to that of the callee function. The PC is expected to return to jmp label3, where it will
spin until it is restored to the load-direct instruction once the PC timer has counted 72 instructions. Note that the actual function
required 42 instructions, and the corresponding local and global timers would be 43 and 50 respectively. Using our bit-encoding of the
timers, the timers are set to 72 instructions.
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Figure 8: An overview of the ISA of our prototype architecture,
and the information flow tracking policies that are extracted from
the actual logic level implementation.

SBox. The code in Figure 7 loads the value in the state
matrix (which in this example is stored at address starting
at 0x100) and every element serves as an index to the SBox
and is substituted by the value in the SBox (which is stored
at address 0x300). The SBox is a 256 entry table, corre-
spondingly the countjump instruction 0x05 loops back 255
times just to read a single value from the SBox table [31].

In Lease ISA, the setbound instructions set a memory
access bound for a limited amount of time. In Figure 7,
the lease lasts 1 instruction which allows the program to
perform a bounded indirect memory access (as shown in
an unoptimized snippet from AES in Figure 7). In fact our
compiler conservatively inserts bounds before every memory
access, but merges adjacent leases of setbounds that have
the same address range and creates a longer lasting lease.

Executing General Purpose Code Safely :Leases allow
us to execute conditional jump instructions safely. By en-
forcing a tight time and memory bound, a lease ensures that
there is no untracked side-effect of the general purpose code.
As mentioned in Section 3, general purpose code cannot set
any further leases. Lease instructions (that set timers and
bounds), if executed in general purpose mode, will not com-
mit and will be equivalent to a no-op. In this mode, func-
tions can use the conventional memory-based stack to im-
plement function calls, and the ISA includes an instruction
to load the current PC into a register that is used to com-
pute return addresses for callee functions. Finally, the in-
struction set includes the usual 2-operand single-destination
ALU-ops to execute arithmetic, shift, and compare instruc-
tions. Table 8 shows the complete list of instructions sup-
ported by our Execution Lease ISA.

5.2 A Prototype Processor that implements
Execution Leases

We have built a prototype microcontroller that imple-
ments all the mechanisms described in Section 3 to support
execution leases. The Lease CPU is a 5-cycle, in-order,
unpipelined processor with 64Kb of Instruction and Data
Memory, 8 general purpose registers and 8 registers to store
the loop counters (that count down the number of iterations
for countjmp instructions).

Most importantly, the CPU maintains three independent
lease stacks (one each for the PC, global and local memory
bounds) with each stack allowing upto 8 nested leases. Each
lease stack includes registers to store the timers, the return
stack pointers for the entry, the current stack pointer, and
the restore PC and restore mode for the PC stack, and
memory bounds in ternary format for the global and local
memory stacks.

The Lease CPU is implemented in Verilog as a structural
composition of gates and instantiations along with regis-
ters for processor state and block RAMs for Instruction
and Data Memory. This structural composition of logic al-
lows us to automatically extract the gate-level taint tracking
logic for the entire processor by shadowing all registers and
wires, and connecting together the shadow gates and mod-
ules in the same manner as their original processor coun-
terparts, resulting in a full shadow machine that operates
on taint bits instead of data.

We have used Altera’s QuartusII v8.0 to synthesize the
Glift-Lease CPU onto a Stratix II FPGA with synthesis set-
tings that balance both area and timing. These area and
timing numbers are then compared against the basic Glift
CPU presented in [31], and with Altera’s Nios RISC proces-
sor. We chose Nios-standard core as a point of comparison
as it has a simple ISA, is reasonably well-optimized, and is
targeted to the same family of FPGAs.

Figure 9 shows the area and timing results from synthesiz-
ing all the processors under test. This includes the Nios pro-
cessor as a general purpose baseline, the basic Glift proces-
sor and its version augmented with shadow logic as the Glift
baseline, and the Lease CPU (with and without shadow
logic) as the processors under evaluation. The left Y-axis
shows the area in number of ALUTs (black bar) while the
maximum operating frequency values are presented on the
right Y axis (gray bar). One important result is that in
absolute terms, all these processors are very small in size.
Even on the outdated Stratix II EP2S15F67263 FPGA that
was used for evaluation, the smallest Nios processor re-
quired only 5% of the combinational ALUT resources, while
the largest Lease CPU required 35% of the ALUTs. The



C code GLIFT - Base Asm Lease Asm

state[ i] = sbox [state[ i]];

/*sbox : int [256] */

0x00 [1]   load - looprel R0 := [0x100 + C0]  # R0 = state[ i]

0x01 [1]   init - counter        C1 := 0                     # start the loop. j = 0

0x02 [1]   cmpeq P1 := C1, R0            # if (j == R0) 

0x03 [P1] load - looprel R1 := [0x300 + C1]  #    R1 = SBox [j]

0x04 [1]   increment - counter  C1 := 1              # j++

0x05 [1]   countjump 0x02, 255               # loop back 255 times

[1] load -indirect     R0 := [0x100 + R2] 

[1] setmembndlo 00000011***, 1    
[1] load -indirect   R1 := [0x300 + R0]  

Figure 7: Execution Leases allow indirect memory accesses within bounded memory regions. In comparison, the base GLIFT ISA
performs table lookups by iterating over the entire array and predicating out the desired index. For many cryptography algorithms,
table lookups are numerous and each base GLIFT lookup adds performance overhead in proportion to the table sizes.
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Figure 9: Quantifying the area and timing overhead of Execu-
tion Leases in a Glift CPU. The left Y-axis compares the number
of FPGA lookup tables(ALUTs) required to implement a Glift
Lease processor with that for the Glift base processor and a gen-
eral purpose RISC micro-processor by Altera. The graph also
shows the number of lookup tables to implement versions of both
Glift processors augmented with shadow logic for information
flow tracking. The right Y-axis compares the Fmax for same set
of processors.

largest FPGAs are over 10X larger than EP2S15F67263,
and so the area of these CPUs is probably of little concern.

The second result is that in relative terms, the Lease
CPU requires 50% more ALUTs than the Glift baseline
CPU. Augmenting this Lease CPU with the information
flow tracking logic adds an additional 2X ALUTs. This
jump from the Lease processor to “Lease sh”, its shadowed
version, is much larger than the 70% increase from Glift
base to Glift base sh. Not surprisingly, the main over-
head of implementing leases arises from the MUXes and
deMUXes required to read and write back to the set of 8
timers, restore PC, restore SP and other lease state. The
auto-generated shadow MUXes then account for the over-
head of the Lease sh CPU. Since the lease behavior of a
program is known statically, compiler optimizations could
potentially bring down the number of hardware stack en-
tries required.

The Fmax of the synthesized CPUs, on the other hand,
show that the Glift and Lease CPUs at 120-130 MHz are
only slightly slower than the Nios processor at 160 MHz.
This difference in frequency is mainly because Glift and
Lease processors support barrel shifts while Nios supports
only 1-bit shifts. With 1-bit shifts, the Lease CPU can
also operate at 160 MHz. In relative terms, the synthesized
Lease sh CPU at 108 MHz also runs slightly slower than
the Lease CPU (120 MHz).

5.3 Programming with Execution Leases
To code up our benchmarks, we have designed a simple

high level language with constructs that capture the func-
tionality of the Lease CPU. The lexical and grammar defini-
tion of Lease compiler is generated using Antlr, and all other
parts of the compiler are written in Java. We demonstrate
various aspects of our language through an encryption li-
brary modeled after the privilege separated OpenSSH. Our
library uses an I2C bus interface for I/O and implements a
public-key RSA encryption function to exchange symmet-
ric keys and followed by AES for all subsequent communi-
cation. This library models a scenario where the I2C bus

drivers are untrusted (e.g. imported as a commercial bi-
nary) and also implemented as a general purpose program
with a potentially unbounded loop. The aim is to com-
pletely isolate the untrusted drivers and prevent them from
ever affecting the encryption functions or accessing any in-
formation illegally (for e.g., the symmetric key for a trans-
action).

The lease statement is the most important new idea of
this language. Its syntax is: lease(timer, memorysize,
Function(arg0, ...), returnvalue); and it allows a program-
mer to lease a bounded area of memory, jump to a location,
and execute a bounded number of instructions. Each func-
tion also has an execution mode, GLIFT or general purpose,
which has to be specified statically.

Estimating Execution Time: The timer argument
to a lease statement conveys the number of instructions
that the jumpToFunction is allowed to execute. If left
at 0 for a GLIFT mode function, the compiler can auto-
matically fill the timer value by statically analyzing the
jumpToFunction and computing the total time required
to execute both sides of conditional branches, fixed size
loops, and some extra instructions to pass in arguments,
set appropriate memory bounds, and retrieve the return
value. Further research is required to make the compiler
capable of estimating execution times for general purpose
functions and provide useful suggestions to the programmer
of the GLIFT mode caller function. On one hand, many se-
curity functions that operate on streaming data are easy
to estimate, as they already take a fixed amount of time
(e.g. AES, RSA, md5 etc). In cases where the function
is accessing some peripheral device (or in general waiting
for some asynchronous communication) the lease bounds
will be governed by system-level timing constraints. For
instance, aircraft require some critical computation every
N ms, and the non-critical functions will work around this
constraint.

Setting memory bounds: The memorysize is used
to bound the local memory accesses jumpToFunction will
make, and can either be determined statically for GLIFT
mode programs or (as is the case for peripheral interface
drivers) be fixed to an arbitrary size based on the system
designer’s discretion. In addition to local memory bounds,
global memory bounds have to be set in case the caller
wants to allow the callee restricted access to some additional
region of memory. For instance, the I2C transmit function
can be allowed access to the encrypted message in addi-
tion to its local frame. The callee can use the load/store-
global instructions to access these out-of-frame addresses.
One concern might be that putting arrays into power-of-2
aligned memory regions might prove prohibitively hard for
the programmer. While more research is definitely required
to place arrays in the most compact manner possible and
to minimize data movement, our compiler has a simple al-
gorithm whereby it determines all the constraint sets for
arrays that need to be adjacent, places them along aligned



boundaries as far as possible, and moves arrays around for
when all constraints cannot be met. The caller has to spec-
ify using the @ symbol (as in int [2] @arr) if a function call
argument requires to be accessed using the global load/store
instructions.

Another very useful optimization the compiler performs
relates to the problem of setting the memory bounds before
every load or store, especially in loops. For such cases,
the compiler begins by inserting a setbounds instruction
before every memory access, but in a later pass discovers
all adjacent setbound instructions that use the same bounds
and coalesces them into a single setbound instruction with
the common bound.

Execution Modes: Every function declaration re-
quires an @GLIFT or @General prefix that states the
mode the function will execute in. In Glift mode, the Lease
ISA only allows a countjump instruction to jump to a PC
a fixed number of times. The language thus supports fixed
size loops of the form for i in range(start,end,step) {
block }. The usual if−else statements are compiled down
to predicated blocks of code, and function definitions and
statements resemble similar constructs in other imperative
languages. In General-purpose mode, conditional jumps
are allowed, and if-else statements need not both execute,
but the lease instructions (settimer and setbounds) are
no longer available. General purpose functions can use the
conventional in-memory stack to execute function calls, and
use general-purpose registers as stack and frame pointers.

In Figure 10, we show a snippet from our encryption li-
brary. Execution begins in the main() function in GLIFT
mode. This sets a lease for initializing the I2C bus driver,
transmitting the start signal and device address, and reads
in input from the serial bus. In the example, we show the
serial clock (SCL) and data (SDA) bus lines using the mem-
ory mapped addresses (scl_da[] and scl_da_in[]). Once
the input has been read in, either RSA or AES is invoked
conditionally, but since the function is in general-purpose
mode, it only needs to set a lease of max(aes, rsa) (unlike
the Glift-base assembly that would require both AES and
RSA to execute on every iteration). It is interesting that
even though the I2C receive function has a loop that queries
a device for an ACK and can do so indefinitely, once the
lease expires, control will be restored to the main function.

End-to-end property: This example shows how leases
can be used by programmers to explicitly manage the flow
of all tainted information through the CPU and memory,
and thus ensure the integrity of some critical function (the
encryption library) in the presence of untrusted functions
(the bus drivers). Considered in a secrecy context, leases
could be used to show that the only transfer of information
between a secret library and the unclassified bus drivers is
the encrypted buffer.

5.4 Quantitative Differences in the Result-
ing Code

While Execution Leases provide the program with a com-
pletely new ability, the option to provably contain the flow
of information even when tainted code is executing (where
that code is tainted either because it is secret or it is un-
trusted), it also provides quantifiable differences in the per-
formance of applications. We compare the execution time
of several different kernels running on the NIOS processor,
on the original GLIFT microprocessor, and on the Execu-
tion Lease machine. The NIOS code was generated from
gcc with level 2 optimizations enabled. The code targeting
the original GLIFT machine is hand written assembly. The

code targeting the the Execution Lease machine is gener-
ated by our custom compiler which performs no optimiza-
tion other than the lease bound merging discussed above.

As can be seen in Figure 11, the static code size between
the different machines are all relatively close (for example
MM is 83 instructions instead of the 73 from in the orig-
inal GLIFT machine) with only a few glaring exceptions
(AES is 2X bigger and BSort is 5X bigger). However, even
though AES is 2X bigger, it is approximately 68X faster
using Leases instead of the original GLIFT ISA. BSort is
also interesting because, on the original GLIFT machine,
this was really the only practical way to do sort – because
random indexed lookups took O(n) time instead of O(1).
On that machine, bubble sort takes O(n2) time while merge
sort takes on the order of O(n3) time. On our new architec-
ture, merge sort would take O(nlog(n)) time which means
that even though bubble sort is larger and takes longer, in
fact “fastest worst-case sort” would be a more appropriate
benchmark. Measured against the general purpose NIOS
CPU, the dynamic instruction counts in a Lease-CPU are
comparable, mainly because most of the security kernels are
very regular and easy to estimate tightly.

In terms of performance it is worth noting that excluding
the two best performing applications, the average speedup is
still 32%, while the two best performing applications (FSM
and AES) each are running 8.1X and 68X faster respec-
tively. FSM and AES are each so much faster because they
are dominated by table lookups, FSM to find the next state,
and AES to perform the sbox operation. While this shows
the potential of Execution Leases to drastically reduce the
time to perform some of the most fundamental computa-
tions, Leases allow us to compose together larger programs
such as the encryption library that would be extremely hard
without function calls and extremely slow without table
lookups.

6. Conclusions
High assurance systems, while often invisible to their end

users, are critical to the safe operation of cars, medical de-
vices, aircraft, military operations, and our modern finan-
cial system. The designers of such systems often times wish
to be able to prove important properties about their re-
sulting implementation, with non-interference being one of
the most desirable and difficult to demonstrate properties.
As we have discussed, demonstrating non-interference on a
traditional architecture is difficult as all sensitive data, for
example the private keys in a public-key encryption system,
must be carefully guarded to prevent an adversary from ob-
serving or even inferring their contents. While preventing
such leaks of information is difficult enough in practice, it
is even harder to verify formally.

Architectural support for Execution Leases has the po-
tential to be a powerful new tool for the designers of high
assurance systems. The idea that execution resources are
leased out to regions of code with fixed bounds on the time
and memory addresses is both a model of execution that a
programmers can understand, yet can be implemented in
such as way that safety is verifiable all the way down to
the gate level. In implementing a full prototype of an Ex-
ecution Lease machine, we came upon several challenges.
For example, execution leases can themselves invoke fur-
ther leases and the processor has to enforce that successive
leases are nested in both time and address space. Bound-
ing all memory accesses within the latest bounds requires
constructing the memory address in a unique manner from
the bounds and the incoming address, while also requiring



@GLIFT

void main()
{

int [2] scl_da;         /* i2c clk and data addresses */
int [2] sclda_in;
int [100] rd_buf;
int rd_val;
... 
lease(40, 8, i2c_init(), null);
...
loop {                                                         /* while (1) */ 

lease (19, 8, i2c_start (scl_da), null);
lease (666, 16, i2c_tx(1, scl_da, scl_da_in), tx_ack); /* i2c read: Tainted*/
for i in range (0,99,1) {                                /* Bounded loop  */

lease (513, 16, i2c_rx(1, scl_da, scl_da_in), rd_val);     
rd_buf[i] = rd_val;

}
lease (513, 16, i2c_rx(0, scl_da, scl_da_in), rd_val); 
rd_buf[5] = rd_val;
lease (16, 8, i2c_stop(scl_da), null);
…
lease (0, 0, encrypt(rd_buf), error_code);   /* Encryption code: Untainted*/

/* Compiler sets lease parameters : Lease size = MAX(AES, RSA)*/
…

} /* while 1*/
} /* main GLIFT-mode function*/

@ General

int i2c_rx  (int send_ack, int [2] @ scl_da, int [2] @scl_da_in )  
/* Global array arg*/{

int d = 0; 
scl_da[1] = 1;
...
for i in range(0,32,1) {

d = d << 1;
scl_da[0] = 1;
i2c_delay();       /* function call in general purpose mode */
while(scl_da_in[0] == 0)     /* potentially unbounded loop*/

scl_da[0] = 1;
d = d | scl_da_in[1];
scl_da[0] = 0;  

}
return d;  

}

@General

void encrypt (int[100] @ rd_buf)
{

int[16] out;
if (rd_buf[0] == 1)               /* conditional jump */

AES(rd_buf, out);            /* aes in general purpose mode */
else

out = RSA(rd_buf[1],...); /* rsa in general purpose mode */
} 
@General

void AES (int[100] @ rd_buf,  int[16] out)
{

int[240] RoundKey;
int[4][4] state;
KeyExpansion(RoundKey);
Cipher(rd_buf, out, state, RoundKey);

}

Gen -Purpose Tainted Code 

Gen -Purpose Untainted CodeGLIFT Untainted Code

Figure 10: Programming using Execution Leases: Execution begins in trusted (untainted) GLIFT mode. Function calls can be made
to general-purpose functions that operate within a fixed time and memory lease. Within a lease, general purpose code can execute
conditionals (without predication), potentially unbounded loops, and communicate through protected memory regions, while the CPU
implementation guarantees that no tainted code can ever interfere with out of bounds memory or execution time.

a special tag memory that can mark a range of addresses as
tainted in parallel. However, we describe a series of tech-
niques for overcoming these challenges, and we show that
the resulting machine is both far easier to program and ca-
pable of executing far more powerful code than prior GLIFT
based processors (it is not limited to GLIFT-ISA from [31]).
While there is still more work to do in further refining the
ISA, optimizing the hardware implementation, fleshing out
the language features, and improving the code generated
by the compiler, even now the Execution Lease machine is
the only design we are aware of that is capable of demon-
strating the non-interference of two or more general purpose
software components all the way down to the level of gates.
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Kernel Description 

FSM CSMA-CD state machine with with 6 states 
and 4 inputs.  Many table lookups 123 190 130 441 3322 410 

BSort Perform bubble sort on a fixed size 
list of integers 26 21 126 20621 30358 43518 

RSA 
Montgomery multiplication and 
exponentiation from RSA public key 
cryptography 

256 143 95 44880 39297 26329 

AES Block Cipher, involves extensive table 
lookups and complex control structures 781 1100 2113 12807 1082207 15785 

Md5 Core of the cryptographic hash function, 
involves mostly ALU and logical operations 769 1386 951 1226 1431 1012 

MM Matrix Multiplication 108 73 83 9043* 17035 10094 

Figure 11: A comparison between the static instruction counts and dynamic instruction counts between a traditional processor (the
Altera NIOS), the original GLIFT based microcontroller, and our Execution Lease based processor. As we have not implemented a
multiply instruction yet in our prototype, the Matrix Multiply result for the NIOS does not make use of native multiply instructions
either. Excluding the two best performing applications, the average speedup is 32%, with the two best performing applications (FSM
and AES) each running 8.1X and 68X faster respectively.
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