
Execution of A Requirement Model in Software Development

Wuwei Shen, Mohsen Guizani and Zijiang Yang
Dept of Computer Science, Western Michigan University

{wwshen,mguizani,zijiang}@cs.wmich.edu

Kevin Compton
Dept. of EECS, The University of Michigan

kjc@eecs.umich.edu

James Huggins
Computer Science Program, Kettering University

jhuggins@kettering.edu

Abstract

Latest research results have shown that requirements errors
have a prolonged impact on software development and that they
are more expensive to fix during later stages than early stages in
software development. Use case diagrams in UML are used to
give requirements for a software system, but all descriptions for
each use case are written in informal language. In this paper, we
propose a new language HCL (High-Level Constraint Language)
to which any requirement model given by use case diagrams can
be mapped. Not only is the language HCL based on a formal lan-
guage but also the requirement model written in HCL can be ex-
ecuted. Many errors occurring during requirements analysis and
design can be detected by means of execution.

1 Introduction and Related Work

Software development usually consists of the following
stages: requirements analysis, design, code and testing. A high-
level model is usually presented as a result of software require-
ments analysis and design. Many research studies have shown
that many errors can be introduced in a high-level model during
the early phases of software requirements analysis and design.
These errors can have prolonged effects on reliability, cost, and
safety of a software system [7]. Requirements errors are more
costly to fix during later phases of software development than dur-
ing the requirements analysis and design phase [1].

Requirements errors come from two causes. When software
developers are developing a software system, they usually are not
familiar with the application domain on which the software sys-
tem is built and they usually acquire requirements by talking to
users. Misunderstandings between developers and users can re-
sult in requirements errors. Also, although software developers
may understand the requirements of a system, they sometimes
cannot develop a system correctly according to the requirements
because of human errors. For example, some requirement models
cannot be designed in a single step due to the complexity of an
application. One level model may not fully follow its previous
level model. This can result in some erroneous behavior in the

final version of the software system. This kind of errors is also
quite common during software development.

Therefore, many researchers have proposed different tech-
niques to support software requirements analysis and design.
Most of them are based on some formal methods. However, these
techniques based on formal methods are rarely used in industry
due to the following reasons.

First, the application of these techniques requires high ab-
straction and mathematical skills to write specifications and con-
duct proofs, especially when an application becomes very compli-
cated. A software developer cannot grasp these techniques unless
one makes a significant commitment to learn them. Usually, the
commitment is not equal to the grasp of the proficiency at the nec-
essary skill level. In most cases, a software developer gives up on
these techniques based on a formal method.

Second, most existing techniques based on a formal method
cannot provide a good marriage between an academic invention
and some real applications in industry. The techniques based on
formal methods usually concentrate on notation and proof, but
fail to help practitioners to apply these techniques in a practical
development process. Therefore, these techniques cannot offer
usable and effective methods for use in well-established industrial
software processes.

Third, almost all of the existing techniques based on formal
methods are far from maturity. Many problems such as state ex-
plosion in a formal method continue to exist, although some of
them can be overcome in some applications. There is no single
technique to deal with all problems in software development.

After finding so many problems in formal methods, re-
searchers have provided some new concepts to support software
development. One of them is called “formal engineering”. A soft-
ware developer uses rigorous review techniques to validate spec-
ifications against user requirements. This ensures that designs
satisfy their requirement specifications while programs satisfy de-
signs.

Unlike a formal method, rigorous reviews can be achieved by
execution or validation. This is easier to conduct than applying
a formal method. They do not need convincing formal proofs,
required by most formal methods, to ensure some correctness.
But a sound and practical review technique should be achieved
by means of some software tools. Among the rigorous reviews,

Prepress
203

“execution” is the most powerful method because the behavior
of a system can be directly observed. No other special training is
needed for practitioners to find whether a requirement of a system
is really what they want.

One of the important differences between a requirement model
and an execution model is that a requirement model presents what
a system should do, while an execution model presents how a sys-
tem can do it. Because of this difference, it is almost impossible to
execute a requirement model during software requirements anal-
ysis and design. Therefore, some requirements errors are really
hard to detect when they are first introduced. Also they usually
cannot be found until the software system is tested. Even worse,
some of them may not be found after the software system is de-
livered.

On the other hand, with the introduction of the Unified Mod-
eling Language [6] in industry, it is possible for software devel-
opment to use the same conceptual framework and the same nota-
tion from software requirements and specification through design
to implementation. Use case diagrams have become popular to
give a requirement model for a software system as the first step in
software development.

To give a complete requirement model, software developers
sometimes write informal descriptions for some use cases besides
a use case diagram. These descriptions usually include a name,
a pre-condition, the flow of control, a post-condition, etc., for
each use case. However, since these descriptions are written in
some informal language (such as English), there may exist errors
caused by ambiguity in the langauge. Because it is impossible to
execute a high-level requirement model, it is hard for the users
of a software system to understand whether the designed require-
ment model is really what they want.

Although some researchers are trying to formalize use case
diagrams in software development, to the best of our knowledge,
no research work about first formalizing a requirement model and
then executing it. Once this is done, some requirements errors
during requirements analysis and design can be found. After
observing the lasting impact of requirements errors on software
development, we propose a new language HCL (High-level Con-
straint Language) to which a requirement model given by use case
diagrams can be mapped.

HCL is based on a formal language, Abstract State Machines
[3]. It overcomes the ambiguity problem when software devel-
opers design a requirement model. Furthermore, a requirement
model written in this langauge allows developers and users to use
“execution,” the simplest rigorous review technique, to find po-
tential errors in a requirement model. Requirements errors, that
are caused not only by misunderstandings between users and de-
velopers but also by developers’ mistakes, can be detected in the
HCL specification.

On the other hand, the major processes in requirements devel-
opment are refinement and increment. Due to the executability
of the HCL specification, software developers can find whether
a model at one level is correctly refined during the development.
This provides software developers with a rigorous review tech-
nique which can be used in every step during their software de-
velopment.

In [8] pre- and post- conditions written in OCL (Object Con-

straint Language) for a use case have been proposed. The au-
thors in propose to use operation schemas to describe pre- and
post- condition for a software system so as to avoid problems in
a requirement model caused by informal language. The ambi-
tious motivation for their work is similar to ours but they did not
consider how to apply the operation schemas in software devel-
opment. In their work, software developers should include some
class diagrams in a requirement model. This is usually not the
initial step in software development. There was no discussion of
how the operation schemas can be applied in the process of soft-
ware development. Last, the main difference between their work
and ours is that they do not mention the support for any rigorous
review technique while we propose to use “execution” to check
the correctness of a requirement model.

The object constraint language [4] has aroused researchers’ at-
tention in the software community as a supplementary language
to UML. But due to many limitations, such as the complicated
and inconsistent notations and the stacked structure, OCL has re-
ceived many criticisms. Being aware of these problems, we chose
AsmL as our constraint language over OCL in our requirement
model. AsmL is a rather complicated language which can be
used to represent many different computer systems. But the sub-
set of AsmL (mostly boolean expression part) we chose to repre-
sent constraints in building our requirement model is simple and
easy to learn. Software developers are not required to have spe-
cial training to learn how to use these AsmL expressions to give
pre- and post- conditions.

Another related work is done in Project SOFL [9]. Project
SOFL proposed a new methodology based on a new language
called SOFL, which combines the traditional waterfall develop-
ment with object-oriented development. But in the high level
model design, the authors require one to consider data structures
and the flow of control among data. To the best of our knowl-
edge, this information is not usually proposed during software
development until some more functional requirement models are
designed. In addition, with the popularity of UML in industry,
it is not necessary to invent a new notation to replace the current
one, as it is often hard to have new notations accepted.

As the first step toward finding a reliable methodology to de-
velop a software system, we investigated the early phases in soft-
ware development. We concentrated on execution of a prototype
system represented by use case diagrams. In the future, we will
study the subsequent phases, such as the design and code in soft-
ware development.

The remainder of this paper is organized as follows. Section 2
gives background about use case diagrams and software require-
ment development. Section 3 presents our new methodology. A
vending machine example is used to show the application of our
new methodology in section 4. Section 5 draws conclusions and
suggests future work.

2 Software Requirement and Use Case

During software development, requirements analysis and de-
sign is the first phase, in which software developers design a re-
quirement model after they talk to users of a software system. Be-

Prepress
204

cause the requirement model will be used from design to testing,
its quality has an influential impact on the whole software system.
However, how to design a requirement model which can closely
follow the requirements given by the users of a software system
is a challenging topic. In general, users of a software system are
not familiar with the jargon used in software engineering. The
users cannot find whether the system is exactly what they want
until they see the system running.

On the other hand, with the application of software systems to
more complicated problems in the real world, software developers
cannot design a requirement model in one step. Usually software
developers first design an abstract model and then refine all parts
of the abstract model in the following steps. If at any abstraction
level in software development the users of a system can interact
with a requirement model, the quality of a software system can
be dramatically improved because software developers can adjust
their requirement model right after they receive some feedback
from the users instead of waiting until the users use the software
system after it has been developed.

A requirement model only describes the functionality of a
software system, i.e what to do, instead of implementation details.
With the birth of the Unified Modeling Language, parts of re-
quirements can be moved into use case diagrams which are widely
used in software requirements analysis and design. Because use
case diagrams provide a clear way to represent the structure of
the requirements in a software system and therefore they are easy
to serve as a communication means between software develop-
ers and users, use case diagrams have played an important role in
software requirement development.

A use case diagram consists of a set of use cases, actors and
some relationships among them. A use case represents a function
of business in a system, i.e. what the business does. An actor is
an outside user of the system and the actor can interact with use
cases defined in the system. The relationship in a use case dia-
gram can be divided into four categories:generalization, include,
extendandassociation. However, in most cases when describing
software requirements, it is not enough to only use the diagrams;
therefore some descriptions for each use case such as main flow of
events, precondition, post condition and exceptional flow events
should be provided as supplements to a use case diagram. All of
this graphical and textual information yields a complete require-
ment model for a software system.

Although a use case diagram which gives requirements for a
software system provides an obvious and nice means to get some
feedback from some outside users, the way to design software
requirements through use case diagrams still makes it hard to have
outside users know whether the system does what they want. The
best way to have users understand the requirements of a system is
to run a prototype of the requirement system. However, with the
current requirement model represented by use case diagrams, it is
hard to accomplish this goal.

There are two reasons which make it difficult to execute a pro-
totype system for a requirement model. First, most descriptions
for a use case are written in an informal language. Second, each
use case describes what to do for a system or subsystem instead of
how to do it; so most software systems have difficulty supporting
the execution of a requirement model.

Furthermore, software development is a process of refinement,
increment and iteration. How to guarantee that one level require-
ment model is correct is a challenging topic. Also how to make
sure that one level model correctly refines its higher level model is
another important task faced by software researchers. How to it-
eratively apply the refinement and increment methods to software
development has become an important issue when developing a
complicated software system.

However, after having seen the importance of software re-
quirements in software development, we present a new language,
which can be used to describe a use case given in a software re-
quirement model. Unlike most programming languages, this new
language concentrates on structures capable of describing what
to do for a system instead of how to do it. The goal behind
this new language is that we will provide a methodology which
can be applied to different levels of software development. This
new methodology not only can be used to describe a requirement
model for a software system but also provides a rigorous review
technique to let software developers and user observe the dynamic
behavior of a requirement model at different levels during soft-
ware development, shown in Figure 1.

use case A(...)
pre:.....
post:
usecase B (...)

............

usecase A1(....)
usecase A2(....)
usecase A3(....)

............

Figure 1: The relationship among a HCL specification,
users/developers, and a requirement model at different lev-
els during software development.

In most requirement models, some descriptions such as main
flow of event, precondition and post condition are given. In fact,
most of these descriptions can be implied by a pre-condition and
post-condition. Therefore, the new language we propose in this
paper is used as a supplement to use case diagrams by only de-
scribing the pre-conditions and post-conditions. We use HCL to
formalize and execute a requirement model. After a requirement
model given in HCL, software developers and users have an op-
portunity to observe the dynamic behavior of a requirement model
by means of execution.

3 The High-level Constraint Language for
Software Requirement Development

During software requirements development, software devel-
opers can develop a software system by increment or refinement.

Prepress
205

In most cases, the development should be iterative. Use case dia-
grams play an important role in requirement model development.
However, a use diagram itself does not provide too much infor-
mation about a requirement model except for some use cases and
their relationship in the model. Software developers usually use
some descriptions to describe the behavior for each use case.

The High-level Constraint Language (HCL) is designed to tex-
tually represent use cases in a requirement model. A HCL spec-
ification for a requirement model consists of a set of HCL speci-
fications, each of which is used to describe requirements for each
use case in the model. Each use case HCL specification includes
pre-condition, post-conditionanddescription. Thepre-condition
for a use case gives the condition which should be satisfied so that
the use case can be called. Thepost-conditionrepresents a con-
dition which should be satisfied after the use case is called. The
descriptiongives some auxiliary information which can make re-
quirement specification for a use case complete.

To reflect the requirements in software development, we
choose a subset of Abstract State Machine Language (AsmL) to
give the conditions and description. In the HCL specification, we
omit the relationship given in the use case diagram. In general,
use case diagram describe requirements (dynamic behavior) of a
software system. Therefore, we assume that in any given require-
ment model, all requirements for a use case (A) are assigned to
its included, excludedand children use cases if they exist in a
use case diagram. All requirements for these use cases should
achieve the requirements for the use case (A). Therefore, only are
theseincluded, excludedand children use cases mapped to the
HCL specification and the HCL specification for the use case (A)
is omitted.

After a requirement model given in a use case diagram is
mapped to a HCL specification, the HCL requirement model can
be executed thanks to the executability of AsmL; therefore the
users of a software system can immediately observe the result
of the prototype system instead of waiting until the software has
been fully developed. Because there is no relation among all use
cases in the specification, we use the input and output variables in
the HCL specification to find some execution order in a require-
ment model.

Before introducing the software requirements refinement, we
give some introduction to HCL. HCL accepts most types used in
AsmL. Besides the predefined types such as Integer, String etc.,
HCL provides some other types which can be defined by a user.
A user defined type can include a set, a sequence or a map.

Because HCL is used to describe the functionality for a system
by giving a pre-condition and post-condition for each use case, we
choose parts of AsmL syntax to represent these conditions. Most
of them accepted in HCL are related to (boolean) expressions.
The syntax for AsmL expressions can be found in the AsmL doc-
ument [5]. In order to give a complete HCL specification for a
requirement model, we give the syntax for the HCL specification
in Figure 2.

To describe a requirement model given by a use case diagram,
we use a use case HCL specification to describe the functionality
for each use case. A use case HCL specification consists of a
use case name, parameters, a pre-condition and a post-condition.
Following the keywordusecase is a use case name defined in

HCL specification :: = usecasespec{usecasespec}
usecasespec ::= USECASE ID “(” parameters “)”

pre cond postcond descrip
pre cond ::= PRECONDITION “:” AsmLexpression
post cond ::= POSTCONDITION “:” postcondition
post condition :: = [quantifier] “(” variable list “)”

“ |” constraints
quantifier :: = exists| all
variable list :: = variable IN type{“,” variable IN }

[type where AsmLexpression]
constraints ::= AsmLexpression
descrip ::= DESCRIPTION: description
description ::= setdef| func def| rangedef
setdef ::= ID “=” “ {” element{“,” element} “ }”
func def ::= ID “:” ID → ID [“=” “ {” ID → ID

{ID → ID} “ }”
rangedef ::= ID “[” Integer “..” Integer “]”

Figure 2: The syntax for HCL.

a use case diagram. Parameters are given in a pair of parenthesis
following the use case name. There are two kinds of parameters in
a use case HCL specification. One is the input variables following
the keywordin . The other is the output variables following the
keywordout . All parameters are separated by “,” and all output
variables should be defined after the input variables in each use
case.

Thepre-conditionpart includes a valid AsmL boolean expres-
sion. Thepost-conditionpart consists of two parts; one includes
all output variables and their ranges related to this use case, while
the other part is a valid AsmL boolean expression which gives a
restriction on these output variables. The output variable range
should have a finite number of elements so that the execution can
find all elements, which satisfy the restriction, in this finite range.
The descriptionpart gives complete information about the use
case and it usually includes definitions for functions and maps
etc. used either inpre-andpost- conditionparts.

The development of a software system is a process for tackling
a problem in a piece-meal fashion, i.e. describing the problem in-
crementally. To add more information in our design model as
software development is going on is a necessary step and the new
model with more details is regarded as a refinement model for the
previous one. One example of a incremental model is that the
formal input/output of a model will be changed so as to closely
follow the real application. But how to make sure that the incre-
mental model still satisfies the requirement is still important.

The development of a software system is also a process of
refinement. It means that without changing the behavior given in
one level model, software developers add some more requirement
details to the next level model which is said to refine the previous
level model.

Last the development of a software system is also a process of
iteration. In some cases such as when software developers find
some problems at one level model or the users of a software sys-

Prepress
206

tem change their requirements, they usually return to the previous
models designed in the early phases of software development and
make some necessary changes. These changes usually can result
in some changes in the subsequent models.

The whole software development process is actually a pro-
cess which repeatedly uses one of the above three processes. Be-
cause iteration is the process to return to the previous develop-
ment phases, we consider the first two processes, i.e. increment
and refinement process by using the HCL specification.

Either software developers or software users can observe
whether an HCL specification for a requirement model satisfies
the software system requirements by executing the HCL specifi-
cation during any phase in software development. From the set
of outputs returned by the HCL specification, software developer
or users can find whether all elements in the output set are re-
ally what they expect. If there is some element which they do
not expect, then some changes are necessary to make in the HCL
specification for the requirement model.

4 An Example: Vending Machine

We use a vending machine example [2] to illustrate how to
give a requirement model by means of HCL. A vending machine
consists of a money box, a keypad and a container containing all
products to be sold. The vending machine sells sodas, chips and
sandwiches whose prices are 60 cents, 50 cents and 100 cents
respectively in its container. The keypad provides a mapping be-
tween a number and a product. We assume that 0 represents so-
das, 1 represents chips and 2 represents sandwiches. We assume
that the maximum amount of the money (machine money) which
can be returned to a customer is 1000 cents. Every purchase only
returns one product to a customer. All money is stored in the
money box.

In the highest level model for the vending machine, we ab-
stract the model as follows. A customer can buy a product from
the vending machine if (s)he provide a number, which represents
the amount of money to be inserted, and the product code. We
assume that the products are always available in the vending ma-
chine and the vending machine returns an integer which repre-
sents the amount of changes returned to the customer if exists. So
there is only one use case in the highest level requirement model,
calledBuy product .

To describe a complete requirement model for use case
Buy product , we can give the HCL specification in Figure 3.

The main requirement for this highest level model is that the
price of the product a customer buys plus the change if returned
should be equal to the amount of money (s)he pays to the vend-
ing machine. The other requirement includes the number which
a customer inputs should be positive and the product code should
be valid. Thepre-conditionfor the use caseBuy productrequires
that the amount of money a customer pays be a positive integer
and the product (s)he chooses be a valid product stored in the
vending machine. The valid products stored in the vending ma-
chine are defined by the setPRODUCTwhich is defined in the
descriptionpart. To ensure that a code input by a customer is

usecase Buyproduct (in money, product,
out numproduct, changes)

pre: money in Integer, product in Indices(code)
where money> 0

post: (numproduct in RAN, changes in[0..1000])|
numproduct * price(product) + changes = money

description:
PRODUCT ={soda, chip, sandiwich}
RAN = [0..1]
code: Integer→ PRODUCT ={0→ soad,

1→ chip, 2→ sandwich}
price: PRODUCT→ Integer ={ soda→ 60,
chip→ 50, sandiwich→ 100}

Figure 3: The highest level of a software requirement
model.

valid, we use the functionIndices(code) which represents the
domain for the functioncode.

The post-condition for the use caseBuy productgives a rela-
tion among the amount of money a customer pays, the price of
the product (s)he chooses and the changes returned to a customer
if exists. This is usually what a user of the vending machine re-
quires.

The pre- and post-condition of a use case concentrate on some
constraints on variables. The description part gives all the neces-
sary information used in the pre-condition and post-condition and
the description part makes the requirement model complete. We
include the definitions forPRODUCT, RAN, codeandprice in the
description part.

After giving the above HCL requirement model, we can ex-
ecute it and a user of the system can interact with the prototype
system immediately, shown in Figure 4. The system returns a so-
lution set after execution. Let us assume that a user chooses 0
(“soda”) and pays 76 cents. For this given input, there are two so-
lutions which can be observed by this customer. One is to return
76 cents to this customer and the other is return one “soda” and
16 cents as a change to the customer. Obviously, the first solution
is really not what we want for the vending machine system.

When we return to the HCL requirement model, we find that
there exists a problem in the post-condition. The post-condition
actually accepts one solution which is that the change to be re-
turned to a customer is equal to the money the customer pays and
no product the customer chooses is returned. In any case, this so-
lution should not be accepted. Therefore we should modify the
post-condition for the use case shown in Figure 3.

In the revised HCL requirement model shown in Figure 5, we
include anexists condition in theif statement in the post-
condition part. The revised post-condition says that if there exists
a solution which can return a product to a customer then the vend-
ing machine should perform this purchase instead of returning all
the money to the customer; otherwise the vending machine should

Prepress
207

Figure 4: The result of running the first level model

usecase Buyproduct (in money, product,
out numproduct,

. . . , . . . , . . .
post: (numproduct in [0..1], changes in[0..1000])|

if (exists (num in RANGE1, ret in RANGE2)| num> 0
and num *price(product) + ret = money) then

numproduct> 0 and numproduct * price(product)
+ changes = money

else
numproduct = 0 and changes = money
. . . , . . . , . . .

Figure 5: The revised HCL requirement model for the
Vending Machine.

return all the money to the customer. After we execute the revised
HCL requirement model, we find the solution is what a user of the
vending machine requires.

5 Conclusion and Future Work

In this paper, we present a new notation which can be used
to formally and textually represent a requirement model, usually
presented by a use case diagram. Although there are some re-
search work about using pre-condition and post-condition to de-
scribe a use case, our goal is to use “execution”, the simplest rig-
orous review technique, to observe a requirement model at a dif-
ferent high level instead of only describing a requirement model.

Thanks to the executability of Abstract State Machine Lan-
guage, any use case diagrams can be mapped to a set of HCL
specifications, each of which includes a pre-condition, a post-
condition and description for one use case. Therefore, both soft-
ware developers and users can observe some execution results

about the prototype of the software system being designed. Any
error or undesired result observed through the execution can be
corrected accordingly.

Besides execution, we will study some other rigorous review
techniques which can be applied to software development. While
we propose to use HCL specification to give a requirement model
for a software system, we believe some of high level models can
not be easily executed. Therefore, we should use other rigorous
review techniques to evaluate these high level models. As a sup-
plementary rigorous review technique to the execution method
proposed in this paper, we will consider specification testing,
which has become an important technique applied to evaluate a
requirement model, to support the early phase of software devel-
opment. In short, the focus of this work will further seek for a
complete methodology to help software developers to design a
correct and reliable software system. Furthermore, some state-of-
the art applications such as computer network protocol designs
will be studied using this new methodology. We will also validate
some computing security issues which are important in computer
applications.

References

[1] R. Bourdeau and B. Cheng. A formal semantics for object
model diagrams. InIEEE Transactions on Software Engi-
neering, volume 21 ofNo. 10, pages 799–821, October 1995.

[2] Microsoft FSE Group. Vending machine case study. Techni-
cal report, Microsoft FSE Group, June, 2002.

[3] Yuri Gurevich. Evolving algebras 1993: Lipari guide. In
E. Börger, editor, Specification and Validation Methods,
pages 9–36. Oxford University Press, 1995.

[4] Jos B. Warmer, Anneke G. Kleppe.The Object Constraint
Language: Precise Modeling With UML. Addison-Wesley,
1998.

[5] Microsoft FSE Group. Introducing AsmL: A Tutorial for
the Abstract State Machine Language. Technical report, Mi-
crosoft FSE Group, Dec, 2001.

[6] OMG Unified Modeling Language Specification, version 1.3,
June 1999.

[7] R.R. Lutz. Targeting safety-ralated errors during software
requirements analysis. InSIGSOFT ’93 Symp. on the Foun-
dation of Software Engineering, 1993.

[8] S. Sendall, A. Strohmeier. From Use Cases to System Op-
eration Specification. InUML 2000 - The Unified Model-
ing Language. Advancing the Standard. Third International
Conference, York, UK, October 2000, volume 1939 ofLNCS,
pages 1–15. Springer, 2000.

[9] Shaoying Liu, Jeff Offutt, Chris Ho-Stuart, Yong Sun, Mit-
suru Ohba. SOFL: A Formal Engineering Methodology for
Industrial Applications. InIEEE Transactions on Software
Engineering, Special issue on Formal Methods, volume 24 of
1, pages 24–45. IEEE Computer Society Press, January 1998.

Prepress
208

