
NASA Contractor Report 172582

NASA-CR-172582

19850016524

EXECUTIVECONTROLSYSTEMSIN THE

ENGINEERINGDESIGNENVIRONMENT

Patricia W. Hurst

UNIVERSITYOFVIRGINIA
Charlottesville, Virginia

Grant NAGl-242
May 1985

NI\S/\
National Aeronautics and
Space Administration

Langley Research Center
Hampton. Virginia 23665

LANGLEYRESC:,c,RC::-'CEWE~
LiBR:,RY. !'l1;S,\

H.c.~,~?TOr~. 'JlRG',n:i\

ABSTRACT

An Executive Control System (ECS) is a software

structure for unifying various application codes into a

comprehensive system. It provides a library of

applications, a uniform access method through a central

user interface. and a data management facility. This

research report is based on a survey of twenty-four

Executive Control Systems designed to unify various CADI

CAE applications for use in diverse engineering design

environments within government and industry. The goals of

this research were to establish system requirements. to

survey state-of-the-art architectural design approaches,

and to provide an overview of the historical evolution of

these systems.

Foundation for design are presented and include

environmental settings. system requirements, major

architectural components, and a system classification

scheme based on knowledge of the supported engineering

domain(s). An overview of the design approaches used in

developing the major architectural components of an ECS is

presented with examples taken from the surveyed systems.

The evolution from early efforts to the current state-of­

the-art ECS are presented as three stages of developments:

embryonic, batch environment, and conversational

environment. Attention is drawn to four major areas of

i

ECS development that are central to advancing the state­

of-the-art and which include inter-disciplinary usage,

standardization, knowledge utilization, and computer

science technology transfer. For each system included in

the survey, a snapshot description is given with

references to source documentation.

i i

ACKNOWLEDGEMENTS

I would like to thank my committee, Professors T.W.

Pratt, W.N. Martin, and C.C. White, for their guidance and

patience in the preparation of this report.

I w.ould also like to thank Professors J.L. Phaltz,

J.C. Knight, and T.M. Sigmon for their comments on the

preliminary draft of this report which led to the

amplification and strengthening of Section 6.

I would like to thank the IPAD Office of NASALangley

Research Center for their financial support of this

research. Additionally, I would like to thank individuals

within that office for giving me access to their personal

collections of historical and current documentation.

This research was supported in part by NASA grant

NAG-1-242.

iii

TABLE OF CONTENTS

Page

.

·1.0

2.0

3.0

4.0

THE NEED FOR EXECUTIVE CONTROL SYSTEMS. • • • • •

GOALS AND STRUCTURE OF THE SURVEY • • • • • • • •

FOUNDATIONS FOR DESIGN. • • • • • • • • •

3.1 Environment. • • • • • •••••••••

3.1.1 Users.

3.1.2 Applications •••••••••••••

3.1.3 Hardware. • • • • • •• • ••••

3.1.4 Development. • •••••

3.2 Requirements ••••••••••••••••

3.2.1 Primary Requirements. • •••••

3.2.2 Secondary Requirements ••••••••

3.3 -Architectural Components.. • •••••

3.3.1 Executive Component. • • • • ••

3.3.2 Data Management Component ••••••

3.3.3 Library Component. • • • ••••

3.3.4 Auxiliary Components. • •••••

3.4 System Classification ..

3.4.1 General ECS •••••••••••••

3.4.2 Domain ECS ...••.

ARCHITECTURAL DESIGN APPROACHES

4.1 Executive Component•

4.1.1 Central User Interface.

4.1.2 Operating System Abstraction •••••

v

1

9

12

12

13

14

16

17

18

18

24

26

26

27

27

28

28

29

30

33

33

33

38

TABLE OF CONTENTS--continued

4.2 Data Management Component ..••••••••

4.2.1 File System. . • • • ••

4.2.2 File Partition Manager. • • • • . • •

4.2.3 Data Base Manager ••••••••••

4.3 Library Component .•.••••••.••

4.3.1 Independent Application.

4.3.2 Interfaced Application. • ••

4.3.3 Integrated Application. • ••

4.4 Auxi1 iary Components . • • • • • • •

HISTORICAL PERSPECTIVE. • • • • • • •

5.1 Embryonic Stage (1960's) ..••••••

5.2 Batch Environment Stage (1970's) ••

5.3 Conversational Environment Stage (1980's) ••

EVALUATION. • • • • • • • • ••• • • • •

6.1 Inter-Disciplinary Usage. • . • ••

6.2 Standardization. • • ••••

6.3 Knowledge Utilization. • • • • • ••

6.4 Computer Science Technology Transfer ••••

CONCLUSION. • •• • • • • • • • • • •

SYSTEM SNAPSHOTS. • • • . • • • • • • ••

REFERENCES. • • • • • • • • • • • • •

5.0

6.0

7.0

8.0

9.0

4.1.3

4.1.4

Executive Control •

Data Movement • • •

.,
.

Page

38

43

49

49

50

51

52

53

53

54

54

56

56

60

63

66

66

68

71

77

83

85

96

vi

1

1.0 THE NEED FOR EXECUTIVE CONTROL SYSTEMS

An Executive Control System (ECS) is a software

structure for unifying various application codes into a

comprehensive system. It provides a library of

applications, a uniform access method through a central

user interface, and a data management facility for

creation of data and movement of data between the

applications. Used by various engineering organizations

throughout government and industry, the ECS provides an

engineering design environment within which a wide range

of application codes, and utilities for their effective

usage, are placed at the fingertips of the engineer user

for improved accessibility, efficiency, and ease of use.

The genesis of the ECS in engineering design is found

in the 1960's when various individuals and groups within

government and industry recognized the need for improving

access to the large variety of application codes being

constructed for various aspects of engineering design.

Subsequent efforts have spawned a variety of systems used

by diverse engineering design groups. Examples of

currently used systems include ANOPP, PRIDE, and AVID

developed by NASA Langley Research Center. DYSCO developed

by Kaman Aerospace Corporation. NICE developed by Lockheed

Missiles and Space Company. and ISAS developed by the

Boeing Company. Among the dozens of systems which have

2

been built, there is wide variance with respect to user

interface, data communication, and auxiliary features.

New development efforts are continuing within

government and industry. with a growing recognition of the

potential benefit that such systems could bring to the

engineering design communities. Unfortunately there is

little in the published literature to provide a general

overview of the systems requirements, design approaches,

and major systems components of the existing Executive

Control Systems. As a result. new designs often reinvent

concepts and repeat mistakes needlessly.

The central goal of this thesis is to provide a

comprehensive overview of the history and state-of-the-art

of ECS design. so as to provide a basis for understanding

and advancing the design of future systems. The context

of computer aided design (CAD) or computer aided

engineering (CAE) development and the major problems

leading to ECS construction are outlined in this section.

The following section gives a more detailed explanation of

the goals, approach, and structure of this survey.

CAD/CAE in Engineering Projects

CAD/CAE has been increasingly employed within

government and industry since the early 1950's when

computers were placed in engineering departments for use

as calculators [11. As the power and sophistication of

computer systems has increased during the last three

3

decades, so has their range of utilization. Today CAn/CAE

has a broad definition which includes computerized methods

utilized throughout the design, planning, and

manufacturing phases of a product. Accompanying this

broad definition are a wide variety of software tools for

use in such areas as engineering design and analysis, data

base management, management information, graphics,

drafting, numerical control machining, and robotics.

Although used to varying degrees depending on the size and

needs of particular engineering environments, CAn/CAE has

become a standard tool for increasing both productivity of

engineering manpower and utilization of machine tools and

equipment.

While the CAn/CAE tools are used effectively within

each of the product phases, they currently do not provide

the power or breadth required for unified usage across the

phases. A major factor is the information gap existing

between the planning, design, and manufacturing phases.

Project management activities of planning require frequent

input from the other phases, yet the type of information

required is not currently captured by the CAn/CAE tools

used in design and manufacturing. The interface between

design and manufacturing, which in times past could be

fairly well achieved with conventional engineering

drawings, is becoming more complex as the design data

bases are accessed by manufacturing for information

4

required to fabricate and assemble parts. It is becoming

a necessity for engineering data bases to accommodate

manufacturing requirements and thus contain change and

release information for configuration control in addition

to geometric data [2J.

The government's concern for a more orderly,

comprehensive, industry-wide development program to

integrate CAD/CAE tools for unified usage across the

phases of product development is illustrated by the IPAD

program initiated in the mid 70's. An original goal of

IPAD was to establish the various tools under one software

umbrella system with automated transfer of data between

phases. For example. information required by project

management activities would be automatically collected by

the system as the engineers progressed through design and

analysis. Also information required by manufacturing

would be captured on the engineering data base during

design activity. However the state-of-the-art in CAD/CAE

at that time would not support the interface requirements

between design and manufacturing. Much effort has since

been devoted to bridging this gap, and it continues to be

an important objective of CAD/CAE.

The Engineering Design Phase

Within the engineering design phase similar problems

exist. Many of the design ·and analysis tools are stand­

alone application codes written in diverse computer

5

environments. These tools execute as independent units

within the framework of the host operating system.

Typically each has its own input-output requirements and

format and, if conversational, its own style and language

for conversing with the engineer user. In order to

accomplish particular design scenarios, multiple stand­

alone codes are often used by the engineer in sequential

fashion with looping back to a previous step as required.

In these mUltiple application scenarios, there are three

problem areas with tend to erode the benefits of CAD/CAE:

(I) Data flow between application codes.

In general, data which is the output from one or

several applications provides the basis for data input to

a subsequent application. However, compatibility of data

at these interface points frequently does not exist and

extra steps must be taken to combine data, generate

additional data, or translate data to different forms.

(2) Difficulty of use of multiple application codes.

Another problem area in using multiple applications

is the learning time required to use each effectively.

This involves familiarity with such application elements

as terminology, input/output requirements and form, user

interface language, and engineering algorithms embodied in

the code. This also involves familiarity with the host

operating system Job Control Language (JCL) for executing

the applications and also with utilities for creating/

6

modifying data as required. The host computer may not be

the same for all of the applications and thus an engineer

may need expertise in the use of more than one operating

system. Martin Marietta, in an early 80's study of in­

house computers and design aids used by circuit designers,

found that the typical designer had to learn more than 25

computer languages, procedures, and techniques if Computer

Aided Circuit Design (CACD) tools were used [3]. The same

study found that over 100 situations could arise during a

computer-aided design scenario that could stop the

progress of a designer unless the right information was

known and applied. Many designers felt they could not

afford the time or effort required and used CACD only if

the job demanded it.

(3) The continuous evolution of application codes.

The set of available engineering applications is

continually changing. New application codes are added to

reflect advances in engineering and software methodologies

while others become obsolete and are no longer used. If

the engineer is to utilize the improved tools as they

become available. then the problems of data flow and

learning time associated with multiple application

scenarios are compounded.

Executive Control Systems in Engineering Design

To reduce and control problems in these three areas,

the Executive Control System (ECS) has been introduced as

7

a higher level tool which provides for an automated

engineering design environment. within this environment

are the various CAD/CAEapplications to be used in design

scenarios, mechanisms for communicating and interfacing

data, and a central engineer-machine interface which

allows for their effective usage. The central interface

is a powerful component of the ECS in that it abstracts

those capabilities of the host operating system typically

required for executing applications in an arbitrary user

defined sequence. Functions which the user would request

the operating system to perform via a JCL sequence are

performed within the ECS design environment as a result of

user requests via the central interface. This environment

provides an evolving set of available applications into a

comprehensive system and places them at the fingertips of

the engineer. The ultimate goals of introduction of an

ECS are to improve performance and increase productivity

of the users in the wake of a continually expanding myriad

of engineering applications.

Other Applications of the ECS Concept

The ECS approach to unifying various applications

within a single operational framework is not unique to

engineering design and has been utilized in various

domains. For example. the Harvard Programming Development

System [4] uses the ECS approach to provide a software

development environment. This system consists of an

8

applications set of software tools (e.g., editors,

compilers, loaders, symbolic debuggers, tracing

facilities, pretty printers, and probing packages), data

management fQcilities, and a central executive interface

to the user for executing the various applications and

utilizing the data management facilities. Another example

is the Executive Information System [5] marketed by Boeing

Computer Services, which provides an embryonic Decision

Support System generator. Applications which have been

individually available for supporting financial decision­

making situations were unified into a collection and made

available through a central command language which acts on

a common set of data. The Interactive Financial Planning

System [5], marketed by Execucom Systems, is a similar

system.

9

2.0 GOALSANDSTRUCTUREOF THE SURVEY

This research report is a survey of Executive Control

Systems designed for use in various engineering design

groups within government and industry. The information on

which it is based was acquired from a variety of sources

including literature search, telephone inquiries to large

engineering companies and selected government engineering

installations, and individual references. Major support

was provided by the IPAD Office at NASALangley Research

Center. Twenty-four systems were identified and studied

to provide the basis for this report.

The primary goals of this research were to establish

the requirements for these systems and the state-of-the­

art in architectural design approaches, as seen in those

systems currently being used or under development. The

documentation was reviewed and evaluated with emphasis

being placed on the following focal points:

(1) Establishing system requirements, as evidenced

by the features and capabilities provided by each system.

(2) Identifying the basic characteristics or design

philosophies which could be used to distinguish different

types of systems.

(3) Identifying the major architectural components

common to all systems.

10

Sections 3 and 4 are the central sections of this

report. Section 3 provides a discussion of the

foundations for architectural design, which includes

environmental settings, system requirements, major

architectural components, and a system classification

scheme based on knowledge of the supported engineering

domain(s).. Section 4 presents a composite of the design

aprroaches used in developing the major architectural

components of Executive Control Systems.

A secondary goal was to provide an overview of the

historical evolution of these systems. From the

documentation available on selected embryonic systems

developed during the 1960's and early 1970's, ·several

evolutionary development trends emerged which are

summarized in Section 5.

It is hoped that in satisfying these research goals,

a foundation could be established both as a starting point

for developing more advanced systems in the future and

also as a general source of information for interested

groups. Section 6 draws attention to three major areas of

ECS development that are central to advancing the state­

of-the-art. Section 7 summarizes the main points of the

survey.

This report does not attempt to provide any form of a

"shopping list" of systems for a prospective engineering

user group, nor was any attempt made to evaluate the

11

relative merits of the individual systems. Thus in

discussing specific features or design approaches, limited

enumeration of example systems is given. For readers

desiring additional information, snapshot descriptions of

each system are given in Section 8, along with references

to the available literature, to provide guidance in

determining possible sources.

References to source documents have been limited in

this report due to the frequent mention and discussion of

the various systems. References in Section 1-7 are given

only for information which is not related to specific

systems. However, a full reference list for each system

accompanies its snapshot description in Section 8.

12

3.0 FOUNDATIONSFOR DESIGN

The purpose of this section is to establish a

foundation and perspective for viewing, in the next

section, the various architectural design approaches taken

in ECS development. The discussion is organized into four

parts: environmental settings, requirements, system

architectural, and system classification. The

environmental settings for development and usage of these

systems provide an understanding of both the motivation

behind their development and the resources available for

their design and implementation. The requirements and

system architecture overviews provide an organizational

structure for subsequent presentation of the various

design approaches. A scheme for classifying systems based

on "domain knowledge" is presented in the final part of

this section.

3.1 Environment

The environmental settings for development and use of

these systems are diverse. This diversity is seen in four

main areas: the user communities, the types of

engineering design applications to be accessed through the

system, the host hardware, and the design/development

effort. These areas are overviewed in the following

sections.

13

3.1.1 Users

ECS user communities are found in various engineering

design domains. Examples are structural analysis,

aircraft noise prediction, electronic circuit design, and

fluid/solid mechanics. These communities are typically

found in large engineering companies, such as Lockheed

Missiles and Space Company or Martin Marietta Corporation,

and also in engineering branches of government agencies,

such as NASA and the U.S. Army, and their contractors. To

a lesser extent, users are also found in smaller

engineering firms which have access to an ECS through a

time-sharing network.

The user group for a particular ECS is also varied

and in some instances evolves over time. It may be a

single research group composed of many or only a few

individuals, several groups within the same company, or a

variety of users nationwide. ACTION was developed and is

used solely by a small research group at NASA Langley

Research Center for structural analysis. NICE was

developed in-house by Lockheed and is used by various

groups within that company for fluid/solid mechanics.

ISAS was initially developed by the Boeing Company for in­

house structural analysis but has evolved to incorporate

applications for a variety of engineering domains and is

commercially available nationwide to a host of users.

ANOPP, which was developed by NASA for the aircraft noise

prediction community, has since been applied to

14

a

different engineering domain within Hughes Helicopter

Company by replacing the original collection of

applications with a different set.

The users of an ECS also vary as individuals with

respect to level of formal training, working experience,

and general expertise. Knowledge is required in three

main areas in order to use an ECS. These include: (1)

engineering knowledge in formulating a problem, selecting

appropriate applications, and analyzing the results, (2)

applications knowledge in understanding the embodied

engineering algorithms and determining the input/output

requirements, and (3) ECS knowledge in properly

communicating through the central interface and selecting

among available features. In each of these areas.

individual users may range from novice to expert in terms

of training, experience. and general expertise.

3.1.2 Applications

The collection of applications "installed" in an ECS

and thus available for use is typically limited to those

appropriate for the user community. Thus, a system such

as· LSSIAP which is used by Martin Marietta Corporation

engineers to design attitude control systems for large

space systems would contain only those design/analysis

15

applications and auxiliary applications, such as graphics,

used by those particular engineers.

The source, size, and general software nature of the

installed applications vary but are typically one or more

of the following:

Third party. Many of the applications have been

developed outside of the ECS environment, often by a

different company or government agency, as independent

'"stand-alone" programs. Such a program may be a large

marketed program, such as the MSc/NASTRAN structural

analysis program available through the MacNeil-Schwendler

Corporation, or it may be a program obtained through a

personal reference. These programs vary with respect to

size. theoretical complexity. and software construction

complexity and quality. In most cases, it is undesirable

to "tamper with" these programs. and thus the ECS must

accommodate installation of these programs with minimal

modification.

Tailored. These applications have been developed

specifically for a particular ECS environment, and thus

the code has been written to take advantage of utilities

provided within the ECS and/or conform to imposed

standards. Systems which offer a wide variety of

utilities available to the engineering application

programmer are ANOPP, DYSCO, AND IAC.

16

Personal. These applications are those developed

outside of the ECS environment as independent programs but

within the user group. Thus. there is usually access to

knowledge about the software construction of the program

and theoretical details. Although modification to these

programs in order to install them into a ECS may be

feasible, it is often undesirable.

3.1.3 Hardware

Host hardware environments which support the ECS are

varied, but because of the large size and computational

intensity required by many engineering applications, a

mainframe computer is uniformly a component. Examples are

the Control Data 6600 and Cyber series, the IBM 360 and

370 series, and the DEC VAX series.

An ECS is designed to abstract the host operating

system features and allow utilization of hardware

configuration components to varying degrees. Thus, the

design of an ECS is based on certain assumptions about the

I •

enV1ronment provided by the target configuration. There

are three main types of environments supported:

Batch. The batch ECS is designed for environments

supporting those features typically found in the

traditional configurations of the 1960's and 1970's. The

basic user input to the ECS is a set of prefabricated card

images stored on a file or existing as a physical card

17

deck. In modern environments, the user typically

fabricates the input interactively and stores it on a

file. ANOPP, ODPIN, and PRESTO are examples of the batch

ECS.

Conversational. The conversational ECS is designed

to utilize the modern communication features of

interactive computing. The general model for this ECS is

to receive a user instruction, interpret and execute it,

request the next instruction, and so on. Virtually all of

the recent ECS development, such as AVID, DIGIKON, DYSCO,

and lAC, have utilized these features.

Distributed. The distributed ECS is designed to

accommodate more than one computer tied together in a

"network for executing applications. In these

environments, the user utilizes a less powerful computer

for tasks such as constructing input or viewing output and

utilizes the powerful computer for computationally

intensive tasks. Examples of this type of ECS are ACTION

and NICE.

3.1.4 Development

The development effort required for the various

systems varies with motivation, purpose, and general

resources available. The simpler and less comprehensive

systems are typically designed and developed by personnel

within the user group. The resulting ECS executable code,

18

without any installed application, may be quite small, for

example, NASA's IDEAS contains about 1,000 lines of code.

More comprehensive systems may be developed either in­

house, typically by engineers as for AVID and NICE, or by

contract to a software/engineer firm as for ANOPP, ISSYS,

DIGIKON, DYSCO. and lAC. These systems vary in size

depending on the capabilities provided. DYSCO consists of

approximately 5,000 lines whereas ANOPP consists of

approximately 31,000 lines.

3.2 Requirements

Although the diversity of users, applications,

hardware, and development groups mentioned above

necessarily lead to differing sets of requirements for

Executive Control Systems, there are several major

requirements that are prominent in the design of almost

every system. These requirements are presented in this

section in two categories, primary and secondary.

3.2.1 Primary Requirements

The primary requirements are those which have been

satisfied to some extent by many of the surveyed systems

and which prominently influence the overall character and

architectural design of the individual systems. These

requirements provide the structural format for presenting

various design approaches in Section 4. They are

catergorized into the following: central user interface.

19

operating system abstraction, execution control, and data

movement.

Central User Interface

The system must provide a communication interface

between the user and system so that the user may specify

the tasks to be performed and have access to the resulting

output. This interface should provide a central "top­

level" control for executing the engineering design

applications available and for utilizing other

capabilities provided by the system. The manner in which

the user communicates to the system and the learning time

needed for effective usage are important factors

influencing user acceptance, frequency of usage, and user

productivity. The interface should exhibit uniformity.

ease of learning, and ease of use.

Operating System Abstraction

In providing a complete engineering design

environment, the functions and capabilities of the host

operating system typically used in mUltiple application

design scenarios should be abstracted and made available

to the user through the ECS central interface. It is

undesirable for a user to be in the midst of an ECS

sequence of executions and have to terminate, returning to

the operating system JCL level, in order to perform a JCL

task(s) before continuing the ECS sequence. This break

would require reconstruction of the ECS environment and

20

reduce the overall ECS benefits. Thus, the user should be

able to perform JCL level functions without terminating

execution of the ECS.

The potentials for abstraction depend upon the

offerings of the host environment and their utility to the

engineering design environment. Potentials common to all

operating systems include JCL file maintenance

capabilities such as attachment, detachment, cataloging,

deletion, and utilities for creating and modifying file

contents. Another potential is found in the distributed

processing environment where JCL sequences direct both

file transfers between different processors and execution

of application on various processors. Since these

potentials expand as new features are added to the host

environment, the ECS interface component should be

expandable to accommodate those improvements beneficial to

the engineering design environment.

Execution Control

The system must allow the user to make multiple

selections from the engineering design applications and

other capabilities available and to execute them in

arbitrary order. Four basic considerations are: uniform

execution of applications, user defined execution

sequence, automatic design, and restart.

Uniform Execution of Applications. The system should

abstract execution of the application so that the user

21

provides only information about "what" is to be executed

and is freed from the details of "how" the execution

occurs. Details, such as the storage medium for the

executable code and the JCL stream required for execution,

should be internal to the ECS. From the user's view, this

abstraction should be uniform and consistent across

applications, with automatic generation of any required

JCL streams.

User Defined Execution Sequence. The system should

allow the user to both select applications/capabilities

and define the sequence of their execution. Flexible

control mechanisms which provide for repeating, skipping,

and conditionally branching among sequences are desirable.

Also desirable is the capability to save sequences and use

them later as "building blocks" in various combinations.

Automatic Design. In mUltiple application scenarios

the result from one application often will influence the

input to another or will determine the subsequent

execution sequence. For example, output value A from one

application could be mUltiplied by 10 to produce the input

value B for another application. A more complex example

is an optimization problem where a sequence of

applications may be executed repetitively, each time

altering the input parameters as a function of the results

obtained thus far. The ECS should provide for· both

automatic inspection of current results and subsequent

22

modifications to the input parameters and/or the execution

sequence.

Restart. In some design scenarios, there are two

types of restart capability which are useful:

pause/restart and checkpoint/restart. In the former, an

executing application may pause temporarily and return

control to.the higher level central user interface. The

user may then perform other tasks, such as querying and

updating data, before the application restarts execution

at the point where the pause was invoked. In the latter,

the computational environment consisting of data and

perhap~ control information is saved either during

execution of an application or between successive

application executions. Execution continues usually with

several environments. being saved or checkpointed.

Subsequently, after the user has evaluated the results of

the design sequence, the sequence can be restarted at the

point where the checkpoint occurred using one of the

saved environments. Typically, the user will change some

of the data or control information during the restart

process. Thus initial portions of a design sequence can

be "salvaged" and need not be repeated.

Data Movement

There are two types of data movement required for

engineering applications: data created by the user to be

used as input to an application and data which is output

23

from one application to be used as input to another. The

system must provide for this movement and, for a complete

design environment, should also provide for creating,

inspection, and modifying the data. Although a

distinction is not always made, applications typically

require two types of input data, low volume and high

volume. Because of differences in size and usage, their

requirements also differ.

Low Volume Data. A typical application requires a

small number of input values for internal control

purposes. Examples of internal usage include

initialization conditions, termination conditions, and

selectors for computational options. These may be

supplied directly by the user or by a previously executed

application. Often they will be a function of

computational results obtained thus far. The ECS should

provide a means for the user to create and modify low

volume data and also move it between applications.

High Volume Data. An application may also require

high volume input data such as results from aerospace wind

tunnel tests or structural grid po~nt values. This type

of data may ,have been prepared externally to the ECS

environment or may be the output of another application.

The ECS should prov~de aids in creating special types of

frequently used high volume data as well as mechanisms for

modifying high

applications.

volume data arid moving it

24

between

3.2.2 Secondary Requirements

The secondary requirements are those which have less

influence on the overall character and architectural

design approach of an ECS, but are nonetheless important

from the software quality viewpoint and, ultimately, also

to the user. These include considerations for user help

aids, error recovery, library modification, and

efficiency. Selected design approaches are mentioned in

this section and are not elaborated further in this

report.

User Help Aids

Help aids are particularly of benefit to the user of

an on-line conversational ECS. These aids include

tutorial information concerning the use of the system and

informative error messages. These aids should be tailored

to the target users of the system and should take into

account individual differences in style, expertise, and

experience. Help aids in the form of informative error

messages are also of benefit to the user of a batch ECS.

Error Recovery

In an ECS environment, errors may have several

origins: error in communicating with the central

interface, invalid input to an application, run time error

25

(e.g., memory space exceeded), or a software error.

System recovery from any error is desirable so that the

user may make corrections and repeat the execution

sequence or perform other tasks. There are tradeoffs

between the benefits of recovery and software costs. Most

of the current systems limit error detection to those

originating from user input error. Conversational systems

allow the user to reenter input data and batch systems

necessarily terminate the executing application. For

example, the batch system ANOPP allows any application to

abnormally "quit" with the ECS performing housekeeping

functions which would have been performed by the

application upon normal termination. The DYSCO system

extends error detection to include those with software

origins by utilizing "safe programming" coding techniques.

Library Modification

As new applications become available for engineering

design, the ECS should be designed to add them to the

"library" of those available with minimal modifications to

the ECS software. Similarly, the deletion of obsolete

applications should be easily performed.

Efficiency

As for any software system, efficiency with respect

to execution time and storage requirements are important

factors. For simpler systems. these considerations are

usually negligible. However, for larger systems offering

26

more complete engineering design environments, these

factors become more important and should influence the

architectural design approach taken.

3.3 Architectural Components

Viewing the ECS from a software architecture

perspective, there are three major components. These are

the executive component, the data management component,

and the library component. In more complete systems,

there may also be auxiliary components. Although there

may be varying degrees of interaction between the

components in a particular ECS, their purposes can be

viewed as separable and distinct.

3.3.1 Executive Component

The executive component provides the central point of

interface between the user and the system. Through this

fnterface, the user selects the engineeting applications

to be executed and provides instructions as to their order

of execution, input sources, and output destinations. The

interface also provides access to all other ECS features

and capabilities available to the user. The interface

mode may be command language, menu, promptive message, or

a combination.

27

3.3.2 Data Management Component

The data management component provides for storage of

information and data for use by other system components or

the user. It should provide mechanisms for creating and

storing data, accessing data, and changing data. Three

approaches to data management are prevalent in the

surveyed systems. These include utilization of the host

operating system's file manager, development of a

specialized file partition manager, or incorporation of a

generalized data base manager.

3.3.3 Library Component

The library component is conceptually the collection

of engineering applications available to the user for

execution. These include specific codes such as for

structural analysis, circuit design, graphics, and

. specialized input data generations. From the user's view,

these application appear to be a uniform part of the

system. However, from the architectural view these

applications could be embedded within the ECS software of

could exist external to the ECS environment. Current

systems support three architectural types of applications,

which are termed here "independent applications",

"interfaced applications", and "integrated applications",

and are explained more fully in Section 4.

28

3.3.4 Auxiliary Components

An auxiliary component provides a collection of

logically related functions or capabilities which

significantly enhances the usefulness or performance of

the ECS. An auxiliary component may be invisible to the

user and provide for such enhancements as software

efficiency, flexibility, and lower software development

cost. The component may instead be visible to the user

and provide for such enhancements as creation and

management of engineering tables.

3.4 System Classification

There are several schemes by which the ECS could be

classified, for example, by interface mode, by engineering

domain(s) supported by the specific applications available

in the library, by completeness of the engineering design

environment, or by host hardware environment. Such

classification schemes are used above and in Section 4.

However, in recent years there has emerged a type of ECS

which departs significantly from its ancestors and from

the current mainstream of ECS development. The mainstream

ECS is designed to be a "generalist" and thus does not

embody knowledge about specific engineering domains. The

emerging ECS is designed for a specific engineering domain

and thus incorporates knowledge about that environment and

its processes. In this paper the former is termed a

29

"General ECS" and the latter a "Domain ECS". Although

only . two of the surveyed systems. DYSCO and SUPER-CAD,

fall into the Domain ECS class, they are sufficient to

suggest the underlying characteristics of .such systems.

3.4.1 General ECS

The General ECS is designed to support engineering

design at-large. The library component is designed to

accommodate any application which meets its architectural

requirements and a specific engineering domain is

supported by installing specific applications into the

library. The executive component is designed to execute

any application in the library without regard as to

content, purpose, or contextual validity. The executive

may be tailored with promptive messages and actions

related to specific library applications, but the

executive design only provides "slots" where code may be

inserted and does not incorporate knowledge about specific

applications in any systematic way. Similarly, the data

management component is designed to accommodate various

data structures without regard as to purpose and usage.

The executive and data management components perform

functions in a way analogous to an operating system. That

is, functions are performed in arbitrary order as defined

by the user without consideration of contextual meaning

and purpose. The system thus provides a "tool box" of

30

features and applications and performs as a faithful

servant taking instructions from its master, the user.

The system performs few, if any, tasks automatically

without direct instruction.

3.4.2 Domain ECS

The Domain ECS is designed to support a specific

engineering design domain. It is similar to the General

ECS is that is also provides a "tool box" of features and

engineering applications, but it performs as a guide

instead of as a servant. Knowledge about the design

process(es), the steps typically followed, and the data

required are incorporated into the system. With this

knowledge, the system may assume more responsibility for

validating the order of application executions, for

locating and validating the required data, and for

automatically performing various sub-tasks without

explicit user instruction. The user still directs the

design scenario, but the manner is less rigorous and less

demanding of detail. The ECS expects a higher level

instruction from the user to provide a general direction

or goal. The system uses its internal map, which shows

the steps required, to proceed along the path, pausing to

acquire more information from the user as necessary.

In the Domain ECS, the role of the executive

component is expanded beyond that of providing the central

31

user interface. It is the primary owner and user of the

domain knowledge. Functions which are common to several

applications, perhaps those appropriate at a certain point

in the design process, may be elevated to the executive

component level and be automatically performed under

executive control. These may include executing special

applications to generate input data, translating data into

different formats, locating and validating required data,

or performing an engineering algorithm. An example of the

latter is found in DYSCO, the only implemented Domain ECS

among those surveyed. In this system, the design process

captured is that of defining the components and associated

forces of a structure and performing a dynamic analysis

utilizing a specific engineering coupling algorithm. At

a specific point in the process, just before a user

selected solution analysis method is applied, the

executive automatically accesses the required data

describing the structure, performs the coupling procedure,

and passes the resulting data to the solution method

chosen. The user need not request this step nor specify

the input source or output destination; the executive

extracts this information from the preceeding steps and

the context.

The other components of a Domain ECS are similar to

those of the General ECS. The data management component

may reflect no domain knowledge_ but may be used as a tool

32

for the executive and library components. The library

component may become a partitioned collection of

applications, as is the case with DYSCO, with each sub­

library being appropriate at specific points in the design

process.

33

4.0 ARCHITECTURALDESIGN APPROACHES

This section presents an overview of design

approaches used for the major components of the ECS. The

discussion is organized around the major architectural

components of an ECS as outlined in Section 3.3. For the

executive component, the requirements outlined in Section

3.2 form a convenient basis for the presentation.

4.1 Executive Component

The executive component provides mechanisms through

the central user interface for satisfying the ECS

requirements. The user has access to the features

available in the ECS through the interface and thus may

perform tasks such as executing applications, specifying

control flow, and manipulating and querying stored data.

4.1.1 Central User Interface

There are three basic modes by which the user may

interface to the executive. These are the command

language mode, the menu mode, and the promptive message

mode. Although one mode is predominantly utilized in a

particular ECS, the ECS may also utilize other modes to a

lesser extent.

Command Language Mode

In the command language mode, the user provides

instructions to the executive by specifying a series of

34

commands. A command is typically composed of a key

word(s) identifying the function to be performed with an

argument list providing additional information. The

commands are analogous to sentences and, forming a

language for user communication, they are often referred

to as an Engineering Command Language (ECL) or an

Engineering Design Language (EDL).

Each ECS utilizing this mode supports a unique

language with its own repertoire of key words, syntax for

argument lists, and style of usage. The number of

commands for a language varies, but is typically in the

range of 20 to 50. An ECS may assign a distinctive name

to its language such as CLIP found in the NICE system,

DIALOG in ODIN, and ESCORT in PRESTO. The batch systems,

such as ANOPP and PRESTO, utilize only the command

language mode. However, this mode is also used in systems

developed for conversational environments, such as NICE,

DIGIKON, and IAC.

The style and syntax of these languages exhibit

influences from programming languages and mirror their

evolution. Variable names and types and also algebraic

and conditional operators are often similar to those of

FORTRAN, as is prevalent use of the GO TO construct.

Recently developed command languages incorporate features

similar to those found in block oriented languages, such

as ALGOL and PASCAL, and include DO WHILE and BEGIN••• END.

The following excerpt from an ANOPP input

demonstrates some of these influences:

35

sequence

ATTACH /A296/Fl
ATTACH /B001/F2
PARAMICOUNT = 0

10 PARAMB = ICOUNT * 100
EXECUTE JETLAG (IN=Fl, OUT=F2, INIT=B, DIFF=DIFF)
PARAMICOUNT = ICOUNT + 1
IF ((ICOUNT .LT. 50) .AND. (DIFF .GT •• 05» GO TO 10
CONTINUE

A strong JCL influence is seen in several of the

command languages, such as in the SAVES, PICASSO, and

ISSYS systems. The basis for this influence is the

philosophy that modern operating systems satisfy most

requirements and commands should therefore resemble the

host JCL for more direct implementation [6]. This

collection of "pseudo JCL" commands is then augmented with

additional commands to overcome inadequacies. For

example, the ISSYS language was patterned after the

Control Data Network Operating System (NOS) JCL. In the

following excerpt from an ISSYS input sequence, the CALLS

are agumenting commands and the others are "pseudo" NOS

commands for file manipulations:

GET, ALOAD/UN=FILE1.
GET, DRPROPT,DMASST.
CALL(ISSYS(XQ=SETPR»
CALL(ISSYS(XQ=TRSG»
EXIT.
REWIND,ISERR.
COPYSBF,ISERR,OU~PUT.

36

Menu Mode

In the menu mode, the user provides instructions to

the executive by selecting an item from a menu of options.

The menu mode is typically used in a hierarchial manner

with selections from the main menu and subsequent sub­

menus that eventually culminate in the desired function to

be performed, such as executing a specific application or

updating a data file. Simpler conversational systems,

such as ACTION, PRIDE, and IDEAS, frequently utilize this

mode as well as more complete conversational systems, such

as AVID and ISAS.

is:

As an example, the main menu of AVID

I - DATA BASE MENU
2 - DIGITIZE VEHICLE
3 - COMPUTEVEHICLE DATA AND COORDINATES
4 - PLOT VEHICLE
5 - VOLUMESAND AREAS
6 - SIMPLE HYPERSONICS
7 - ROCKET ENGINE SELECTION
8 - MASS PROPERTIES
RETURN TO TERMINATE AVID

An advantage of the menu mode is the natural

provision for "slots" where code can be easily inserted

for specialized messages to the user concerning the

particular menu option chosen. ACTION utilizes this

concept and issues "reminder" messages to the user on

prerequisite actions which should have been taken, such as

required data input and file attachments. If the user

indicates that the actions have not been performed, the

37

executive returns to a higher level menu to allow their

accomplishment.

Promptive Message Mode

In the promptive message mode, the user provides

information in response to a descriptive message. This

mode is mostly used in the conversational General ECS for

secondary communication, although EASYCACDuses it for

primary communication as well. However, it is effective

as the primary communication mode for a Domain ECS, such

as DYSCO, where the executive component guides the user

through a design scenario and relies on previous responses

and domain knowledge to determine the next step in the

design process and needed information.

A frequent criticism of the promptive message mode is

the tedium for the experienced user. Typically, the user

must wait for each message before responding, although a

series of answers can be anticipated. EASYCACDovercomes

this tedium by allowing the user to input a series of

anticipated answers in response to a single question. The

system bypasses the associated promptive messages and

issues prompts only as required. Thus, as the user gains

experience and can anticipate required information, the

promptive messages are automatically reduced.

38

4.1.2 Operating System Abstraction

The extent and nature of the mechanisms provided to

abstract the host operating system varies among the

systems. By definition, an ECS must abstract the

execution of an engineering application, and typically the

ECS will automatically construct any JCL stream required.

Frequently provided abstractions allow the user to access

and manipulate files prior to executing an application.

These include file attachment, detachment, deletion,

purge, and copy function. For example, the ANOPPcommand

ATTACH /FILEIO/A attaches the permanent file known to the

operating system as FILEIO and assigns the local name A to

be used within the ANOPPenvironment.

4.1.3 Execution Control

Mechanisms provided by the ECS for user control of

the execution sequence allow for uniform execution, user

defined sequences, automatic design, and restart.

Uniform Execution of Applications

In a particular ECS, the user selects an application

for execution via either a command, a menu selection, or a

response to a promptive message. Regardless of interface

mode, the user supplies the "name" of the application and

supporting information such as source of input data. The

user may also have the option, as is the case in ISAS, of

executing the application in batch or interactive mode.

39

There are four architectural approaches used in executing

an application:

(1) The application may be a subprogram callable

directly by the ECS code.

(2) The application may be an independent program

placed into execution on the same processor as the

executing ECS via a JCL stream. The ECS pauses and waits

until execution is complete before continuing with the

next user command.

but

user

pause

next

(3) Same as (2) except the ECS does not

immediately continues executing with the

command.

(4) The application may be an independent program

placed into execution on a different processor in a

distributed network via a JCL stream. The ECS immediately

continues execution with the next user command, not

waiting for completion of the application.

A system may use only one approach, e.g., in ANOPP

all applications are integrated into the ECS as

subprograms, or may use a combination, e.g., ACTION uses

(3) and (4). Regardless of the approach taken, the ECS

automatically generates any JCL stream required. Thus

from the user viewpoint, the applications are selected and

executed in a uniform manner.

40

User Defined Execution Sequence

In any ECS, the user has ultimate control over the

execution sequence. However, the ease and flexibility of

defining the sequence varies depending on the central

interface mode. In the conversational menu and promptive

message . systems. the user iterates through the menus or

promptive sequences, selecting the next task upon

completion of the previous one. There is no mechanism

provided by these systems (ordinarily) to automate or

predefine a sequence. Due to their simplicity, they are

easy to use and flexible for design scenarios which are

not complex or which are not frequently repeated.

However, for complex or repetitive scenarios the command

languages provide more ease and flexibility in usage. 'In

these systems, the user is provided a rich assortment of

mechanisms for predefining sequences, repeating sequences,

altering sequences, and saving sequences.

In the command language systems, the execution

sequence is defined by a sequence of commands. In batch

systems, the sequence of commands is completely predefined

by the user and is input as a single unit to be executed

from beginning to end. In the conversational systems, a

single command may be supplied as a unit for execution

before the next command is given or a sequence of commands

may be given as a unit. For example, lAC provides a

"BEGIN••• END block construct for a sequence of commands to

41

be executed as a unit. In these systems, provision is

made for temporarily or permanently saving a sequence of

commands for later use in a "building block" fashion. For

example, the ANOPP commands STARTCS and ENDCS enclose a

sequence to be saved. The CALL command is used.to bring a

saved sequence into execution. Several sequences, each

with a different identifier, can be saved on various

files. When such a sequence is "called" into execution,

parameter substitutions can be made in a manner similar to

that found in assembler language macro expansion. The

command "CALL SEQI CA = B, 10 = 20)" would access the

saved sequence identified by SEQl, inspect the contents,

replace the variable name A with B and the integer 10 with

20' for all occurences, and then execute the resulting

sequence of commands. With these commands, a user may

build a personal library of command sequences to be used

repeatedly in constructing complex scenarios. Other

systems which provide for saving sequences are ODIN, lAC,

and NICE.

A command language typically provides flexible

control structures used in combination with command

language variables. Commands which provide for control

structuring include the generic forms "GO TO label",

"CONTINUE", "IF condition THEN command(s) ELSE

commandCs)", "DO WHILE condition command(s)", and "DO

UNTIL condition command(s)". Commands may also be

42

provided to assign values to command language variables,

utilizing expressions involving constants and previously

defined command language variables. In some systems, such

as ANOPP, the command language variable are also visible

to the engineering applications. The ANOPP application

may query the existence and value of a variable and also

may create or modify a variable. By utilizing the control

structuring and variable assignment commands, the user can

construct complex design scenarios involving repetition

and conditional branching.

Automatic Design

Elements of automatic design are provided in those

command language systems which support both flexible

control structuring commands and command language

variables which are visible to the engineering

applications. By using these features, the user may

construct a sequence of commands which utilizes the

variable values set by a completed application to

determine the next execution sequence. Also these results

can be used to determine the proper setting of variables

which will be used as input for subsequent applications.

Combining the looping, branching, and assignment commands

with the command variable visibility, the user can thus

perform some basic elements of automatic design.

43

Restart

Neither of the two variations of the restart

capability, pause and checkpoint, are supported in most of

the systems surveyed. However, the pause/restart f~ature

is found in lAC and the checkpoint/restart feature is

found in ANOPP. lAC provides a utility subprogram which

an engineering application may call, perhaps between

design cycles, to temporarily return control to the

executive command interface level. The user may then

perform intermediate tasks such as querying and updating

a data base before returning control to the pausing

application. ANOPPprovides for checkpoint/restart at the

executive command interface level. The CKPNT command

saves the current executive environment on a file and the

RSTRT command· may subsequently be used to reestablish the

saved environment. This environment includes information

such as names of attached files, command language variable

names and values, temporary data created under executive

control, and various control data. The surveyed systems

do not provide for checkpoint/restart at the application

level. However, a particular application may provide this

capability to the user, independent of the ECS framework.

4.1.4 Data Movement

The typical engineering application requires two

types of input data, low volume and high volume, and also

44

generates . output data of the same two typ~s. There are

various design app~oaches utilized in the surveyed systems

for creation, modification. storage, and flow of these

data between applications.

Low Volume Data

Design approaches for creation and general movement

of low volume data include the use of pre/postprocessors,

command arguments, command. language variables, and the

data managemerit component~

Pre/postprocessors. In conversational systems, a

special preprocessor program may be executed prior to the

desired application which prompts the user for the input

data. The data is typically validated and stored on a

file to' be. subsequently accessed and read by the

application •. The·format is precisely as expected by the

application. Usually. as in the PRIDE and ACTION systems,

the user selects the preprocessor for execution as any,

other application. However. in the ISAS· system, the

executive automatically brings into execution the proper

preprocessor for a particular application. A special

postprocessor may take the output from one application and

either allow the user to modify the data for reuse by .the

same application or translate it to another format for use

by a different application.

Command Arguments. In some command language systems,

such as lAC and DIGIKON, the command arguments are used to

45

pass values of certain input parameters to the

application. The executive often passes these values to a

special module written for the application for validation

before the main code for the application begins execution.

Command Language Variables. In some command

language systems, the command language variables are used

to pass data between the executive command environment and

the application. For example, the ANOPPsystem passes

variable names via command arguments. The command

"EXECUTE application (localname = actualname, •••)"

generates a name translation table. When the application

code calls an executive utility module (e.g., ASKP, GETP,

PUTP) to access or create a command language variable, a

local name is used as an argument. The utility uses the

translation table to retrieve the actual name by which the

variable is stored. An early system, ODIN, utilized a

novel mechanism for input data communication which made

no demands on the application code. In the input data

file for an application, the user would embed "cues"

identifying the command language variable whose value

should be used. Prior to executing the application, the

executive would scan the input file and replace the cues

with the current value of the variables. The application

would then read the file in its normal way. A similar

scheme was used in passing output data as command language

variables but with slight code modification. The PRESTO

46

system employs the FORTRANNAMELISTfeature in an approach

similar to that of ODIN.

Data Management Component. Low volume data may be

created, modified, and moved between applications via the

facilities provided by the ECS data management component,

as discussed in Section 4.2 below.

High Volume Data

Design approaches for satisfying the management

requirements of high volume data can be categorized into

those providing for user creation of the data and those

providing for flow of data between applications.

Data Creation. Three basic design approaches allow

user creation of high volume data and include the use of

data generators, the ECS data management component, and

auxiliary components.

Data generators are special types of preprocessors

which utilize a small amount of input data, either

directly from the user or from another source, to generate

a larger amount of data which will be used as input to an

application. For example, generators are employed in

structural analysis for generating nodal values for a

large structural grid from a "brief" grid description.

Generators are increasingly being introduced into

interactive computing environments. The facilities of the

data management component may be used to create data files

in specific format required by an application.

47

Auxiliary components may be incorporated into an ECS

to provide this capability for specific types of data.

For example~ the ANOPP Table Manager provides commands for

the creation and modification of engineering tables which

are subsequently accessed by applications via special

utility modules.

Data Flow. There are three design approaches which

provide for high volume data flow between applications:

direct flow, translated flow, and abstracted flow.

Wilhite [7] uses the alternative terms close-coupled

interface, loose-coupled interface, and loose-coupled

integration respectively.

Direct flow of data requires that an application

create the data in precisely the format required as input

by a subsequent application. This is the method

traditionally used in CAD/CAE and is prevalent in many of

the surveyed systems. As the library expands with many

applications which interact, this approach yields a

increasingly complex administrative task of insuring

correct correspondence of formats within the application

codes. Among the systems utilizing this approach are

RAVES and ANOPP.

Translated flow of data requires intermediate

processing between exe~ution of the application involved.

Pre/post processors are utilized to translate the data

which is created as output from one application into the

48

format required for input to a second application.

Typically there is a special processor developed for each

pair of interacting applications. The PRIDE system

employs the relational data base manager RIM to provide an

intermediary data base for storing output data which has

been translated by a postprocessor into a generalized

format. This data may subsequently be accessed and

translate by a preprocessor into the precise format

required by a second application.

In abstracted data flow the applications which create

and access the data are not concerned with format, storage

form, or in what order the data was created. A

centralized data base is used for data communication

between various applications. These concerns are

typically the responsibility of a data base manager

through which all creation/access is performed. The

application creates/accesses data by specifying some type

of indentification which the data base manager internally

correlates to a set of predefined formats to accomplish

the desired function. Since ordering is not of concern,

the application may access only those data items which are

required. Abstracted data flow is not apparent in the

systems surveyed except in the DYSCO system which obtains

the abstraction through combination of the executive and

data management components. Much of the input data for

DYSCO applications is obtained directly under executive

49

control, utilizing tables which contain the requirements

for the various applications. A table is prepared for

each application by the software developer and contains

information about each data item which may be required,

such as data type, existence criteria which must be met

before the user is asked to supply input, and range

constraints for input validation. The executive controls

the input consistently across applications, directs the

storage process, provides an editing capability, and

provides access by the application via special utilities.

The applications access data by name only, thus obtaining

abstracted data flow.

4.2 Data Management Component

The data management component provides for storage

and access of data within the ECS environment. The

primary focus is on management of engineering data for use

by the various applications. Design approaches include

the use of a file systems, a file partition manager, or a

data base manager.

4.2.1 File System

In the file system approach. files are viewed as

indivisible and uninterpreted objects which are to be

uniformly treated without regard as to content. Other

than those file capabilities provided through central

interface abstraction of the host operating system (e.g.,

50

file attachment>, there are not special provisions for

creating, modifying, and accessing file contents. The

applications utilize directly the host file system

utilities, such as the Control Data Cyber Record Manager,

or utilize the programming language Input/Output features,

such as FORTRAN READ/WRITE statements. The engineer

creates and manages the files through the host file

system. Uniformity in file usage may be obtained through

convention. For example, in the DIGIKON system fixed file

units are consistently used for the various types of data

such as modeling data, plotting data, or "scratch" data.

4.2.2 File Partition Manager

In the file partitioning approach. each file is

divided into a collection of logically independent sub­

files or partitions. Each partition is analogous to a

separate file in the file system approach and thus may be

created, modified, and accessed as a separate unit. The

file partition manager provides utilities to the

applications for storing/retrieving data and also provides

creation/manipulation capabilities to the engineer user

through the central interface. A partition is typically

composed of ordered records, the contents of which are

also ordered, with the creation and access of data being

rigidly coordinated as in the file system approach.

Partitioning allows various independent data to be stored

51

on one file(s) and thus reduces the overall number of

files required for a design scenario.

An example of a file partition manager is the ANOPP

Member Manager (MM). A partition is called a "data

member" and is uniquely identified by a combination of

filename and member name. A member is composed of

variable length records which may be composed of distinct

formatted elements (e.g., integer, real array, string) or

unformatted "words". In either case, the MMabstracts the

internal format or representation of the data such that

access is by position within a record. Twelve utilities

are provided to the application for data manipulation,

such as MMPUTW for writing a specified number of words to

a member or MMGETEfor reading elements from a member.

Manipulation also may be performed by the user through

twelve provided commands, such as MEMLIST for listing a

specified member or UPDATE for updating a member down to

the element level of detail. Other systems which support

a file partition manager are CASE, lAC, NICE and DYSCO.

4.2.3 Data Base Manager

In the data base manager approach, the file view

remains prevalent but the creation and access of data need

not be as rigidly coordinated. Data items are created/

accessed by "name" without regard to order of creation and

storage form. Thus items created in a certain order may

52

be accessed in random fashion. Applications can share

information without an agreed on common format and can

view data without concern for other data not needed.

Various utilities are provided to applications for

creating and accessing data, and special query commands

are provided the user for the same functions. The data

base manager allows for evolving semantic content and

storage form without modifying existing applications and

.user queries. This type of manager is typically developed

to support engineering-at-large independent of the ECS

environment and is incorporated into the ECS as an

independent component.

Although several systems incorporate a data base

manager. there is a lack of uniformity in usage and there

appears to be no single manager which is prevalent. The

relational data base manager RIM is utilized by PRIDE for

translating data between applications. RIM is also

incorporated into ISAS as a utility for applications which

may require it. AVID incorporates the ARIS relational

data base manager.

4.3 Library Component

The library is composed of applications available for

execution through the central executive interface. It is

conceptually viewed as a repository where new applications

may be added and obsolete applications maybe deleted.

53

From the architectural view of the relationship between an

application and the remaining components of an ECS, there

are three design approaches which may be used, termed here

the "independent application", the "interfaced

application", and the "integrated application".

4.3.1 Independent Application

The independent application, although accessible

through the executive central interface, is capable of

being executed independently and outside of the ECS

environment through an appropriate JCL stream. This type

of application is developed independently of the ECS

environment and does not utilize any of the utilities

which may be uniquely provided by the ECS. When such an

application is selected within the ECS environment, the

executive provides for generation of the JCL stream

requi~ed for its execution. Examples of independent

applications include the structural analysis NASTRAN and

SPAR programs. Menu driven systems, such as ISAS, ACTION,

and PRIDE, as well as some command driven systems such as

lAC, support this type of application.

4.3.2 Interfaced Application

The interfaced application is similar to the

independent application in that it typically is developed

independently of the ECS and does not require any of the

unique ECS utilities for execution. However, the

54

application is incorporated into the ECS software as a

subprogram directly "callable" for execution. In some

systems, the application code may require minor

modification to interface the input/output properly to the

executive.

4.3.3 Integrated Application

The integrated application is developed for execution

within a specific ECS and utilizes the unique utilities

provided by the system. These applications are

subprograms within the ECS and could not be executed

externally to the supporting ECS software. For example,

ANOPP was designed to support integrated applications and

provides a rich assortment of utilities' for dynamic

storage usage, data movement through command variables,

retrieval/interpolation of engineering tables, and file

partition manager functions. Other systems which were

designed to support inter grated applications include DYSCO

and lAC.

4.4 Auxiliary Components

Auxiliary components are not commonly incorporated

into an ECS; however, their occurrence is found in some

systems which are designed to accommodate integrated

applications. Two prominent examples are the inclusion of

a Dynamic Storage Manager, within lAC and ANOPP, and a

55

Table Manager, within ANOPP. The Dynamic Storage Manager

component is provided to overcome the FORTRAN restriction

of static storage allocation. A large block of storage is

statically allocated for use by applications or other

system components with subsequent expansion or release.

The Table Manager component allows for creation of

engineering tables with subsequent query/interpolation

capabilities. Such auxiliary components are intended to

increase overall system performance and reduce the total

coding requirements.

56

5.0 HISTORICAL PERSPECTIVE

The genesis of the ECS in the engineering design

environment is found in the 1960's when individuals sought

their own personal automated procedures for executing a

sequence of independent programs. By the end of the

decade, various groups in industry and government

recognized the need to provide a framework for

.incorporating engineering programs into comprehensive

systems for improved accessibility, efficiency, and ease

of use. Su~sequent efforts have spawned a variety of

:systems for diverse engineering disciplines and

environments. The evolution from early efforts to the

current state-of-the-art ECS can be broadly divided into

three stages of developments: embryonic, batch

environment, and conversational environment.

5.1 Embryonic Stage <1960' s)

A primary feature characterizing CAD/CAE tools has

historically been the close operating relationship between

the user and the computer [IJ. In the early 1960's, the

computer was still viewed as a large and efficient

calculator which could be programmed to carry out

iterative, trial and error sequences of calculations. In

many environments, only one user at a time could be served

by the machines which were often operated directly by the

57

users. As their size and power increased by orders of

magnitude, computer systems had to be operated and managed

by a specialist staff for utilization efficiency. This

decade saw the emergence of time-sharing systems which

allowed many programs to be run simultaneously {as far as

the user could tell} and an increase in accessibility

through interactive or remote job entry terminals. As the

sophistication of the computer environment grew, so did

the range and complexity of CAD/CAEtools. The role of

the computer was expanded beyond that of a calculator to

include automated aids for solving very large problems.

For example, solution of a large scale optimization

problem could involve 12,000 constraints and variables and

yield in excess of 100,000 lines of output [81. To

perform an engineering design task, it was often necessary

to execute a sequence of large programs each requiring

individual JCL streams and unique input data formats

{which frequently were incompatible}. In this atmosphere

of change and increasingly complexity, the engineer

frequently came to view the computer as a rather remote

facility surrounded by jargon speaking experts.

To reduce the efforts and tedium required to execute

sequences of programs, individual engineers sought their

own personal solutions. Template JCL streams for multiple

executions were constructed and saved, to be later

tailored for specific instances of usage. These templates

58

grew in number and complexity and were shared with

colleagues to form small but personal libraries of JCL

streams. These libraries were embryonic attempts to

centralize and automate the process of selecting desired

programs, ordering their execution, and specifying the

source/destination of input/output data.

As a result of steady growth in digital computer

applications, by the end of the decade nearly all

engineering disciplines were aided to some extent by CAD/

CAE tools. Difficulties in using a sequence of tools

became a significant problem, recognized not only at the

organizational and inter-disciplinary levels.

individual engineer level but also at higher

A typical

large company engineering environment in the late 60's is

that described for the Product Engineering Department of

Grumman Aerospace Corporation in [9]:

" ••• Each group had some collection of applicable
computer programs and manual procedures, but
integration of analysis efforts relative to
consistent or planned data formats was hard to
find. In addition, computer programs had not
been structured to perform a specified flow of
analyses needed to perform the overall
engineering analysis functions in a disciplined
or organized manner ••• A very large number of
engineering man hours were being wasted, by
today's standards, in data calculation,
acquisition and transmittal, and in manually
manipulating data from one format to another,
from one axis system to another, etc."

A milestone in laying the foundation for the future

ECS was born out of this atmosphere and became known as

59

IDEAS. Within Grumman, it was recognized that an

organized approach was essential to give greater

confidence that structural drawings would reach

manufacturing according to a schedule and that changes in

the primary structure would not occur after release of the

drawings. Developed during the 1967-1968 time period

within Grumman, IDEAS was a collection of computer

programs, each run in batch mode, and each with well

defined procedures and sequences for their use by various

engineering groups. The programs were those which were

required for aerospace vehicle sizing and which had a

direct effect on schedules for the release of structural

drawings to manufacturing areas. To monitor the progress

of the various groups using the programs for a design

effort and to insure inter-group interface requirements

were satisfied, an IDEAS room was utilized to act as a

"command and control post". The lead personnel from the

groups would meet each day in the IDEAS room to chart

activity and progress against the master schedule. Used

for the first time on the F-14 aircraft, the IDEAS

approach reduced by eighteen months the time period which

would have been required with pre-IDEAS procedures. By

1973, IDEAS encompassed seventy six (76) engineering

programs used by the inter-disciplinary groups involved in

design.

60

IDEAS is representative of this time period in two

respects: the concern for more efficient utilization of

CAD/CAE tools and the organizational concepts subsequently

defined. Defining the frequently used sequences of tools

and the interactions of their data requirements laid the

foundations for development of the centralized framework

of the ECS.

5.2 Batch Environment Stage (1970's)

The logical next step in development was the

centralization of the CAD/CAE tools into one engineering

system. The RAVES system, initiated in 1973 by Grumman,

was based on the IDEAS concepts and was one of the most

comprehensive systems of this era. Intended to embody

major analysis efforts from all aerospace vehicle design

disciplines, tools or applications were categorized as

preliminary design, point design (for the proposal

effort), and detail design. Each application had an

"exec" which prompted the user for information regarding

the source/destination of input/output data. Data flow

between applications was direct, that is, each program

generated data in the precise format required for a

subsequent application. The development of ISAS by the

Boeing company paralled RAVES and was intended to reduce

flow time in preliminary structural design analysis. Both

of these early systems employed elementary executive

61

components which performed "routing" functions for the

selected applications and utilized a file system for the

data management component.

Although interactive computer environments were

increasing during the 1970's, the typical engineering

application was executed in batch or non-conversational

mode. Corresponding to this typical usage, the ECS

developed during this decade was predominately designed

for batch execution and employed the command language mode

for the executive central interface. As previously

mentioned, RAVES was an exception and employed the

promptive message mode to a limited extent. The command

languages of early systems, such as ATLAS, were limited in

scope and generally provided only for the selection and

execution of applications and the designation of

source/destination of the input/output data. To augment

the language, however, sequences of FORTRAN statements

including COMMON block declarations were allowable

inclusions.

By the middle to latter part of the decade, the

command languages had become more complex and sufficiently

powerful to eliminate the need for FORTRAN statement

augmentation. Flexible control structures, allowing for

looping and ~onditional branching, became prevalent, as

well as methods for saving command sequences for later use

as "building blocks". The systems typically utilized the

62

file system approach to data management, provided low

volume data movement via command variables, and supported

independent and interfaced applications. Auxiliary

components were not typically utilized by systems of this

time period, which includes DIGIKON, ODIN, and PRESTO.

ANOPPwas developed during this time period as one of

the more advanced command languages systems and departed

from the others in several respects. A file partition

manager was utilized as a data management component, with

creation, modification, and general access capabilities.

Auxiliary components were utilized for dynamic storage

management and engineering table management. ANOPP

supported applications which were highly integrated. The

system continues to be actively supported and used by

several groups. It remains one of the more sophisticated

systems.

In addition to the command languages influenced by

programming languages, a separate "thread of evolution" is

seen in systems which employed command languages based on

the JCL of the underlying operating system. An early

system of this type was SAVES, developed in the early 70's

to automate the use of programs for preliminary structural

design. This system was an extension of the individual

innovations of the 60's where JCL template streams were

saved for later instantiation. The PICASSO and ISSYS

systems were developed in the late 70's and incorporated a

command language based on the Control Data

Operating System (NOS).

63

Network

5.3 Conversational Environment Stage (1980's)

Beginning in the late 70's and continuing into the

80's, a surge of interest in conversational computing

emerged which has exerted a strong influence on

development of the ECS. Applications which heretofore

operated solely in a batch environment are gradually being

modified to incorporate conversational characteristics.

Conversational preprocessors and data generators are also

being developed as "front-ends" for large, computationally

intensive applications [101. In parallel with this

interest, and perhaps as a result of it, there has been a

significant increase in the number of Executive· Control

Systems being developed throughout government and

industry. These systems invariably offer a conversational

central interface which incorporates the menu, command, or

promptive message mode.

The majority of these systems are less sophisticated

than the command language systems of the previous decade

and perform basic "routing" functions through a menu mode

central interface. They most often support iridependent

applications and thus automatically generate the JCL

stream required for execution. The data management

component is typically a file system, with a data base

64

manager sometimes made available through the library

component for ad hoc usage. These systems are designed

for a relatively small, single discipline, user group with

a limited number of applications anticipated. Systems of

this type include ACTION, CASE, IDEAS (NASA), LSSIAP, and

EASYCACD. PRIDE is also of this general type, but, as a

research prototype, it places primary emphasis on

utilizing the RIM data base manager as a means of

translating data between applications.

Although much of the current activity is devoted to

development of the simpler menu mode system, there is also

continuing d~velopment of the more sophisticated ECS.

Earlier systems, such as RAVES, ISAS and DIGIKON, have

undergone modification to accommodate the newly developed

conversational applications, preprocessors, and data

generators. A

lAC, maintains

newly developed command language system,

the flexible control structures and

capability to save command sequences typical of the batch

ECS while offering a conversational interface. lAC also

offers an auxiliary dynamic storage component to aid

integrated applications. The NICE system provides both a

batch and conversational command interface mode. Recently

developed systems of this category, such as lAC, CASE,

AVID, NICE, and DYSCO, typically incorporate a file

partition manager for data management. However, there is

interest in utilizing a data base manager, such as in

65

PRIDE and AVID. The command language mode is most

frequently chosen for the central interface in the more

sophisticated systems; however AVID utilized both the menu

and the promptive message mode.

A departure from the traditional General ECS has also

emerged in the form of the Domain ECS utilizing the

promptive message mode of interface. In this ECS the

executive component captures the engineering process and

incorporates knowledge about the data structures and

applications to effectively guide the-user through the

design scenario. One such system, DYSCO, has been

implemented and another, SUPER-CAD, has been proposed.

If the recent surge in ECS development is a reliable

predictor. for future efforts, it appears that the

remaining years of this decade may yield additional

systems, both for single discipline and inter-disciplinary

design communities. One such major project is the ongoing

design effort within the U.s. Army to develop a

comprehensive system, 2GCHAS, for inter-disciplinary

design and analysis of helicopters.

66

6.0 EVALUATION

Throughout the evolution and development of the ECS,

the. engineering communities have utilized diverse and

innovative design .appr oa ches in satisfying the

requirements and overall goals of the systems. Benefits

have been reaped and have led to a growing recognition of

their potential benefit to the engineering communities.

Accompanying the relatively recent surge of interest in

conversational computing, there has been a significant

increase in ECS development efforts. It thus seems timely

and appropriate to view the current state-of-the-art with

an eye on the future in an attempt to uncover areas where

further exploitation can be accomplished·and where new

advances in computer science technology can be employed.

With this perspective, there are four major areas which

invite scrutiny and consideration for further investi­

gations: inter-disciplinary usage, standardization,

knowledge utilization, and computer science technology.

6.1 Inter-Disciplinary Usage

Early in the history of the ECS there was recognition

of the need for comprehensive systems which could provide

an engineering design environment and which could spand

the boundaries of the various disciplines involved. This

is seen in the organizational concepts of Grumman's IDEAS

and in the original goals of the IPAD project.

67

In" some

sense, this has been accomplished by the current General

ECS which is designed for engineering-at-large and thus

can accommodate any engineering application and its

associated data structures. At least two of the systems,

ISAS and RAVES, are in practice used across various

disciplines. The 2GCHAS system is being designed for

interdisciplinary usage. Although the practicality of

inter-disciplinary use of an ECS has been demonstrated,

there are limitations in the current data movement methods

which inhibit realization of broader benefits. Each

discipline views the product being designed from distinct

vantage points and thus each requires input data and

yields resulting output data which is distinct and

generally incompatible with that of the other disciplines.

Hartung [Ill views this process as "Islands of Automation"

which will eventually bump into other Islands causing yet

another interface problem. For an inter-disciplinary

design environment,
.

automated data movement with

compatible interface between the disciplines is required.

As yet, however, compatibility of data has not been fully

realized within a discipline and is obtained only by ad

hoc methods such as special pre/postprocessors. Research

efforts, such as found in the PRIDE and AVID systems,

suggest that a centralized and standardized data base of

design data from which the various applications may

portability

The first

68

retrieve and deposit data may be a key to automated data

movement within and across the various disciplines.

6.2 Standardization

Only a few of the current systems reach a user

community beyond that of the original development group

although. by nature. the General ECS can accommodate the

needs of a variety of groups and disciplines. Those which

have include AVID, ANOPP, DYSCO, and ISAS. While it is

true that not all of the systems offer a complete

"tool box" of features. there is redundancy and overlap of

functional capabilities among the simpler systems and

among the more sophisticated systems. Many offer the same

basic functions but differ only in the design strategies

chosen and the implementation style.

This lack of standardization has implications for

future development and utilization potential. Much time

and effort is spent designing, developing, and maintaining

functionally redundant systems. As new systems are

introduced and as personnel transfer to different

environments with distinct systems. additional learning

time is required to gain new expertise. This is

particularly true for the sophisticated command language

systems.

As development of new systems continues,

issues in three main areas must be addressed.

69

concerns the applications. Each application code which

has been developed outside of any ECS environment must be

modified to interface with each ECS within which it is to

be used. Duplicated effort will thus be expended for

popularly used engineering codes. Integrated applications

developed within a specific ECS environment to take

advantage of the available utilities can rarely be

modified for a different ECS without extensive recoding.

Standardization would reduce these problems and allow a

higher level of application portability.

The second area is data management. Among the

various file partition manager and data base manag~r

components being developed and incorporated into the

systems, there is no single one (or even few) which has

gained common acceptance. Among the file partition

managers there is a high level of functional redundancy,

yet each has been developed uniquely for a particular ECS.

Within the few systems which incorporate a data base

manager, its usage is not coordinated and controlled to

the level required to parallel its usage in commercial

environments. Although engineering data is generally

acknowledged to be more diversified and thus the handling

is more complex than for commercial data, a standardized

data management component would enhance portability and

reduce the number of special pre/post processors currently

being required for data flow.

70

The third area is the host computer and operating

system. It has long been acknowledged that if significant

effort is expended in developing a software system then it

is desirable for the software to be transportable to other

computers and/or operating systems with minimum effort.

As a result of this view, the functional requirements and

the architectural design approach of the ECS are

frequently restricted in order to accommodate pOrtability.

Portability is obtained at the expense of not taking full

advantage of hardware and operating system features. For

example, characters may be packed four per word to

ac~ommodate IBMr DEC and Control Data installation~ but

there could be a serious degrading of efficiency on a

Control Data computer which allowed a packing of ten

characters per word. Another example is found in the

associated variable feature available to a FORTRAN

application running under the DEC TOPS operating system

and which provides the current number of records written

to any specific file. In the DYSCO ECS, utilization of

this feature could have significantly reduced the coding

requirements for a certain group of modules but was

restricted due to a portability requirement. It is not

reasonable to expect that a standardized ECS, which must

accommodate a variety of operating systems, would overcome

these problems. However, if a standard operating system

was available on the various computers found in

71

engineering environments, a standardized ECS could be

developed to exploit those features provided. There is

current interest in standardization of the UNIX operating

system. If this effort is succesful and if UNIX becomes

readily available for various scientific computers, it may

provide a powerful framework for ECp standardization.

Hartung [Ill has suggested that perhaps there is a·

growing market for third party software vendors who might

bring a universally usable system of this type to the

marketplace. In the current atmosphere of proliferation,

these issues and the feasibility for standardization

should be considered by the various engineering user

groups.

6.3 Knowledge Utilization

There are broadly three types of engineering know­

ledge which can currently be ·exploited in the ECS design

environment. The first is mathematical knowledge which is

independent of the human factor - individual differences

in expertise and experience found among design engineers ­

and which has traditionally been formalizable as

algorithms. The second is domain knowledge, which is also

independent of the human factor and which has

traditionally not been formalized. The third is expert

knowledge which is dependent upon the human . factor and

which has traditionally defied formalization.

72

Mathematical knowledge has been and continues to be

exploited in the ECS; however, the key to gaining

significantly more benefit from the future ECS is

exploitation of the second and third types of knowledge.

Mathematical Knowledge. The first type of knowledge

is the "backbone" of engineering design and has been the

basis for most engineering software since the early days

of computing. By its sheer nature, this knowledge is

easily represented by equations or other mathematical

algorithms. and its 'correctness, accuracy. and appro­

priateness are based on theoretical considerations rather

than being "dependent on the individual engineer user.

Virtually all of the mainstream CAD/CAEapplications are

implementations of various mathematical algorithms; as new

or improved algorithms are formulated. new or improved

applications follow soon thereafter. Efficient execution

of these algorithms has been a primary focal point for

past CAD/CAE research efforts in the quest not only for

improved algorithms and software implementation methodo­

logies, but also for improved hardware architectures, such

as those supporting parallel designs. Exploitation of

this type of knowledge has been and should continue to be

of critical importance to CAD/ CAE systems, in particular,

the ECS.

73

Domain Knowledge. Domain knowledge deals with how

the mathematical algorithms are used in a particular

engineering domain to obtain a design solution(s). In the

context of the ECS, domain knowledge is knowledge about

using various engineering applications in an efficient,

effective, and technically appropriate way. While a great

deal of engineering jUdgement is required in the overall

use of these tools (e.g. formulating the approach,

selecting specific applications, determining parameter

value ~ettings) a large part of the effective usage of

these tools is not dependent upon the human factor and is

the same regardless of the specific engineer user. This

includes knowing such things as what is a meaningful order

of execution, how to prepare or locate input data, what

intermediate processing is needed, and what is to be done

with output data. As a simple but frequently encountered

example, consider a two-application scenario where the

pattern of execution is always the same and is such that

the output from one application is used as input for ·the

other, but the output must first be reformatted by a

special processor. The knowledge required to perform this

pattern of execution is generically the same for any user

and varies only with usage context, yet in today's typical

ECS environment the burden of supplying the (often

redundant) details and insuring their validity is a user

responsibility. The Martin Marietta study [3] cited

74

previously in Section l~ found over 100 situations which

could arise in a CACDscenario and which would stop

progress unless the right information was known by the

user. The right information, more often than not, is

precisely that domain knowledge required to use the mathe­

matical applications correctly in an integrated fashion.

Although this information has generally not been

centralized and organized with automation in mind, it is

available and offers no hurdle to formalization.

Capturing this type of knowledge would free the user from

knowing . the details associated with integrated usage of

applications and would significantly increase the power of

the ECS.

The General ECS, which has dominated development

efforts, is by nature limited in capturing domain

knowledge. With the emphasis on generality. the General

ECS usually provides little support for capturing domain

assumptions such as the role of an application, what type

of input is required and its location, or what inter­

mediary steps are implicit to a particular design process.

The basic goal of the General ECS is to service

engineering domains "at-large" and thus is in conflict

with the goal to exploit knowledge about a specific

domain. As a result, the General ECS is not a suitable

vehicle for future exploitation of domain knowledge.

75

The Domain ECS is by nature a suitable vehicle for

capturing domain knowledge. The goal of such an ECS is to

capture the design process of a particular engineering

domain and exploit knowledge about the applications

available, such as their role and data requirements. The

system performs as a guide and requires less detail in the

instructions to accomplish a design task. It makes

assumptions about the domain, such as the data structures

required and the role of each application, and is capable

of performing many functions automatically based on

contextual information without user instruction. The

Domain ECS is a recent development, with DYSCObeing the

only implemented system (among those surveyed) which

exhibits these characteristics. DYSCO is sUfficiently

mature, however, to serve as a prelminary model for future

development efforts.

Expert Knowledge. Expert knowledge is that knowledge

about a domain which resides only within the individual

expert engineer and which has in the past defied

formalization. It is manifested at those points in the

design process when the engineer inspects the results from

a CAD/CAE application, assimilates and integrates this

data with his/her internally held expertise, and, using

engineering jUdgment, decides what is to be the next step

in the design scenario. The way in which this sequence

occurs and the knowledge which is utilized appears to be

76

personalized and varies among individual engineers.

Although there are individual differences, a given expert

is generally consistent and repetitively applies personal

methodologies and expertise in making design decisions.

Utilization of this type of engineering knowledge is not

currently incorporated into the ECS environment.

Recent develop~ents in "expert system" technology

[12], emerging from the Artificial Intelligence (AI)

branch of computer science, offer potential for capturing

the third type of engineering knowledge. Limited to

academic laboratories in the 1970's, this technology is

now becoming cost-effective and is beginning to enter into

commercial applications. The demonstrated utility of the

expert system has been in capturing the judgment and

decision process of the individual experts. Although

existing expert systems are for other domains, these

domains bear many similarities to the engineering

judgement and decision process described above. It is

reasonable to anticipate that if properly applied, expert

system technology could aid in reducing the demands for

human resources and expertise in the engineering design

process.

The ECS offers a potential framework for embedding

expert system technology. From a cursory review of

current expert technology, two possible approaches appear.

An expert system could be developed for the General or

77

Domain ECS and selected for execution as any other

engineering application. For example, in optimization

studies, where several or many different parameters may be

varied in search of an "optimal" solution, an expert

system could perhaps be developed to select initial

parameter settings and to subsequently evaluate their

effect and "decide" which parameter changes offer most

promise in finding the best solution. A second approach

is found in the underlying philosophy of the Domain ECS,

which as discussed above. emerged from the view that in

limiting the computerized environment to a specific design

process. assumptions and knowledge about that process

could be incorporated in the executive to yield more

automatic deductive mechanisms. The aims of the Domain

ECS and the expert system are ~imilar: both are concerned

with capturing knowledge about usage of the more basic

mathematical knowledge of a domain. Interestingly. the

jargons are also similar and overlapping. Because of

these basic similarities, the Domain ECS offers a more

natural habitat and greater potential for embedding expert

system technology, and thus exploiting expert knowledge,

in the engineering design environment.

6.4 Computer Science Technology Transfer

Since the early days of computing, the engineer has

maintained intimacy with the processes involved in using

78

the computer as an aid to design. The engineer has been

accustomed to participating in the software life cycle by

formulating the requirements and specifications for an

application. Frequently the engineer also performs the

design, coding, testing, and even the maintenance phases

of the cycle. During the early stages of ECS development,

it was a natural extension of these experiences for the

engineer to take the primary role in determining the

requirements, specifications, and design of these systems.

Based on knowledge and expertise gained as a result of

using operating systems, programming languages, and other

tools, the engineer-designer has led the evolution of the

general ECS up until the present.

However, during the time frame of ECS evolution the

field of computer science has rapidly expanded and

matured. Advances have been made in areas such as

operating systems, programming languages, hardware

architecture, networks, software engineering, data bases,

and artifical intelligence to produce increasingly

powerful and sophisticated tools. In many cases the

problems found in the design of an ECS are similar to

problems in the more general design of operating systems,

programming languages, and database management systems.

Through research in computer science, elegant, efficient,

and general solutions "to many of these design problems

have been developed. For example, the UNIX operating

79

system [13] provides a hierarchical file system,

programmable command languages (the "shell"), and clean

interface for the insertion and joining of new appli­

cations (the concepts of "filters" and "pipes", among

others). The Ada programming language [14] provides

methods for building application "packages" that can be

joined via an ECS into a more reliable, portable, and

maintainable software system. Similarly, many recent

advances in database systems would be of use in the design

of an ECS [15].

Computer science thus provides a wide spectrum of new

design concepts that might be used by future ECS designers

and that also may provide a software base on which future

ECS designs may be implemented with greater ease,

reliability, and elegance. An example is found in the

UNIX hierarchical file system. A significant portion of

the code for current file partition managers is devoted to

implementing basic functions of a "one-level" hierarchical

file system. These functions satisfy the requirement to

minimize the number of physical files required for data

storage while also allowing selective access to groups of

'data which are logically independent. The hierarchical

file system supported by UNIX could be appealed to

directly for implementing this ECS data management

requirement. Not only would the coding requirements be

reduded but the testing requirements also, since the

80

reliability of the UNIX file system has been established

through extensive past usage. Also, the UNIX file system

provides additional capabilities which are not provided by

today's ECS but would undoubtedly be useful. Examples

include "multi-level" hierarchical organizations and

"links" which allow simultaneous data access by several

users. Having benefitted from a great deal of development

effort and from the knowledge of designers with diffuse

computer science expertise and experience, the design of

the UNIX file system is more elegant than the designs of

current file partition managers.

Too few of the advances in computer science

technology, such as those found in UNIX, have found their

way into the design of recent executive control systems.

The engineering community should seek partnerships with

the computer science community to make greater use of

these advances in any new'ECS design. In the past too

much of the design effort for an ECS has gone into

solution of the low-level design problems common to most

large software systems (data base management, data

movement between applications, user interface) and too

little into the unique problems associated with

engineering design, such as the utilization of domain

knowledge mentioned above.

One of the important conclusions resulting from this

survey of the variety of ECS system architectures is that

81

many of the design problems in an ECS are common problems

that arise in any large software system architecture. By

utilizing solutions to these common problems devleoped by

the computer science research communityr the future ECS

designer may concentrate his efforts much more fully on

the interesting and unique high-level problems of the

underlying engineering design applications area.

User communities other than engineering have also

utilized the ECS concept to integrate a variety of

applications. Decision support systems, in particular, as

well as programming design environments, contain many

useful concepts relevant to ECS design. It would b~

beneficial to the future engineering ECS to capture the

expertise and experiences with these related systems.

The engineering ECS provides a fertile field for

academic computer science research. It is already

accepted as a proper vehicle for research in academic

engineering environments. Examples include SUPER-CAD

which provided the basis for a Master's thesis and AVID

which has provided the basis for several doctoral

dissertations. Computer science researchers have been

active in the evolution and development of integrated

systems in the other domains but up until the present have

not focused their attention on engineering design. The

requirements for the engineering design environment

include many found in other domains, but engineering has

82

complexitites and diversities which post unique problems

for which efficient solutions are not readily known.

Greater attention by the computer science community to the

unique problems posed by the engin~ering ECS would lead to

benefits for both engineering and computer science.

83

7.0 CONCLUSION

The Executive Control System was introduced into the

engineering design environment to provide a framework for

unifying various engineering applications into a

comprehensive system. The benefits include improved

accessibility, efficiency, and ease of use. Among the

surveyed systems, there is wide variance with respect to

the executive, data management, and library components as

well as auxiliary components. The components are

characterized by the architectural design approaches

employed. The central user interface is the most

prominent feature of the executive and may be designed to

utilize the command language, menu, or promptive message

mode. The data management component is designed to

utilize a file system, a file partition manager, or a data

base manager for creation and general access of data. The

library may contain independent, interfaced, or integrated

applications. Auxiliary components are not often found in

current systems, but those which have been utilized

include capabilities for dynamic storage management and

engineering table management. Each system may be

classified as either a General ECS, designed for

engineering-at-large, or a Domain ECS, designed for a

specific engineering discipline. Until the 1980's, when

there emerged a surge of interest in conversational

84

computing, ECS development focused on use of command

languages for batch environments. More recently we have

seen an increase in the number of systems being developed.

A significant portion of these new systems utilize the

menu mode and offer an elementary set of capabilities and

features. Development of more sophisticated systems

continues, with predominant use of command languages and

file partition managers. Areas which offer potential for

future exploitation and increased benefit to the

engineering user communities include inter-disciplinary

usage, standardization, knowledge utilization, and

computer science technology transfer.

85

8.0 SYSTEMSNAPSHOTS

This section contains a brief description of each of

the twenty-four Executive Control Systems included in the

survey, ordered alphabetically by acronym. The references

to source documentation for each are included.

(2GCHAS) Second Generation Comprehensive Helicopter
Analysis System [16]

2GCHAS is an ongoing design effort within the

AVRADCOMDirectorate of the u.S. Army. The goal of the

system is to provide a comprehensive design environment

for inter-disciplinary analysis of helicopters.

(ACTION) [17]

ACTIONwas developed in 1981 by NASALangley Research

Center for a small research group ~nvironment. Designed

for a distributed environment, it is implemented on a

Prime 400 minicomputer linked with a Control Data 6600

mainframe. The conversational system employs the menu

mode for central interface with executive generation of

JCL streams as required to execute independent

applications.

(ANOPP) Aircraft Noise Prediction Program [18.19.20.21.22]

ANOPPwas developed by Control Data Corporation under

contract for the Aircraft Noise Prediction Office at NASA

Langley Research Center with initial delivery in 1977. A

sophisticated system for the batch environment, ANOPPwas

86

implemented on the Control Data Cyber mainframe for usage

by various engineering groups within the noise prediction

discipline. The primary components include an executive
,-

which employs the command,'Lanquaqe interface mode, a file
f,

partition manager called Member Manager, and a library of

highly integrated applications. The command language

provides flexible control structures and common language

variables for low volume data movement. Auxiliary

components include the Dynamic Storage Manager and the

Table Manager.

(ATLAS) Integrated Structural Analysis and Design System
[23,24]

ATLAS was developed by Boeing Commercial Airplane

Company to support structural analysis and design for

aeroelastic vehicle studies involving multiple

disciplines. Initiated in 1969, the system was designed

for a batch environment. The executive utilizes an

elementary command language which can be augmented with

FORTRAN statements to expand its power and flexibility.

Pre/postprocessors are employed to process input data and

manipulate output data. A file system is employed to

permit data movement between applications via named random

access disk files. The system was developed for the

Control Data 6600 mainframe.

87

(AVID) Aerospace Vehicle Interactive Design System
[25,7,26,27]

Developed at NASALangley" Research Center, AVID was

initiated in the mid 1970's to support aerospace vehicle

design and to overcome the major weaknesses of a

predecessor system, ODIN.

employJa menu mode interface.

The executive component

The relational data base

manager ARI~ provides for a dynamic centralized design

data base for inter-application communication, a

dictionary of design data descriptions, and a directory of

application descriptions.

(CASE) [28]

CASE is currently being developed by Johnson Space

Center "ii th expected completion in 1984. The

conversational system employs a menu mode interface, with

library applications which may be batch or interactive.

Preprocessors for each application prompt the user for

information required for execution. The suns file

partition manager is employed to allow tailored

construction of a partition by the creating application.

Large volume data movement is direct with the creating

application and the subsequent retrieving application

using corresponding formats.

(DIGIKON) Digital and Continuous Flight Control System
[29]

DIGIKON was initially developed by Honeywell, Inc. in

1974 to support modeling and analysis of digital and

88

continuous flight control systems. Initially designed for

a batch environment, the system has been upgraded through

various government and industry contracts with the most

recent version, DIGIKON IV. supporting conversational

features on the Control Data Cyber, the PRIME, and the

MULTICS computers. A command language is utilized for the

executive interface with the command keyword indicating

the specific application to be executed. Preprocessors

for the applications prompt the user for any missing

arguments in the command statement and also for the data

input source. A file system is utilized for data

management, with utilities for initializations, printing,

editing, copying, and reading. File usage is by

convention for specific types of data content such as

modeling data or graphics data.

(DYSCO) Dynamic Coupling System [30,31J

DYSCO was initiated in the late 1970's by Kaman

Aerospace Corporation for dynamic analysis of structures

in helicopter studies. It has continually been upgraded

and has broadened its user base to include various

government groups. A Domain Executive, the executive

captures the engineering design scenario of constructing

and analyzing a structure. A file partition manager is

employed and, in cooperation with the executive, provides

for abstraction in data movement between the highly

integrated applications.

89

The interface mode is promptive

message.

(EASYCACD)Easy Computer Aided Circuit Design Programs [3]

EASYCACDwas developed in 1982 by Martin Marietta

Denver Aerospace to unify circuit design applications,

reduce application training requirements, and eliminate

the need for user knowledge of the host operating system.

The promptive message interface mode is utilized with

prompts being automatically reduced as the user gains

experience and is able to anticipate question and answer

sequences. Preprocessors are used to prompt the user for

application input. Implemented for the DEC VAX computer,

the UNIX operating system capabilities are utilized for a

file system data management components, for job

submittalsr and for online tutoring.

(IAC) Integrated Analysis Capability [32, 33J

IAC was developed in 1983 by Boeing Aerospace Compa~y

under contract for NASAGoddard Space Flight Center. The

executive utilizes both the command language mode, which

supports approximately 50 commands, and the menu mode.

Two types of data management are provided, a file system

and a file partition manager based on relational data base

concepts. Developed to support thermal, structures, and

control technologies, the library supports interfaced and

integrated applications. An auxiliary Dynamic Storage

Manager component is incorporated.

90

(IDEAS) Integrated Design Analysis System [34J

IDEAS was developed during the 1967-1968 time period

within Grumman Aerospace Corporation as an organizational

approach to give greater confidence in the scheduling of

structural drawing releases to the manufacturing

department. IDEAS is not an ECS but instead is a

collection of programs utilized in aerospace vehicle

sizing. The usage of these programs was systematically

monitored to increase overall productivity. IDEAS is

representative of the engineering atmosphere of its day

and reflects the recognition of the need for Executive

Control Systems in the engineering environment. The later

development of the RAVESsystem was based on the IDEAS

concepts.

(IDEAS) Interactive Design and Evaluation of Advanced
Spacecraft [35J

The IDEAS system was developed in 1982 by NASA

Langley Research Center for analysis of antenna spacecraft

for the Land Mobile Satellite System communications

missions. This conversational system is composed of an

elementary executive utilizing a menu mode interface. A

file system is utilized for data management.

(IPAD) Integrated Products for Aerospace-Vehicle Design
[36,37,38,39J

IPAD was proposed in the late 1970's by NASALangley

Research Center as a means to unify the automated software

tools used throughout the various phases of aerospace

Inc.

with

r

91

vehicle product developement. From concept through design

and analysis to manufacturing, the system was to support

the various applications and provide for automated data

movement and interfacing. However,. the computer science

technology of the day was inadequate. to realize the

objective. Efforts, such as development of the PRIDE

system, have continued with focus on bridging the data

interface gap between engineering and manufacturing.

(ISAS) Interfaced Structural Analysis System [40]

ISAS was developed by the Boeing Company for rapid

data processing activities in order to reduce the flow

times for design and analysis of structures. It was

initially released in 1974. The executive utilizes the

menu interface mode. The library supports independent and

interfaced applications with optional batch or interactive

execution. Preprocessors developed for the applications

prompt the user for input. The data management component

incorporates a file system and also the relational RIM

data base manager. ISAS has continually been upgraded and

currently supports a variety of applications for inter­

disciplinary usage. It is available on the nationwide

Boeing timesharing network and is implemented for Control

Data Cyber mainframes.

(ISSYS) Integrated Synergistic Synthesis System [41]

ISSYS was developed by Kentron International,

under contract for NASA Langley Research Center

delivery in 1980.

92

Implemented for Control Data Cyber

mainframes, the executive command language is based on the

Network Operating System (NOS) JCL. The library supports

applications

structures.

for design and analysis of aircraft

(LSSIAP) Large Space Systems Integrated Analysis Program
[42,431

LSSIAP was developed by Martin Marietta Corporation

in 1981 to integrate geometry, mass, area, and mission

data used in design and analysis of attitude control

systems for large space systems. The executive employs a

menu interface being performed according to the direct

design approach. ODIN was the predecessor of the AVID

system.

(NICE) Network of Interactive Computational Elements
[44,45,46J

NICE was initiated in the last 1970's by Lockhead

Missiles and Space Company to support formulation,

implementation, and usage of advanced computational

methods in fluid and solid mechanics. Implementation was

for a distributed network environment consisting of IBM

and DEC VAXminicomputers and Univac mainframes. The

system has sophisticated components which support various

operating modes such as processor-command, user-directive,

processor-directive, and message. The command language

CLIP, consisting of fifty (50) commands, provides the

central interface. The GAL file partition manager

93

provides two levels of data management, local and global.

(ODIN) Optimal Design Integration [47]

ODIN was developed by Aerophsics Research Corporation

under contract for NASALangley Research Center in 1971.

Implemented for a batch environment on the Control Data

6600 mainframe, ODIN supported the design and analysis of

launch vehicle systems. The command language, called

DIALOG or ODINEX, provided flexible control structures and

utilized preconstructed JCL sequences for executing

independent applications. Command language variables were

utilized for low volume data movement, with high volume

data movement being performed according to the direct.

design approach.

system.

ODIN was the predecessor to the AVID

(PICASSO) Program to Integrate Controls, Aerodynamics,

Structures r Software r and Optimization [48]

PICASSO was developed by NASALangley Research Center

in 1978 to support a mUlti-disciplinary analysis and

synthesis methodology for a wide range of aerospace

vehicles. The command language interface mode is employed

and is based on the Control Data Network Operating System

(NOS) JeL. A file system is employed for data management.

(PRESTO) Prediction of Electronic Circuits [49]

PRESTO was ,developed by Boeing Computer Services,

Inc. under contract for the Defense Nuclear Agency with

delivery in 1975.

i
l

It was implemented for a batch

94

environment on the Control Data 6600 mainframe to support

analysis of electronic circuits in determining

electromagnetic pulse effects. The command language

ESCORT is well developed and provides flexible control

structures and command language variables for low volume

data movement. A file system is used for data management.

The library' supports independent applications, with

predefined JCL streams constructed by the user.

(PRIDE) Prototype Integrated Design System [50,51]

PRIDE was developed by the Integrated Programs for

Aerospace-Vehicle Design (IPAD) Office at NASA Langley

Research Center in 1982 as a prototype for assessing the

use of a relational data management system for data

movement between engineering applications. Developed for

a conversational environment on the DEC VAX, PRIDE is

composed of a menu mode executive, a library of

independent applications, and the relational data base

manager RIM. Applications may execute in batch or

interactive mode with the executive generating JCL streams

as required.

(RAVES) Rapid Aerospace Vehicle Evaluation System [9,52]

RAVES was initiated in 1973 by Grumman Aerospace

Corporation and was based on the IDEAS collection of

programs and organizational concepts. Implemented on the

IBM 360 and 370 series, it was designed to support major

analysis efforts from all aerospace vehicle engineering

95

disciplines. The executive performs an elementary routing

function. A file system is utilized for data management,

with direct data movement between applications so that

each application generates data in the format required by

a subsequent application. RAVEShas continually been

expanded and remains an actively utilized system.

(SAVES) Sizing Aerospace Vehicle Structures [6,8]

SAVES was developed by NASALangley Research Center

in the early 1970's to automate the use of programs for

preliminary structural design of a complete aerospace

vehicle. Designed for a batch environment, it was

implemented on the Control Data 6600 mainframe. The

executive performed elementary routing functions, with the

user creating JCL streams to execute independent programs

in sequence and to access required data files. The data

management component utilized a file system.

(SUPER-CAD) Super Computer Aided Design [53]

SUPER-CAD was proposed in a Masters Degree thesis

presented to the Air Force Institute of Technology in

1982. The proposed system would support applications for

microelectronic design, specifically very large scale

integrated circuits (VLSI) and very high speed integrated

circuits (VHSIC). SUPER-CADappears to contain elements

of a Domain ECS because it captures and utilizes knowledge

about the specific engineering discipline (over and above

the algorithms typically associated with CAD/CAEtools).

96

9.0 REFERENCES

1. Gott, B. Why Can't We Manage CAD?, Conference-.Ql}
Banaging Computer Aided Design, Process Industries
Division of the Institution of Mechanical Engineers
(November 19, 1980), ISBN 0-85298-470-7.

2. LaFavor, 5.A. and Doelling, A.E. Some Implications
of Interactive Computer Application to Aircraft
Development, Winter Annual Meeting of the American Society
~ BechAnical Engineers, Houston, TX (1975).

3. Grout, J. S. EASYCACD- A VAX Impl ementa ti on of a
Universal User Interface for a System of Computer Aided
Circuit Design (CACD)Programs, Proc. IEEE 1982 National
Aerospace and-Blectroriics Conf., D~ton, OH (May 1982), I,
1319-1323, NAEOON82CH1765-7.

4. Cheatham, T. Harvard Programming Development System
(PDS), ACB Softwa~ Engineering Notes, 8, 5 (October
1983), 49-50.

5. Sprague, ReB. and Carl son, E.D. .B.Y..i.l.di.ngEffecti~.e
Decision Support aYstems, Prentice-Hall, 1982.

6. Sobieszczanski, J. Building a Computer-Aided Design
Capability Using a Standard Time Share Operating System,
Winter Annual Beeting of the American Society of
.Mechanical Engineers, Houston, TX (1975).

7. Wi1hi te, A. and Johnson, S.C. Integrating Computer
Programs for Engineering Analysis and Design, AIAA 21st
Aerospace Sciences Meeting, Reno, NV (January 1983), AlAA­
83-0597.

8. Blackburn, c.L. and Dixon, S.c. Automated Procedures
for Sizing Aerospace Vehicle Structures (SAVES), Journal
.2.f. Aircraft, 9, 12 (December 1972), 812-819.

9. Wennagel, G.~, et al, RAVES - Rapid Aerospace
Vehicle Evaluation System, AonuAl-Beeting of the American
Society of_Mechanical Engineers, Houston, TX (1975).

10. Herendeen, D.L. Interactive Pre- and Post-Processors
for Finite Element Computer Programs, AIAA Aircraft
Syste~ and Technol~ Conf., Dayton, OH (August 11-13,
1981), AIAA-8l-l629.

97

11. Schaeffer Bulletin on Engineering and Design,
Schaeffer Analysis, Inc., Mount Vernon, NH (January 1983).

12. Gervarter, W.B. .An-.Q.Y:H.Y:~-.Qf Expert Systems, U.S.
Dept. of Commerce, NaSIR 82-2505, May 1982.

13. Ritchie, D.M. and Thanpson, K. The UNIX Time-Sharing
~stem, Communications ACM, 17, 7 (July 1974), 365-375.

14. Barnes, J.G. P. Programming in ADA. Addison-Wesl ey,
London, 1982.

15. Ullman, J. D.. Principles of Database systems. second
Edi tion, Canputer Science Press, Rockv ille, Md, 1982.

16. Kerr, A.W. and Davis, J.M. A System for
Interdisciplinary Analysis - A Key to Improved Rotorcraft
Design, 35th Annual Nationg1 Forum of the American
liel icopter Society, Washington, D.C. (May 1979).

17. Stack, 5.H. Computer-Aided Design System Geared
Toward Conceptual Design in a Research Environment, ~
19th Aerospace Sciences Meeting, st. Louis, MO (January
1981), AIAA-8l-0372. .

18. Gill iam, R.E. ~.!.ill Noise Prediction Program
User's .Manual, NASA TM-844 86.

19. Zorumski, W.E. Aircraft Noise Prediction Program
Theoretical. Manual, NASA TMX-83l99, 1981.

20. Gilliam, R.E., .e..t.al. ANOPP Programmer's-Re.ference
.Manual for the Executi~e System, NASA TMX-74029, 1977.

21. ANOPP Programming and Documentation Standard~

Document, Prepared by Control Data Corp., Hampton, VA,
NASA CR-144989, 1977.

22. Baucom, P.B. Software Blueprints, AC.M Proc. 1978
Annu.al Conf., I (December 4-6, 1978), 385-392.

23. Mill er, R.R. Jr. Struct ures Technology and the
Impact of Computers, Hinter Annual Meeting of the American
Society--2f Mechanical Engineers, Houston, TX (1975).

24. ATLAS: An Integrated Structural Analysis and Design
System. Control and Systems Manual, D6-25400-0002TN, The
Boeing Company (1972).

98

25. Wilhite, A.W. The Aerospace Vehicle Interactive
Design System, AIAb 19th Aerosp~e Sciences Beeting, St.
Louis, MO (January 1981), AlAA-83-0597.

26. Wilhite, A.W. and Rehder, J.J. AVID: A Design
S¥stem for Technology Studies of Advanced Transportation
Concepts, AlAAfNASAConf. on Adv~ed Technology for
Future Space sYstems, Hampton, VA (May 8-10, 1979), AIAA­
79-0872.

27. Mangiaracina, A.A. User's Guide,-llAF AY.I.D, I, II,
III, Michoud Assembly Facil i ty, Martin Marietta Corp.,
1980.

28. Defife, J. Personal communication, Johnson Space
Center, Houston, TX (August 1983).

29. Mahesh, J.~, ~~. InteractiY~light Control
System Analysis Program, DIGIKON IV User Reference Banual,
II, Honeywell Inc. for NASALangl ey Research Center,
Contract NASl-16438, December 1982.

30. Berman, A. A General iz ed Coupl ing Technique for the
Dynamic Analysis of Structural Systems, AlAA!AS.ME!ASCE/AHS
Structures, Structural DYnamics, and Baterial Conf., St.
Louis, MO (April 1979), and Journal of the American
~1.i..c.Q.p~ Society (July 1980).

31. Hurst, P.W. and Berman, A. DYSCO: An Executive
Control System for Dynamic Analysis of Synthesiz ed
Structures, AlAA!ASBE/ASCE/AHS 24th Structures, Structural
Qynamics, and Material Conf., Lake Tahoe, NV (May 2-4,
1983), AIAA-83-0944.

32. Vos, ReG., .e.t 111. Development and Use of an
Integrated Analysis Capability, AlAA!ASWASCE/AHS 24th
Structures, StructULal Qynamics, and Baterials Conf., Lake
Tahoe, NV (May 2-4, 1983), AIAA-83-l0l7.

33. Vos, a o., ~ 111. .Integrated Anal~ Capabilm
(lAC) for Large Space Systems, I, II, Boeing Aerospace Co.
for NASAGoddard Space Flight Center, Contract NAS5-25767,
June 1980.

34. IDEAS, Integrated Design and Analysis System, Society
of Automotiye Engineers, Aeronautic and Space Engineering,
and Manufacturing B~ting, Los Angeles, CA (October 7-11,
1968), Paper No. 680728.

.-

99

35. Garrett, L.B. and Ferebee, M.J., Jr. Comparative
Analysis of Large Antenna Spacecraft Using the Ideas
System, AIMlAS.ME/ASCElAHS 24th Structures. Structural
Dynamics. and Materials Conf., Lake Tahoe, NV (May 2-4,
1983), AIAA- 83-0798.

36. ~~lopment of Integrated Programs for Aerospace
Y~le Design lIPAD). IPEX Preliminary Design, IV, Boeing
Commerci al Ai rpl ane Co. for NASA Langl ey Research Center,
D6-IPAD-70036-D, March 12, 1980.

37. ~~~lopment of Integrated Programs for Aerospace­
Y~le Design (IPAP), User View of I PAD, 8, Boeing
Commercial Airplane Co. for NASA Langley Research Center,
D6-IPAD-70036-D, March 12, 1980.

38. l>Ieyer, D.D. ~~lopment of Integrated Programs for
Aerospac~~le Design (IPAD), Reference Design Process,
Boeing Commerci al Ai rpl ane Co. for NASA Langl ey Research
center, NASA CR-29 81, 1979.

39. Fulton, R,E. CAD/CAMApproach to Improving Industry
Productivity Gathers Momentum, Astronautics and
Aeronautics (February 1982), 64-70.

40. Grisham, ArF. and Keller, R,W. Interfac,eg structural
.An.alysis System Le~~l III User's Manual, I, The Boeing
Company, 81205, 1982.

41. Dov i, A. R, ISSYS; An Integrated Synergistic
Synthesis System, Kentron International, Inc. for NASA
Langl ey Research Center, NASA CR-159221, February 1980.

42. Farrell, c.E. Integrated Design System for Large
Space Systems, AIAA Computers in Aerospace III Conf., San
Diego, CA (October 26-28, 1981), AIAA- 81-2167.

43. Farrell, c.E. An Interactive, Integrated Computer
Program for Determining Large Space System Attitude
Control System Requi rements, AIAA/MS Astrodynamics Conf.,
San Diego, CA (August 1982), AlAA-82-14 07.

44. Felippa, c.x, A Command I&nguage~~l~
.Mechanics Processors, Lockheed Palo Alto Research
Laboratory, Palo Al to, CA, LMSC-D633582, 1979.

45. Felippa, C.Ar Architecture of a Distributed Analysis
Neoiork for Computational Mechanics, Computers and
Structures, 13, 405-413, 1981.

100

46. Wong, D.Ge, .e.t.al. Integrated structural Analysis
and Design Support for Advanced Launch Vehicl es, AIAA-82­
0675,1982.

47. Glatt, C. R., .e.t .al. DIALOG: An Executijl~ Computer
Program for Linking Independent Programs. Aeropqysics
Research· Corp. for NASALangley Research Center, NASACR­
2296, September 1973.

48. Sobieszczanski-Sobieski, J. and Goetz, R.c. Synthesis
of Aircraft Structure Using Integrated Design and Analysis
Methods, Status Report, Research in Computerized
Structural-Analysis and Synthesis Symposium, Washington,
D.C. (October 30 - November 1, 1978), NASAConf. Pub.
2059.

49. PRESTO Digital Computer Code Users Guide, I, II,
Boeing Computer Services, Inc. for Defense Nuclear Agency,
Contract DNAOOl-75-C-0225, December 1975.

50. Blackburn, c.L., .e.t .al. The Role and Application of
Data Base Management in Integrated Computer-Aided Design,
AIAAlAS~B/ASCELARs 23rd Structures. Structural DYnamics.
and Material.s Conf., New Orl eans, LA (May 1982).

51. Fishwick, P.A. and Blackburn, c.L. Managing
Engineering Data Bases, Computers in Mechanical
Engineering, 1, 3, (Jan uary 1983), 8-16.

52. Interactjjle User=D.riented Aircraft Configuration
Generation, Technical Proposal, 1, Grumman Aerospace Corp.
for Wright-Patterson Air Force Base, RFP, F33615-76-R­
3047, November 1975.

53. CabLe, HeS. II SUPER-CAD: An Integrate~ructur~

LQr Design Automation, Master's Tbesis, School of
Engineering, Air Force Institute of Technology, Air
University, Wright-Patterson Air Force Base, OH, AFIT/GCS/
EE/82J-7, 1982.

1. Report No.

NASACR-I72582
I2. Government Accession No. J. Recipient's Catalog No.

4. Title and Subtitle

Executive Control Systems in the Engineering Design
Environment

7. Author(s)

Patricia W. Hurst

5. Report Date

May 1985

6. Performing Organization Code

8. Performing Organization Report No.

~ --; 10. Work Unit No.

9. Performing Organization Name and Address

University of Virginia
Charlottesville, Virginia 22904

11. Contract or Grant No.

NAGI-242

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC20546

Contractor Report
14. Sponsoring Agency Code

505-36-33-01

15. Supplementary Notes

Langley Technical Monitor: John N. Shoosmith
Master of Science (Computer Science) thesis submitted by the author to the
School of Engineering and Applied Science at the University of Virginia.

16. Abstract

An Executive Control System (ECS) is a software structure for unifying various
applications codes into a comprehensive system. It provides a library of applications,
a uniform access method through a central user interface, and a data management facility.
This research report is based on a su~vey of twenty-four Executive Control Systems
designed to unify various CAD/CAEapplications for use in diverse engineering design
environments within government and industry. The goals of this research were to
establish system requirements to survey state-of-the-art architectural design approaches
and to provide an overview of the historical evolution of these systems.

Foundation for design are presented and include environmental settings, system
requirements, major architectural components, and a system classification scheme based
on knowledge of the supported engineering domain(s). An overview of the design
approaches used in developing the major architectural components of an ECSis presented
with examples taken from the surveyed systems. The evolution from early efforts to the
current state-of-the-art ECSare presented as three states of developments: embryonic,
batch environment, and conversational environment. Attention is drawn to four major
areas of ECSdevelopment that are central to advancing the state-of-the art and which
include interdisciplinary usage, standardization, knowledge utilization, and computer
science technology transfer. For each system included in the survey, a snapshot
description is given with references to source documentation.

17. Key Words (Suggested by Author(s) I

Engineering design
CAD/CAE
Executive control systems

18. Distribution Statement

Unclassified - Unlimited
Subject category - 62

19. Security Oassif. (of this report)

Unclassified

20. Security Classif. (of this pagel

Unclass ifi ed

21. No. of Pages

107

22. Price

A06

N-)05 Forsalebythe NationalTechnicalInformationService,Springfield,Virginia 22161

"

