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Execution of Multidisciplinary Design Optimization
Approaches on Common Test Problems

R. J. Balling* and C. A. Wilkinson'
Brigham Young University, Provo, Utah 84602-4081

A dlass of synthetic problems for testing multidisciplinary design optimization (MDO) approaches is presented.
These test problems are easy to reproduce because all functions are given as closed-form mathematical expressions.
They are constructed in such a way that the optimal value of all variables and the objective isunity. The test problems = _
involve three disciplines and allow the user to specify the number of design variables, state variables, coupling func-
tions, design constraints, controlling design constraints, and the strength of coupling. Several MDO approaches
were executed on two sample synthetic test problems. These approaches included single-level optimization ap-
proaches, collaborative optimization approaches, and concurrent subspace optimization approaches. Execution
results are presented, and the robustness and efficiency of these approaches are evaluated for these sample problems.

Nomenclature

Acoup = coupling factor between disciplines

Astaee = coupling factor for disciplinary state
equations

Al, A2, A3 = disciplinary analyzers

a, b, al;;, blj, cl;;, =exponents

dl,'j, a2,~j, b2,~j,

C2,'j, d2,-,-, a3,-,~.

b3,‘j, C3,‘j, d3,‘j

C,C1,,C2,C3; = constants

E = Young's modulus for cantilever beam

El, E2, E3 = disciplinary evaluators

el,-j, ¢2,‘j, 53,'1' = coefficients

f = system objective function

fLf2f3eRY = disciplinary objective functions

f1, 12, f3 = disciplinary objective variables

gl.g2,g3 e R = disciplinary design functions

h1,h2, k3 € R = disciplinary state functions

L = cantilever beam length

nf = number of objective functions in each
discipline

ng = number of design constraints in each
discipline

ngc = number of controlling design constraints
in each discipline

nh = number of state equations in each
discipline

np = number of functions in each discipline

nv = number of variables in each discipline

nx = pumber of design variables in each
discipline

nxs = number of system design variables

ny = number of coupling functions from one
discipline to another

01,02,03 = disciplinary optimizers

P = cantilever beam load

pl,p2,p3 e R? = disciplinary functions

r1,r2,r3 = disciplinary discrepancy functions

Presented as Paper 96-4033 at the ATAA/USAF/NASA/ISSMO 7th
Symposium on Multidisciplinary Analysis and Optimization, Panama City
Beach, FL, Sept. 7-9, 1994; received June 6, 1996; revision received Oct. 1,
1996; accepted for publication Oct. 4, 1996; also published in AIAA Journal
on Disc, Volume 2, Number 2. Copyright © 1996 by the American Institute
of Aeronautics and Astronautics, Inc. All rights reserved.

*Professor, Department of Civil and Environmental Engineering, 368
Clyde Building. Member AIAA.

tResearch Assistant, Department of Civil and Eavironmental Engineer-
ing, 368 Clyde Building.

178

Fl = dummy disciplinary discrepancy variable
SA = system analyzer

SO = system optimizer

vl ¥2,v3 e R™ = disciplinary variables

X1, X2 * = variables

x e R™* = system design variables

X eR™ = dummy system design variables
x1,x2,x3eR™ = disciplinary design variables
y12,y13,y21,y23, = coupling functions

¥31,y32 e R®

512,513,521, 523,
$31,532 ¢ RV
721,531 ¢ R™

= coupling variables

= dummy coupling variables

z1,22,23 e R* = disciplinary state variables
8 = allowable deflection for cantilever beam
A = Lagrange multiplier
o = allowable normal stress for cantilever
beam
T = allowable shear stress for cantilever beam
Introduction

ULTIDISCIPLINARY design optimization (MDO) is a de-

veloping field of study that is concerned with how to opti-
mally design and analyze systems composed of multiple disciplinary
models that are coupled. Usually the design of such complex sys-
tems is performed by a team that is subdivided into groups associated
with the disciplines. The disciplines in the system may correspond
to fields of study (aerodynamics, structures, thermodynamics), or
they may correspond to physical parts (wing, fuselage, engines).
One goal of MDO is to allow the disciplinary groups to analyze and
design in parallel with a certain degree of autonomy. Nevertheless,
because the disciplines are coupled, their work must be coordinated
atthe system level so that an overall optimum design can be achieved
for the system.

Several approaches for formulating and solving MDO problems
have appeared in the last decade. Many of these approaches can
be categorized into three groups. The first group consists of single-
level optimization approaches.!~* In these approaches, optimization
is performed only at the system level, and the role of the disciplines
is limited to analysis and function evaluation. The second group
consists of collaborative optimization approaches,’® and the third
group consists of concurrent subspace optimization approaches.” !0
In these latter two groups, optimization is performed at the system
level as well as within the disciplines. A major difference between
concurrent subspace optimization and collaborative optimization is
that in concurrent subspace optimization, each discipline attempts
to satisfy its own constraints as well as approximations to the con-
straints of the other disciplines, whereas in collaborative optimiza-
tion, each discipline satisfies its own constraints and tries to match
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target values on coupling functions that are needed by other disci-
plines in the evaluation of their constraints.

The robustness and efficiency of the various approaches are not
well understood. It is difficult to obtain good MDO test problems.
Realistic test problems often involve cumbersome disciplinary soft-
ware packages. This makes such test problems difficult to reproduce.
Furthermore, results may be strongly influenced by interfacing de-
tails and the internal programming characteristics of the disciplinary
analyses, and thus the inherent behavior of the MDO approach may
be clouded.

Another deficiency in many MDO test problems is the lack of
completeness. The number of disciplines or the numbers of differ-
ent types of variables and functions in the disciplines may be small.
Disciplinary models may be linear or otherwise trivial. The coupling
between disciplines may be weak or incomplete. Results from the
execution of MDO approaches on incomplete test problems may not
be indicative of the results that can be expected on more challenging
problems.

In this paper, a class of synthetic MDO test problems will be
presented, and several MDO approaches will be executed on two
common test problems. The synthetic test problems possess the
following desirable characteristics.

1) They are easy to reproduce because all functions are given as
closed-form mathematical expressions.

2) They are constructed in such a way that the optimal value of all
variables and the objective is unity. The feasible region is convex,
and this optimum is unique.

3) There are three disciplines, although the concepts presented
can be extended to create synthetic test problems with more than
three disciplines. .

4) The completeness is controlled by the user by specifying th
numbers of design variables, state variables, coupling functions,
design constraints, and controlling design constraints.

5) Coupling between disciplines is complete, and the strength of
the coupling is controlled by the user.

6) The functions are nonlinear and distinct; however, exact solu-
tion of the state and coupling equations is possible.

Sample Elements of an MDO Problem

‘We now define some of the elements of an MDO problem. We will
refer to the three-discipline system shown in Fig. 1. We assume that
all analytical models in the system are assigned to disciplines. The
disciplinary models have inputs and outputs. All inputs and outputs
shown in Fig. 1 are vectors and are defined in the Nomenclature.
We assume that the optimization problem to be solved is defined as
follows.

1) Disciplinary state equations must be satisfied: A1 = 0, A2 = 0,
and 3 = 0. These equations may be equations of equilibrium, com-
patibility, constitution, conservation, etc., based on the physical
model for the discipline. Note that the number of disciplinary state
variables is assumed to be equal to the number of disciplinary state
functions. This implies that the state equations for each discipline
can be used to solve for the values of the state variables (all other
variables being held constant).

2) Disciplinary design constraints must be satisfied: g1 < 0,
82 <0, and g3 < 0. These constraints distinguish acceptable/fea-
sible designs from unacceptable/failed designs.

3) The system objective function must be minimized: minimize
f = f({f1, 12, £3). Note that the system objective is a scalar func-
tion of the disciplinary objective functions.

y23
y32
y31

y13 =
h2,g2.12

hi,gl,r1 h3,g3,03

Fig.1 Coupled system with three disciplines.

'4) Coupling equations must be satisfied: y12 = §12, y13 = 513,
¥21 = 321, y23 = 3§23, y31 = §31, and y32 = #32. There is
a coupling variable associated with each coupling function. These
coupling variables make it possible to evaluate disciplinary models
in parallel in a coupled system. The disciplines use assumed values
of coupling variables as input to the disciplinary models and evaluate
their output, which includes the coupling functions.

Synthetic Test Problems

Figure 2 plots curves for the equation xfx2 — 1 = 0 for various
negative values of the exponents a and b. We propose synthetic
design constraints of the form g = xfx} — C < 0 witha < 0,
b < 0,and C = 1. The feasible region for such constraints is
convex, and the point x; = x; = 1 is feasible. We take C = 1 for
the constraints that control at the optimum and we take C > 1 for
the constraints that do not control at the optimum.

Consider a structural optimization problem consisting of a can-
tilever beam of length L with a transverse load P at the free end.
The cross section is rectangular and the design variables x,; and x,
are, respectively, the section width and depth. If the allowable val-
ues for deflection, normal stress, and shear stress are §, o, and 7,
respectively, then the constraints are as follows.

Deflection:
g1=@PLYEx'x;* -5 <0
Normal stress:
82 =6PLx{'x;2 -0 <0 '6))
Shear stress:

& =0CP/2x'x;' -~ <0

Thus, we see that the proposed synthetic constraints resemble the
form of constraints that may be encountered in structural optimiza-
tion.

We now give formulas for the design functions in our synthetic test
problems. First, we define the vector of variables v1 for discipline 1.
The size of this vector is nv = nxs + nx + nh + 2ny. The vector
v1 contains the values of the input variables for discipline 1 in the
following order: x, x1, z1, 21, y31. In the following formula for the
design functiomns of discipline 1, the subscripts i or j to the right of
a vector indicate the ith or jth element of the vector:

ny

gli=[[o1) -cy, @)
i=1
We take C1; = 1 fori < ngc, and we take C1; = 1.2 for ngc <
i < ng. We randomly generate values in the interval (-5, 0) for
each of the exponents al;;. Similar formulas can be constructed for
the design functions for disciplines 2 and 3.

We formally define the state functions in similar fashion. For
discipline 1,

hl; = n(vlj)bh/ -1 3

j=1

X,

X,

L
1 2 3

Fig.2 Curves of the equation x§x% — 1=0.
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Note that the state equations i1 = 0 will be satisfied when all design,
state, and coupling variables are equal to 1 regardless of whether the
exponents are positive or negative. We have chosen to use positive
exponents for state functions. However, if the exponents are too
large, the magnitude of the state functions could blow up. This can
be prevented by linking the size of the interval from which exponents
are randomly generated to the number of variables in the product. For
the state function h1;, the exponents for the variables are determined
as follows.

Variable: Exponent bl;;:
1,¥21;,531 random from interval { 0 !

¥ XL YEL 3 rom i " nxs +nx +2ny
. . Ague

2l j i random from interval { O, e

le ] =] 1

The term Ay, is a user-specified factor that controls the strength of
coupling in the state equations. If Ay = 0, the ith state function
is a function of the ith state variable only and not of the other state
variables. If A, > 0, then each state function is coupled to all of
the state variables.

We formally define the coupling functions in similar fashion. For
the coupling functions evaluated in discipline 1,

nv nv
y1z; = [ 1) y13; = [Jo1,)™ @
j=1 j=1

Variable: Exponent cl;; and d1;;:

random from interval | O, —1—
nxs +nx + nh

xj,xlj,zlj

A
§21;,531; random from interval (O. ﬂ)

2ny

i=1 i=1

elj =-=3x

nge L] ny - L. - ) o
ial;j+2b1;i+2c1ij+2d1;j—l for j>nxs+nx-+nh
1 i=1 e Sy e e

i=l

i= i=1

The term Aconp isa us;er-speciﬁe& factor that controls the sitrfcﬁg't}i of
coupling between disciplines. Note that if Acup = 0, the coupling
functions in one discipline are not functions of the coupling variables

from the other disciplines.

ngc nh o ny
talij+zblij+iC1‘j+Edlij for
S =T i=T i=1

%(Vfl +Vf2+ Vf3)

[~ nge nge ngc nh
Z Vgl + i Vg2 + Z Vg3 + Z VA1,
i=1

i=l i=1 i=l

nh nh ny
+) VA2 +) VA3 + > viy12 - §12);
i=1 i=1 i=1

i=

ny ny
+2| +Y_V(I3-§13)+ ) V(21 -521); =0

=1 i=l

ny ny
+3 V(y23-523); + ) _ V(y31 -§3D);

i=1 i=1

By
+3V(y32 - §32)

L i=] -

Q)

Note that we have assumed that the values of all nontrivial Lagrange
multipliers are equal to the positive scalar value A, which is yet to
be determined. In the preceding equation, Vf1 is the gradient of f1
with respect to all design, state, and coupling variables in the system,
and Vg1, is the gradient of the ith element of g1 with respect to all
design, state, and coupling variables in the system. The preceding
optimality equation is satisfied if optimality equations are satisfied
for each discipline. For discipline 1 the optimality equation is

nge nh ny
%Vj’l +A[EVg1,~ +Y VA1, 4+ Wyl
i=1 i=1 i=1

" ny n
+ ﬁ: V13, - ) Vi2L, - ivyn,-] =0 (8)
i=1 i=] i=1

In the preceding equation, the gradients are with respect to v1. Eval-
uating the gradients of Eqgs. (2-6) at v1 = 1, the disciplinary opti-
mality equation leads to formulas for the coefficients €1; in terms
of exponents al;j, b1;;, cl;;, and d1;;:

j <nxs+nx+nh

ny

Similar formulas are developed for disciplines 2 and 3. The require-
ment that the system objective have a value of unity at the optimum

leads to the following equation for determining the Lagrange mul:
tiplier: :

nge nh
| o N - (ali; + a2;; +a3;) + Z(blij + b2;; + b3;j)
f=gZ(elj+62j+e3j)=§ 6ny — i=1 ny i=t =1 (10)
J=t =t +E(Cl,'j+C2,'j+C3,'j+d],'j+d2;j+d3;j)

i=1

We assume that there is a single objective function for each disci-
pline, and we define the system objective function to be the average
of the disciplinary objective functions:

=3(f1+ f2+f3) 5
We employ a quadratic form for the disciplinary objective functions.
Thus, for discipline 1,

1 &
fl = i Zel,—(vl,-)z (6)
j=1

The coefficients el ; are determined such that the point where all de-
sign, state, and coupling variables are equal to unity is the optimum.
Therefore, the Kuhn-Tucker conditions require that at the optimum

The value of the Lagrange multiplier computed from the preceding
formula should be checked for positivity.

Implementation

Implementation of the synthetic test problems involves an initial-
ization subroutine that reads from the user the following numbers
and factors: nxs,nx, nh,ny,ng, ngc, Agae, and Acoup. The initializa-
tion subroutine then calls a random number generation subroutine to
get the exponents for the three disciplines al;;, b1;;, c1;;, d1ij, a2ij,
b2;;,¢2j,d2;;,a3;j,b3;;, ¢3;;, and d3;; as described in the previous
section. Finally, the initialization subroutine computes the Lagrange
multiplier from Eq. (10) and the coefficients el;, €2;, and e3; for
the objective functions according to Eq. (9). These coefficients and
exponents are stored.
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Implementation also includes an evaluation subroutine for each of
the three disciplines. We define the vector of functions p1 for disci-
pline 1. The size of this vectorisnp =ng +nh+2ny-1. The vector
p1 contains the values of the output functions for discipline 1 in the
following order: g1, k1,y12,y13, f1. The evaluation subroutine for
discipline 1 receives the argument v1 and returns the argument p1.
The functions are computed according to Egs. (2-4) and (6).

Explicit gradient evaluation subroutines can also be written for
each discipline. The gradient evaluation subroutine for discipline
1 receives the argument v1 and returns the arguments p1 and Vp1
where Vp1 is the matrix of derivatives of the elements of p1 with
respect to the elements of v1. Equations (2—4) and (6) are easily
differentiated in closed form:

alij(gl,- +C1) blu(hl, +1)

Vgl,'j = 'L Vhlij = VL
] J
Cl," 12, dl; 131 11

Vfll =e1jv1j

Single-Level Optimization Approaches
Six single-level optimization approaches were executed on syn-
thetic MDO problems in the study. The first approach has been
called the all-at-once approach!! or the simultaneous analysis and
design approach.!? Using the notation introduced in Ref. 13, the first
approach is

SO[E1 || E2|| E3]

The disciplinary evaluator calls the evaluation subroutine for the
discipline. Thus, the disciplinary evaluator for discipline 1 performs
the following task.

Given:

x,x1,z1, 521,531

Retumn:
g1, h1,y12,y13, f1

The symbol || indicates that the disciplinary evaluators are executed
in parallel. A sequential quadratic programming (SQP) algorithm™*
was used as the system optimizer for all six single-level optimization
approaches in the study. The symbol [- - -] indicates nested execu-
tion meaning that the evaluation subroutines are executed at each
iteration of the system optimizer. The optimization problem solved
by the system optimizer in the all-at-once approach is as follows.
Find:
x,x1,x2,x3,21,22,23, §12, §13, §21, §23, §31, 532

Minimize:
fl1+ 2413
3
Satisfy:
gl<0 g2<0 g3<0 design constraints
hl1=0 h2=0 h3=0 state equations

y12 =512 y13=3513  y21=3j 21 coupling equations
y23=323 y31=3§31 y32=332 coupling equations

The second single-level optimization approach in the study has
been called the individual discipline feasible approach!! or the
nested analysis and design approach.”® The notation for this ap-
proach is

SO[AI[EN] || A2[E2] || A3[E3]]

The system optimizer solves the same optimization problem as in
the all-at-once approach except that the state variables and state
equations are eliminated. The role of A1, A2, and A3 is to solve the
state equations for the state variables in each discipline. Thus, the
disciplinary analyzer for discipline 1 solves the following problem.

Given:
x,x1, 521, 31
Find:
z1
Satisfy:
h1=0
Return:

£g1,y12,y13, f1

In this study, the disciplinary analyzers employed a Newton iter-
ation algorithm to solve the state equations. The disciplinary ana-
lyzers were also modified to explicitly calculate gradients. It might
be pointed out that it is possible to construct a direct rather than
iterative disciplinary analyzer by taking the log of Eq. (3) to get a
set of linear equations that can be solved directly for the logs of
the state variables. Because direct disciplinary analyzers do not call
disciplinary evaluators, the notation for such an approach would be
SO[AlL |l A2]] A3). -

The third single-level optimization approach in the study has been
called the multidiscipline feasible approach.!! The notation for this
approach is

SO[SA[AI[ENY A2[E2j Il A3[E3]]]

The system optimizer solves the same optimization problem as in

the all-at-once approach except that the state variables, coupling

variables, state equations, and coupling equations are eliminated.

The system analyzer solves the coupling equations for the values of

the coupling variables. Specifically, it solves the following problem.
Given:

x,x1,x2,x3
Find:
12,513,521, 523,531, 532
Satisfy:
y12 =312 yl3=3513 y21 =321
y23 =523 y31 =331 y32=3532
Return:

el.g2,83, f1, 2, F3

Two iterative system analyzers are possible. The first is a fixed-point
iteration algorithm in which the computed values of the coupling
functions at any iteration are used as the assumed values for the
coupling variables in the next iteration. The second is a gradient-
based Newton iteration algorithm that converges in slightly fewer
iterations than fixed-point iteration. The Newton iteration algorithm
was used in the study. The system analyzer was modified to explic-
itly calculate gradients based on the global sensitivity equations. !5
It is possible to construct a direct rather than iterative system an-
alyzer by taking the log of Eq. (4) to get a set of linear equations
that can be solved directly for the logs of the coupling variables.
Because the direct system analyzer does not call disciplinary an-
alyzers or evaluators, the notation for such an approach would be
SO[SA]

The fourth single-level optimization approach in the study is also
a multidiscipline feasible approach like the previous approach. The
difference between the approaches is evident from the notation for
the fourth approach:

SO[SA[AI[E1]) - A2[E2] — A3[E31]]

The symbol — indicates serial execution of the disciplinary ana-
lyzers. Because Al is executed before A2 and A3, there is no need
for coupling variables $12 and §13 because the coupling functions
¥12 and y13 could be sent directly from Al to A2 and A3. Sim-
ilarly, there is no need for coupling variables $23 because A2 is
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executed before A3. Thus, these coupling variables and their corre-
sponding coupling equanons are deleted from the problem solved
by the system analyzer in this approach.

The fifth single-level optimization approach in the study is also a
multidiscipline feasible approach like the previous two approaches.
However, the notation for the fifth approach is different:

SA[AI[E1] | A2[E2] || A3[E3]]

« SO[AI[E1] [} A2[E2] || A3[E3]]

The symbol < indicates alternating execution of the system ana-
lyzer and the system optimizer. This means that the design variables
are held constant while the system analyzer solves for the coupling
variables, and the coupling variables are held constant while the
systemn optimizer solves for the design variables. This process is
repeated for a specified number of cycles.

The sixth single-level optimization approach in the study is also
a multidiscipline feasible approach and has the same notation as
the fifth approach. It is identical to the fifth approach with one
exception: the coupling variables are not held constant during system
optimization, but rather they are approximated as linear functions
of the design variables based on values of derivatives provided by
the system analyzer.

Collaborative Optimization Approaches

The collaborative optimization approaches that were considered
in the study are all described by the following notation:

SO[OI[EI] Il O2[E2]]| 03[E3}]

Thls 1mp11es that in collaborative optimization, disciplines are per-
mitted to design as well as analyze. The problem solved by the
system optimizer in collaborative optimization is as follows.

Find:

x, 712, $13, 521, 523,531,732, f1, f2, f3
Minimize:
fi+ 24 f3
3
Satisfy:
rl=<0 r2=<0 r3<o

The role of system optimization is the determination of system de-
sign variables, coupling variables between disciplines, and the disci-
plinary objective variables, f 1, f 2, f 3, which serve as target values
on the objective functions for each of the disciplines. The system
receives only a single scalar function back from each discipline. We
will call these functions (r 1, r2, r3) discrepancy functions. They are
2 measure of how successful the disciplines were in solving their
optimization problems. A value of zero indicates complete success,
whereas a positive value indicates that success was incomplete.

Three formulations for the disciplinary optimization problem
were considered in the study. In formulation 1, the optimizer for
discipline 1 solves the following problem.

Given:
x, 521,531, 512,513, f1
Find:
x1,z1, % 721,531
Minimize:

ny L
> 012 512"+ 3 13, - 137
i=1
nxs

ri= | +(f1 —f1)2+Z<x. -x.)2+2(y21 -j21,)

+E(y3l —§31,)2

Satisfy:

Return:
rl
In this formulation, the evaluator for discipline 1 performs the fol-
lowing task.
Given:
¥,x1,z1,521,531
Return:

£1,h1,y12, 513, f1

If one carefully studies the preceding, one recognizes that in for-
mulation 1 discipline 1 satisfies its own design constraints and state
equations and does its best to match the dummy input variables
to the evaluator (%, y21, 731) with system targets (x, y21, §31) and
to match output functions from the evaluator (y12, y13, f1) with
system targets (§12, i13 F1). An I, (Buclidean) metric is used to
quantify the success in matching the target values.

In formulation 2 of collaborative optimization, the optimizer for
discipline 1 solves the following problem.

Given:
x, 721,531,512, 513, 1
Find:
x1,z1,% 521,531, r1
Minimize:
rl=rl
Satisfy:

If1=fll<71
1731, - §31;] < 71

1y12; —§12;| <71 |y13; —§13;| <71

I¥; —x;| <F1 1521; — 521} < 71

Return:
rl

The evaluator for discipline I performs the same task as in for-
mulation 1. Note that in formulation 2 the /., (max) metric of the
mismatches with the system targets is minimized rather than the [,
metric. This is accomplished by minimizing the dummy variable
71, which is constrained to be greater than all mismatches. This is
the only difference between formulations 1 and 2. =

In formulation 3 of collaborative optimization, the optimizer for
discipline 1 solves the following problem.

Given:
x, 721,731,512, 713, f1
Find:
x1,z1,%,71
Minimize:
rl=rl
Satisfy:
gl =<7l (1| < 71
Iy12 —§12,| <71 |y13, —513;| <71 |f1=f1l <71
Return:
rl
In this formulation, the evaluator for discipline 1 performs the fol-
lowing task.
Given:
x,x1,z1,¥21, 331
Return:

gl,hl,y12,y13, f1
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Note that in this formulation the input variables to the evaluator are
the system targets so that there are no mismatches on the inputs.
The I, metric of the mismatches of the outputs and of the violation
in design constraints and state equations is minimized.

Summarizing these collaborative optimization formulations, the
disciplinary optimizers seek disciplinary design and state variables
that satisfy three goals: 1) match target inputs to the disciplinary
model, 2) match target outputs from the disciplinary model, and 3)
satisfy disciplinary design constraints and state equations. In gen-
eral, it is possible to satisfy completely only one of the three goals
for all possible target values sent down from the system. In formula-
tions 1 and 2, the third goal is satisfied completely, whereas a metric
of the discrepancy in the first two goals is minimized. In formula-
tion 3, the first goal is satisfied completely, whereas a metric of the
discrepancy in the last two goals is minimized. In formulation 1,
the I, metric is employed, whereas in formulations 2 and 3, the /,,
metric is employed.

In the study, the SQP algorithm was used to solve the disciplinary
optimization problems for all three formulations. However, the SQP
algorithm and a cutting plane algorithm® were used as system opti-
mizers for each of the three formulations. The latter algorithm was
used because the discrepancy functions received from the disciplines
may be nonsmooth or even discontinuous functions in collaborative
optimization.

The beauty of collaborative optimization is that each discipline
is in control of its own design/state variables/functions and does
not meddle directly with the design/state variables/functions of the
other disciplines. The system level does not meddle directly with the
design/state variables/functions of the disciplines, but rather it fo-
cuses on the system design variables, the coupling variables between
disciplines, and the allocation of objective responsibility among the
disciplines. These qualities of collaborative optimization make it
amenable to existing crganizational structures in industry. Further-
more, these qualities give the disciplines the autonomy to search over

topologies and concepts, modify their models, and even reformulate

their variables and functions without disrupting the MDO process.

Concurrent Subspace Optimization

Concurrent subspace optimization is formulated for problems
without system design variables x. As alluded to earlier, this does
not limit generality because the system design variables could be
included in the design variables for one of the disciplines, and their
values could be passed as coupling functions to the other disciplines.

The concurrent subspace optimization approaches that were con-
sidered in the study are described by the following notation:

SA[AI[E1] )| A2[E2] || A3[E3]]
« O1[AI[E1])|02[A2[E2]] | O3[A3([E3]]

It is implied that nested execution [- - -] has precedence over parallel
execution ||, which has precedence over altemnating execution <.
The system analyzer solves the coupling equations for the coupling
variables with the design variables held fixed. Two formulations
for the disciplinary optimization problems were considered in the
study. For both formulations, the SQP algorithm was used to solve
the disciplinary optimization problems. In the first formulation, the
optimizer for discipline 1 solves the following problem.
Find:

x1
Minimize: ,
fl
Satisfy:
g1<0

In this formulation, linear approximations for coupling variables
¥21 and $31 are used in the evaluation of f1 and g1. These ap-
proximations are based on the values of derivatives with respect to
x1 received from the system analyzer. Note that in this formulation
each discipline determines its design variables without regard for
the objectives and constraints in the other disciplines. We will refer
to this formulation as the selfish linear formulation. It may reach the
system optimum if the system is uncoupled or weakly coupled.

In the second formulation, the objectives and constraints from all
disciplines are considered by each discipline. Thus, the optimizer
for discipline 1 solves the following problem.

Find:
x1
Minimize: L
Cf1tf2453
3
Satisfy:
gl=<0 £2<0 g3<0

As was the case in the selfish linear formulation, linear approxima-
tions for coupling variables 21 and $31 are used in the evaluation
of £1 and g1 in the preceding formulation. Also, the optimizer for
discipline 1 calls the analyzer for discipline 1 only and not the ana-
lyzers for disciplines 2 and 3. Therefore, linear approximations for
the functions f2, f3, g2, and g3 are employed based on the values
of derivatives of these functions with respect to x1 received from
the system analyzer. We will refer to this formulation as the selfless
linear formulation.

It is clear that the selfless linear formulation will not always con-
verge to the system optimum. This is because it may be impossi-
ble for some disciplines to satisfy the approximate constraints of
all disciplines. Surely this is the case if the disciplines are uncou-
pled. Researchers have relaxed the requirement that each discipline
must completely satisfy the approximate constraints of all disci-
plines by introducing responsibility fractions, which are determined
by solving a system optimization problem known as the coordina-
tion problem.”=!® However, these approaches have not been imple-
mented in the study.

Test Results

Two test problems were considered in the study. They are de-
scribed by the following parameter values. Specific values for the
hundreds of exponents randomly generated for these two problems

- can be obtained directly from the authors. Furthermore, these test

problems are in the process of being placed on the internet under the
test suite being sponsored by the NASA Langley MDO Branch.'®

Problem 1

nxs =0
nx =238
nh=0
ny=2"-
ng =10
ngc=6
- Ague = 1.0
Aconp = 1.0

Problem 2

nxs =2
nx =8

nh =10
ny =2

ng =10
ngc==6
Ague = 1.0
Aconp = 1.0

All approaches were ‘executed on problem 1, but the concurrent
subspace optimization approaches were not executed on problem 2
because it involves system design variables.

Maximum and minimum values of 5.0 and 0.5, respectively, were
used for all variables. Starting values of 5.0 were used for all vari-
ables, although starting values of 0.5 and 2.0 were also tried with
litle change in results. Recall that the optimum values for all vari-
ables and for the objective are unity.

An evaluation counter was incremented in each call to the evalua-
tion subroutine or the gradient evaluation subroutine for discipline 1.
We assume that the number of calls to the evaluation subroutines

~
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Table1 Evaluation counts for convergence

Problem
Approach 1 2
Single-level, all-at-once 48/60 56/65

SO[E1| E2|| E3)
Single-level, individual discipline feasible . 48/60 2167240
SO[AI[E1] || A2[E2} || A3[E3]]
Single-level, multidiscipline feasible, nested parallel Failed 800/908
SO[SA[AL[EL] || A2[E2] || A3[E3]]]
Single-level, multdiscipline feasible, nested serial 244/268 684/792
SO[SA[AI[El] - A2[E2] — A3[E3]]]
Single-level, multidiscipline feasible, alternating constant Failed 430/946
SA[AI[E1] || A2[E2]} || A3[E3]] & SO[AL[E1]] A2[E2] || A3[E3]]
Single-level, multidiscipline feasible, alternating linear Failed 378/548
SA[AI[E1} || A2[E2] || A3[E3]] « SO[AI[E1] | A2[E2] | A3[E3]] ’
Collaborative, formulation 1, SQP algorithm 5,501/1,270 8,240/2,364
SO[OI[E1]|| O2[E2]}} O3[E3]]
Collaborative, formulation 2, SQP algorithm 12,580/12,580 9,534/9,909
SO[OCI[E1] || O2[E2} ] O3[E3]}
Collaborative, formulation 3, SQP algorithm 7,744/3,533 9,064/7,705
SO[O1[E1] | O2[E2]| O3[E3]]
Collaborative, formulation 1, cutting plane algorithm 467/1,018 82072,354
SO[O1[E1] ) O2{E2] ] O3[E3]]
Collaborative, formulation 2, cutting plane algorithm 802/1,960 1,085/3,745
SO[O1[E1] ]| O2[E2] ]} O3[E3]]
Collaborative, formulation 3, cutting plane algorithm 1,443/3,062 2,399/5,255
SO[O1[E1]| O2[E2] 1l O3[E3]]
Concurrent subspace, selfish linear Failed Does not apply
SA[AL[E1} ]| A2[E2} | A3[E3]] & O1[AI[E1]] ] O2[A2[E2]]|| O3[A3[E3]]
Concurrent subspace, selfless linear Failed Does not apply
SA[AI[E1] ]| A2[E2] || A3[E3]] « O1[ALI[E1]]] O2[A2[E2]] || O3[A3[E3]]
14 -'k == = = Allat-Once
' \ = === === Individual Discipline Feasible
s e Multi-Discipline Feasible, Nested / Paralle!
124\ -Discipiine Faasibis, Nested / Serial
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10418
1
1
[ 1
i 841
1
8 1
644
)
.
a4 ¢
[ _
v
1
21+
Y
e o * S —— X - ¥ t
- 0 200 400 800 800 1000
- ‘-
3 - -
H
!
£ 2 4
:
H
=
1 o
] $ + +
0 200 400 600 800 1000

Number of Evaluations

Fig.3 Performance of single-level optimization approaches on problem 2.
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Fig. 4 Performance of collaborative optimization formulation 1 on problem 2.

for disciplines 2 and 3 would be roughly the same. Explicit gra-
dient evaluation was used for all approaches (no finite difference
gradients). Recall that for those approaches involving disciplinary
analyzers a Newton method was used to solve the state equations,
and for those approaches involving a system analyzer, a Newton
method was used to solve the coupling equations. Newton methods
were used rather than exact solvers, which would unfairly exploit
the mathematical form of the synthetic problems and thus bias the
comparison. Table 1 shows two numbers for each approach for each
test problem. The left number is the value of the evaluation counter
when objective reached and stayed within 1+0.1, and the right
number is the value of the evaluation counter when all variables
reached and stayed within 1 £ 0.1.

A main break point was defined for each approach. The main
break point for the first four single-level optimization approaches
and for the collaborative optimization approaches was in the main
iteration loop of the system optimizer. For the concurrent subspace
optimization approaches and the last two single-level optimization
approaches, the main break point was taken at the end of the system
analyzer. At the main break point for each approach, the following
three numbers were output: 1) the evaluation counter, 2) the value
of the system objective, and 3) the maximum error in variables from
optimal value of unity. The system objective and the maximum error
in variables are plotted vs evaluation counter in Figs. 3 and 4 for
problem 2.

Observations and Conclusions

Approach robustness seems to depend on the strength of coupling.
Note in Table 1 which approaches failed at Acoup = Agae = 1. When

the coupling was increased t0 Acoup = Asae =2, all approaches
failed except the first two single-level optimization approaches and
the collaborative optimization approaches. Perhaps these robust ap-
proaches could solve problems with even higher levels of coupling.
All approaches succeeded when the coupling was decreased to
Aconp = Agae = % with the exception of the concurrent subspace self-
less linear approach. Failure of the single-level multidiscipline fea-
sible approaches occurred in the Newton system analyzer when neg-
ative values of the coupling variables were encountered during the
Newton iterations. The same type of failure was observed in the con-
current subspace selfish linear approach. Thus, increased coupling
causes difficulty in approaches involving system analyzers. Failure
of the concurrent subspace selfless linear approach, even at low lev-
els of coupling, occurred in the disciplinary optimizers, which were
unable to find feasible designs. Clearly, this approach is flawed.
‘When started from the optimum, all of the single-level and con-
current subspace optimization approaches recognize optimality af-
ter gradients are calculated and immediately stop. However, when
the collaborative optimization approaches are started from the op-
timum, they send the disciplinary objective variables to their lower
bounds and work back to the optimum from the infeasible side just
as if they were started from any other point. At the optimum, the dis-
crepancy functions and their gradients with respect to the variables
in the system optimization problem are zero. Since the gradient of
the objective function is not zero at the optimum, the Kuhn-Tucker
conditions as typically formulated are not satisfied. It should be
pointed out that infinitesimally on the infeasible side of the opti-
mum the gradients of the discrepancy functions are nonzero, and
the Kuhn-Tucker conditions can be satisfied. Theoretical work is
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needed to establish proper optimality conditions for terminating the
collaborative optimization approaches.

Defining approach efficiency in terms of number of model eval-
uations, the single-level optimization approaches are clearly more
efficient than the collaborative optimization approaches. The rank-
ing of the single-level optimization approaches can be deduced from
Fig. 3, where we see that the most efficient approach (all-at-once)
requires about an order of magnitude fewer evaluations than the least
efficient approach (multidiscipline feasible, nested parallel). The ef-
ficiency of the collaborative optimization approaches is improved on
these test problems through the use of the cutting plane algorithm,
particularly in the convergence of the objective to its optimal value.
It appears that formulation 1 is the most efficient formulation for
collaborative optimization, whereas the efficiencies of formulations
2 and 3 are roughly the same. Formulation 1 is the only formulation
employing the I; metric. It might be noted that when the metric in

formulation 1 was modified to be the sum of the squares rather than

the square root of the sum of the squares, its efficiency worsened
by a factor of 2 when the SQP algorithm was used and by a factor
of 10 when the cutting plane algorithm was used. When the concur-
rent subspace selfish linear approach did not fail (Acowp = 1), the
number of evaluations to convergence was comparable to that of the
single-level multidiscipline feasible alternating linear approach.

Since the evaluation counter was incremented in the evaluation
subroutine for discipline 1 only, the efficiency results would not
change significantly if parallelism of the disciplines were exploited.
However, the efficiency results in terms of the evaluation counter
are not telling the whole story. In the study, the actual execution
time to convergence for the single-level all-at-once approach was
about as long as that of the collaborative optimization approaches
and more than an order of magnitude longer than that of the single-
level multidiscipline feasible approaches. The reason for this is that
model evaluation for the synthetic test problets is trivial, and most
of the execution time was spent in the numerical procedures of the
optimizers. Since the single-level all-at-once approach solved the
biggest optimization problem, it required a Iot of execution time. It
is anticipated that in most real-world applications model evaluation
will be significant rather than trivial.
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