
Execution Monitoring of Security-Critical Programs in Distributed

Systems: A Specification-based Approach

Calvin Ko

Trusted Information Systems, Inc.

444 Castro Street, Suite 800

Mountain View, CA 94041

ko@)tis.com

Abstract

This paper describes a specification-based approach

to detect exploitations of vulnerabdities in security-

critical programs. The approach utilizes security spe-

cifications that describe the intended behavior of pro-

grams and scans audit trails for operations that are in

violation of the specifications. We developed a formal

framework for specifying the security-relevant behavior

of programs, on which we based the design and imple-

mentation of a real-time intrusion detection system for

a distributed system. Also, we wrote security specifica-

tions for 15 Unix setuid root programs. Our system de-

tects attacks caused by monitored programs, including

security violations caused by improper synchronization

in distributed programs. Our approach encompasses at-

tacks that exploit previously unknown vulnerabilities in

security-critical programs.

1. Introduction

Many security problems are directly or indirectly

related to vulnerabilities in security-critical programs

(e.g., privileged programs). Intruders exploit vulner-

abilities in these programs to gain unauthorized access

or to exceed their privileges in a system. Alsoj inap-

propriate uses of these programs could lead to security

breaches.

Intrusion detection is an alternative approach to cop-

ing with these problems besides testing and verification.

Three major approaches to intrusion detection are an-

omaly detection, misuse detection, and specification-

based detection. Anomaly detection [1, 2] assumes

that attacks will result in behavior different from that

normally observed in a system, and can be detec-

ted by comparing the current behavior with the pre-

Manfred Ruschitzka Karl Levitt

Department of Computer Science

University of California, Davis

Davis, CA 95616

{ruschitzka, levitt}@cs.ucdavis. edu

established normal behavior. Statistics-based [11, 5],

rule-based [15], and immunology-based [3] methods

have been employed in modeling normal behavior. An-

omaly detection has the advantage that no specific

knowledge about security flaws is required in order to

detect penetrations. However, it is difficult to set up

the anomaly thresholds so that attacks produce signi-

ficant anomalies. In addition, anomaly detection alone

cannot detect all kinds of intrusions, since not all in-

trusions produce an identifiable anomaly.

Misuse detection [11, 9, 4] attempts to identify

known patterns of intrusions (intrusion signatures)

when they occur. A misuse detection system detects

intrusions by matching the audit trails with the set of

predefine signatures. It can guarantee the detection of

an intrusion if a signature of the intrusion is included

in the system. However, it cannot detect previously

unknown attacks, since it is not possible to specify in-

trusion signatures for exploiting a vulnerability if the

vulnerabilityy is still unknown. Also, it is difficult to

write signatures that capture all variants of an intru-

sion (e.g., different ways to exploit a known weakness).

Specification-based detection [8] relies on program

specifications that describe the intended behavior of

security-critical programs. The monitoring of execut-

ing programs involves detecting deviations of their be-

havior from these specifications, rather than detecting

the occurrence of specific attack patterns. Thus, at-

tacks can be detected even though they may not previ-

ously have been encountered. Early efforts focused on

sequential programs, and their intended behavior was

specified in terms of a static set of allowable operations

[8].

This paper introduces a formal intrusion-detection

model that makes use of f~aces, ordered sequences of

execution events, for specifying the intended behavior of

concurrent programs in distributed systems. A formal

175
1081-6011/97 $10.0001997 IEEE

specification language expresses the set of valid oper-

ation sequences of such programs in a general and ef-

ficient manner. Moreover, an intrusion detection sys-

tem for distributed computer systems and networks is

discussed. According to the model, a specification de-

scribes valid operation sequences of the execution of

one or more programs, collective y called a (monitored)

subject. A sequence of operations performed by the

subject that does not conform to the specification is

considered a security violation. Since a specification

determines whether an execution trace of a subject is

valid, it is called a trace policy

The valid operation sequences of subjects are spe-

cified in terms of grammars whose alphabets are sys-

tem operations. We developed a novel type of gram-

mar, parallel environment grammars (PE-grammars),

for specifying trace policies. PE-grammars can de-

scribe many different classes of trace policies that are

important to security, including behavior related to

synchronization in concurrent or distributed programs.

Parsing of audit trails thus becomes the detection mech-

anism in a specification-based detection system; it de-

tects operations performed by subjects that are in viol-

ation of the trace policies. We designed PE-grammars

in a way that permits them to be parsed efficiently in

many practically important cases.

We developed a prototype intrusion detection system

for Unix and wrote trace policies for 15 Unix programs.

Our method can be used to detect known attacks on

these programs and has the potential to detect previ-

ously unknown attacks. It can also detect exploitations

of race-conditions in privileged programs and security

violations caused by improper synchronization in dis-

tributed programs.

The remainder of the paper is organized as follows.

Section 2 identifies several aspects of program beha-

vior that are important to security. Section 3 describes

the basic concepts and the monitoring model. Section

4 describes the specification language. Section 5 de-

scribes the design and implementation of a prototype

specification-based detection system for a distributed

system. Section 6 presents conclusions and suggests

future research.

2. Security-Relevant Aspects of Program

Behavior

Our goal is to specify the intended behavior of pro-

grams that are security-relevant, as it is not possible

to specify in full the behavior of a program. In this

section, we discuss and identify aspects of program be-

havior that are relevant to security.

●

●

●

Accesses of system objects: A simple but import-

ant aspect of the behavior a program is the set

of objects (e.g., files) it accesses. The executing

program is treated as the subject of access con-

trol. Specifying the files a program can access per-

mit the detection of many attacks involving priv-

ileged programs in Unix. In most cases, the num-

ber of files that a privileged program needs to ac-

cess is very limited, and can be enumerated easily.

For example, the finger daemon fingerd should ex-

ecute only the finger program (/usr/ucb/’nger),

and read only some status files (e.g., /etc/utmp,

plan, profile). An attacker who exploits the fin-

ger daemon causing it to perform any other oper-

ations (e.g., execute programs other than the fin-

ger program or modify the password file) will be

caught. By specifying the valid accesses of a priv-

ileged program, it is possible to detect attacks that

cause the privileged program to perform accesses

that are not part of the specification. In addition,

one can specify the access policy of a suspect pro-

gram so that any unauthorized accesses of files can

be detected even if the program is a Trojan horse.

Sequencing: In some situations, it is not only the

set of operations performed by a program that is

of concern, but also the order of these operations.

For example, the login program ought to read the

password file before it lets a user enter the system

by starting a shell program and passing control

to the user. Thus, it should be ascertained that

the operation of reading the password file appears

prior to the execution of a shell in the trace of a

login program. Another example concerns locking.

When a process locks a file for exclusive access, it

needs to be ensured that the process removes the

lock on the file before it exits in order to prevent

the file from being locked permanently.

Synchronization: In a distributed system, secur-

ity failures often result from improper synchroniz-

ation of programs. For example, if a user invokes

the passwd program to change his or her password

while the system administrator is editing the pass-

word file, the password file may be left inconsist-

ent [7, Chapter 2]. In addition, synchronization

problems occur in concurrent or distributed pro-

grams, whose execution consists of multiple pro-

cesses. Therefore, the order among operations per-

formed by different concurrent processes in a con-

current or distributed program is also of concern,

and we need to be able to specify valid synchroniz-

ation behavior of concurrent programs. Two pre-

dominant synchronization activities are mutual ex-

176

●

3

elusion and precedence. Since two processes must

not modify a file in the system simultaneously, one

process has to wait until the other process fin-

ishes. Similarly, there may be a precedence rela-

tion between operations of different processes (e.g.,

process B should not read file C until process A

finishes writing it).

Race conclitions: Aracecondition isaspecial case

of the synchronization problem. Ifaprogram hasa

race-condition flaw, an attacker can affect the be-

havior of the program by performing certain oper-

ations during the execution of the program. Mon-

itoring exploitations of a race condition requires

monitoring of the operation sequence of the execut-

ing program and of all other relevant processes in

the system.

The Model

A distributed system consists of a number of hosts

that are connected by a network. The basic entities that

perform operations on objects in the system (e.g., files)

are processes. An event denotes an execution of an

operation in the system, and is attributed to the process

that performs the operation. Events happening in the

system can be totally ordered [10], and the history of

the system is the sequence of events that occurred since

the system started.

Definition 1 (System Traces) The execution of a

distributed system S produces a sequence of events

‘vi,’lq ‘LJt,v~+l,

which is called a system trace of thes ystem. Each event

vi has an occurrence time, denoted by C(W~). Events are

totally ordered, that is, C’(W) < C(vi+l) for all i > 1.

A sequence of events vi,, VL,, “.. , Vlh is a subtrace of a

system trace if 11,12,. . ., 1~is a subsequence of 1, 2,

Two subtraces v;, v;, ..., v: and v!, v;, ”.., v! are said

to be distinct if and only if v; # v; for all 1 s i S k,

l<j <l.

The execution of a sequential process (or simply pro-

cess) P1 in the system produces a sequence of events

1V;>V2, v~,vj+l,

The sequence of events is called a process trace, and

denotes the sequence of operations performed by the

process from the time it starts to the time it terminates.

A process trace is a subtrace of the system trace.

Definition 2 (Merge of T’races) Given two distinct

subtraces VI and V2 of V, the merge of the two traces

is a subtrace of V, denoted by VI @ V2, and is defined

by V1@Vz =Vl,UZ)~SjVA,.o-,~~+m if and only if there

exist two subsequences il, i~ and .il, . . ., j~ of the

sequence 1,2, . . . ,m+ns.t. V1 =v,l, v~,,v~m and

v2=vjl, vJ2, ”””, vjn.

Definition 3 (Filter of Traces) A filter VP is a

function that maps a trace V = V1,vz,. -., v~ to an-

other trace VS, a subtrace of V, where p is a predicate

on the set of possible event attributes, and V$ is ob-

tained from V by removing all events vi (i > O) in V

s.t. p(v,) = false. For example, given a predicate g

s.t. q(v) is true if only if the event e describes an op-

eration performed by the user ko, V~ (V) is a subtrace

of V that consists of events caused by ko.

3.1. Monitoring Programs

A program is a passive entity. To monitor a program

means to monitor the executions of the program. An

execution of a program is a distributed process dp =

{P1,PZ, ~-. ,p~}, n ~ 1, which consists of one or more

processes. For instance, the execution of a sequential

program is a distributed process consisting of a single

process, while the execution of a distributed program

or a concurrent program is a distributed process which

consists of multiple processes.

The trace of a program execution is the sequence

of events corresponding to the operations performed by

the distributed process, which is the merge of the indi-

vidual traces of the processes forming the distributed

process. With dp = {Pi, PZ,. . . ,Pn} denoting the dis-

tributed process, the execution trace is

vdp=vpl@vp2@...@vpn,

wherevP1(1< i < ~)is the execution trace of process

pi. V~P is a subtrace of the system trace V.
A single program can have a number of executions

existing at the same time. For example, two users can

execute the same program at the same time, resulting

in two distributed processes both running the program

under the same or different operating systems. In some

situations, the executions need to be monitored separ-

ately. In other situations, all executions of a program

need to be monitored. For example, in order to detect

whether a user using passwd and an administrator us-

ing vi are modifying the password file simultaneously,

all executions of vi by the administrator (i.e., root) and

all executions of passwd need to be monitored. In this

case, the input to the monitor is the merge of the filtered

traces corresponding to all executions of vi (predicate:

user root) and the traces of all executions of passwd.

177

‘“’999”” =

w Streams of operationdone

by different processes

+ Merge by time

,.,

Single Stream of operations

vMONITOR

RESULTS

Figure 1. The Monitoring Model,

3.2. The Subject of Monitoring

A trace policy describes the valid operation se-

quences of a single program execution, multiple pro-

gram executions, a user, a group of users, a host, etc.

The entity or entities are collectively called a monitored

subject, or simply a subject. At the user level, a subject

could be one or more program executions, one or more

users, and one or more hosts. At the system level, a

subject consists of one or more processes. A host refers

to all processes running on the host. A user refers to

all processes that are owned by the user.

Monitoring a subject means analyzing the sequence

of operations performed by the subject. The execution

trace of a subject is the time-ordered sequence of oper-

ations performed by the processes forming the subject.

The execution trace of a subject sp = {pl, p2,pn}

is

V$P=VP1G3VP2(B... EBV,.,

where VPi (1 < z ~ n) is the execution trace of process

pi. V.P is a subtrace of the system trace V. Fig. 1

depicts the situation of monitoring a program execution

which involves three processes. Each process produces

an execution trace. The process traces are merged to

form the single trace of the three processes. The latter

trace forms the input to the monitor.

3.3. Selection Expression

Each trace policy contains a selection expression,

which serves to identify subjects that are to be mon-

itored. The elements in a selection expression are de-

rived from the characteristics of the distributeds ystem,

which include the set of programs P, the set of users

U, and the set of hosts II. Moreover, the two special

symbols * and ? are used to signify “all” and “any”,

respectively. A selection expression is a list of selectors

(sl~sz,... ~s~) where si (12 i S

form

< PID, PS, US,

where

n) is a selector of the

HS >,

● PID is the distributed process selector, PID E
{*, ?},

● PS is the program, PS E P U {* , ?},

. US is the user, US c U U {* , ?}, and

● IfS is the host, 17S ~ 11 U{* , ?}.

A selection expression identifies one or more sub-

jects. A selection expression without the ? symbol

defines a single subject; a selection expression consist-

ing of ? defines a set of subjects. The symbol ? in a

selection expression is similar to a variable in a generic

template, which is given a value in an instantiation.

For instance, <*, rdist, ko, ? > defines a set of sub-

jects which contains the subjects <*, rdist, ko, k2 >,

<*, rdist, ko, blanc >, and so on, with ? replaced

by each of the hosts in the distributed system. Several

selection expressions and the subjects they identify are

listed below.

1.

2.

3.

4.

5.

<?, rdist, *, * > defines a set of subjects; a sub-

ject here is a distributed process executing the rd-

ist program for any user on any host, for example,

<234, rdist, *, *>.

(<*, passwd, *, blanc>, <*, vi, root, blanc>)

defines one subject: all executions of passwd and

all executions of vi by Toot on the host blanc.

<*, ?, ko, * > defines a set of subjects; a subject

refers to all executions of a program p (p G P) by

user ko on any host.

<*, *, ko, blanc > defines the user ko on the host

blanc.

<*, *, *, k2 > defines the host k2, i.e., all pro-

cesses on k2.

178

The execution of a program is a distributed process,

which is identified by a process ID (pid), the user it is

representing, the program it is executing, and the host

on which it is running. Given a selection expression

and a distributed process identified by its PM, user,

program and host, a simple matching operation can de-

termine whether the distributed process belongs to any

of the monitored subjects specified by a selection ex-

pression.

4. Specification Language

In our approach, a trace policy, which captures the

intended behavior of a program, is specified by means

of a grammar. This grammar defines a formal language

(a set of sentences) whose alphabet consists of program

operations. Monitoring a subject amounts to syntax-

driven parsing of the sequence of program operations

executed by the subject. This sequence of operations

(the trace) is obtained from audit trails in real time.

An unsuccessful parsing attempt indicates a violation

of the trace policy and triggers remedial responses.

4.1. Parallel Environment Grammars

In view of the large variety of possible trace policies

and the constraints imposed by real-time parsing, the

expressiveness of the grammar and parser efficiency de-

mand special attention. WJe developed a novel type

of grammar, the parallel environment grammar (PE-

grammar) [7], to meet these demands. PE-grammars

form parallel extensions of environment grammars [12]

which have been applied to real-time data translations

in heterogeneous relational database systems. Owing to

their support of parallel sequences, PE-grammars can

be used to specify traces of concurrent processes.

A PE-grammar involves four quantities: a set of ter-

minals (the alphabet), a set of hyperrules, a set of envir-

onment variables, and a start expression. Rather than

using production rules directly to define a language,

PE-grammars use parameterized versions of such rules.

These parameterized versions, called hyperrules, serve

as templates for the dynamic generation of production

rules as the parsing progresses. A production rule

is generated by replacing the parameter variables of

a hyperrule by their current values. Collectively, the

parameter variables are referred to as the environment

variables. An environment variable is either global or

local to a sub-grammar, analogous to the concept of

global and local variables in programming languages.

The parallel aspect of a PE-grammar arises from the

start expression, which defines several start notions.

A PE-grammar can be viewed as consisting of n sub-

grammars, each corresponding to one start notion in

the start expression. ‘The sentence derived from the

start expression is the ordered merge of the sentence

derived from the individual start notions. For an in-

depth treatment of PE-grammars, see reference [7].

To introduce the general properties of PE-grammars,

we will refer to the specific PE-grammar shown in

Fig. 2. This PE-grammar contains two environment

variables, E and L. E is a global environment variable

and L is a local environment variable. Both environ-

ment variables are initialized to Oon lines 1 and 2. Line

3 denotes the start expression, which consists of the

two start notions <progd> and <progB>. In general,

the start expression has the form SI /l S2 II . . . II Sn,

where s~ is a start notion (1 S i S n). In a parallel

derivation, each start notion s, derives a sentence $~,

and the sentence derived from the start expression is

the ordered merge xl @X2 @ . . . @%.

Lines 4-11 show the hyperrules of the grammar. In

general, a hyperrule has the form

X(J-+X1X2... X~ [B]

where XO is a hypernotion, Xi, 1 S i < m, is either a

hypernotion or a terminal, and B is a set of attached

actions. A hypernotion is a tuple < xl, X2, . . ., Xn >,

where Z3, 1 s i s n is a symbol or an environment vari-

able. The set of attached actions may contain assign-

ments to environment variables and semantic actions.

For example, the hyperrule on line 5 has an attached

environment assignment which decreases the value of

E by 1.

1.
2.

3.

4.
5.
6.
7.

8.
9.
10.
11.

Environment Variables
ENV int E = O;
LOCAL ENV int L = O;

Start Expression
SE: <progd> I I <progB>

Hyperrules
<progd> -> <writeA, E>.
<writeA, O> -> <openA> <closed> { E = E - 1;].

<openA> -> open_A { E = E + 1; L = 1;].
<closeA> -> close_A.

<progB> -> <writeB, E>.
<writeB, O> -> <openB> <closeB> { E = E - 1;}.
<openB> -> open_B { E = E + 1; L = 1;].
<closeB> -> close_B.

Figure 2. An Example of a Parallel Environ-

ment Grammar.

Given a hyperrule in a PE-grammar, a production

rule is obtained from the hyperrule and the current en-

vironment by replacing each environment variable et in

179

the rule with its current value Vi; the hyperrule is called

the reference of the generated production rule. A hy-

perrule serves as a template for the replacement. The

left-hand side of the resulting production rule becomes

a single protonotion (i.e., a hypernotion without any

environment variables) and the right-hand side a com-

bination of protonotions and terminals. The resulting

production rules are equivalent to production rules of

context-free grammars (with protonotions correspond-

ing to nonterminals) and their applications correspond

to derivation steps in context-free grammars.

However, the set of production rules is not con-

stant; it varies with the environment as a derivation

progresses. A change in the environment occurs when

an environment assignment in B is executed upon suc-

cessful application of a production rule. For example,

the hyperrule on line 4 in Fig. 2 generates the produc-

tion rule <progA> -+ <witeA, O> when E = O, and

produces the production rule <progA> + <writeA, 1>

when E = 1.

The language defined by the grammar in Fig. 2 is {

open-A close-A open-B close_B, open_B close-B open-A

closeA }. Table 1 shows a parallel derivation of the

sentence { openA close-A openB close_B }. Sentential

forms labeled with t represent intermediate results of

derivation steps that involve executions of environment

assignments or semantic actions. In general, a parallel

derivation can be thought of as n individual derivations

where Si derives q for 1 S i s n; the n derivations pro-

ceed in parallel and each consists of a sequence of (left-

most) derivation steps. The order among the derivation

steps is driven by the occurrence times of the tokens.

For an individual derivation, parsing corresponds to a

(leftmost) traversal of the derivation tree of z~. We

affiliate with each internal node of the derivation tree

(which represents a protonotion) a traversal time, the

occurrence time of the leftmost leaf node (a token) in

the subtree rooted at the internal node. In each step,

the node with the earliest traversal time is traversed.

The parallel derivation consists of the two individual

derivations of openA closeA from <openA> (steps 1-

4) and of open- closes from <closeA> (steps 5-8).

In the table, L1 and L2 denote the local values of L

from the perspective of sub-grammar 1 (correspond-

ing to <progA>) and sub-grammar 2 (corresponding to

<progB>). Let t1,tz,ts and tldenote the occurrence

times of the tokens openA, close-A, open_Band close_B,

respectively, i.e., tl < tz< t3< tl.These times pace

the traversals of the two derivation trees (cf. discus-

sion of Fig. 3 below). In derivation step 1, the produc-

tion rule <progA> + <writeA, O>, which is obtained

from hyperrule 4 in Fig. 2 while the environment has

the initial value E = O, is applied to the first senten-

tial form, changing it to <writeA, O>. Step 2 converts

it to <openA> <closeA> {E = E – 1}. In step 3,

<openA> is first changed to openA {E = E+ 1; L = 1},

and after the execution of the environment assignment

(which sets E and L to 1) it becomes openA. Similarly,

step 4 results in openA close_A after setting E to O.

The derivation of opens closeB proceeds analogously.

cprogA>,1 cpr @> u

1’

.cwriteA, 0> *1 cwritell, 0>~

<openA~l <closeA> {E=E.1} ~

/ \ ‘Torn’)”
\

open_A (E=E=l ;L=l }tl close_A open_B (E=E+l ;L=l) ~ clo~e_B ,4
tz

Figure 3. A Derivation Tree of the Example of

a Parallel Derivation.

Fig. 3 depicts the derivation trees of the parallel de-

rivation and shows a subscript for the traversal time

affiliated with each node. The first derivation step ex-

pands <progA> (rather than <progB>) because tl< t3.

The next two derivation steps expand <writeA, O> and

<openA> for the same reason. Since tz < ts, <closeA>

is expanded next, followed by <progB>.

Note that openA open_B close_A close_B is not a

sentence of the grammar; after step 3 sets E to

1, <progB> (which would have an earlier traversal

time than <closeA>{l? = E – 1}) derives <write,

I>, which does not match any of the left-hand sides

of the grammar. Thus, the parser returns a failure in-

dication which signals the detection of a violation of the

trace policy.

4.2. A Trace Policy for Rdist

The program rdist [13] (Remote File Distribution

Program) is a Unix utility for maintaining identical cop-

ies of files over multiple hosts. It has a race-condition

flaw 1, which enables an attacker to acquire root priv-

ileges. The flaw relates to the way in which rdist up-

dates a file as well as to the semantics of the chown and

chmod system calls regarding symbolic links. Specific-

ally, the flaw enables a nonprivileged user to change

the permission mode of any file in the system. It has

been exploited by attackers to set the setuid bit of a

system shell (e.g., /bin\sh), resulting in a setuid root

shell that is publicly executable. We explain below how

our method detects such an attack.

1The flaw exists in 4.3 BSD Unix and other variants of Unix.

180

Step Sub-grammar 1 Sub-grammar 2 E L1 L2

<progA> <progB> o 0 0
1. <writeA, O>
2. <openA> <closeA> {E= E–1}

o 0 0

3.

0 0 0

fopen-A {E= E+l; L=l} <closeA>{E=17-1} o 0 0
open-A <closeA> {E ==E – 1}

4.

1 1 0
fopen.4 close-A {E= E – 1} 1 1 0
openA closeA

5.

0 1 0

<writeB, O> 0 1 0
6. <openB> <closeB> {.E = E – 1} o 1 0
7. fopen_B {E= E+l; L=l} <closeB> {E=E–l} o 1 0

open.B <closeB> {E = E – 1} 1 1 1
8. fopen-lil close_B {E = E – 1} 1 1 1

open-B close-B o 1 1

Table 1. An Example of a Parallel Derivation.

1. SPEC rdist <?, rdist, *, blanc>
2. EliV User U = getusero ;
3.
4. w N %%!%do;
5. ENV int PATHCD [str];

6. ENV str HOME = “/export/ horoe/lJ name”;

7. SE: <rdist>
<rdist> -> <valid_op> <rdist> I .

:: <valid_oD> ->

I

I

I

I

I

1

I

I

ope~-~-worldread
open-r. not.worldread
{ if !Created(F) then

violation ; fi }

‘~~~~~v(F)) then violation; fi; }

{ if ! ((Inside (P, “/tmp”) I I Inside (P, HOME))
then violation ; fi
FILECD[F .nodeid] = 1;
PATHCD[P] = F .nodeid; }

crest-dir
{ if !((Inside(P, l!/tmPlj) I I Inside (P, HOME))

then violation ; fi }
symlink
{ if ! ((Inside (P, “/tmp”) [I Inside (P, HOME))

then violation ; fi }
chor?n
{ if ! (Created(F) and M.newouid = U)) then

then violation ; fi }
chmod
{ if ! (Created(F)) then violation; fi }
rename
{ if ! (PtCreated(P) W Inside (M.newpt, HOME))

then violation f i; }

10. END;

Figure 4. A PE-grammar for Monitoring Rdist.

Fig. 4 shows the trace policy for rdist. This PE-

grammar describes the valid operations of a single rdist

execution. Line 1 shows the selection expression for the

subjects with which the specification is concerned. For

this specification, it describes the operation sequence of

a single execution of rdist on the host blanc. Lines 2-6

show the initial environment assignments. u is initial-

ized to the user associated with the execution, which

is returned from getusero. PID contains the process

ID (obtained from getpido) of the process correspond-

ing to the execution. FILECD(PATHCD)is an associat-

ive array for storing the inode numbers (path names)

of the files created by the program execution. They

are both initialized to empty and are changed dur-

ing parsing when a create-file operation is recognized.

HOMEis initialized to the home directory of the invoker,

which is /export/home/< Username>. Its value will not

be changed thereafter.

On line 7, the start expression contains only the start

notion <rdist >, which implies that the input is de-

scribed by the hypernotion <rdist >.

Hyperrule 8 recursively defines the input as a repe-

tition of the valid operations specified by <valid-op>;

the second alternative represents the termination con-

dition.

Hyperrule 9 describes the operations rdist is al-

lowed to perform. It has 9 alternative right-hand

sides. The first alternative contains just a terminal,

and each of the remaining eight alternatives contains

a terminal followed by one or more semantic ac-

tions. The tokens recognized by the hyperrule are

open~-worldread (any opefn.r operation on a publicly

readable file), opemrnot-worldread, (any open-r oper-

ation on a file that is not publicly readable) open-rw,

crest .f ile (any operation that results in creation of a

file), creat_dir (any operation that results in creation

of a directory), symlink, chownj chnrodj and rename.

The semantic actions in the various alternatives of

the hyperrule check the attributes (such as the path

name and the inode of the file) of the recognized opera-

tion to determine whether the operation is valid. They

raise a violation for an invalid operation by calling the

function violation. Several attributes of operations

are referenced in the semantic actions: F denotes char-

acteristics of the process and the file associated with the

recognized operation, P denotes the path name of the

file, M.newouid denotes the new owner and M.newpt

denotes the new path name. The semantic action in

the second alternative of hyperrule 9 in Fig. 4 raises a

181

violation if the file is not created by the process. The se-

mantic action in the third alternative raises a violation if

the recognized open.rw operation is not associated with

a device file. There arethree semantic actions following

crest-file in the fourth alternative. The first semantic

action raises a violation if the file associated with the

operation is not inside the /tmp directory or the home

directory (specified by the environment variable HIJME).

The second and third semantic actions update the en-

vironment variables FILECDand PATHCDto indicate that

a new file and a new path has been created. The se-

mantic action following symlifi raises a violation if the

file is not inside the /tmp directory or the home dir-

ectory. The semantic actions following chown and chmod

raise a violation if the file is not created by the process.

The semantic action following rename raises a violation

if the old path name associated with the rename oper-

ation is not created by the program or the new path

name is not inside the home directory of the invoker.

To summarize, the trace policy specifies that an ex-

ecution of rdist on host blanc may (1) open a publicly

readable file for reading, (2) open a file that is created

for reading, (3) open a device file for both reading and

writing, (4) create a new file, directory, or symbolic

link in the /tmp directory or the home directory of the

invoker, (5) change the permission mode and the own-

ership of a file that it created, and (6) rename a file

that it created in the host directory. Since the trace

policy allows rdist to change the permission mode of

only those files that are created by the program exe-

cution itself, attacks that exploit rdist to change the

permission mode of other files (e.g., /bin/sh) will be

detected.

5. Design and Implementation

The section presents the design and implementa-

tion of a specification-based intrusion detection system,

the Distributed Program Execution Monitor (DPEM),

which monitors executions of programs in a distributed

system to detect behavior inconsistent with their trace

policies.

5.1. Design of DPEM

The target platform is a distributed system which

consists of several hosts connected by a local area net-

work. Each host in the system collects audit trails

about the system operations that occur in the host,

which should include all system calls.

DPEM consists of a director, a specification man-

ager, trace dispatchers, trace collectors, and analyzers

situated in various hosts in the distributed system. Our

\ / 1

FA
Trace

Trace Dispatcher

Collector
‘- ...,

.
.

..
-.. .

.. ...

B s s ‘“””’””i~

Figure 5. Architecture of DPEM from the Per-

spective of a Host.

design combines distributed data collection and data

reduction with decentralized analysis. Our system en-

ables audit data to be collected and filtered in indi-

vidual hosts and data analysis to be carried out con-

currently on multiple hosts. Also, each component is

designed to minimize the amount of audit data that

needs to be transferred across the network.

Fig. 5 depicts the architecture of DPEM from the

perspective of a host in the distributed system. It also

shows the data flow among its components. Analyzers

are the components that perform the monitoring. An

analyzer checks the execution trace of a subject for vi-

olations with respect to a given trace policy. Thus, an

analyzer can be thought of as the runtime counterpart

of a policy specification. The number of analyzers run-

ning in the system may change dynamically. In Fig. 5,

three analyzers are running, and each of them is as-

sociated with a different trace policy. The first ana-

lyzer may be associated with a trace policy for a single

execution of rdist. The second analyzer may be asso-

ciated with a trace policy concerning the behavior of

a single execution of jingerd. The third analyzer may

monitor all executions of passwd and vi. Additional

analyzers will be started when new subjects need to

be monitored. Analyzers terminate when the subjects

they monitor exit. For instance, if a user executes rdist,

an analyzer associated with the trace policy concerned

with rdist will be executed to monitor that execution

of rdist (Analyzer 4 in Fig. 5). An analyzer reports

182

any erroneous behavior of its monitored subject to the

director, which carries out the appropriate response for

the incident, such as notifying the system security of-

ficers or starting up additional analyzers. An analyzer

can run on any host in the system. Therefore, the ana-

lysis of audit data is distributed among multiple hosts

in the distributed system.

A trace dispatcher must be present on each host on

which analyzers are running. It is responsible for send-

ing the execution traces of the subjects to the analyzers

running on the host. Conceptually, it reads the audit

trace from each of the hosts in the system, merges them

to form the system trace V of the whole distributed

system, and filters (pred: pid E sp, see Sec. 3) it to

obtain the trace of the subject sp required by an ana-

lyzer. A trace dispatcher gets audit records from the

trace collectors situated in various hosts. Depending

on the subjects monitored by the attached analyzers, a

trace dispatcher may or may not request audit records

from the trace collector in a particular host. It iden-

tifies the trace collectors from which audit records are

needed for monitoring, and it requests audit records

from them only as long as they are needed.

A trace collector runs on each host on which an audit

trail resides. It fetches the audit records directly from

the audit repository and sends the records to the trace

dispatchers (possibly situated on different hosts) that

request the records. It filters the records such that only

the records requested by a dispatcher will be sent, thus

minimizing the network bandwidth used by the monit-

oring system.

The specification manager enables the system admin-

istrator to manage the security specifications. An ad-

ministrator can add, modify, or delete the security spe-

cifications in the system through the specification man-

ager interface. The specification manager starts up ana-

lyzers to monitor program executions when programs

that need to be monitored are executed.

5.2. The Specification Manager

The specification manger keeps all trace policies in

a specification database. Each trace policy is associ-

ated with a selection expression indicating the subjects

with which the policy is concerned. At a high level,

a subject can be one or more program executions, one

or more users, and one or more hosts. At the system

level, a subject consists of one or more distributed pro-

cesses. When a new distributed process is created, i.e.,

a program is started, the specification manager checks

the selection expressions to determine if the distributed

process belongs to any of the monitored subjects. If so,

it invokes a corresponding analyzer to monitor the new

I Parallel Hyperparser I

Figure 6. The Structure of an Analyzer.

process.

Recall from Section 3.1 that the execution of a pro-

gram is a distributed process. A distributed process

is identified by a process ID (pid), the user it is rep-

resenting, the program it is executing, and the host on

which it is running. Given a selection expression and a

distributed process identified by its pid, user, program

and host, a simple matching can determine whether the

distributed process belongs to any of the monitored

subjects specified by a selection expression.

When the specification manager receives an audit

record indicating a process pid associated with a user

u who executes a program p on a host h, it matches

< pid, p, u, h > with the selection expression of each

trace policy. If the selection expression of a trace policy

matches the audit record, a new subject is instantiated.

For example, the selection expression < ?, rdist, *, * >

of a trace policy P causes the instantiation of the sub-

ject <456, rdist, *, * > when a user executes rdist, and

the pid of the process created is 456. If there is no

analyzer associated with P, an analyzer will be started

to monitor the subject. In general, no two analyzers

monitor the same trace policy and the same subject.

5.3. Analyzers

An analyzer monitors the execution of a subject with

respect to a trace policy. A different analyzer is con-

structed for each trace policy and is invoked when a

subject that is to be monitored starts. It determines

whether the execution of the monitored subject violates

the trace policy by parsing the execution trace.

Fig. 6 shows the structure of an analyzer, which con-

sists of a parallel hyperparser, a lexical analyzer, and

a semantic-action module. The parallel hyperparser

forms the core of an analyzer. It is constructed based

on the PE-grammar representing the trace policy.

Fig. 7 depicts the structure of a parallel hyperparser.

A parallel hyperparser consists of a hyperdispatcher,

one or more (sequential) hyperparsers, a set of global

environment variables shared by all hyperparsers, and

183

an initialization procedure for performing the initial en-

vironment assignments to the global environment vari-

ables. Each hyperparser is a top-down parser, similar

to the hyperparser of an environment grammar [12].

~ ~j

m
Mis

m
m m

m
:

Hyper Hyper Hyper Hyper

Parser Parser gee Parser Parser

Shared Memory

E~ the set of glohsl

Environment Variables

Figure 7. A Parallel Hyperparser.

5.3.1. Hyperparsers

There is one hyperparser per start notion s~ in the start

expression. Each hyperparser contains a set of local

environment variables, a local initialization procedure

for performing the initial environment assignments to

the local environment variables, a set of lexical pro-

cedures for reading and recognizing the terminals, and

a set of (possibly recursive) hyperprocedures for gen-

erating and applying production rules. There is one

hyperprocedure per hyperrule, where a hyperrule may

contain alternative right-hand sides. Also, each hyper-

parser has a local variable current-token which holds

the token it is processing.

5.3.2. Hyperprocedures

The hyperprocedures form the core of a hyperparser.

Let HP-XO() be the hyperprocedure corresponding to

the hyperrule XO + XIXZ . . . Xm [13]. It first calls the

function inspectQueueo to inspect the next token in

the input queue and sets current.token to that token.

The function inspectQueueo waits and returns when

the next token is available. The hyperprocedure sub-

sequently uses the environment variables to generate

the current production rule by obtaining the protono-

tions (or terminals) Yi from the hypernotions (or ter-

minals) Xi on the right-hand side of the hyperrule. The

hyperprocedures for the references (see Sec. 4.1) of the

protonotions Y~ (or lexical procedures in case the lat-

ter are terminals) are first identified and subsequently

called in sequence. If all m procedures return suc-

cessfully, any attached environment assignments or se-

mantic actions B are performed and the hyperprocedure

returns indicating success.

If llP-Xo () represents a set of alternative hyper-

rules, the order in which they are processed is determ-

ined by consulting the next input token. Processing is

as above, but a failure indication by a called proced-

ure causes the hyperparser to backtrack and start the

processing of the next alternative rather than to imme-

diately return with a failure indication.

5.3.3. Parsing

When an analyzer starts, it first calls the initialization

procedure of the parallel hyperparser with information

on the monitored subject to initialize the environment

variables. It also calls the initialization procedure of

the lexical analyzer, the dispatcher module, and the se-

mantic action module with information on the subject

it monitors. After the initialization, it passes control to

the parallel hyperparser.

Within the parallel hyperparser, the hyperdispatcher

first performs the global initialization procedures to

initialize the global environment variables, and sub-

sequently starts all hyperparsers. It then reads the

tokens one by one and dispatches them to the input

queue of the appropriate hyperparsers. After dispatch-

ing a token to a hyperparser, it waits until the queue

of the hyperparser is empty (i.e., the token is accepted)

and the hyperparser pauses by calling inspectQueueo

for the next token (i.e., any actions following the re-

cognition of the previous token have been performed)

before it feeds the next token to another hyperparser 2.

Therefore, only one hyperparser is active at any single

time, and all others are blocked waiting for the next

token.

When a hyperparser starts, it first initializes its local

environment variables. It then calls the hyperprocedure

HP.s~ () for the hyperrule with the start notion s~ on

the left-hand side. The execution of each hyperparser

is driven by the input tokens. A hyperparser either

2A more ~ficientversionof the parallel hyperparser permits

the hyperparsers to run in parallel (with some synchronization

constraints) without affecting parsing correctness [7].

184

pauses in a lexical procedure or at the beginning of a

hyperprocedure when the next token is not available,

i.e., the input queue is empty. In particular, the hyper-

procedure HP-si () stops if the next input token is not

available when the hyperparser starts.

The purpose of a hyperparser is to parse the se-

quence of tokens in its input queue and report any vi-

olations. When each hyperparser parses the sequence

of tokens in its input queue successfully, the sentence is

recognized by the parallel hyperparser. Otherwise, the

input sentence is not a sentence of the PE-grammar,

signaling the detection of a violation.

The lexical analyzer scans the source input for tokens

of the PE-grammar. The hyperparser invokes the lex-

ical analyzer with a specification of the expected token

type, and the lexical analyzer returns a success/failure

indication together with the token value in case of suc-

cess. The semantic-action module contains the neces-

sary procedures for performing the semantic actions. It

includes a procedure violation which reports a viol-

ation and pertinent information to the security officer.

This procedure does not terminate the parser; it allows

parsing to continue. In general, users can code up their

own procedures for semantic actions.

5.4. A Unix Prototype DPEM

We built a prototype DPEM for a single host based

on the design above. It serves as a proof-of-concept

implementation for our approach.

The prototype is written in the C programming lan-

guage [6]. The C programming language was chosen

because of its wide-spread use and portability across

different Unix platforms. The prototype runs under

the Solaris 2.4 operating system and uses the auditing

services provided by the Sun BSM audit subsystem [14].

The BSM audit subsystem provides a log of the

actiti,ties that occur in the system. It records the se-

quence of system events in the order of occurrence.

Thus, the audit trails contain a trace of the system. An

audit record contains information such as the process

ID and the user ID of the process involved as well as

the path name, the inode, and the permission mode of

the files being accessed. However, it does not contain

information about the program the process is running.

Therefore, we added an audit record preprocessor to

associate a program identification with each audit re-

cord.

The audit record preprocessor actually serves two

purposes. First, it filters audit records that are irrel-

evant to the monitoring system. Second, it translates

the BSM audit records into the format required by the

monitoring system. It keeps an array pg that holds the

identification of the program each process is currently

executing. When it reads an audit record associated

with process ID z, it associates the program in pg[z]

with that record. It monitors all exec and fork calls

and updates the array accordingly. When an exec call

invokes a program P, the program associated with the

new process becomes P. When a fork call creates a new

process, the program associated with the new process

is that of its parent.

Our prototype maintains a table of registered pro-

grams. Each entry contains the name of a program, as

well as the pathname and the inode of the physical file

that contains the program. For the identification of a

program that is started by an execve event, the inode

number in the record is used as the key because the

pathname is not a unique identifier of a program. For

example, an attacker can create a hard link to a setuid

root program and execute the hard link, in effect ex-

ecuting the setuid root program. Yet the pathname of

the execve record would not indicate an execution of a

setuid root program.

When the prototype is started, several processes are

typically executing in the system. It is generally im-

possible to trace back how the processes got created

from the audit trail as the audit records could have

been modified or deleted. To obtain identifications of

the programs that existing processes are executing, the

audit record preprocessor inspects the kernel memory

and initializes the array pg when it starts up.

5.5. Experimental Efforts

We have written trace policies for 15 setuid root

programs and servers in Unix, including fingerd, rdist,

sendmail, binmail, passwd and vi. Using these trace

policies, we tested the prototype with three different

kinds of intrusions. These intrusions exploit vulnerab-

ilities in rdist, sendmail, and binmail.

The experiments described below were performed on

a Sun SPARCstation 5 with 32MB of memory running

Solaris 2.4. We configured the audit system to log all

successful events for all users, and for all network dae-

mons including inetd, fingerd, rlogind, and telnetd. The

original version of rdist and sendmail were replaced by

the SUN 4.3 versions, as their vulnerabilities have been

removed in Solaris 2.4. The prototype DPEM runs con-

tinuously and analyzes the audit data generated by the

audit system in real time and reports any violations to

the security specification.

The intrusions were realized using combinations of

a Perl [16] scripts and C programs. One intrusion ex-

ploited a vulnerability in rdist; another intrusion ex-

ploited a vulnerability in the sendmail program that

185

causes sendmail to create a setuid shell in the /tmp

directory that is owned by root and is publicly execut-

able. A third intrusion caused binmail to overwrite the

shadow password file with values that the attacker de-

sires. The prototype detected these intrusions within

0.1 seconds. Also, no noticeable degradation of per-

formance was noted.

Fig. 8 shows the report generated by the prototype

DPEM for the first intrusion. The trace policy in Fig 4

was used for rdist. This intrusion produced two viola-

tions. The first was that rdist changed the ownership of

a file not created by the program. The second was that

rdist changed the permission mode of /usr/bin/exsh.

The time elapsed between the occurrence of the viola-

tion and the detection was approximately 0.06 seconds.

The time of detection was obtained by the gettimeof-

dayo library call when the hyperparser executed a se-

mantics action that called the violation function. The

time of the operation was obtained from the audit re-

cords.

% rdistattack /bin/sh

% /bin/sh

VIOLATION -- Tue May 14 16:52:20 1996 + 0.894236000 sec
--

Tue May 14 16:52:20 1996 + 0.820003000 sec

lchown, (5456, 5000, 0, rdist), nodeid: 27, path: /trnp/r

dista05456

VIOLATION -- Tue May 14 16:52:20 1996 + 0.972195000 sec
--

Tue May 14 16:52:20 1996 + O.S30006500 sec

chmod, (5456, 5000, 0, rdist), nodeid: 4149, path: /usr/
bin/exsh, mode: 4777

Figure 8. A Report Generated by the Proto-

type DPEM.

We also tested the prototype with a scenario in-

volving simultaneous modifications of the password file.

This scenario was simulated manually. In one window,

one author logged on as the superuser and executed the

command vi /etc/shadow to modify the shadow pass-

word file. Subsequently, this author logged on as a nor-

mal user in another window and executed passwd to

change the password. We used a trace policy which
requires that only one execution of passwd or vi can

modify the password file at any time. The passwd pro-

gram obtained the old password, but when it started

to modify the password file, the prototype detected

and reported the violation. The violation was detec-

ted approximately 0.05 seconds after passwd opened the

shadow password file. 3

3 In SolariS 2,4, the occurrence time associated with an audit

record denotes the finishing time of the system call.

6. Conclusions

We presented advancements on specification-based

intrusion detection [8]. We identified aspects of pro-

gram behavior that are security-relevant, and presented

a detection model based on traces and a formal notion

of monitored subjects. The model uses a formal lan-

guage for describing the intended behavior of programs.

In addition, we developed a prototype of a specification-

based intrusion detection system that detects attacks

exploiting the vulnerabilities of privileged programs in

Unix.

Our approach lends itself to a decentralized analysis

system, which enhances the scalability of the intru-

sion detection system. In particular, data analysis is

carried out by various analyzers situated on different

hosts. Also, audit data that is relevant to an analyzer

is precisely defined, thus enabling effective audit filter-

ing at the trace collectors. Moreover, our approach

explicitly addresses security problems due to the lack

of synchronization in concurrent programs.

An innovation of our approach is the use of gram-

mars for specifying valid traces of programs. It has

the advantage that many results of the mature discip-

line of formal languages can be readily applied. We

developed a language framework, parallel environment

grammars, for specifying trace policies. These para-

meterized grammars can express a large variety of trace

policies in a compact manner. Yet they can also be

parsed efficiently in many cases of practical import-

ance. We described the principal features of such a

parsing method, and illustrated its application to the

detection of intrusions that exploit vulnerabilities in

security-critical programs.

Our detection system is not without limitations. A

trace policy deals mainly with operations, e.g., file ac-

cesses that a subject is authorized to perform. It does

not consider the particular data values that a subject

reads or writes. The detection of reading or writing

unauthorized data values would require the inclusion of

a description of authorized data values in the specific-

ations. Moreover, contemporary audit records would

have to be expanded to capture data values, resulting

in a significant increase in overhead costs.

In addition to monitoring privileged programs, the

specification-based approach can be used to monitor

network components or network services that are relev-

ant to security, including domain name services (DNS),

network file systems, and routers. Thes ystematic meth-

odology for developing trace policies for programs may

also be useful in future research on developing overall

security policies for computer systems and networks.

186

Acknowledgments

This work was supported in part by the De-

fense Advanced Research Projects Agency under Con-

tract DOD/DABT63-93-C-O045 (DARPA Order A785)

and by the National Security Agency University Re-

search Program under Contract DOD-MDA904-93-

C4083. The authors thank Heather Hinton and the an-

onymous referees for their helpful comments on revising

the paper.

References

[I] J. P. Anderson, “Computer security threat monitoring

and surveillance,” Technical report, James P. Ander-

son Co., Fort Washington, PA, April 1980.

[2] D. E. Denning, “An intrusion-detection model,” IEEE

Transactions on Software Engineering, vol. 13, no. 2,

pp. 222-232, 1987.

[3] S. Forrest et al., “A sense of self for unix processes,”

in Proceedings of the 1996 Symposium on Security and

Privacy, (Oakland, CA), May 6-81996, pp. 120-128.

[4] K. Ilgun, “USTAT: A real-time intrusion detection sys-

tem for Unix, “ in Proceedings of the 1993’ Symposium

on Security and Privacy, (Oakland, CA), May 24-26,

1993, pp. 16–28.

[5] H. S. Javitz and A. Valdes, “The NIDES statistical

component description and justification,” Technical re-

port, Computer Science Laboratory, SRI International,

Menlo Park, CA, March 1994.

[6] B. Kernighan and D. Rkchie, The C Programming

Language. Englewood Cliffs, NJ: Prentice Hall, 1978.

[7] C. Ko, Execution Monitoring of Secur-ity-

Critical Programs in a Distributed System: A

Specification-based Approach. PhD thesis, Depart-

ment of Computer Science, University of Cali-

fornia, Davis, September 1996. Also available at

http://seclab.cs. ucdavis.edu/~ko/thesis/paper.ps.

[8] C. Ko, G. Fink, and K. Levitt, “Automated Detection

of Vulnerabilities in Privileged Programs Using Exe-

cution Monitoring, “ in Proceedings of the 10th Com-

puter Security Application Conference, (Orlando, FL),

December 5-9, 1994.

[9] S. Kumar, Classification and Detection of Computer

Intrusions. PhD thesis, Department of Computer Sci-

ence, Purdue University, August 1995.

[10] L. Lamport, “Time, clocks, and the ordering of events

in a distributed system,” Communications of the

ACM, vol. 21, no. 7, pp. 558-565, 1978.

[12] M. Ruschitzka and J. L. Clevenger, “Heterogeneous

data translations based on environment grammars,”

IEEE T!ransacttons on Software Enginee?’ing, vol. 15,

no. 10, pp. 1236–1251, 1989.

[13] Sun Microsystems, Man Pages: Rdist - remote file dis-

tribution program, Novermber 1993.

[14] SunSoft, Mountain View, California, Solaris SHIELD

Baszc Security Module, August 1994.

[15] H. Vaccaro and G. Liepins, “Detection of anomalous

computer session activity,” in Proceedings of the 1989

Symposmm on Security and Privacy, (Oakland, CA),

May 1-3, 1989, pp. 280-289.

[16] L. Wall and R. L. Schwartz, Programming Perl. Sepas-

topol, CA: O’Reilly and Associates, Inc., 1992.

[11] T. Lunt et al., “A real-time intrusion detection expert
system (IDES) - final technical report ,“ Technical re-

port, Computer Science Laboratory, SRI International,

Menlo Park, CA, Feburary 1992.

187

