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A dass of synthetic problems for testing multidisciplinary design optimization (MDO) approaeh_ is presented.
These test problems are easy to reproduce because all functions are given as dosed-form mathematical expressions.

They are constructed in such a way that the optimal value of all variables and the objeetive is unity. The test problem__
involve three disciplines and allow the user to specify the number of design variables, state variables, coupling tkmc-

tions, design constraints, controlling d_ign co_trainls, and the strength of coupling. Several MIX) approaches
were executed on two sample synthetic test problems. Thee approaches included single-level optimization ap-
proach_, collaborative optimization approaeh_, and concurrent subspaee optimization approaches. Execution
results arc pr_ented, and the rolmstncss and efficiency of these approaches are evaluated for these sample problems.
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= dummy disciplinary discrepancy variable

= system analyzer

= system optimizer
= disciplinary variables
= variable.s

= system design variables

= dummy system design variables

= disciplinary design variables
= coupling functions

= coupling variables

= dummy coupling variables

= disciplinary state variables
= allowable deflection for cantilever beam

= Lagrange multiplier
= allowable normal stress for cantilever

beam

= allowable shear stress for cantilever beam

Introduction

M ULTIDISCIPLINARY design optimization (MDO) is a de-veloping field of study that is concerned with how to opti-

mally design and analyzesystems composedofmultiple disciplinary

models that are coupled. Usually the design of such complex sys-
tems is performed by a team that is subdivided into groups associated
with the disciplines. The disciplines in the system may correspond
to fields of study (aerodynamics, structures, thermodynamics), or
they may correspond to physical parts (wing, fuselage, engines).
One goal of MDO is to allow the disciplinary groups to analyze and

design in parallel with a certain degree of autonomy. Nevertheless,

because the disciplines are coupled, their work must be coordinated
at the system level so that an overall optimum design can be achieved

for the system.

Several approaches for formulating and solving MDO problems

have appeared in the last decade. Many of these approaches can
be categorized into three groups. The firsi group consists of single-

level optimization approaches) _ In these approaches, optimization

is performed only at the system level, and the role of the disciplines
is limited to analysis and function evaluation. The second group

consists of collaborative optimization approaches: '6 and the third

group consists of concurrent subspace optimization approaches. 7-1°

In these latter two groups, optimization is performed at the system
level as well as within the disciplines. A major difference between

concurrent subspace optimization and collaborative optimization is

that in concurrent subspace optimization, each discipline attempts

to satisfy its own constraints as well as approximations to the con-
stralnts of the other disciplines, whereas in collaborative optimiza-

tion, each discipline satisfies its own constraints and tries to match
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target values on coupling functions that are needed by other disci-
plines in the evaluation of their constraints.

The robustness and efficiency of the various approaches are not

well understood. It is difficult to obtain good MDO test problems.

Realistic test problems often involve cumbersome disciplinary soft-

ware packages. This makes such test problems difficult to reproduce.
Furthermore, results may be strongly influenced by interfacing de-
tails and the internal programming characteristics of the disciplinary

analyses, and thus the inherent behavior of the MIX) approach may
be clouded.

Another deficiency in many MDO test problems is the lack of
completeness. The number of disciplines or the numbers of differ-
ent types of variables and functions in the disciplines may be small.
Disciplinary models may be linear or otherwise trivial. The coupling

between disciplines may be weak or incomplete. Results from the

execution of MDO approaches on incomplete test problems may not

be indicative of the re.suits that can be expected on more challenging
problems.

In this paper, a class of synthetic MDO test problems will be

presented, and several MDO approaches will be executed on two

common test problems. The synthetic test problems possess the
following desirable characteristics.

I) They are easy to reproduce because all functions are given as

closed-form mathematical expressions.

2) They are constructed in such a way that the optimal vaiue of all

variables and the objective is unity. The feasible region is convex,
and this optimum is unique.

3) There are three disciplines, although the concepts presented

can be extended to create synthetic test problems with more than
three disciplines.

4) The completeness is controlled by the user by specifying the

numbers of design variables, state variables, coupling functions,

design constraints, and controlling design constraints.
5) Coupling between disciplines is complete, and the strength of

the coupling is controlled by the user.
6) The functions are nonlinear and distinct; however, exact solu-

tion of the state and coupling equations is possible.

Sample Elements of an MDO Problem

We now define some of the elements of an MDO problem. We will

refer to the three-discipline system shown in Fig. 1. We assume that

all analytical models in the system are assigned to disciplines. The
disciplinary models have inputs and outputs. All inputs and outputs
shown in Fig. 1 are vectors and are defined in the Nomenclature.

We assume that the optimization problem to be solved is defined as
follows.

1) Disciplinary state equations must be satisfied: hl = 0, h2 = 0,
and h3 = 0. These equations may be equations of equilibrium, com-
patibility, constitution, conservation, etc., based on the physical

model for the discipline. Note that the number of disciplinary state
variables is assumed to be equal to the number of disciplinary state
functions. This implies that the state equations for each discipline

can be used to solve for the values of the state variables (all other
variables being held constant).

2) Disciplinary design constraints must be satisfied: gl < 0,
g2 < 0, and g3 < 0. These constraints distinguish acceptable/fea-
sible designs from unacceptable/failed designs.

3) The system objective function must be minimized: minimize

f = f(fl,f2,f3). Note that the system objective is a scalar func-

tion of the disciplinary objective functions.

1 i lzl,xl z2,x2 z3,x3

for I---m--ClMod,'fo, for /
, ,-4IDiscioline 1_ 21_._Discipline 2J_._.. 32 Discipline

It',,, I ,"'TI
hl,gl,fl h2,g2,f2 h3,g3,f3

4) Coupling equations must be satisfied: y12 = .912,y13 = ._13,
y21 = ._21, y23 = ._23, y31 = $31, and y32 = _32. There is
a coupling variable associated with each coupling function. These

coupling variables make it possible to evaluate disciplinary models
in parallel in a coupled system. The disciplines use assumed values
of coupling variable_ asq rlput to the disciplinary models and evaluate
their output, which includes the coupling functions.

Synthetic Test Problems

Figure 2 plots curves for the equation x[x_2 - 1 = 0 for various
negative values of the exponents a and b. We propose synthetic

° b_C < 0witha < 0,design constraints of the form g = x 1x 2
b < 0, and C > 1. The feasible region for such constraints is
convex, and the point xt = x2 = 1 is feasible. We take C = 1 for
the constraints that control at the optimum and we take C > 1 for
the constraints that do not control at the optimum.

Consider a structural optimization problem consisting of a can-
tilever beam of length L with a transverse load P at the free end.
The cross section is rectangular and the design variables xl and x2
are, respectively, the section width and depth. If the allowable val-
ues for deflection, normal stress, and shear stress are &, a, and 3,

respectively, then the constraints are as follows.
Deflection:

gt : (4PL3/E)x'_Ix23 - 8 <_0

Normai stress:

g2 : 6PLx'_Ix22 - ¢r <_ 0 (1)

Shear stress:

g3 = (3P/2)x'_lxf I - r < 0

Thus, we see that the proposed synthetic constraints resemble the

form of constraints that may be encountered in structural optimiza-
tion.

We now give formulas for the design functions in our synthetic test
problems. First, we define the vector of variables vl for discipline 1.
The size of this vector is nv = nxs + nx + nh + 2ny. The vector
vl contains the values of the input variables for discipline 1 in the

following order:, x, xl, zl, _21,._31. In the following formula for the

design functions of discipline 1, the subscripts i or j to the right of
a vector indicate the ith or jth element of the vector:

_V

gli : H(vl/)°iu -Cll (2)
.i=1

We take Cli = 1 for/ < ngc, and we take Cll = 1.2 forngc <
i <ng. We randomly generate values in the interval (-5, 0) for

each of the exponents at U. Similar formulas can be constructed for
the design functions for disciplines 2 and 3.

We formally define the state functions in similar fashion. For
discipline 1,

I111

hi,- = H(vlj) blU -- 1 (3)
1---I

_ a=-l.b=-2

I I I I

I 2 3
X I

\

Fig. 1 Coupled system with three disciplines. Fig. 2 Curves of the equation X_lX_2-- 1 = 0.
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Variable:

x j, xl,_21j, _31y

zljj _i

zl_] =i

Note that the state equations hl = 0 will be satisfied when all design,
state, and coupling variables are equal to 1 regardless of whether the
exponents are positive or negative. We have chosen to use positive
exponents for state functions. However, if the exponents are too

large, the magnitude of the state functions could blow up. This can
be prevented by linking the size of the interval from which exponents

are randomly generated to the number of variables in the product. For
the state function hi_, the exponents for the variables are determined
as follows.

Exponent b llj:

1

rand°mfr°minterval(O'nxs +nx + 2ny)

random from interval (0, -_)

1

The term A_u_ is a user-specified factor that controls the strength of

coupling in the state equations. IfA,tm = 0, the ith state function
is a function of the ith state variable only and not of the other state
variables. If Ast_ > 0, then each state function is coupled to all of
the state variables.

We formally define the coupling functions in similar fashion. For
the coupling functions evaluated in discipline I,

nv n_

yI2i --'--I"[(vlj) clis yl3i = I-[(vlj)atO (4)
jffit ]ffit

Variable: Exponent cllj and dllj:

random from interval 0, nxs + nx + nh

Aeoup

random from interval (0, --_--y )

[ n&¢ nh ny

IEol.+E l,,+Ecl.+
eli =--3), "_i=l

iffil i--i

/ ngc nh ny

IE.I.+E I,,+Ecl.+
I,i=l iffil i=l

- = 7

_Fhe:ter_aA_ is a nser-specifiedfactor that controls :- 7-=the strength of
coupling between disciplines. Note that if A_,,_p = 0, the coupling
functions in one discipline are not functions of the coupling variables
from the other disciplines.

3(vf_ + vy2 + v/_)

nh nh ny

+ EVh2i + EVh3i + E V(y12-_12)i
if] iffil iffil

ny ny

+ )" + E V(yl3 - _13), + _ V(y21 -._21)i = 0
i=l I_l

ny ny

+ _ V(y23 - _23), + _ V(y31 -y31),.
iffil i=l

ny

+ _ V(y32 -._32)/

(7)

Note that we have assumed that the values of all nontrivial Lagrange
multipliers are equal to the positive scalar value _, which is yet to
be determined. In the preceding equation, Vfl is the gradient of f I
with respect to all design, state, and coupling variables in the system,
and Vgl_ is the gradient of the ith element ofgl with respect to all
design, state, and coupling variables in the system. The preceding

optimality equation is satisfied if optimality equations are satisfied
for each discipline. For discipline I the optimality equation is

I ngc nh ny
Vfl+_ EVgl, +EVhl, +EVy12/

/ffit iffil ill

+ Vyl3i - 21i - 31i = 0 (8)
i=l iffil --

In the preceding equation, the gradients are with respect to vl. Eval-
uating the gradients of F_.qs.(2-6) at vl = 1, the disciplinary opti-

mality equation leads to formulas for the coefficients eli in terms
of exponents al O, b lij, cliy, and dlu:

ny

_d!ij_ for j <_nxsq-nx 4-nh
(9)

dlij - 1 for + nx + nh

--: 2 _÷ . ::

Similar formulas are developed for disciplines 2 and 3. The reiiNre-

ment that the system objective have a value of unity at the optimum
leads to the following equau=on for cleter:r_nin-g_e_gi_angerri_

_pqier.

|___(ali_ + a21i + a3i./) + E(blo + b2ij + b3o)/

f = _ _l(elj +e2i +e3j) = __ 6ny_ _--_ lt=l n, i=l 1

ffi J=lk.J_i____t(cllj._.¢Rij.__c3ij.__dlij._.d2ij.__d3ij) J

= 1 (lO)

We assume that there is a single objective function for each disci-
pline, and we define the system objective function to be the average
of the disciplinary objective functions:

f = -_(fl + f2 + f3) (5)

We employ a quadratic form for the disciplinary objective functions.

Thus, for discipline 1,

1 nv

fl ----_ ___ el:(vl_) _ (6)

The coefficients • 1: are determined such that the point where all de-
sign, state, and coupling variables are equal to unity is the optimum.
Therefore, the Kuhn--Tucker conditions require that at the optimum

The value of the Lagrange multiplier computed from the preceding
formula should be checked for positivity.

Implementation

Implementation of the synthetic test problems involves an initial-
ization subroutine that reads from the user the following numbers
and factors: nxs, nx, nh, ny, ng, ngc, A_, and A_o_p.The initializa-
tion subroutine then calls a random number generation subroutine to

get the exponents for the three disciplines a 1o, b llj, c 1ij, d l ij, a2ij ,

b2 o, c2_, d2ij, a3 O, b3_i, c3 O, and d3 0 as described in the previous
section. Finally, the initialization subroutine computes the Lagrange
multiplier from Eq. (10) and the coefficients el./, e2j, and e3_ for
the objective functions accordingto Eq. (9). These coefficients and
exponents are stored.
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Implementation also includes an evaluation subroutine for each of
the three disciplines. We define the vector of funcfionspI for disci-
pline 1. The size of this vector is np =ng +nh + 2ny + 1.The vector
pl contains the values of the output functions for discipline 1 in the
following order, gl, hl,yl2,yI3, f 1. The evaluation subroutine for
discipline 1 receives the argument vl and returns the argument pl.

The functions are computed according to Eqs. (2-4) and (6).
Explicit gradient evaluation subroutines can also be written for

each discipline. The gradient evaluation subroutine for discipline
1 receives the argument vl and returns the argumentspl and Vpl
where Vpl is the matrix of derivatives of the elements of pl with
respect to the elements of vl. Equations (2-4) and (6) are easily
differentiated in closed form:

Vglij = alij(gli + Cli) Vhlij = blo(hli + 1)
vl] vlj

Vyl21j = cloyl21 Vyl3ij = dlijyl3i
VIj vlj

(II)

Vflj = eljvl 1

Single-Levd Optimization Approaches

Six single-level optimization approaches were executed on syn-

thetic MDO problems in the study. The first approach has been
called the all-at-once approach n or the simultaneous analysis and
design approach.n Using the notation introduced in Ref. 13, the first
approach is

SO[E1 IIE2 IIE3]

The disciplinaryev.aluatorcallsthe evaluationsubroutineforthe

discipline.Thus,thedisciplinaryevaluatorfordisciplineIperforms
thefollowingtask.

Given:

x, xl, zl,._21, $31

gl, hl, yl2,yl3, fl

Return:

The symbol [[indicates that the disciplinary evaluators are executed
in parallel. A sequential quadratic programming (SQP) algorithm 14

was used as the system optimizer for all six single-level optimization
approaches in the study. The symbol [.-.] indicates nested execu-
tion meaning that the evaluation subroutines are executed at each

iteration of the system optimizer. The optimization problem solved
by the system optimizer in the all-at-once approach is as follows.

Find:

x, xl, x2, x3, zl, z2, z3,.912,.913, y21 ,._23, $31, $32

fl + f2+f3

Minimize:

Satisfy:

gl < 0 g2 < 0 g3 _< 0 design constraints

hl = 0 h2 = 0 h3 = 0 state equations

y12 = $12 y13 = $13 y21 = $21 coupling equations

y23 = $23 y31 = _'31 y32 = $32 coupling equations

The second single-level optimization approach in the study has
been calledthe individualdisciplinefeasibleapproachn or the

nestedanalysisand design approach)3 The notationfor thisap-
proach is

SO[AI[E1] IIA2[E2] l[ A3[E3]]

The system optimizer solves the same optimization problem as in

the all-at-once approach except that the state variables and state
equations are eliminated. The role of A1, A2, and A3 is to solve the

state equations for the state variables in each discipline. Thus, the

disciplinary analyzer for discipline 1 solves the following problen_

Given:

Find:

Satisfy:

Return:

x, xl,._21, $31

zl

hl =0

gl,y12,y13, fl

In this study, the disciplinary analyzers employed a Newton iter-
ation algorithm to solve the state equations. The disciplinary ana-
lyzers were also modified to explicitly calculate gradients. It might

be pointed out that it is possible to construct a direct rather than

iterative disciplinary analyzer by taking the log of Eq. (3) to get a

set of linear equations that can be solved directly for the logs of
the state variables. Because direct disciplinary analyzers do not call

disciplinary evaluators, the notation for such an approach would be
SO[A1 I1A2[[ A3].

The thud single-level optimization approach in the study has been
called the multidiscipline feasible approach, u The notation for this
approach is

SO[SA[AI[EI] [[A2[E2] [[A3[E3]]]

The system optimizer solves the same optimization problem as in
the all-at-once approach except that the state variables, coupling
variables, state equations, and coupling equations are eliminated.
The system analyzer solves the coupling equations for the values of

the coupling variables. Specifically, it solves the following problem.
Given:

Find:

x, xl, x2, x3

$12, $13,._21,._23, $31, $32

Satisfy:

y12 =.912 yD =$13 y21 =$21

y23 --._23 y31 = ._31 y32 = $32

Return:

gl,g2,g3, fl, f2, f3

Two iterative system analyzers are possible. The first is a fixed-point
iteration algorithm in which the computed values of the coupling
functions at any iteration are used as the assumed values for the

coupling variables in the next iteration. The second is a gradient-

based Newton iteration algorithm that converges in slightly fewer
iterations than fixed-point iteration. The Newton iteration algorithm

was used in the study. The system analyzer was modified to explic-

itly calculate gradients based on the global sensitivity equations, is
It is possible to construct a direct rather than iterative system an-
alyzer by taking the log of Eq. (4) to get a set of linear equations
that can be solved directly for the logs of the coupling variables.

Because the direct system analyzer does not call disciplinary an-
alyzers or evaluators, the notation for such an approach would be
so[sa].

The fourth single-level optimization approach in the study is also

a multidiscipline feas_le approach like the previous approach. The
difference between the approaches is evident from the notation for
the fou_h approach:

SO[SA[AI[E1] ...+ A2[E2] --, A3[E3]]]

The symbol -* indicates serial execution of the disciplinary ana-
lyzers. Because A1 is executed before A2 and A3, there is no need

for coupling variables $12 and $13 because the coupling functions
y12 and y13 could be sent directly from A1 to A2 and A3. Sim-

ilarly, there is no need for coupling variables .¢23 because A2 is

\
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executed before A3. Thus, these coupling variables and their corm-

sponding coupling equations are deleted from the problem solved

by the system analyzer in this approach.

The fifth single-level optimization approach in the study is also a
multidiscipline feasible approach like the previous two approaches.

However, the notation for the fifth approach is different:

SA[AIEEI] IIA2[E2] IIA3[E3]]

SO[AI[EI] HA2[E2] IIA3[E3]]

The symbol *->indicatesalternatingexecutionof the system ana-

lyzerand thesystem optimizer.Thismeans thatthedesignvariables
areheldconstantwhilethesystem analyzersolvesforthecoupling

variables,and the couplingvariablesare heldconstantwhile the

system optimizersolvesfor the designvariables.This processis

repeatedfora specifiednumber of cycles.
The sixthsingle-leveloptimizationapproachinthestudyisalso

a multidiscipline feasible approach and has the same notation as

the fifth approach. It is identical to the fifth approach with one

exception: the coupling variables are not held constant during system
optimization, but rather they are approximated as linear functions
of the design variables based on values of derivatives provided by

the system analyzer.

Collaborative Optimization Approaches

The collaborative optimization approaches that were considered

in the study are all described by the following notation:

SO[OI[E1] II 02[E2] II O3[E3]]

This implies that in collaborative optimization, disciplines are per-
mitted to design as well as analyze. The problem solved by the

system optimizer in collaborative optimization is as follows.
Find:

x,#12,#13,._21,._23,531,$32,11, ]2, f3

Minimize:

:I+/2+ :3
3

Satisfy:

rl <0 r2_<0 r3<0

The role of system optimization is the determination of system de-

sign variables, coupling variablesbetween disciplines, and the disci-
plinary objective variables, f 1, f2, f3, which serve as target values
on the objective fimctions for each of the disciplines. The system

receives only a single scalar function back from each discipline. We
will call these functions (r 1, r2, r3) discrepancy functions. They are

a measure of how successful the disciplines were in solving their

optimization problems. A value of zero indicates complete success,

whereas a positive value indicates that success was incomplete.
Three formulations for the disciplinary optimization problem

were considered in the study. In formulation I, the optimizer for

discipline 1 solves the following problem.
Given:

x,._21,_31,)12,._13, fl

Find:

xl, zl, i,._21,._31

Minimize:

rl=

X

Satisfy:

(y121 - _'|21) 2 + _ (y13i - _13/)2
i=1 i=1

_qX$ ny

+(fl - 71) 2 + _(_:, -_i)2 + _(y21; - )_21;) 2
iffil iffil

ny

+ E(y31i -._31,-) 2

gl<O hl<O

Return:

rl

In this formulation, the evaluator for discipline I performs the fol-

lowing task.
Given:

i, xl, zl, y21,y31

Return:

gl, hl,yl2,yl3, fl

If one carefully studies the preceding, one recognizes that in for-

mulation 1 discipline 1 satisfies its own design constraints and state

equations and does its best to match the dummy input variables
to the evaluator (i,._21,._31) with system targets (x,._21,._31) and

to match output functions from the evaluator (yl2,yD, fl) with

system targets (._12,.¢13, ?1). An/2 (Euclidean) metric is used to

quantify the success in matching the target values.
In formulation 2 of collaborative optimization, the optimizer for

discipline 1 solves the following problem.
Given:

x,:2x,:31j , 13,/i

Find:

Minimize:

Satisfy:

xl, zl, £,521,._31, _1

rl = _1

gl<O hl=O

ly12,- -.¢1211 _<FI lyl3i -j;13il _< gl Ifl = ]ll _<F1

l._i-:t_l_<_1 l._21i-._21H _<_I IY31_-.931iI< FI

Return:

rl

The evaluator for discipline I performs the same task as in for-
mulation 1. Note that in formulation 2 the loo (max) metric of the

mismatches with the system targets is minimized rather than the/2

metric. This is accomplished by minimizing the dummy variable

_1, which is constrained to be greater than all mismatches. This is

the only difference between formulations 1 and 2.
In formulation 3 of collaborative optimization, the optimizer for

discipline 1 solves the following problem.
Given:

x,_21,._31,$12j13, :I

Find:

Minimize:

Satisfy:

xl,zl,i, _1

rl = _1

gli < F1 Ihlll _< F1

ly12_ -_12_1 < F1 lyl3,- -._1311 < F1 Ifl = 711 < F1

Return:

rl

In this formulation, the evaluator for discipline 1 performs the fol-

lowing task.
Given:

x, xl, z1,._21,._31

Return:

gl, h1,y12, y13, f 1
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Note that in this formulation the input variables to the evaluator are
the system targets so that there are no mismatches on the inputs.

The l_ metric of the mismatches of the outputs and of the violation

in design constraints and state equations is minimized.
Summarizing these collaborative op_mization formulations, the

disciplinary optimizers seek disciplinary design and state variables

that satisfy three goals: 1) match target inputs to the disciplinary

model, 2) match target outputs from the disciplinary model, and 3)

satisfy disciplinary design constraints and state equations. In gen-
eral, it is possible to satisfy completely only one of the three goals

for all possible target values sent down from the system. In formula-

tions 1 and 2, the third goal is satisfied completely, whereas a metric

of the discrepancy in the first two goals is minimized. In formula-
tion 3, the first goal is satisfied completely, whereas a metric of the

discrepancy in the last two goals is minimized. In formulation 1,

the/2 metric is employed, whereas in formulations 2 and 3, the 1_
metric is employed.

In the study, the SQP algorithm was used to solve the disciplinary
optimization problems for all three formulations. However, the SOP
algorithm and a cutting plane algorithm 6 were used as system opti-

mizers for each of the three formulations. The latter aigorithm was
usedbecause the discrepancy functions received from the disciplines

may be nonsmooth or even discontinuous functions in collaborative

optimization.

The beauty of collaborative optimization is that each discipline
is in control of its own design/state variables/functions and does

not meddle directly with the design/state variables/functions of the

other disciplines. The system level does not meddle directly with the

design/state variables/funedons of the disciplines, but rather it fo-
cuses on the system design variables, the coupling variables between

disciplines, and the allocation of objective responsibility among the

disciplines. These qualities of collaborative optimization make it
amenable to existing organizational structures in industry. Further-

In the second formulation, the objectives and constraints from all
disciplines are considered by each discipline. Thus, the optimizer

for discipline 1 solves the following problem.
Find:

xl

Minimize: .....
fl + f2 + f3

3
Satisfy:

gl_<0 g2_<0 g3<0

As was the case in the selfish linear formulation, linear approxima-

tions for coupling variables._21 and._31 are used in the evaluation

of fl and gl in the preceding formulation. Also, the optimizer for
discipline I calls the analyzer for discipline 1 only and not the ana-

lyzers for disciplines 2 and 3. Therefore, linear approximations for

the functions f2, f3,g2, andg3 are employed based on the values

of derivatives of these functions with respect to xl received from
the system analyzer. We will refer to this formulation as the selfless
linear formulation.

It is clear that the selfless linear formulation will not always con-

verge to the system optimum. This is because it may be impossi-
ble for some disciplines to satisfy the approximate constraints of

all disciplines. Surely this is the case if the disciplines are uncou-

pled. Researchers have relaxed the requirement that each discipline

must completely satisfy the approximate constraints of all disci-
plines by introducing responsibility fractions, which are determined

by solving a system optimization problem known as the coordina-

tion problem. 7°I° However, these approaches have not been imple-
mented in the study.

Test Results

Two test problems were considered in the study. They are de-

more, these qualities give the disciplines the autonomy to search over scribed by the following parameter values. Specific values for the

topologies and concepts, modify their models, and even reformulate _ hundreds of exponents randomly generated for these two problems

their variables and functions without disrupting the MDO procesL can be obtained directly from the authors. Furthermore, these test

Concurrent Subspace Optimization

Concurrent subspace optimization is formulated for problems
without system design variables x. As alluded to earlier, this does
not limit generality because the system design variables could be

included in the design variables for one of the disciplines, and their

values could be passed as coupling functions to the other disciplines.
The concurrent subspace optimization approaches that were con-

sidered in the study are described by the following notation:

SA[AI[E1] II A2[E2] IIA3[E3]]

"_ OI[AI[E1]]IIO2[A2[E2]] II 03[A3[E3]]

It is implied that nested execution [-..] has precedence over parallel
execution II,which has precedence over alternating execution o.

The system analyzer solves the coupling equations for the coupling
variables with the design variables held fixed. Two formulations

for the disciplinary optimization problems were considered in the

study. For both formulations, the SQP algorithm was used to solve

the disciplinary optimization problems. In the first formulation, the

optimizer for discipline 1 solves the following problem.
Find:

xl

Minimize:

Satisfy:

fl

gl <0

In this formulation, linear approximations for coupling variables
_21 and ._31 are used in the evaluation of fl and gl. These ap-
proximations are based on the values of derivatives with respect to

xl received from the system analyzer. Note that in this formulation

each discipline determines its design variables without regard for

the objectives and constraints in the other disciplines. We will refer
to this formulation as the selfish linear formulation. It may reach the

system optimum if the system is uncoupled or weakly coupled.

problems are in the process of being placed on the internet under the

test suite being sponsored by the NASA Langley MDO Branch) 6

Problem 1

nxs = 0

nx_ 8

nh=O

ny=2

ng = I0

ngc = 6

A_ = 1.0

Ac,_p = 1.0

Problem 2

nxs = 2

nx_.8

nh = 10

ny=2

ng = I0

ngc = 6

Ast*tc = 1.0

Ac_p = 1.0

All approaches were-executed on problem I, but the concurrent

subspace optimization approaches were not executed on problem 2
because it involves system design variables.

Maximum and minimum values of 5.0 and 0.5, respectively, were
used for all variables. Starting values of 5.0 were used for all vari-

ables, although starting values of 0.5 and 2.0 were also tried with

little change in results. Recall that the optimum values for all vari-

ables and for the objective are unity.
An evaluation counter was incremented in each call to the evalua-

tion subroutine or the gradient evaluation subroutine for discipline 1.
We assume that the number of calls to the evaluation subroutines

\
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']Pable I Evaluation counts for convergence

Approach

Problem

1 2

Single-level, all-at-once 48/60

SO[E1 UE2 II E3]

Single-level, individual discipline feasible 48/60
SO[AI[E1] UA2[E2] IIA3[E3]]

Single-level, multidiscipline feasible, nested parallel Failed

SO[SA[A I[E1] UA2[E2] [[ A3[E3]]]

Single-level, mukidiscipline feasible, nested serial 244/268
SO[SA[AI[EI] ---, A2[E2] --, A3[E3]]]

Single-level, mulfidiscipline feasible, alternating constant Failed

SA[AI[E1] IIA2[E2] [[ A3[E3]] _ SO[AI[E1] [IA2[E2] [[A3[E3]]

Single-level, multidiscipline feasible, alternating linear Failed

SA[AI[E1] IIA2[E2] [[ A3[E3]] _, SO[AI[EI] _ A2[E2] IIA3[E3]]

Collaborative, formulation 1, SQP algorithm 5,50111,270

SO[01[EI] [I O2[E2] tt O3[E3]]
Collaborative,formulation2,SQP algorithm 12,580/12,580

SO[01[El] II O2[E2] [I 03[E3]]

Collaborative, formulation 3, SQP algorithm 7,744/3,533
SO[OI[EI] IIO2[E2] [IO3[E3]]

Collaborative, formulation 1, cutting plane algorithm 445711,018

SO[01[EI] [[02[E2] I)O3[E3]]

Collaborative,formulation2,cuttingplanealgorithm 802/1,960

SO[01[EI] ]lO2[E2] II03[E3]]

Collaborative,formulation3,cuttingplanealgorithm 1,443/3,062

SO[01[E1] I102[E2] II 03[E313

Concurrent subspace, selfish Iinear Failed

SA[AI[EI] []A2[E2] II A3[E3]] +_ OI[AI[EI]] ][02[A2[E2]] II 03[A3[E3]]

Concurrent subspace, selfless linear Failed
SACAICEI] HA2[E2] tl A3[E33] <-+ OI[AI[EI]] II02[A2[E2]] II03[A3[E3]]

56/65

216/240

8OO/9O8

684/792

430/946

378/548

8,240/2,364

9,534/9,909

9,064/7,709

820/2,354

1,085/3,745

2,399/5,255

Does not apply

Does not apply

=: : =
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for disciplines 2 and 3 would be roughly the same. Explicit gra-

dient evaluation was used for all approaches (no finite difference
gradients). Recall that for those approaches involving disciplinary
analyzers a Newton method was used to solve the state equations,

and for those approaches involving a system analyzer, a Newton
method was used to solve the coupling equations. Newton methods

were used rather than exact solvers, which would unfairIy exploit

the mathematical form of the synthetic problems and thus bias the
comparison. Table 1 shows two numbers for each approach for each

test problem. The left number is the value of the evaluation counter
when objective reached and stayed within 1-4-0.1, and the right
number is the value of the evaluation counter when all variables

reached and stayed within 1 :t=0.1.
A main break point was defined for each approach. The main

break point for the first four single-level optimization approaches
and for the collaborative optimization approaches was in the main
iteration loop of the system optimizer. For the concurrent subspace
optimization approaches and the last two single-level optimization
approaches, the main break point was taken at the end of the system
analyzer. At the main break point for each approach, the following
three numbers were output: 1) the evaluation counter, 2) the value
of the system objective, and 3) the maximum error in variables from
optimal value of unity. The system objective and the maximum error

in variables are plotted vs evaluation counter in Figs. 3 and 4 for
problem 2.

Observations and Condnsions

Approach robustness seems to depend on the strength of coupling.

Note in Table 1 which approaches failed at Aco_ = Amt_ = 1. When

the coupling was increased to Acoep = AsUm -----2, all approaches
failed except the first two single-level optimization approaches and
the collaborative optimization approaches. Perhaps these robust ap-
proaches could solve problems with even higher levels of coupling.
All approaches succeeded when the coupling was decreased to
A n ----A=m ----½with the exception of the concurrent subspace self-
less linear approach. Failure of the single-level multidiscipline fea-
sible approaches occurred in the Newton system analyzer when neg-
ative values of the coupling variables were encountered during the
Newton iterations. The same type of failure was observed in the con-
current subspace selfish linear approach. Thus, increased coupling

causes difficulty in approaches involving system analyzers. Failure
of the concurrent subspace selfless linear approach, even at low lev-
els of coupling, occurred in the disciplinary optimizers, which were

unable to find feasible designs. Clearly, this approach is flawed.
When started from the optimum, all of the single-level and con-

current subspace optimization approaches recognize optimality af-

ter gradients are calculated and immediately stop. However, when

the collaborative optimization approaches are started from the op-
timum, they send the disciplinary objective variables to their lower

bounds and work back to the optimum from the infeasible side just

as if they were started from any other point. At the optimum, the dis-

crepancy functions and their gradients with respect to the variables
in the system optimization problem are zero. Since the gradient of

the objective function is not zero at the optimum, the Kuhn-Tucker

conditions as typically formulated are not satisfied. It should be

pointed out that infinitesimally on the infeasible side of the opti-

mum the gradients of the discrepancy functions are nonzero, and
the Kuhn-Tucker conditions can be satisfied. Theoretical work is
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needed to establish proper optimality conditions for terminating the

collaborative optimization approaches.
Defining approach efficiency in terms of number of model eval-

uations, the single-level optimization approaches are clearly more
efficient than the collaborative optimization approaches. The rank-

ing of the singleqevel optimization approaches can be deduced from
Fig. 3, where we see that the most efficient approach (all-at-once)
requires about an order of magnitude fewer evaluations than the least
efficient approach (multidiscipline feasible, nested parallel). The ef-
ficiency of the collaborative optimization approaches is improved on
these test problems through the use of the cutting plane algorithm,
particuiarly in the convergence of the objective to its optimal value.
It appears that formulation 1 is the most efficient formulation for
collaborative optimization, whereas the efficiencies of formulations
2 and 3 are roughly the same. Formulation I is the only formulation
employing the/2 metric. It might be noted that when the metric in
formulation 1was modified to be the sum of the squares rather than
the square root of the sum of the squares, its efficiency worsened
by a factor of 2 when the SQP algorithm was used and by a factor
of 10 when the cutting plane algorithm was used. When the concur-
rent subspace selfish linear approach did not fail (A¢o_, = ½), the
number of evaluations to convergence was comparable to that of the
single-level multidisciplinc feasible alternating linear approach.

Since the evaluation counter was incremented in the evaluation
subroutine for discipline 1 only, the efficiency results would not
change significantly if parallelism of the disciplines were exploited.
However, the efficiency results in terms of the evaluation counter
are not telling the whole story. In the study, the actual execution
time to convergence for the single-level all-at-once approach was
about as long as that of the collaborative optimization approaches
and more than an order of magnitude longer than that of the single-
level multidiscipline feasible approaches. The reason for this is that
model evaluation for the synthetic test problems is trivial, and most
of the execution time was spent in the numerical procedures of the
optimizers. Since the single-level all-at-once approach solved the
biggest optimization problem, it required a lot of execution time. It
is anticipated that in most real-world applications model evaluation
will be significant rather than trivial.
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